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Strain effect on circularly polarized electroluminescence in transition metal dichalcogenides
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Strain effect on circularly polarized electroluminescence (EL) is theoretically analyzed for a p-i-n junction of
transition metal dichalcogenides. The electrically controllable circularly polarized EL without the strain effect is
understood by valley polarization combined with the electron–hole asymmetry due to the trigonal warping effect
in the valence band. The strain enhances circularly polarized EL more efficiently than the trigonal warping effect
since the asymmetry occurs in the same direction as the direction of the applied electric field. The calculated
result shows that the circular polarization in the strained MoS2 becomes 100% without losing the EL intensity.
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I. INTRODUCTION

Transition metal dichalcogenide (TMD) has attracted much
attention as a two-dimensional (2D) direct-gap semiconduc-
tor [1–8]. Since the TMD possesses a broken inversion sym-
metry [9] at the K and K ′ points in the hexagonal Brillouin
zone (BZ), a left- (or right-) handed circularly polarized light
(LCP or RCP) is emitted in the K (or K ′) valley [10], which is
known as the valley polarization [11–13]. If photoemission
from the K and K ′ valleys is not equal to each other, we
observe a circularly polarized light which is important in
optoelectronics [14].

Zhang et al. have fabricated a light-emitting diode (LED)
in a p-i-n junction of tungsten diselenide (WSe2) [15]. The
LED emits circularly polarized electroluminescence (EL) by
applying in-plane electric field between the source and drain
electrodes. Since the EL photon is emitted in the overlapping
region of the occupied k states by an electron (e) in the
conduction band and a hole (h) in the valence band as shown
in Fig. 1(a1), the circularly polarized EL occurs when the
two overlapping regions in the K and K ′ valleys are not
equivalent to each other. This situation occurs when we apply
the electric field, E, in the direction of kx [Fig. 1(a2)] in which
the overlapping regions change the area since the electron
(hole) states shift to left (right) both for the K and K ′ valleys,
which breaks the time reversal symmetry between kx and
−kx [15]. In order to get the inequivalent area of the two
overlapping regions, we need so-called trigonal warping (TW)
effect [16–18] in the valence band which we exaggeratedly
show as a triangle in Fig. 1. In fact, if the two regions were
concentric circles in Fig. 1(a1), the overlapping area in the K
and K ′ valleys would be the same even in the presence of the
electric field.
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However, since the TW effect is not effective especially
for a small circle near the K (K ′) point [16–18], we cannot
get a large difference of the overlapping area. In this paper,
we consider the strain effect on the energy dispersion in
which the (e) and (h) circles are originally mutually shifted
in the case of E = 0 as shown in Fig. 1(b1) which has the
time-reversal symmetry. When we apply the electric field, the
overlapping regions become more inequivalent than the case
of the TW effect as shown in Fig. 1(b2), since the direction
of the original shift is selected to the direction of the electric
field. In the present paper, we show the significant strain effect
on circularly polarized EL.

The circularly polarized EL has been observed in other
TMDs by similar approach, such as MoS2 [15], MoSe2 [19],
and WS2 [20]. Zhang et al. show numerical simulations to
explain the degree of circularly polarized EL, η, [See Eq. (1)]
as a function of (1) direction of the in-plane electric field [15],
(2) the length of intrinsic (i) region and (3) the voltage
between source and drain [21] which is explained by the TW
effect. However, it is not clear from the experiment how much
the EL intensity (the overlapping area) decreases to get the
circularly polarized EL.

In this paper, we investigate a strain effect on the η as a
function of the strain and electric field. The electronic proper-
ties of the strained TMD have been investigated both experi-
mentally [11,22] and theoretically [23,24] in which the mono-
layer MoS2 can deform up to 11% [24,25], which is superior
to silicon-based devices [26,27] (∼1.5% [28,29]). The flexible
property gives an engineering so-called “straintronics” [30].
Yun et al. and other groups show the direct–indirect-gap tran-
sition [31–33] and semiconductor–metal transition [34–36]
by applying the strain. Rostami et al. [37] theoretically
investigates the strain effect on the electronic structure of
monolayer TMDs using the effective Hamiltonian [37], which
we will adopt to calculate the EL intensity. We show even
η = 1 (100% circular polarization) without losing the EL
intensity, which is much larger than the η caused by the TW
effect [38,39]. Here, the result of TW effect is shown in Sec.
S2 of Ref. [40] for comparison.

The paper is organized as follows. In Sec. II, we show
the method to calculate the energy band structure and the
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FIG. 1. Occurrence of circularly polarized EL: (a1) the overlap-
ping region of hole (h) and electron (e) occupied regions emits LCP
(L) or RCP (R) in the K or K ′ valley, respectively. Here the triangle
for (h) represents the trigonal warping effect. When the electric field
is zero E = 0, the two regions have the same area, L = R. (a2) For
E �= 0, (h) [or (e)] shifts to right (left) from which we get L > R.
(b1) When we apply the strain, (h) and (e) are originally shifted in
the K and K ′ valleys, which gives L = R. (b2) For E �= 0, we get
L > R more effectively than the case of (a2).

asymmetry of the overlapping region. In Sec. III, we show
the calculated results of overlapping region as a function of
the electric field and strain. By calculating the EL spectra, we
evaluate the η as a function of the electric field. In Sec. IV, we
discuss the parameters that we adapted. Finally, we give the
summary in Sec. V.

II. METHOD

The degree of circular polarization η as a function of the
emitted photon energy, Eph, is defined by

η(Eph) = I+(Eph) − I−(Eph)

I+(Eph) + I−(Eph)
, (1)

where I+(Eph) and I−(Eph) denote the EL intensity of LCP
(σ = 1) and RCP (σ = −1), respectively. When the η(Eph)
is positive (negative), LCP (RCP) becomes dominant at the
Eph. The I+(Eph) and I−(Eph) in the presence of the in-plane
electric field E is expressed by [41–43]

Iσ (Eph, E) ∝
∑

κ

∫
1

π

γ
∣∣Mκ

σ (k)
∣∣2

fe(k, E) fh(k, E)d2k

[�Eκ (k) − Eph]2 + γ 2
, (2)

where γ denotes the broadening of the EL spectra due to
uncertainty principles for energy. Here we set γ = 0.03 eV
that is taken from the experimental result [15] of the spectral
width of EL. �Eκ (k) ≡ Eκ

c (k) − Eκ
v (k) denotes the energy

difference between the conduction and valence bands at k
in the K (κ = −1) or K ′ (κ = 1) valley. fe(k, E) [ fh(k, E)]
represents the Fermi distribution function of an electron (a
hole) in the conduction (valence) band in the quasiequilibrium
states for the EL in the presence of E. Using the Boltz-
mann equation with the relaxation time approximation [44],
fe(k, E) [ fh(k, E)] is given by [45,46]

fe,h(k, E) ≈ f 0
e,h

(
k ± e

h̄
τE

)
, (3)

FIG. 2. (a) A TMD p-i-n junction consists of “p”, “i”, and “n”
regions from left to right. In the top view, a metal (blue) and two
overlapping chalcogen atoms (red) are seen. (b) The 2D BZ with
high-symmetry points, 	, M, K, and K ′. (c) Band diagram of the
junction by applying the forward bias. In the “i” region, the in-plane
electric field E appears in the x direction. The electrons and holes are
injected by E into the i region where they recombine to give EL.

where the ± sign accounts for an electron (+) and a hole
(−). f 0

e,h(k) denotes the Fermi distribution function in the
equilibrium. Here τ and e > 0 denote, respectively, the re-
laxation time and the elementary charge. We assume that the
τ ’s for the electron and the hole are identical in a monolayer
TMD [15,47]. Square of the matrix element |Mκ

σ (k)|2 in
Eq. (2) which defines the photoemission probability of LCP
or RCP per unit time at k, is calculated within the dipole
approximation [13,48] as follows [40]:

∣∣Mκ
σ (k)

∣∣2 ∝ 27
8

∣∣Cκ∗
c (k)Cκ

v (k)
∣∣2

m2
opt(1 − σκ ), (4)

where Cκ
c (k) and Cκ

v (k) are the coefficients of the wave-
functions of conduction and valence bands, respectively,
which are obtained by solving the effective Hamiltonian
as shown below. mopt denotes atomic optical matrix ele-
ment which is defined by mopt = 〈dz2 (r − R1)| ∂

∂x |dx2−y2 (r)〉 −
〈dz2 (r − R1)| ∂

∂y |dxy(r)〉, where R1 is a primitive vector in the
x direction [40]. The factor (1 − σκ ) in Eq. (4) means that
the valley polarization occurs in which LCP (σ = 1) [or RCP
(σ = −1)] is emitted only in the K (κ = −1) [or K ′ (κ = 1)]
valley.

In Fig. 2(a), we illustrate a p-i-n junction made by TMD.
The p-i-n junction consists of “p”, “i”, and “n” regions from
the left to right. In the experiment, the p and n regions are
formed by electrochemical doping of a hole and electron,
respectively, by applying a gate voltage [15,49]. For sim-
plicity, we assume that the doping is not further affected by
the in-plane electric field E. In Fig. 2(b), we show the 2D
BZ of the TMD with the high-symmetry points 	, M, K ,
and K ′. In Fig. 2(c), we show a band diagram in which an
intrinsic electric field exists in the i region that are made by
the deformation of energy bands so that we can have the Fermi
energy of the junction. When we apply a forward bias, a hole
(an electron) is injected from the p (n) region to the i region in
which a pair of an electron and a hole at k recombine to emit a
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photon with energy Eph = �Eκ (k). Such EL occurs at k, (1)
if an electron exists in the conduction band, and (2) if a hole
exists in the valence band, whose probability is expressed by
the product fe(k, E) fh(k, E) in Eq. (2).

Using the geometry of Fig. 2(a), let us define in-plane strain
in the device. Defining the displacement vector u = (ux, uy),
the strain tensor is given by [50,51]

ε =
(

εx 0
0 εy

)
, (5)

where εx = ∂ux
∂x and εy = ∂uy

∂y are strain in x and y directions,
respectively. Johari et al. [35] and Kumar et al. [52] pointed
out from the DFT calculations that the bottom of conduction
band and the top of valence band are found to remain around
the K point by expanding and compressing the monolayer
MoS2 in the x and y directions, up to 10%, respectively. Thus
we set a fixed ratio of the strain in the present calculation:
0 � εx = −εy ≡ ε0 � 0.1.

In order to obtain Cκ
c (k), Cκ

v (k), and mopt in Eq. (4), we
adopt a spinless effective Hamiltonian given by Rostami et al.
[Eq. (7) in Ref. 37] which reproduces the energy dispersion
of the strained TMD. The 2 × 2 effective Hamiltonian can be
described by the identity matrix s0 and the Pauli matrices, sx,
sy and sz [53], as follows:

H = h0s0 + h1sx + h2sy + h3sz =
(

h0 + h3 h1 − ih2

h1 + ih2 h0 − h3

)
,

(6)
where h0, h1, h2, and h3 are functions of the two-dimensional
wavevector k = (kx, ky) measured from the K (κ = −1) and
K ′ (κ = 1) points, which are defined by

h0 = S+ + S−
2

+ h̄2α

4m0

[
(kx + κA2)2 + k2

y

]
,

h1 = t0a0(κkx + A1), h2 = t0a0ky, and

h3 = � + S+ − S−
2

+ h̄2β

4m0

[
(kx + κA3)2 + k2

y

]
. (7)

Here, m0 is the mass of an electron and � represents the
bandgap of the unstrained TMD. α and β are dimensionless
parameters to reproduce the strain effect in TMD. S± ≡ 4ς±ε2

0
are strain-dependent scalar potentials, in which ς± are co-
efficients of the strain for the lowest conduction band (+)
and for the highest valence band (−). In the presence of
the strain, kx in the κ valley is shifted by the pseudovector
potential defined by Ai = 2gi

a0
ε0, (i = 1, 2, 3) in which gi is the

dimensionless parameters and a0 is the metal–chalcogenide
bond length projected on the xy plane [37]. The A1 term has
been frequently discussed in graphene [24,54–61]. The A2 and
A3 terms are newly introduced in the strained TMD [62]. It is
important to note that in the zigzag nanoribbon as shown in
Fig. 2(a), the shift in ky does not appear since the pseudovector
potential for ky, Ay, does not exist in Eq. (7). It is because that
the Ay is proportional to difference of the bond lengths for
the two symmetric nearest-neighbor bonds to the y axis [see
Eq. (31) in Ref. 55] and that the difference does not occur for
the present strain εx = −εy ≡ ε0. Thus the energy band does
not shift in the ky direction but only in the kx direction when
the strain is applied.

For the monolayer MoS2, the dimensionless parameters,
gi (i = 1, 2, 3), α, and β are fitted to g1 = 0.002, g2 =
−56.551, g3 = 1.635, α = −0.01, and β = −1.54; while the
other energy parameters are given by ς+ = 15.99 eV, ς− =
15.92 eV, � = 1.82 eV, and t0 = 2.34 eV [37]. According to
the DFT result [35], even for ε0 = 0.1, the lattice constants of
the strained TMD change within 5% of the unstrained ones.
This is the reason why we assume that a0 = a√

3
is a constant

for all ε0, where the lattice constant a for unstrained MoS2 is
given by a = 3.18 Å [35].

By solving the effective Hamiltonian in Eq. (6), we get the
energy dispersion of the conduction (+) and the valence (−)
bands as a function of k and ε0 in the K (K ′) valley as follows:

Eκ
c,v(k, ε0) = h0 ±

√
h2

1 + h2
2 + h2

3 ≡ h0 ±
√

G. (8)

The corresponding wave functions are given by

Cκ
c,v(k, ε0) = 1√

2G ∓ 2h3

√
G

(
h1 − ih2

±√
G − h3

)
. (9)

It is important to point out that since the h0 is a function
of k, the energy dispersion of the conduction and valence
bands are not symmetric in energy. On the other hand, if the
h0 is a constant, the two energy bands would be symmetric.
This gives the different shifts of the energy dispersion of
the conduction and the valence bands in the k as shown in
Fig. 1(b1).

III. CALCULATED RESULTS OF EL

In Fig. 3(a), we plot the energy dispersion of MoS2 for the
conduction (up) and valence (down) bands on the kx axis near
the K (left) and K ′ (right) points in the presence of the strain
(εx = −εy = ε0 = 0.05). As shown in Fig. 3(a), the strained
TMD shows an indirect gap both for the K and K ′ valleys. In
Fig. 3(b), we plot equienergy contours for the pseudo Fermi
energy (EF = 0.02 eV) for the electron (blue loop) measured
from the bottom of the conduction band and the hole (red
loop) from the top of the valence band. Here, the pseudo Fermi
energy is defined by the maximum energy of the electrons or
the holes in which the electrons or the holes are, respectively,
injected in the conduction or the valence band in the i region.
Since the inside of the red (blue) loop corresponds to the
occupied states by the electrons (the holes), the EL occurs
in the overlapping regions [ fe(k, E) fh(k, E) �= 0] of the two
loops. It is noted that the relative portion of the overlapping
area to the loop area decreases with increasing EF for a given
value of the shift.

The relative shift of the two loops are symmetric for the K
and K ′ valleys since the pseudovector potential does not break
the time-reversal symmetry. The relative shift at each valley
occurs by the strain effect. In fact, the shift does not occur
when we select ε0 = 0 in the Hamiltonian [Eq. (6)]. When we
discuss the strain effect, since the relative shift made by the
strain is more effective than that by the TW effect even for a
small ε0 = 0.01, thus we neglect the TW effect in the present
Hamiltonian.

In Fig. 4, we plot �km
x as a function of ε0, which is the

difference of the kx between the bottom of the conduction
band and the top of the valence bands as shown in Fig. 3(b).
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FIG. 3. (a) Energy dispersion of MoS2 for the conduction band
(up) and the valence band (down) on the kx axis near the K (left) and
K ′ (right) point in the presence of the strain (εx = −εy = ε0 = 0.05).
The strained TMD has an indirect gap. (b) Equienergy contours of
the electron (blue loop) and the hole (red loop) distributions in the
k-space in the K (left) and K ′ (right) valleys. Here we assume the
pseudo Fermi energy for the electrons and the holes are taken to be
EF = 0.02 eV.

We also plot the value of the indirect gap Eg as a function of ε0

in Fig. 4. The �km
x (Eg), which occurs by the k-dependent h0,

monotonically increases (decreases) with increasing ε0 which
reproduces the DFT result well [35,52].

When we apply the in-plane electric field E in the i region,
the occupied k region of the electrons (or holes) shifts from
the equi-enegy loop to a shifted loop of k ∓ e

h̄τE. This means
that the charge occupation of electrons (or holes) is shifted

FIG. 4. The difference of the kx and energy gap, �km
x and Eg,

respectively, between the bottom of the conduction band and the top
of the valence band at the K valley are plotted as a function of ε0.

FIG. 5. (a) In the presence of E, the occupied states of electrons
(top) and holes (bottom) are shifted in the opposite direction to each
other. (b) The shifted loops of electrons (blue line) and holes (red
line) are plotted in the k-space. In the overlapping region, the color
represents �E κ (k) = E κ

c (k) − E κ
v (k) = Eph with the corresponding

color scale. (c) The EL spectra of LCP I+ and RCP I− (left) and the
degree of circular polarization η (right) as a function of Eph. We set
τE = 5 × 10−8 N s C−1. Other parameters are the same as those in
Fig. 3.

in the fixed energy dispersion in the presence of E as shown
in Fig. 5(a). This situation is similar to that water surface in
a PET bottle is tilted under acceleration. Since the loops of
electron and hole are shifted in opposite directions to each
other for a given E and since the loops of electron (or hole)
are shifted in the same direction for the K and K ′ valleys,
the overlapping regions in the K and K ′ valleys become
inequivalent, as shown in Fig. 5(b), which is the origin of
circularly polarized EL emission in the strained TMD.

In Fig. 5(a), we illustrate the tilted occupied k states of
electrons and holes in the presence of E along the kx direction.
In the plot, we adopt τE = 5 × 10−8 N s C−1 and the other
parameters are taken to be the same as those in Fig. 3. In
Fig. 5(b), we plot the shifted loops of electrons (red loops)
and holes (blue loops) in the K (left) and K ′ (right) valleys.
As seen in Fig. 5(b), the overlapping regions are colored in
which the color represents the energy difference between the
conduction and valence bands �Eκ (k). The corresponding
colorbar is shown to the right. Since the value of �Eκ (k)

033340-4



STRAIN EFFECT ON CIRCULARLY POLARIZED … PHYSICAL REVIEW RESEARCH 2, 033340 (2020)

corresponds to the photon energy of EL, Eph, we can calculate
the EL spectra by integrate on k using Eq. (2) and we get the
η by Eq. (1) as shown in Fig. 5(c). Here we assume that the
optical matrix element mopt is a constant and does not depend
on the strain nor the electric field for simplicity.

In Fig. 5(c), we plot the EL spectra of LCP I+ from the K
valley and RCP I− from the K ′ valley and the η as a function
of Eph. It is clear from Fig. 5(b), since the overlapping area
for LCP (K) is larger than that for RCP (K ′), the EL of LCP
always has a larger intensity than that of RCP which gives a
much larger η ∼ 0.2 than that for the TW effect (η ∼ 0 shown
in Fig. S6 [40]). For a positive E , the two loops shifted by
the strain are almost overlapped because of the shift by the
electric field in the K valley, while the loops in the K ′ valley
are separated by the electric field. Thus it is clear that by
changing the sign of E , we can get the negative value of the η.

It is noted here that the peak position of Eph for the EL
of LCP is higher than that of RCP. It is because that a larger
overlapping area generally gives a larger �Eκ (k) as can be
seen from the colormap in Fig. 5(b). Thus the η becomes
larger in a higher energy region of Eph > 1.79 eV than Eph <

1.77 eV which is also understood by the blueshift in EL
spectra of LCP.

When we increase the value of τE , an extreme case of
EL with 100% LCP (η = 1) occurs as shown in Fig. 6 in
which we adopt τE = 2.8 × 10−7 N s C−1. In Fig. 6(a), we
show the occupation of electrons and holes in the conduction
(top) and valence (bottom) bands, respectively, for the K (left)
and K ′ (right) valleys. In this case, as shown in Fig. 6(b),
the overlapping region does not exist in the K ′ valley while
the overlapping region survives in the K valley. Thus we
get only EL intensity of LCP from the K valley and η = 1
as shown in Fig. 6(c). It should be mentioned that the EL
intensity of LCP in Fig. 6(c) becomes much smaller than that
in Fig. 5(c) because of the reduction (20%) of the overlapping
area. For the TW effect shown in Fig. S5 [40] with equivalent
parameters, we only have η ∼ 0.006.

In order to get a large η without losing the EL intensity, we
need (1) a large EF for a large area of a loop, (2) a large strain
ε0 for a large original shift of the two loops and (3) a large
τE for making inequivalent overlapping areas in the K and K ′
valleys. Another important fact is that the relative shift in the
EL-spectral peak of LCP and RCP can give a large η.

Since the in-plane electric field is the key factor for gen-
erating the circularly polarized EL, let us discuss the effect
of τE on η. In Fig. 7(a), we plot the photon energy at the
maximum EL intensity Em

ph,σ for LCP and RCP as a function
of τE from the negative to positive values. Here τE < 0
means that we exchange the p and n region so that we can keep
the forward bias condition with exchanging the direction of E.
As shown in Fig. 7(a), there is a maximum of Em

ph,σ for LCP
(RCP) at a value denoted by τE+

cr (τE−
cr ). At the τE+

cr (τE−
cr ),

the EL intensity of LCP (RCP) becomes maximum, too, as is
shown in Fig. 7(b), in which we plot the maximum intensity
Im
σ (left) in unit of m2

opt and η (right) at Em
ph as a function of

τE , where Em
ph is defined by 1

2

∑
σ Em

ph,σ .
Let us explain the reason of the behavior shown in Fig. 7

for a positive τE . When E increases from zero to the critical
electric field E+

cr , the loops of electrons and holes move to

FIG. 6. (a) An extreme case for the tilt of the occupied k states of
electrons and holes in the presence of E. (b) The loops of occupied
states for electrons (blue line) and holes (red line) in the k-space.
Here we set τE = 2.8 × 10−7 N s C−1. Other parameters are the
same as those in Fig. 5. (c) The EL spectra of LCP I+ and RCP I−
(left) and the degree of circular polarization η (right) as a function of
Eph. Only the LCP emission from the K valley occurs because of the
vanishing overlapping region in the K ′ valley.

increase (decrease) the overlapping area in the K (K ′) valley.
Therefore Im

+ (Im
− ) increases (decreases) with the blueshift

(redshift) of LCP (RCP). The value of E+
cr corresponds to

the case that the loops of electrons and holes are completely
overlapped in the K valley as shown in Fig. 5(b) left.

When we increase E from 0 to E+
cr , since the intensity

of LCP (RCP) increases (decreases), the η rapidly increases.
As we further increase τE more than τE+

cr , the overlapping
regions for LCP and RCP both decrease, which decreases each
EL intensity and peak frequency. This makes that η increases
slower than the case of τE < τE+

cr . When the EL intensity
of RCP vanishes at τE = 2.8 × 10−7 N s C−1 because of the
vanishing overlapping region in the K ′ valley as shown in
Fig. 6, η reaches to 1.0. It is noted that the Em

ph,σ cannot be
plotted in Fig. 7(a) when the corresponding intensity Im

σ drops
to zero in Fig. 7(b).

When the direction of in-plane electric field is exchanged,
we should exchange the charge distributions of electron and
hole at the same time (n-i-p junction) for keeping the forward
bias. When we exchange direction of E, as shown in Fig. 7,
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FIG. 7. (a) The EL photon energy at the maximum intensity of
the EL spectra, Em

ph,σ for LCP and RCP as a function of τE . (b) The
maximum intensity Im

σ in units of m2
opt and η at Em

ph as a function of
τE . τEσ

cr is denoted by the vertical dashed line.

the emission of LCP and RCP exchanges which changes the
sign of η. This situation designates the electrically tunable cir-
cularly polarized light source based on the valley polarization
which is observed in the experiments [15,19–21].

IV. DISCUSSIONS

In the present calculation, we assumed that the pseudo
Fermi energy EF for electrons and holes are taken to be the
same. However, this assumption can be relaxed by giving the
inequivalent electrochemical doping in the p and n regions.
In this case, the electron and hole loops do not have the same
area which gives the flat peak of the EL intensity. For example,
if we consider a larger electron loop than a hole loop, RCP
vanishes for a smaller τE value than the case of Fig. 7 which
is illustrated in Fig. 8. Thus it is an efficient way to get η = 1
for relatively smaller τE for EL of LCP. The corresponding
strain can be small for the smaller area although the total
EL intensity should be proportional to the area. It should be
mentioned that the value of τ is not a constant but a function
of energy of electrons or holes. Further, the value of E in

FIG. 8. If the hole loop is smaller than the electron loop, RCP
vanishes for a smaller τE than the case of same loops of hole and
electron.

the i region depends on the width of the i region. Thus the
estimation of τE in the calculation and comparison with the
experiment are necessary.

Another important point that we should address is the
exciton effect. The binding energy of 2D exciton is given as a
function of the number of carriers and the dielectric constants
of the substrates. If the number of carriers is relatively large,
the exciton formation in the i region is not expected. In fact,
the experimental results show an evidence of a trion in the
lower energy region of the EL spectra [15]. The equation
of motion for the trion is beyond the scope of the present
calculation.

The direction of strain is important for the present re-
sults. In the present case, the strain in the y axis does not
affect the pseudovector potential for ky in the zigzag nanorib-
bon [37,55]. Changing the strain in the present geometry gives
strain dependent η and the peak intensity (not shown) which
should be compared with the experiment. On the other hand,
the observation of the η in the experiment can be used for
estimation of the strain once the crystal orientation is given.

V. CONCLUSIONS

In this paper, we calculate EL intensity of the strained
MoS2 in which the strain in TMD enhances the degree of
circularly polarized EL in the p-i-n junction. Circularly po-
larized EL occurs because of (1) valley polarization, (2) the
electron–hole asymmetry and (3) the in-plane electric field in
the i region. In an extreme condition, we get 100% LCP (RCP)
emission in the EL without losing the EL intensity much. We
hope that the theoretical prediction will be observed by the
experiment.
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