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Predicting bursting in a complete graph of mixed population through reservoir computing
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We report our investigation and success story, to an extent, on the prediction of spiking and bursting dynamics
in globally coupled networks, using echo state network/reservoir computing-based learning procedure. Two
exemplary dynamical models, Josephson junctions and Hindmarsh-Rose neurons, are used to construct two
separate networks and thereby illustrate the efficacy of our strategy. In the absence of coupling, the networks
consist of mixed populations in which few nodes are oscillatory (self-sustained spiking) and the rest of the
nodes maintain a quiescent state. When single-input data from one oscillatory node of a network (under stronger
interactions between the nodes) is used for learning, the ESN is able to predict the key dynamical features
(spiking and bursting) of the other nodes. In comparison, the machine performs with improved predictions if it is
fed with two inputs: one from the oscillatory population and another from an excitable population. The machine’s
leaking parameter plays a crucial role, which can be tuned appropriately to enhance prediction. Furthermore, a
cluster synchronization in the mixed population is confirmed from the machine-generated output signals. Our
work is expected to be useful as a burst predictor.
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I. INTRODUCTION

A recurrent neural network (RNN), a bio-inspired machine
learning tool, offers a general solution for complex tasks
of predicting signal information. Noticeably, the working
principle of RNN does not depend on a priori knowledge
of the intrinsic dynamical relation of the considered or tar-
geted data [1–3]. Recently another version of RNN called
as reservoir computing (RC)/echo state network (ESN) is
developed for efficient prediction of complex signals for a
considerably longer time [3–8]. In contrast to RNN, the
ESN is easier to implement and cost effective since it does
not require fine tuning of its inner components except for
the readout/output layer which helps matching the target
behavior within a close approximation. Having its simplic-
ity of computation and powerful ability of prediction, ESN
has been used for calculating Lyapunov exponents, attractor
reconstruction [9–11] of dynamical systems and becomes a
testing bed for detecting generalized synchronization [12–14]
in coupled chaotic systems. Apart from dynamical issues,
ESN can identify nonstationarity in steady-state visual evoked
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potentials [15], predict stock price in a short time scale [16]
and help understand the language processing [17] as well as
differentiating speech signals [18]. A reservoir (say, ESN) has
three distinct components or layers: an input layer collecting
the inputs, a reservoir network with a large number of random
elements (analogous to neurons) that expands the input in a
high dimensional nonlinear fashion and an output layer to
produce the expected target. The readout or output layer is the
only part where the weights are trained to produce a desired
output which should be closer to the target data. Researchers
have also devoted to find the optimal parameters of an ESN
for accurate detection of target data [13,19–25].

Here we first employ the ESN to predict different kinds
of bursting dynamics originating from a mixed population
of Josephson junctions [26], where excitable and oscillatory
junction nodes (subpopulations) connect to each other over the
top of a complete graph. We test here whether the ESN can,
(i) predict the spiking and bursting signals with considerably
high accuracy, (ii) how many inputs required for efficient
prediction of spiking and bursting dynamics, and (iii) identify
cluster synchronization within the subpopulations. From this
perspective, we further investigate the role of the leakage pa-
rameter of the ESN on the success of prediction. We have also
checked how the machine performs in presence of heterogene-
ity of system parameters and in the desynchronized regime of
the dynamical network under learning and prediction (details
are given in Ref. [34]). In a broader sense, the paper aims at an
optimal and suitable strategy in the machine learning process
through ESN for prediction of spiking and bursting dynamics
as well as the collective behavior of coupled networks. Note
that spiking is a repeated firing state that occurs when neurons
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FIG. 1. Bursting prediction by ESN. (a) Components of the machine. (b) A complete graph of spiking (filled red circles) and quiescent
oscillators (filled blue circles). [(c) and (d)] For strong mean-field coupling (ε = 15), both the subpopulations (oscillatory nodes in red color,
excitable nodes in blue color) emerge into bursting oscillation: Six spikes with different amplitudes in each burst. [(e) and (f)] Predicted signals
(black lines) by the machine after feeding only one oscillatory input into the machine. Bursting of one oscillatory node (red line) is shown
closely matching with machine data (black line). Bursting in the excitable unit (blue line) is also matched with the machine predicted signal
(black line). However, there is a small fluctuation in the subthreshold oscillation of the predicted signal near the slow manifold, which shows
a mismatch or poor prediction.

send signal to other neurons through a rise of action potential
[27–30], whereas bursting is a bunch of spikes, i.e., a repeated
firing within a small duration of time intercepted (periodically
or irregularly) by a silent or steady state. Finally, we test our
scheme with a network of biologically plausible spiking and
bursting Hindmarsh-Rose (HR) neuron model [31,32]. For
both of our example networks, the ESN efficiently predicts
the critical point of emergence of the clustering states.

II. BASICS OF ESN BASED LEARNING

The ESN described, in this article, is a standard discrete-
time leaky tanh (tan-hyperbolic function) network. The in-
ternal state of each node of the reservoir updates themselves
following a recurrent relation:

r(n + 1) = (1 − α)r(n) + α × tanh(Wresr(n)

+ Wins(n + 1)), (1)

where Wres is a N × N matrix of internal connectivity weights
of the reservoir shown in Fig. 1(a). The matrix Win (size:
N × K) represents input weights and K is determined by the
number of external inputs. r is an N-dimensional vector repre-
senting instantaneous internal state dynamics of the reservoir
and s is the K-dimensional input vector.

The tanh function is applied element-wise and α is a
leakage constant. In the ESN, the elements of Wres and Win

are kept unchanged before or at the instant of post-processing.
To train the readout/output weights, the states from the reser-
voir r(n) and external input s(n) are collected in X(n) =
[r(n); s(n)] for each instant of time n. The output relation at
time n is captured by

y(n + 1) = tanh(WoutX(n)). (2)

For a long time series n = 1, .., Q, we can write the relation
in a vector form [5]

Y = tanh(WoutX). (3)

Here, Y ∈ RKo×Q where Q is the length of the time series of
each node and Ko is the number of target nodes/outputs. The
size of the collecting matrix of the internal dynamics is given
by X ∈ R(N+K )×Q. The most simplest way to determine Wout

is to take the pseudoinverse of the operator X:

Wout = tanh−1 (Y)X†. (4)

However, the most suitable way of capturing Wout is the least-
square method [33], which looks like

Wout = (XT X + λI )−1XT (tanh−1 Y), (5)

where λ is a regularization factor and Y is the true/target
data and I is the identity matrix. In the absence of regular-
ization, the system converges to the previous equation (4) (see
Ref. [34], Sec. 1 for details). Note that, the output nonlinearity
tanh is optional. To make a random reservoir qualify as an
echo state network, it must exhibit certain damping properties.
They can be ascertained by ensuring that the weight matrix
Wres has a spectral radius smaller than unity [33] which has
been maintained throughout this article for each simulation.

A. Network setup

To construct the ESN, a 1000 × 1000 reservoir weight
matrix Wres is generated with dense connectivity and ran-
dom weights are drawn from a uniform distribution over
(−1, 1) and re-scaled to a spectral radius of 0.8. Input weights
(Win) are also randomly chosen from a uniform distribution
over (−1, 1). One input from the mixed population (or two
qualitatively different inputs) will be fed into the reservoir.
Therefore, the size of Win is either N × 1 or N × 2 (see
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Ref. [34], Sec.1). The leakage constant α is fixed at 0.3,
however, its effect on prediction is tested and described below
for a range of values.

B. Training and testing

The length of the training sequence is taken as 40 000; the
first 10 000 steps are discarded to wash out the initial transient
and the echo signals x(n) are sampled from the remaining
Q = 30 000 steps. After the training process, 20 000 data
points are tested in the backdrop of the learned machine.
The machine extracted and target data are represented by
di(n) and yi(n) (n = 1, . . . ., 20 000, i = 1, . . . , Ko), respec-
tively, when the mean squared error (MSE) is calculated by
MSEtesti= 1

20000

∑20 000
n=1 (di(n) − yi(n))2.

To illustrate the success of ESN on the prediction of
bursting, we employ globally coupled networks of spiking and
excitable (in quiescent state) oscillators shown in Fig. 1(b),
where spiking oscillators are represented by red circles and
quiescent nodes by blue circles.

Our motivation is to extract/predict information (time sig-
nal) of a large number of nodes by feeding information of the
dynamics (time series data) of a small number of nodes as
input to the reservoir. Assume that we use the input from one
oscillatory node (xoscillatory), then s(n) is one-dimensional. In
each time step, this value is multiplied with the element of
input matrix Win and then added to the intrinsic dynamics
of the reservoir described by Eq. (1). In the same manner,
we can add, multiple inputs to the reservoir (see Ref. [34],
Sec. 2 for detail description). Before describing details of
our main results of our selected networks, we present a
glimpse of our strategy and the story of prediction on the
dynamics of the Josephson junction network [26]. For a larger
coupling strength, all the nodes show bursting behavior in
Figs. 1(c)–1(d). However, data of bursting dynamics from
only one oscillatory node shown in Fig. 1(c) are fed into
the ESN for training and the rest of the nodes’ dynamics are
predicted from the trained machine. Interestingly, bursting of
the oscillatory (red) nodes and the bursting response of the
quiescent nodes (blue) are predicted as shown in Figs. 1(e) and
1(f), respectively, with a good approximation. Further details
are presented in the next section.

III. PREDICTION OF BURSTING AND CLUSTERING:
NETWORK OF JOSEPHSON JUNCTIONS

We consider here a globally coupled network; the local
dynamics of each node is represented by resistive-capacitive-
shunted junctions (RCSJ) [35–39]. This superconducting
Josephson junction model is an analog of the classical pen-
dulum model. Above a critical DC-bias current and for a
wide range of damping parameter, an isolated RCSJ shows
self-oscillation mimicking the periodic spiking behavior alike
neurons’ spiking [37]. In presence of a periodic forcing or a
shunted inductor, the RCSJ may reveal typical spiking and
bursting behaviors [27,36,37,40]. An array of forced RCSJs
may also reveal complex collective behavior (chimera, clus-
tering, and extreme events) [41,42] under a global mean field
interaction. As suggested above, we consider here a mixed
population of RCSJs (total number of junctions is Nd ), where

p number of oscillators are in self-oscillatory mode and the
rest of (Nd − p) oscillators are in a quiescent state [26]. The
dynamics of two subpopulations of oscillatory and excitable
nodes in the network is captured by two sets of equations,

θ̇i = xi, (6)

ẋi = Ii − aixi − sin θi + ε

Nd

Nd∑

k=1

(xk − xi ), (7)

θ̇ j = x j, (8)

ẋ j = I j − a jx j − sin θ j + ε

Nd

Nd∑

k=1

(xk − x j ), (9)

where i = 1, 2, . . . , p and j = p + 1, p + 2, . . . , Nd are the
self-oscillatory and excitable nodes, respectively. The variable
θi of the ith uncoupled node is the phase difference of the
junction, θ̇i=xi (dot denotes time derivative) is the voltage
across the junction and ai=[h/2πeIiR2C]1/2 is the damping
parameter, h is the Planck’s constant, e is the electronic charge
and Ii(i �= j) is the DC bias current. It is to be mentioned that
the isolated RSCJ model has similarities with the Sakaguchi-
Kuramoto phase model with inertia [43–45] and also with the
working model of a power grid [46].

In the absence of coupling (ε = 0) and a = 1.5, each node
can reveal two types of dynamics: oscillatory spiking behavior
(Ii > 1.0) and a quiescent state (Ii < 1.0). Below Ii = 1.0, the
system has two equilibrium points: one saddle and a stable
node. At Ii = 1.0, two fixed points coalesce and the junction
generates a stable limit cycle through saddle-node on invariant
circle (SNIC) bifurcation for Ii > 1.0 [38,39]. Under an exter-
nal periodic forcing, an isolated junction shows a parabolic
bursting [36,37,40] typically seen in neuron models [47]. Here
we consider a network of junctions with a subpopulation
of oscillatory nodes by setting the bias current at I1 = I2 =
· · · = Ip = 1.25 and another subpopulation as excitable (in a
quiescent state) by setting Ip+1 = . . . . = INd = 0.5 with our
choice of fixed ai = 1.5. It has already been established [26]
that such a mixed population in a globally coupled graph,
originates bursting dynamics whose pattern is determined by
the fraction of population p/Nd and the coupling strength
ε. Now we present the details of how a trained ESN can
proceed to predict the bursting behavior of the network nodes.
We consider the network size Nd = 10, where half (p = 5)
of the population is excitable and the rest is oscillatory. To
understand the spiking-bursting behavior, we have plotted two
bifurcation diagrams in Fig. 2 where maxima of the spikes (in
a burst) of one oscillatory node (in red dots) in Figs. 2(a) and
maxima of one excitable node (in blue dots) in Fig. 2(b) are
drawn for varying coupling ε.

For weak coupling (left of the dashed vertical lines), the
original oscillatory nodes exhibit recurrent spiking oscillation
and the excitable nodes show subthreshold oscillation. The
number of spikes in a single burst emerges one by one above
a critical coupling strength (εc = ε ∼ 4.8). For instance, both
the nodes will have four spikes (blue and red dotted lines) in
a single burst at a coupling ε = 9 (black vertical line). First,
we feed time series information from one oscillatory node
into the reservoir for training. The rest of the nodes will be
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FIG. 2. Bifurcation diagram of oscillatory and quiescent nodes.
xi variable of the RCSJ is used for study. Peak values are plotted as a
function of coupling strength (ε) for (a) one arbitrarily chosen oscil-
latory node and (b) one from the excitable subpopulation. For weak
coupling (ε = 1) indicated by a dashed vertical line, the oscillatory
node has single and recurrent spikes (a). The quiescent node shows
(b) subthreshold oscillation in this regime (dashed vertical line). For
larger coupling (ε > 4), both the nodes start bursting oscillations
with multiple spikes (the solid vertical line at ε = 9). The number
of spikes in a burst increases with ε.

predicted after the training procedure is finished: 30 000 data
points from one node are used to train the readout weights.
After that, one oscillatory input of 20 000 data length (points)
is used to predict 20 000 data points of rest of the nodes. We
examine that the ESN predicts the signal with a low accuracy
when the network is under weak interactions (ε ∼ 1). The
original signals extracted from the complete graph are shown

in Fig. 3(a). The time series of four oscillatory nodes (in solid,
dashed, dotted, and dotted-dashed red lines) are shown (other
than the input node), which are asynchronous. However, the
subthreshold oscillations of low amplitude (time series in
blue) of the excitable five nodes are synchronized, which is
further confirmed by a spatiotemporal plot in Fig. 3(b) (five
nodes, 6–10, at right). The readout of the ESN is tuned at
the time of the training process by information from one
oscillatory unit only. In the post-process, the predicted signals
(of 9 nodes leaving the input node) in Figs. 3(c) and 3(d)
do not match the original signals [cf. Figs. 3(a) and 3(b)].
It explains a weak correlation between the original and the
predicted signals. This happens because the original oscil-
latory signals are not in a synchronous state and, therefore,
the machine fails to predict the signals of the other nodes.
By contrast, for a higher coupling (ε = 15), the oscillatory
and excitable units maintain a correlated evolution in time,
basically, showing up an almost synchronized bursting state;
time series and spatiotemporal plots in Figs. 3(e) and 3(f)
provide a proof. The synchronized bursting signals (red lines)
of the oscillatory nodes and the excitable nodes (blue line)
are shown in the time series plot. Both the subpopulations
are separately synchronized and the spikes within each burst
are synchronized for the entire population (red and blue lines
almost merging to each other). After the readout weights are
trained, the ESN efficiently predicts the signals of the other
nodes. Note that, time series data from only one oscillatory
node is fed into the reservoir and the rest of the synchronized
oscillatory nodes (red lines) of excitable nodes (blue lines)
are predicted in Fig. 3(g) as already described in Figs. 1(e)

FIG. 3. Comparison of original signals with the machine predicted signals from RCSJ network. One input is used from one oscillatory
node. Original time signal xi (a) and spatiotemporal plot (b) of all nodes for weak coupling ε = 1. Time series (c) and spatiotemporal plot
(d) of predicted signal from the machine. No correlation is found between the machine predicted signals and original signals extracted from
dynamical equations. For higher coupling ε = 15, bursting appears in the entire network: time series xi (e) and all the nodes are synchronized as
shown in the spatiotemporal plot (f). Machine-based predictions of time evolution in blue (g) is more accurate than the weak coupling setting
except for small fluctuations near the slow manifold. Cluster synchronization is also visible from the predicted signal in a spatiotemporal
plot (h).
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FIG. 4. MSE between the original and predicted signals in the
RCSJ network. (a) One oscillatory node is fed into the machine.
The red circled lines represent the oscillatory nodes. They merged
near the coupling ε ∼ 5 and MSE of each oscillatory node sharply
dropped to a value ∼10−5. The blue circled lines represent the
excitable nodes. MSEs of excitable nodes are almost saturated at
∼10−2 at a higher coupling. (b) For better prediction, two nodes’
information is fed into the machine: one oscillatory and another
from one node in the excitable subpopulation. MSE for all the nodes
sharply dropped near a coupling ε ∼ 5 confirming the efficiency of
prediction of the ESN.

and 1(f). The quiescent nodes are showing some fluctuations
at the subthreshold level. However, the bursting pattern (5 or 6
peaks in a single burst and timing of spiking) of each node in
the entire graph is closely mimicked in the predicted output.
To quantify the accuracy of the data set generated from the
machine/reservoir, we calculate the MSE of all the predicted
signals with respect to their original counterparts. MSE is
plotted in Fig. 4(a) as a function of ε. All the red lines (with
solid circles) converge around ε ∼ 5 and maintain synchrony
within the population and MSE confirms that the RC-based
signals of the oscillatory nodes are highly correlated with their
original counterparts as it saturates at ∼10−5 beyond ε > 5.
At a lower coupling, the blue nodes (solid circles) are in steady
state or show small oscillation; the ESN-detected signals also
show subthreshold oscillation and hence the prediction for the
excitable/quiescent nodes at a weaker coupling is highly ac-
curate and accordingly, the MSE of all the excitable nodes are
significantly small. However, when we increase the coupling,
the amplitude of subthreshold oscillation of each excitable
node becomes larger and larger with ε and hence the MSE of
all the excitable nodes fluctuates for a range of ε, and finally
converges to a relatively larger value, ∼10−2 at ε ∼ 5. Com-
pared to the oscillatory nodes (red lines with filled circles),
all the predicted signals of the excitable nodes (blue lines
with filled circles) are less accurate for higher coupling (MSE
∼10−2, ε > 5). The reason is as follows: Feeding data from
one oscillatory node into the reservoir, we expect the ESN to
predict the rest of the oscillatory and excitable nodes (total
nine nodes). Since the input is from one oscillatory node, the
machine will have a better sharing of information with the rest
of the oscillatory nodes, at a larger coupling, hence it predicts
the oscillatory nodes’s behavior in a better way. However, with
no direct information from the excitable nodes being shared
with the ESN, it cannot accurately identify the signature of
subthreshold oscillations of the excitable nodes and hence

prediction about their behavior is poor. For improving the
performance of the ESN, we have increased the number of
inputs to two when one input is taken from the oscillatory
nodes and the other from the excitable nodes as shown in
Fig. 4(b) to make a balance of information input. Now, it
is seen that above a certain coupling ε > 5, MSE of all the
nodes (blue and red) coalesce together nicely and saturated at
∼10−4, reflecting the cluster states of the entire networks. For
improved performance, we play with the leakage parameter
and discuss in Sec. III A. Note that the integration has been
performed in MATLAB using the ODE45 routine. At the time
of starting the simulations, the initial conditions are chosen
randomly between 0.1 to 2 and adiabatically updated for the
next coupling. This strategy is kept unchanged for all data
generated on the Josephson junction network, in the main text,
as well as Ref. [34].

A. Prediction: Impact of leakage constant

The performance of the reservoir is now checked from the
perspective of the machine parameter α, the leakage constant.
So far we have derived our results using a leakage parameter
α = 0.3 for the ESN. We now play with this parameter α if
it can improve the prediction both for single- and two-input
learning. For comparison, we use the MSE measure of one
input signal (separately, for excitable and oscillatory nodes)
and its machine-generated signal both for the single and the
double inputs, and plotted separately, as a function of ε and α

in Fig. 5.
First we feed data from the time signal of one oscillatory

node (xOscillatory1 ) into the reservoir. MSE of one excitable
node (xExcitable2 ) and its machine-generated counterpart is only
shown in Fig. 5(a), which clearly shows that it decreases for
larger α > 0.02. The machine performance does not change
significantly for larger α (including our selected specific value
of 0.3) and ε. However, compared to the excitable node,
the machine performs very well for the oscillatory node
(xOscillatory2 ), particularly, in the larger coupling range (ε >

4.0) even for low α values, as shown in Fig. 5(b). The leakage
parameter does not play any significant change in prediction
by the machine except for a range of low (ε, α) values.

A sharp contrast appears in prediction once we increase the
number of inputs. We feed two inputs into the reservoir: Time
signals of one oscillatory (xOscillatory1 ) node and one excitable
(xExcitable1 ) node are fed and the machine predicts the signals
of the rest of the eight nodes (xOscillatory2,..,5 and xExcitable2,..,5 ).
In this case, the machine performance is significantly en-
hanced for the whole range of our selected ε and α values
in the prediction of an excitable node (xExcitable2 ) as shown
in Fig. 5(c), although the performance of the ESN seems
better in a lower range of ε. Compared to Fig. 5(a), MSE
is sharply decreased (MSE ∼ 10−6) here. In the case of the
oscillatory node (xOscillatory2 ) and its machine-generated signal,
the performance does not change significantly compared to
the single input case. For the whole range of α and a range
of larger ε > 4.8, the performance remains almost similar to
the single input case. However, MSE appears to decrease in
a range of lower coupling (ε < 4.8) and higher α values as
shown in Fig. 5(d) that, encouragingly, indicates a desired
improvement in the performance of the machine in prediction,
in this range. Yet remains a range of low ε − α values where
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FIG. 5. Impact of machine parameters in RCSJ network. MSEs are plotted in a plane α-ε plane. [(a) and (b)] One oscillatory node input
is fed to the reservoir. (a) MSE is calculated between real data and machine-generated data of the excitable node. (b) MSE of an oscillatory
node’s original data and machine-generated data. [(c) and (d)] Two input data: One oscillatory and one excitable nodes’ data are fed into the
machine. (c) MSE of one excitable node and (d) MSE of one oscillatory node are is plotted. All the plots [(a)–(d)] project MSE for varying
α and ε. The desynchronized time signals (white vertical bar) and their output from the machine at a coupling strength ε = 4 is discussed in
detail in Sec. 2 of Ref. [34].

the performance remains poor due to the desynchronization
of the network, which is discussed, in detail, in Ref. [34].
The vertical bar (white bar) marks the selected parameters to
show the effect of desynchronization in [34]. It is shown that
prediction by the ESN can be improved for desynchronized
signals using the two-node signal feeding strategy, but one
has to make a suitable choice of the leakage parameter. We
discussed these issues in Ref. (Secs. 3 and 4) [34]. In the next
section, we consider another network of a mixed population
of neurons and test the performance of the ESN in one node
as well as the two-node training approach.

IV. PREDICTION OF BURSTING AND CLUSTERING:
COUPLED HR NEURONS

In a single RCSJ used above to build a network, in our
first example, spiking oscillation starts due to tunneling of
electron Cooper pairs through the superconducting junction
for an applied DC bias current above a critical value [35]. It
could generate bursting similar to a neuron [37] when a slow
dynamics controls the spiking as induced here by the excitable
nodes [26].

To check the performance of the ESN on the prediction
of busting dynamics, we present here a biologically plausible
and phenomenological neuron model, namely, the HR model
[31,32], which responds to a constant external triggering
above a threshold to generate recurrent action potential or
spiking oscillation that basically represents fast movements
of Na+ and K+ ions across the membrane of a neuronal cell.
Additionally, the model incorporated [31] a slow Ca++ ion
movement across the membrane that controlled the spiking
oscillation resulting in a type of bursting dynamics. We em-
ploy our ESN technique next on a globally coupled network
of the HR system. The dynamics of the nodes in the network
is captured by

ẋi = yi + bx2
i − ex3

i − zi + Ii + ε

Nd

Nd∑

k=1

(xk − xi ) (10)

ẏi = c − dx2
i − yi (11)

żi = rs(xi − xR) − rzi, (12)

where e = c = 1, b = 3, d = 5, s = 4, r = 0.01, xR = −1.6,
and Nd = 10. Once again, one half of the population is kept
in steady state (I = 1.3) and the other half in oscillatory state
(I = 4). Notation i indicates the node index.

Time evolution (xi) of two arbitrarily selected nodes (i =
1, 2) from two subpopulations, one oscillatory (red line) and
one excitable nodes (blue line), are picked up and com-
pared with their respective machine-generated signals (black
lines) as shown in Fig. 6. Time signal of two subpopulations
are desynchronized and irregular for ε = 0.4. For this cou-
pling, the bursting is weakly predicted (black lines) by the

FIG. 6. Comparison of the time signal of two arbitrarily chosen
nodes from two different subpopulations of the HR network. Results
of one node data feeding to the reservoir are presented. (a) Sig-
nal of one oscillatory node (red) and the signal predicted by the
machine (black). (b) Signal of one excitable node and machine-
based predicted signal are shown with blue and black lines. For
(a) and (b), the coupling strength is fixed at ε = 0.4. [(c) and (d)]
When the coupling (ε = 1.2) is increased, the ESN generated signals
closely match the original signals of the oscillatory (c) and excitable
nodes (d).

033338-6



PREDICTING BURSTING IN A COMPLETE GRAPH OF … PHYSICAL REVIEW RESEARCH 2, 033338 (2020)

FIG. 7. MSE between the original signal and predicted signals in
coupled HR Neuronal networks. (a) One oscillatory node is fed into
the machine. (b) Two nodes into the machine: one oscillatory and the
other is chosen from the excitable population. MSE for all nodes are
sharply dropped to a value ∼10−5 near a coupling ε ∼ 1.

machine as shown in Figs. 6(a) and 6(b). In particular, for
the oscillatory node in Fig. 6(a), the prediction is very poor
(cf. no match of red and black colored bursting), which is
consistent with our results of the RCSJ network as expected
in the weakly desynchronized regime. However, for a larger
ε = 1.2, the machine performance improves enormously. This
is confirmed in Fig. 6(c) from a comparison of one oscillatory
node with its predicted signal, which shows a close match
(dominant red lines are seen, no trace of black line). The
excitable node’s signal overlaps (blue line) on its machine
predicted signal (black line) in Fig. 6(d) very closely; no
separate identity of the predicted signal (black line) is seen.
Once again, results of the RCSJ example are confirmed. For
higher coupling, the ESN performs well since clustering states
emerge within the subpopulations. The machine is able to pre-
dict the bursting and the clustering behavior. For confirmation,
first we feed one node information into the machine. MSE of
the original and machine-generated signals of all the nodes are
shown in Fig. 7(a). The predictions for the excitable/quiescent
nodes (blue lines with circle) are not good compared to
the oscillatory nodes (red line with filled circles). The ESN
performance is poor, as usual, for training with data from one
oscillatory node. The ESN performance improves for obvious
reason, as explained for the RCSJ network, when we feed two
nodes’ information to the reservoir (one oscillatory node and
another in quiescent state) for the training purpose. MSEs as
a function of ε of all the nodes are shown in Fig. 7(b) for

two-node training strategy. Note that, in both cases, there is a
sharp drop of MSE around a coupling strength ε ∼ 1, which
is a signature of clustering in the network.

V. CONCLUSION

A reservoir computing based prediction of spiking and
bursting is proposed for a group of globally connected os-
cillators in a backdrop of mixed parameter setup. We tested
our strategy using two bursting models representing the local
dynamics of the networks, one superconducting Josephson
junction and one biological neuron model. A mixed popula-
tion of quiescent and oscillatory nodes can generate bursting
dynamics in the entire graph of superconducting junctions.
We have shown that ESN can predict regular and irregular
bursting of the entire graph over a range of coupling strength.
The ESN can perform better if we feed the reservoir with in-
formation from two nodes from two different subpopulations.
We are able to find a wide range of a machine parameters
to check the performance of the reservoir computing-based
prediction. This reveals a possibility of tuning the machine
parameter for improved performance, in general. By using
two inputs, the reservoir computing (ESN) even can predict
the shape of desynchronized signals in the weak coupling
regime. The success of the ESN based prediction was tested
for homogeneous and heterogeneous networks in terms of
system parameter distribution [34]. The work can be useful
for efficient prediction of bursting and detection of cluster
synchronization within a population and chimeralike states
in the weaker coupling range of a network. These feature
extractions are intriguing since otherwise, one cannot predict
the onset of cluster and chimera states without using the
detailed information of the dynamical models. In the near
future, questions remain if more complex signals such as
future arrival time of extreme events can be predicted from
available time series data, and about extracting network struc-
ture information from a suitable setup of the ESN.

Codes to reproduce the results presented here are freely
accessible in [48]. Additional information is available from
the corresponding author upon reasonable request.
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