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Damping of elementary excitations in one-dimensional dipolar Bose gases
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In the presence of dipolar interactions, the excitation spectrum of a Bose gas can acquire a local minimum. The
corresponding quasiparticles are known as rotons. They are gapped and do not decay at zero temperature. Here
we study the decay of rotons in one-dimensional Bose gases at low temperatures. It predominantly occurs due to
the backscattering of thermal phonons on rotons. The resulting rate scales with the third power of temperature
and is inversely proportional to the sixth power of the roton gap near the solidification phase transition. The
hydrodynamic approach used here enables us to find the decay rate for quasiparticles at practically any momenta,
with minimal assumptions on the exact form of the interparticle interactions. Our results are an essential
prerequisite for the description of all the dissipative phenomena in dipolar gases and have direct experimental
relevance.
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I. INTRODUCTION

At low pressures and temperatures, helium-4 is a remark-
able quantum liquid that is superfluid. Landau characterized
the latter state by a dissipationless flow of macroscopic objects
at low velocities [1]. Another particular feature of the super-
fluid helium is seen in its spectrum of elementary excitations.
While at the lowest momenta it is linear, the spectrum pos-
sesses a local minimum. The corresponding quasiparticles are
known as rotons and have wavelengths that practically coin-
cide with the mean interparticle distance. Since the interaction
between helium atoms is strong, the roton can be visualized
as a yet undeveloped Goldstone mode due to an instability to-
ward crystallization [2]. However, such a so-called supersolid
state that unifies superfluidity with crystalline order has not
been observed in helium, despite some controversies [3–5].

Another system that shows some similarities to superfluid
helium are dipolar Bose gases, which can be realized with
atoms possessing large dipolar moments, such as chromium,
dysprosium, and erbium. Bose-Einstein condensates of those
atoms have been realized [6–9], which opened new avenues
for studying various phenomena that originate from the dipo-
lar interaction [10,11]. Examples include striped states [12],
quantum droplets [13,14], and the elusive supersolid state
[15–20].

Trapped dipolar Bose gases can exhibit a quasiparti-
cle spectrum with a roton minimum [21,22]. This occurs
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because the dipolar interaction cannot be described only by
a short-range pseudopotential, but it must also include an
anisotropic long-range part in order to correctly describe the
low-energy scattering between bosons [11]. The quasiparticle
spectrum in weakly interacting Bose gases is determined
by the Bogoliubov theory [23] and depends on the Fourier
transform of the pseudopotential. Since it is described by the
two parameters, one for the short-range part and the other for
the long-range part, when they are properly tuned, the local
minimum can develop in the spectrum. A recent experiment
[24] has confirmed the presence of rotons in the dipolar Bose
gas.

The current understanding of the properties and the dynam-
ics of dipolar gases is limited due to the lack of dissipative
mechanisms in most theoretical descriptions. Without dissi-
pation, one can neither describe the postquench relaxation
observed in Ref. [24] and the loss of phase coherence [25,26]
nor predict the thermodynamic quantities related to ergodicity,
such as the gas viscosity [27,28]. In a well-isolated gas,
dissipation arises primarily from the interactions between the
quasiparticles, which allow the system to reach equilibrium.
A prerequisite to understand the dissipative dynamics is thus
to compute the quasiparticle lifetime, which is the purpose of
this work.

At zero temperature, rotons and all quasiparticle excita-
tions at lower momenta in a dipolar Bose gas are stable. Being
slower than the sound velocity, those quasiparticles cannot
emit phonons due to the conservation laws of momentum and
energy. Such a scenario resembles the absence of Cherenkov
radiation at small velocities. However, the quasiparticles do
decay at finite temperature. The dominant process for the
damping of a subsonic quasiparticle involves its scatter-
ing with a thermally excited quasiparticle, where two new
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FIG. 1. Rotonic excitation spectrum of a one-dimensional dipo-
lar Bose gas obtained from the Bogoliubov theory [35]. The damping
of energetic excitations of the energy εk � T , i.e., hard phonons,
maxons, and rotons, is controlled by the backscattering off thermal
phonons. Our theory is valid until quasiparticles become supersonic
with velocities vk > c (right vertical red line at kl ).

quasiparticles are created [27,29–33]. The resulting rate typi-
cally scales as a power law of temperature.

In this paper we study the damping of energetic quasipar-
ticles (including rotons) in a one-dimensional dipolar Bose
gas. This process is controlled by the backscattering of ther-
mal phonons. We find a low-temperature rate that scales
as the third power of temperature T 3. The hydrodynamic
approach employed here to describe the interaction between
phonons and energetic quasiparticles is not limited to the
weak-coupling regime and does not require a specific form
of the interaction potential. It is an important generalization
to arbitrary high-energy quasiparticles of the phonon-roton
hydrodynamic approach [27]. To describe roton damping, we
simply require specific interactions that lead to the formation
of a roton minimum. Near the solidification phase transition,
when the roton gap � is much smaller than the other relevant
energy scales (except temperature), we find a rate diverging
as 1/�6. Our results pave the way for a description of the
postquench relaxation dynamics of a dipolar Bose gas [34].

II. DAMPING OF ENERGETIC QUASIPARTICLES

We consider a gas of bosons with a dipolar interaction
between particles in a (quasi-)one-dimensional geometry (as
studied theoretically in Ref. [35] and recently realized exper-
imentally [24]). We assume that the gas is prepared at low
temperature,

T � �, mc2, (1)

where mc2 is the characteristic energy scale for phonons, m
denotes the mass of particles, c is the sound velocity, and the
Boltzmann constant is set to unity. Subsonic quasiparticles
with dispersion εk are characterized by the velocity vk =
dεk/h̄dk, which is smaller than c. They can decay only due
to scattering off thermally excited quasiparticles. At very high
momenta, the quasiparticles become supersonic (see Fig. 1).
In this case they can decay at T = 0 by emitting phonons,
which is not precluded by the conservation laws [36,37].

The collisionless damping rate1 associated with a subsonic
energetic quasiparticle of the energy εk � T (see Fig. 1) can
be computed using the Fermi golden rule and the Boltzmann
equation. It leads to

�k = 2π

h̄

∑
q,q′,k′

|Ai f |2
L2

δ(εk + h̄ωq − εk′ − h̄ωq′ )nq(1 + nq′ ).

(2)

Here ωq = c|q| is the phonon frequency, L is the system size,
and nq = 1/[exp(h̄ωq/T ) − 1] defines the Bose occupation
factor. In Eq. (2), Ai f is the transition amplitude from the
initial state |i〉 = γ̂

†
k b̂†

q|0〉, with an excitation present in the

mode k, to the final state | f 〉 = γ̂
†
k′ b̂

†
q′ |0〉. Denoted by b̂† and

γ̂ † are the bosonic creation operators for the phonon and
the energetic quasiparticle, respectively. The δ function in
Eq. (2) accounts for the energy conservation. Note that in
the low-temperature regime (1) considered here, the thermal
population of the final roton state is exponentially suppressed,
nk′ ≈ e−εk′ /T � 1, and the rate acquires the simple form (2).

The transition amplitude Ai f can be computed with
minimal assumptions, in particular, not assuming that the
gas is weakly interacting, using quantum hydrodynamics
[27,30,32,33]. Within this theory, it is sufficient to consider
the cubic residual interaction among phonons given by the
Hamiltonian2

Ĥph =
∑

q

h̄ωqb̂†
qb̂q +

∑
q,q′

A3(q, q′)√
L

(b̂†
q+q′ b̂qb̂q′ + H.c.).

(3)

The matrix element A3(q, q′) follows from the hydrodynamic
equations of motion [27,38] and has the form

A3(q, q′) = mc2

√
32ρ

√
qq′(q + q′)

q3
0

[
ρ2

c2

d

dρ

(
c2

ρ

)
+ sgn(qq′)

+ sgn[q(q + q′)] + sgn[q′(q + q′)]
]
, (4)

where ρ is the (mean) fluid density and q0 = mc/h̄. The hy-
drodynamics describes the energetic quasiparticles perturbed
by the phonon field within a local density approximation as

Ĥqp = 1
2 [ε( p̂, ρ + δρ̂(r̂)) + p̂v̂(r̂) + H.c.]. (5)

Here ε( p̂, ρ) is the Hamiltonian of the unperturbed quasipar-
ticle in first quantization, where r̂ is its position and p̂ its
momentum operator. By δρ̂ and v̂ are denoted, respectively,
the density and the superfluid velocity perturbations caused by
the phonons. Expanded to a quadratic order at small δρ̂ � ρ

1The thermal phonons of the characteristic wave vector qth = T/h̄c
have a lifetime that diverges when T → 0. Therefore, εk � h̄�qth ,
which justifies the collisionless approximation.

2We omit the vacuum cubic terms of the form b̂qb̂q′ b̂−q−q′ in
Eq. (3). Since they describe far-off-shell processes, those terms
do not contribute to the on-shell phonon-quasiparticle scattering
amplitude (8) to second-order perturbation theory.
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and expressed in second quantization, Eq. (5) becomes

Ĥqp =
∑

k

εk γ̂
†
k γ̂k +

∑
k,q

A1(k, q)√
L

(γ̂ †
k+qγ̂kb̂q + H.c.)

+
∑
k,q,q′

A2(k, q, q′)
L

γ̂
†
k+q−q′ b̂

†
q′ γ̂kb̂q. (6)

The phonons and the energetic quasiparticle are coupled by

A1(k, q) =
√

ρ|q|
2q0

∂ρεk + ∂ρεk+q

2
+

√
h̄3c

2mρ|q|q

(
k + q

2

)
,

A2(k, q, q′) = ρ
√|qq′|
2q0

∂2
ρεk + ∂2

ρεk+q−q′

2
. (7)

Computing the transition amplitude in second-order pertur-
bation theory (including the contribution of the three-phonon
residual interaction [39,40]), on the mass shell we obtain

Ai f =
[
A2(k, q, q′) + A1(k − q′, q′)A1(k − q′, q)

εk′ − h̄ωq − εk′−q

+ A1(k, q)A1(k′, q′)
h̄ωq + εk − εk+q

+ 2A3(q′, q − q′)A1(k, q − q′)
h̄ωq − h̄ωq−q′ − h̄ωq′

+ 2A3(q, q′ − q)A1(k′, q′ − q)

εk − εk′ − h̄ωq−q′

]
δk+q,k′+q′ . (8)

To compute the damping rate (2) at low temperature, we need
the amplitude (8) expressed at the leading order in small q and
q′. The energy conservation constraint of Eq. (2) has nontrivial
solutions only for the backscattering events, i.e., at qq′ < 0,
which leads to the relation

q′ = −q ×
{

(c − vk )/(c + vk )+O(q), kq > 0
(c + vk )/(c − vk ) + O(q), kq < 0.

(9)

Since the quasiparticle scattering off a phonon experiences a
small energy change, we expand it to second order around the
initial energy εk as

εk′ (ρ) = εk (ρ) + h̄vk (ρ)(k′ − k) + h̄2(k′ − k)2

2m∗(k, ρ)
+ O(k′ − k)3.

(10)

In the limit q → 0, the on-shell amplitude takes the form
Ai f = h̄c

√|qq′|Ykδk+q,k′+q′/2ρ, where

Yk = ρ2

mc2
(
c2 − v2

k

)[(
c2 − v2

k

)
∂2
ρεk − (∂ρεk )∂ρ

(
c2 − v2

k

)

+ h̄2c2k2

m∗ρ2
− (∂ρεk )2

m∗ − 2h̄ck

ρ
(vk∂ρc − c∂ρvk )

]
, (11)

in agreement with Ref. [30]. Equation (11) has a divergence
when vk approaches c. At high momentum this occurs after the
roton minimum when the quasiparticle becomes supersonic
(see Fig. 1). Such a singularity physically represents the pos-
sibility for the decay by a single-phonon emission. The same
type of divergence in Yk also exists when the quasiparticle
approaches the phonon regime. Those two thresholds are the

boundaries of validity of our hydrodynamic approach (see the
vertical red lines in Fig. 1).

Using the calculated on-shell amplitude, we can now eval-
uate the damping rate (2). To the leading order in temperature
we obtain

�k ∼
T →0

T 3Y 2
k

8π h̄3c2ρ2

[
cJ

( c−vk
c+vk

)
c + vk

+ cJ
( c+vk

c−vk

)
c − vk

]
, (12)

where Yk is given by Eq. (11), while the dimensionless
J (x) = x

∫ +∞
0 dq̃ q̃2[1 + ñ(xq̃)]ñ(q̃), with ñ(q̃) = 1/(eq̃ − 1).

The rate (12) is our main result. It shows that the low-
temperature quasiparticle decay rate universally scales with
the third power of temperature. The expression (12) is general
and independent of the particle interaction strength. The k-
dependent part of the rate is contained in Yk and depends on
the specific details of the spectrum. We study now Eq. (12) in
more detail.

III. HARD-PHONON REGIME

Since T � mc2, there exists a regime of hard phonons
with the characteristic energy T � εk � mc2 such that our
hydrodynamic approach applies. We consider the general
form of the spectrum of the energetic quasiparticle, i.e., a hard
phonon,

εk = h̄c(ρ)|k|
(

1 + γ (ρ)

8

k2

q2
0

)
+ O(k/q0)4. (13)

Here the coefficient of the small correction term is negative,
γ (ρ) < 0, which ensures that the excitation branch is sub-
sonic (i.e., concave) and that the zero-temperature decay by
phonon emission [37] does not occur. Expanding Eq. (11) at
small k, we obtain Yk = −Ak/q0 + O(k/q0)2, where

A = 1 − 2ρ
c′

c
− ρ2 c′2

c2
− ρ2 c′′

c
+ ρ

γ ′

γ

(
1 + ρ

c′

c

)
. (14)

The prime denotes the derivative with respect to ρ. Using
J (x) ∼ 2ζ (3)x at x → ∞, the rate (12) becomes

�k ∼
T →0

k/q0→0

32ζ (3)

9π
A2 q2

0

γ 2k2

T 3

h̄3c2ρ2
. (15)

Equation (15) becomes very large at small k, which reflects
the denominator in Eq. (11). Our approach requires the quasi-
particle energy correction δεk = εk − h̄c|k| of Eq. (13) not to
be thermally smeared, i.e., δεk � T . Therefore, the rate (15)
applies for phonons of wave vectors satisfying q1/3

th q2/3
0 �

|k| � q0 with the thermal wave vector qth = T/h̄c. To study
the regime of k comparable to q1/3

th q2/3
0 , our phonon Hamilto-

nian (3) should be further expanded to describe four-phonon
interactions [31], while the phonon dispersion should now
be taken with the correction, as in Eq. (13). In fact, this
regime has been studied by a microscopic approach [41,42].
For k = αq1/3

th q2/3
0 and α independent of temperature, the T 3

power law for �k breaks down. However, quite remarkably,
one recovers Eq. (15) (specified by the Bogoliubov dispersion,
discussed below) by taking the limit α → ∞ [see Eq. (8)
in Ref. [41]]. This excludes the existence of an intermediate
scaling law between the regimes k ≈ q0 [of which Eq. (15)
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gives the low-k limit] and k ≈ q1/3
th q2/3

0 [of which Eq. (8) in
Ref. [41] gives the high-k limit].

IV. CASE OF ROTONS

Rotons are a special case of the energetic quasiparticles
considered in preceding sections, which have a quadratic
dispersion around the roton minimum k0:

εk′ (ρ) = �(ρ) + h̄2[k′ − k0(ρ)]2

2m∗(ρ)
+ O(k′ − k0)3. (16)

The effective mass m∗ is positive for rotons, but the present
discussion also applies to maxons, which have a similar
quadratic dispersion but a negative mass, m∗ < 0. For such
quadratic dispersion, using J (1) = π2/3, the damping rate
(12) acquires a simpler form

�k0 ∼
T →0

π

12
Y 2

k0

T 3

h̄3c2ρ2
, (17)

where one can use Eq. (11) at k = k0 or its alternative version

Yk0 = ρ2

mc2

[(
dμ

dρ

)2 d2�

dμ2
− d�

ρdρ
− 1

m∗

(
d�

cdρ

)2

+ h̄2(k0/ρ − dk0/dρ)2

m∗

]
(18)

The correspondence with the general form (11) is seen us-
ing � = εk0 , d�/dρ = ∂ρεk0 , d2�/dρ2 + (h̄dk0/dρ)2/m∗ =
∂2
ρεk0 , vk0 = 0, and h̄dk0/m∗dρ = −∂ρvk|k=k0 , which follows

from partially deriving Eq. (16) with respect to ρ and k′. The
sound velocity c is related to the chemical potential of the gas
μ via the relation mc2 = ρdμ/dρ.

V. WEAK-COUPLING LIMIT

For weak interactions, one can calculate analytically the
quasiparticle spectrum [35,37], which takes the Bogoliubov
form

εk =
√

Ek (Ek + 2ρgk ), (19)

where Ek = h̄2k2/2m is the kinetic energy of a free boson.
Denoted by gk is the Fourier transform of the effective two-
particle interaction. Postponing the discussion about its spe-
cific form to the following section, we now assume that the
spectrum has the characteristic form of the roton minimum
(see Fig. 1). Equation (19) enables us to compute the relevant
derivatives with respect to the density:

ρ∂ρεk = ε2
k − E2

k

2εk
,

ρ2∂2
ρεk = −

(
ε2

k − E2
k

)2

4ε3
k

, (20)

ρ∂ρvk = vk
ε2

k + E2
k

2ε2
k

− h̄k

m

Ek

εk
.

The roton damping rate (17) now depends only on � and k0,
besides the thermodynamic parameters T , c, and ρ, which
appeared in Eq. (17). Since those quantities have been mea-
sured experimentally, our expression of �k0 can be tested

without any assumption about gk . In ultracold dipolar bosons
the roton gap can be tuned to a wide range of values by
tuning the relative strength of the short-range interactions.
This suggests that experiments may be more sensitive to the
variations of the prefactor of the T 3 law with � than in super-
fluid helium (where � can be tuned by varying the pressure
but so far in a smaller range). In particular, in the regime
T � � � Ek0 , mc2, we find a divergence of the damping rate
as �−6:

�k0 ∼
T →0
�→0

π

192
(1 + R)2

E8
k0

(mc2)2�6

T 3

h̄3c2ρ2
. (21)

In Eq. (21) we have introduced the dimensionless parameter

R = �/m∗c2, (22)

which has a finite nonzero limit at � → 0. We finally note
that the Bogoliubov spectrum (19) employed in Eq. (14) (in
the hard phonon regime) gives A = 3(γ − 1)/2γ , with γ =
1 + 2ρmg′′

0/h̄2, which should be substituted in Eq. (15).

VI. EFFECTIVE INTERACTION POTENTIAL

For the application of our theory to the realistic model,
we consider a cylindrically symmetric quasi-one-dimensional
Bose gas characterized by the transverse trapping frequency ω

in both transverse directions and the average dipole moment
along the direction of motion x [35]. In Fourier space, the
effective one-dimensional interaction potential acquires the
form

gk = g1D − 4αd2

l2

[
1 − ǩ2eǩ2

�(0, ǩ2)
]
, (23)

where g1D is the effective one-dimensional contact coupling
constant describing short-range interactions (including the
short-range behavior of the dipolar interactions [43,44]),
ǩ = kl/2 (with l = h̄/

√
mω the harmonic-oscillator length),

d is the dipole moment, and � denotes the incomplete
Gamma function. The dipoles precess at high frequency
around the x axis, which leads to an effective dipolar strength
αd2 with −1/2 < α < 1 [45]. For the interaction potential
(23), the sound velocity satisfies mc2 = ρ(g1D − Vd ), where
Vd = 4αd2/l2. The low-energy stability condition requires
g1D > Vd . A roton minimum appears at k0 (which solves
dεk/dk|k=k0 = 0) for g1D < 0 and Vd,min < Vd < Vd,max <

g1D. The lower bound Vd,min is reached at the phase transition
� = εk0 = 0 and the upper bound Vd,max when the dispersion
has an inflection point (when simultaneously dεk/dk|k=k0 = 0
and d2εk/dk2|k=k0 = 0).

In Fig. 2 we plot the quasiparticle dispersion and the
rescaled damping rate as functions of the wave vector at
the interaction strengths ρg1D = −h̄ω and ρVd = −1.144h̄ω.
The rate �k diverges at low k as predicted by Eq. (15) as
well as at kl l/2 � 0.44 when the excitations become super-
sonic (vkl = c). It varies several order of magnitude between
the maxon and the roton regimes, the latter being far more
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FIG. 2. Quasiparticle spectrum εk in units of the transverse
trapping energy h̄ω (red solid line) and rescaled damping rate
h̄3ρ2c2�k/T 3 (blue solid line) in a quasi-one-dimensional dipolar
Bose gas as functions of the wave vector k in units of 2/l =
2
√

mω/h̄. The dotted vertical black lines show the maxon and roton
extrema. The dashed black curve is the hard-phonon asymptote of
Eq. (15).

susceptible to the damping. Figure 3 shows the roton damping
rate as a function of the dipolar interaction strength ρVd ,
or equivalently of the roton gap �, fixing the short-range
coupling constant ρg1D = −h̄ω. The roton minimum exists
for −1.182h̄ω � ρVd � −1.143h̄ω and the gap varies from 0
to about 0.13h̄ω. The rate �k is a monotonically decreasing
function of � and diverges as �−6 when � → 0 as Eq. (21)
predicts.

VII. INFLUENCE OF DIMENSIONALITY

The T 3 behavior of the damping rate in one dimension is
perhaps our most easily testable prediction. In three dimen-
sions, the correct T 7 behavior of the roton-phonon damping
rate was predicted in [27], although the prefactor is contested
by Refs. [33,40]. Experimental attempts to observe this decay
rate in superfluid helium failed to resolve it from the roton-
roton damping rate [46], which follows an activation law
in e−�/T . In two dimensions, the quasiparticle damping rate
of dipolar Bose gas is described in Ref. [47], restricted to
Landau-Beliaev-type processes where a quasiparticle decays
into two others. This resulted in an exponentially suppressed
rate at low temperatures, whereas our theory adapted to the
two-dimensional case would give a contribution to the damp-
ing rate proportional3 to T 5, hence much larger in the limit
T → 0.

3This follows from a simple power counting in the two-dimensional
equivalent to Eq. (2).

FIG. 3. Rescaled roton (blue curve) and maxon (orange curve)
damping rates (�/h̄ω)6ρ2c2�k/T 3 as functions of the roton gap
(lower x axis) or the dipolar strength ρVd (upper x axis) at fixed
ρg1D = −h̄ω. The dashed black line is the corresponding � → 0
asymptote of the roton damping rate obtained from Eq. (21).

VIII. CONCLUSION AND OUTLOOK

In this paper we studied the damping of quasiparticles in a
dipolar Bose gas comporting rotons. Since the quasiparticles
are subsonic, they cannot decay at T = 0, except at large wave
vectors. This should be contrasted with the weakly interacting
Bose gas with short-range interactions which has a convex
spectrum and thus the decay occurs already at T = 0 [37]. For
weak interactions, the two cases have an overlap at very large
wave vectors, where the damping rate at T = 0 approaches a
constant value [36,37].

The method we developed here for one-dimensional dipo-
lar gases can be generalized to higher dimensions as it de-
scribes more generally the damping of a high-energy subsonic
impurity embedded in the superfluid phonon field. Our ap-
proach could thus be used to describe the relaxation of the
gapped collective branches of superfluid helium-3 [48] or the
low-temperature lifetime of BCS quasiparticles, coupled to
an Anderson-Bogoliubov phonon in neutral Fermi superfluids
[32] and to lattice phonons in superconductors [49].
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