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Berry phase in the composite Fermi liquid
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We derive the definition of the Berry phase for the adiabatic transport of a composite fermion (CF) in a
half-filled composite Fermi liquid (CFL). It is found to be different from that adopted in previous investigations
by Geraedts et al. For the standard CFL wave function, we analytically show that the Berry curvature is uniformly
distributed in the momentum space. For the Jain-Kamilla wave function, we numerically show that its Berry
curvature has a continuous distribution inside the Fermi sea and vanishes outside. We conclude that the CF with
respect to both the microscopic wave functions is not a massless Dirac particle.

DOI: 10.1103/PhysRevResearch.2.033329

I. INTRODUCTION

The ubiquitous presence of the Berry phase is notable in
recent theoretical investigations of condensed matter physics.
For noninteracting systems, it becomes a unifying concept for
characterizing the orbital effects of the spin or other internal
degrees of freedom [1], and plays central roles in systems such
as topological insulators [2], Dirac and Weyl semimetals [3]
and valleytronic materials [4]. Recently, it becomes clear that
the Berry phase also plays a role in the theory of composite
fermions (CFs) [5]. CFs can be regarded as weakly interacting
particles residing in a hidden Hilbert space [6]. A wave
function of noninteracting CFs in the hidden Hilbert space can
be mapped into a wave function appropriate for describing
the physical state of a strongly correlated, fractionally filled
Landau level. The theory of CFs has achieved tremendous
successes in illuminating the fractional quantum Hall effect
and related phenomena [5].

However, although the wave functions prescribed by the
CF theory are shown to be very accurate and widely ac-
cepted [7], the effective theory of CFs interpreting the wave
functions is still open to debate. The conventional interpre-
tation, as explicated in Halperin-Lee-Read (HLR) theory of
the composite Fermi-liquid (CFL) [8–10], treats the CF as an
ordinary Newtonian particle. In its pristine form, it suffers
from an apparent difficulty: it cannot correctly predict the
CF Hall conductance of a half-filled Landau level [11]. The
difficulty motivated Son to propose that the CF should be a
massless Dirac particle [12]. An alternative interpretation, i.e.,
the CF is neither a Newtonian particle nor a Dirac particle, but
a particle subject to a uniformly distributed Berry curvature in
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the momentum space and the Sundaram-Niu dynamics [13],
was also put forward [14–16]. It was also shown that the
picture is equivalent to the dipole picture of CFs [17]. The
three pictures imply three different distributions of the Berry
curvature, i.e., zero, singularly distributed, and uniformly
distributed, respectively. The clarification of the issue then
hinges on the determination of the Berry curvature for CFs.

A “first principles” approach for determining the Berry
curvature of CFs should be based on the microscopic CF
wave functions prescribed by the CF theory. To this end,
several attempts have been made. In Ref. [16], the dynamics
of the CF Wigner crystal is derived. It shows that the CF
is subject to a uniformly distributed Berry curvature in the
momentum space. For the half-filled CFL phase, the Berry
curvature distribution is found to be uniform by determining
the dynamics of a test (distinguishable) CF added to the CF
Fermi sea [15]. A heuristic argument based on the dipole pic-
ture of CFs also suggests the same [14,15]. These works may
draw criticism for neglecting the particle exchange symmetry
in their treatments. It is in this context that the recent works by
Geraedts et al. stand out [18–20]. Their calculations are based
on a microscopic CFL wave function in its full antisymmetric
form. However, a close scrutiny of the works reveals a number
of difficulties. First, the definition of the Berry phase is a
prescribed one and is not fully justified. Second, the evalua-
tion of the Berry phase based on the definition seems to be
not numerically robust, sensitive to the choices of paths, and
prone to statistical errors. Moreover, there exist extraneous
±π/2 phases preventing direct interpretations of numerical
results. Finally, the microscopic CFL wave function adopted
for the calculation is of the Jain-Kamilla (JK) type [21], which
is numerically efficient in implementing the projection to the
lowest Landau level (LLL). However, it is unclear whether or
not it yields the same result as that from the standard CFL
wave function prescribed by the theory of CFs [5].

In this paper, we solve these issues and determine the
distribution of the Berry curvature for CFs. First, we derive
the definition of the Berry phase directly from the original
definition of the Berry phase. It is found to be different from
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the prescribed one adopted by Geraedts et al. [18,19]. Then,
we analytically show that the Berry curvature distribution is
uniform in the momentum space for the standard CFL wave
function. On the other hand, to compare with the results in
Refs. [18,19], we also evaluate the Berry curvature of the JK
wave function. With our definition, the numerical evaluation
of the Berry phase becomes robust and free of the extraneous
phases observed in Refs. [18,19]. It enables us to numerically
determine the distribution of the Berry curvature in the whole
momentum space. We find that the Berry curvature has a
continuous distribution inside the Fermi sea and vanishes
outside, and is different from the uniform distribution of the
standard CFL wave function. We analytically show that the
difference originates from the different quasiperiodicities of
the two wave functions in the reciprocal space.

The reminder is organized as follows. In Sec. II, we derive
the definition of the Berry phase of the CFL. In Sec. III C, we
determine the Berry phase and Berry curvature of the standard
CFL wave function analytically. In Sec. IV, we evaluate the
Berry curvature of the JK wave function numerically. In
Sec. V, we analyze the quasiperiodicities of the two wave
functions in the reciprocal space, and determine the uniform
background of the Berry curvature. In Sec. VI, we summarize
and discuss our results.

II. DEFINITION OF THE BERRY PHASE OF CFL

In this section, we derive the definition of the Berry phase
for CFL systems. We first introduce the generic definition of
the Berry phase. Next, we derive the definition of the Berry
phase for CFL systems from the generic definition. Then, we
discuss different representations of the Berry phases. Finally,
we discuss and interpret Geraedts et al.’s definition and re-
sults.

A. Berry phase

A quantum system acquires a geometric phase, i.e., the
Berry phase, when it is adiabatically transported along a path
C by varying parameters α in its Hamiltonian Ĥ (α) [22]. The
Berry phase is determined by a line integral in the parameter
space

γ (C) =
∫

C
i〈�α | ∇α�α〉 · dα, (1)

where |�α〉 is the eigenstate of Ĥ (α), and the integrand is
called the Berry connection. The phase is independent of how
the path is traversed as long as it is slow enough for the
adiabaticity to hold. For a closed path, the phase is gauge
invariant, i.e., independent of the choice of the phase factor
of the wave function.

The Berry phase formula Eq. (1) can be recast into an
alternative form as a time integral:

γ (C) = i
∫ t1

t0

〈
�α(t )

∣∣∣∣ d�α(t )

dt

〉
dt, (2)

where the wave function evolves with time via the time
dependence of its parameters, and α(t ) is an arbitrary time-
dependent function that traverses the path C with t0 (t1) being
the beginning (ending) time of the evolution. The integrand is

actually a part of the Schrödinger Lagrangian [13,23]:

L =
〈
�(t )

∣∣∣∣ ih̄
d

dt
− Ĥ

∣∣∣∣ �(t )

〉
, (3)

which governs the time evolution of a quantum system. This
is why one sees the ubiquitous presence of the Berry phase in
various contexts such as effective dynamics [13,23] and path-
integral formalisms.

B. Definition of the Berry phase of CFL

From the generic definition of the Berry phase, we can infer
a definition of the Berry phase appropriate for CFL systems.
For the purpose, it is more convenient to first consider a much
simpler system, i.e., a set of non-interacting electrons residing
in a Bloch band. The definition of the Berry phase for such a
system is well known in the single-particle form [13]. Here,
we will treat the system as a many-particle system and find a
many-body generalization of the Berry phase definition. The
generalization turns out to be general enough for applying to
CFL systems.

The many-body wave function of a set of non-interacting
Bloch electrons is a Slater determinant of Bloch states:

�k(z) = det[ψk j (zi )], (4)

where k ≡ {k1, k2, . . . } denotes the list of the quasi-wave-
vectors of the Bloch states occupied by electrons, and
ψk j (zi ) = exp(ik j · zi )uk j (zi ) is the Bloch wave function with
uk j (zi ) being its periodic part.

The wave function has a number of general properties
which are actually shared by the much more complicated
CFL wave functions: (a) it is parametrized by a set of wave
vectors k; (b) it is an eigenstate of the (magnetic) center-
of-mass translation operator T̂ (a) such that T̂ (a)�k(z) =
exp (i

∑
i ki · a)�k(z), where a is one of the vectors of the

Bravais lattice with respect to the periodicity of the system.
As a result, two states with different total wave vectors are
orthogonal to each other. With proper normalizations of wave
functions, we have

〈�k | �k′ 〉 = δ

(∑
i

ki −
∑

i

k′
i

)
f (k, k′), (5)

where f (k, k′) is a function with the property f (k, k) = 1, and
the wave vectors in the Dirac delta function are regarded as
equal if they are only different by a reciprocal lattice vector;
(c) the wave function has the Fermionic exchange symmetry
and can be obtained from an unsymmetrized wave function ϕk

by applying the anti-symmetrization operator P̂:

P̂ = 1

N!

∑
P

(−1)PP̂, (6)

�k(z) = P̂ϕk(z) ≡ 1

N!

∑
P

(−1)Pϕk(P̂z), (7)

where P̂z denotes a permutation of electron coordinates, N is
the total number of electrons, and ϕk(z) = √

N!
∏

i ψki (zi ) for
the Bloch system. In the unsymmetrized form, an electron is
associated with a particular wave vector. The association is
lost in the antisymmetrized form.
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With the wave function in hand, one may be tempted to
directly apply Eq. (1) to determine the Berry phase. However,
a difficulty immediately arises. To see that, we treat k1 as the
parameters α, substitute Eq. (4) into Eq. (1), apply the identity
P̂2 = P̂ , and obtain Ak1 ≡ i 〈�k|∂k1�k〉 = − 〈�k|r1|ϕk〉 +
i〈�k | eik1·r1 | ∂k1 uk1 (r1)

∏
i�2 ψki (ri )〉. Unfortunately, the re-

sulting Berry connection Ak1 is not a legitimate one because
〈�k|r1|ϕk〉 does not have a deterministic value since the Bloch
states have definite momenta and therefore infinite position
uncertainty. This is the difficulty we have to address before
the generic definition can be applied to wave functions like
Eq. (4).

The most straightforward approach to address the is-
sue is to introduce a unitary transformation to the Hamil-
tonian: Ĥ (k1) = e−ik1·r1 Ĥeik1·r1 . The resulting Hamiltonian
acquires dependence on the parameters k1, and the corre-
sponding eigenstate wave function becomes e−ik1·r1ϕk(r) =
uk1 (r1)

∏
i�2 ψki (ri ). One can then apply Eq. (1) to obtain

the well-known result Ak1 = i 〈uk1 |∂k1 uk1〉. Such an approach
is adopted and generalized in Ref. [15] to show that the
standard CFL wave function yields a uniform Berry curvature
	(k1) = 1/qB, where q is the unit charge of carriers and B is
the perpendicular component of the external magnetic field B.
However, the approach is not compatible with the exchange
symmetry because Ĥ (k1) obviously breaks the symmetry of
exchanging the first particle (the particle being transported)
with others. Adopting such an approach means that we have
to ignore the exchange symmetry. This is what we want to
avoid here.

We therefore adopt and generalize the approach presented
in Ref. [13]. The basic idea is that, since the difficulty is due
to the fact that a Bloch state does not have a deterministic
position expectation value, we replace it with a wave packet
state which has a central wave vector kc and gives rise to a
deterministic position expectation value zc:∣∣�̃kc,zc

〉 =
∫

dk1a(k1, t )|�k〉, (8)

where we assume that |a(k1, t )|2 is narrowly distributed
around kc and satisfies∫

dk1|a(k1, t )|2 = 〈
�̃kc,zc | �̃kc,zc

〉 = 1, (9)∫
dk1|a(k1, t )|2k1 = kc. (10)

We choose the time dependence of a(k1, t ) to make kc tra-
verses a path C while keeping zc fixed. By applying Eq. (2),
we can then determine the Berry phase acquired by the wave-
packet state. In the end, the width of the distribution |a(k1, t )|2
will be set to zero so that the wave-packet state approaches
to the Bloch state. We will show that it yields a well-defined
limit.

We still need to define zc. It is easy to see that
〈�̃kc,zc |z1|�̃kc,zc〉 does not yield a deterministic expectation
value. This is because z1 loses its association with k1 in
the antisymmetrized wave function, and 〈�̃kc,zc |z1|�̃kc,zc〉 =
〈�̃kc,zc |zi|�̃kc,zc〉 is nothing but the center-of-mass position.
Since electrons, all but one, have definite wave vectors in
|�̃kc,zc〉, the center-of-mass position has infinite uncertainty.

To obtain a deterministic position, we define zc as the position
of the electron associated with the wave vector k1 by

zc = Re
〈
�̃kc,zc

∣∣ z1

∣∣ ϕ̃kc,zc

〉
, (11)

where |ϕ̃kc,zc〉 is the unsymmetrized form of |�̃kc,zc〉, i.e.,
|�̃kc,zc〉 ≡ P̂ |ϕ̃kc,zc〉.

We can show that zc does have a deterministic value. To see
this, we substitute Eq. (8) into Eq. (11), and have

zc = Re
∫

dk1

∫
dk′

1a∗(k′
1, t )a(k1, t )

× [−i∂k1〈�k′ | ϕk〉 + i〈�k′ | eik1·z1 | ∂k1 uk〉]

= Re
∫

dk1[a∗(k1, t )i∂k1 a(k1, t )

+ i|a(k1, t )|2〈�k | eik1·z1 | ∂k1 uk〉], (12)

where we define uk(z) ≡ e−ik1·z1ϕk(z). To obtain the last ex-
pression, we make use of Eq. (5) which reduces to 〈�k′ |ϕk〉 =
〈�k′ |�k〉 = δ(k1 − k′

1) for the current case. Moreover, one
can show that eik1·z1 |∂k1 uk〉 has the same center-of-mass pe-
riodicity as |�k〉, thus 〈�k′ | eik1·z1 | ∂kuk〉 ∝ δ(k1 − k′

1).
Writing the amplitude a(k1, t ) as the form a(k1, t ) =

|a(k1, t )|e−iγ (k1,t ), and setting the width of the distribution
|a(k1, t )|2 to zero, we obtain

zc = ∂γ (k̃, t )

∂kc
− Im〈�k̃ | eikc·z1 | ∂kc uk̃〉 (13)

with k̃ ≡ {kc., k2, . . . }. Equation (13) is the many-body gen-
eralization of Eq. (2.8) of Ref. [13].

We then apply Eq. (2) to determine the Berry phase of
transporting kc. Following a procedure similar to that for
determining zc, we obtain

i

〈
�̃kc (t ),zc

∣∣∣∣ d�̃kc (t ),zc

dt

〉
= ∂γ (k̃, t )

∂t
. (14)

Using the relation

∂γ (k̃, t )

∂t
= dγ (k̃, t )

dt
− k̇c · ∂γ (k̃, t )

∂kc
(15)

and Eq. (13), we determine the phase acquired by transporting
kc along C:

γ (C) =
∫ t1

t0

dt

[
dγ

(
k̃, t

)
dt

− k̇c · zc

]

−
∫

C
Im〈�k̃ | eikc·z1

∣∣ ∂kc uk̃

〉 · dkc. (16)

The first term is integrable (provided zc is fixed) and vanishes
when C is a closed path. We thus exclude it from the definition
of the Berry phase, and define the Berry connection as

Ak1 = −Im〈�k | eik1·z1
∣∣ ∂k1 uk

〉
, (17)

where we relabel kc as k1. The Berry phase is just a line
integral of the Berry connection.

For numerical calculations, it is more convenient to calcu-
late the Berry phase induced by a small but discrete change of
the wave vector. By using the trapezoidal rule to estimate the
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line integral and approximating ∂k1 uk as a first-order divided
difference, we determine the Berry phase for k1 → k′

1:

φk′k = 1
2 [arg〈ϕk′ | eiq·z1 | �k〉 − (k � k′)], (18)

with q ≡ k′
1 − k1.

Equations (17) and (18) are the definitions of the Berry
connection and Berry phase for a many-body system, respec-
tively. The definitions are directly descended from the original
definition Eq. (1). In our derivation, we only make use of the
aforementioned three properties of the wave function. As we
will show later, CFL wave functions considered in this paper
do have these properties. Therefore, the definitions are also
applicable for CFL systems.

C. Representations of the Berry phase

Motivated by the dipole picture of CFs [17], we also
define another Berry phase (connection). According to the
dipole picture, a CF is a bound state of an electron and
quantum vortices, and the position of the quantum vortices
zv

c is displaced from that of the electron by [15,16]

zv
c = ze

c + n × kc, (19)

where ze
c ≡ zc is the position of the electron, and n denotes the

unit normal vector of the system plane. Obviously, the phase
determined by Eq. (16) depends on which position is fixed
when kc is transported. The Berry connection Eq. (17) and the
Berry phase Eq. (18) are defined by assuming that ze

c is fixed.
Hereafter, we will label Ak1 (φk′k) as Ae

k1
(φe

k′k) to explicitly
indicate the assumption. On the other hand, if we assume that
zv

c is fixed, we should replace zc in Eq. (16) with zv
c − n × kc,

and obtain another Berry connection Av
k1

:

Av
k1

= Ae
k1

− k1 × n. (20)

The corresponding Berry phase for k1 → k′
1 is

φv
k′k = φe

k′k + (k1 × k′
1) · n. (21)

Then, which one is the Berry connection (phase) of the
CF? The answer depends on how we define the position
of a CF. By definition, the k-space Berry connection is the
connection of transporting k1 while keeping the position fixed.
If one chooses to define the CF position as the position of the
quantum vortices (electron), then Av

k1
(Ae

k1
) should be regarded

as the CF Berry connection. One can even adopt other defini-
tions of the CF position, and obtain other definitions of the
Berry connections. Mathematically, all these definitions are
equivalent. They are just different representations of the same
physics.

Nevertheless, for a reason to be discussed in the next
subsection, we will refer to the v-representation as the CF
representation, and interpret φv

k′k and Av
k1

as the Berry phase
and Berry connection of CFs.

D. Interpretation of Geraedts et al.’s result

Finally, we would like to comment on the definition of the
Berry phase introduced by Geraedts et al. in Refs. [18,19].
It is obviously not a definition descended from the original
definition of the Berry phase. It should be more appropriately
called a scattering phase. Indeed, the transition amplitude for

k → k′ induced by a single-body scalar potential V (zi ) = eiq·zi

is proportional to

Uk′k = 〈�k′ |
∑

i

eiq·zi | �k〉 (22)

with k′
1 = k1 + q. It is exactly the matrix element calcu-

lated by Geraedts et al. Their results thus provide a “first-
principles” determination of the scattering amplitude.

We can actually interpret Geraedts et al.’s results in light of
the picture of independent CFs. They observe that the matrix
element has an i (−i) factor for a discrete wave-vector change
in the clockwise (anti-clockwise) sense.1 It means that the
matrix element has a form like

Uk′k ∝ in · (k′
1 × k1)ei�k′k , (23)

and �k′k is interpreted as the Berry phase. For a CF system,
the potential will induce a density modulation, which in
turn induces a modulation of the effective magnetic field.
The scattering amplitude induced by the modulated effective
magnetic field does have a factor ∝ in · (k′

1 × k1), as shown
in Eq. (23) of Ref. [24]. Differently from what is assumed in
Ref. [24], the scattering amplitude carries an extra phase �k′k,
indicating the presence of a Berry phase when the transition
k → k′ occurs.

It is then interesting to ask how the Berry phase inferred
from the scattering amplitude is related to the Berry phases
we have defined. Our numerical calculation (See Sec. IV C)
suggests that

�k′k ≈ φv
k′k, (24)

i.e., the Berry phase inferred from the scattering amplitude
is actually the Berry phase defined in the v-representation.
For the dipole picture it means that, as far as the impurity
scattering is concerned, the position of a CF should be defined
as the position of its quantum vortices.

On the other hand, one expects that CFs are scattered not
only by the fluctuation of the effective magnetic field, but
also by the scalar potential itself. As a result, the scattering
amplitude should in general have the form [24]

Uk′k = [V1(k′, k) + in · (k′
1 × k1)V2(k′, k)]ei�k′k . (25)

The presence of the first term will interfere the determination
of �k′k. Indeed, we observe that the Berry phase inferred from
the scattering amplitude by assuming a vanishing V1(k′, k)
always deviates from π , and the deviation becomes more
pronounced when N is scaled up (see Table II). The approach
becomes unreliable when the two terms in the prefactor of
Eq. (25) are comparable in magnitude. In this case, the phase
carried by the prefactor cannot be easily distinguished from
the Berry phase to be determined. One encounters such a
situation when studying the effect of the Landau level mix-
ing [25]. In the study, Pu et al. adopt the wave function

�mix
k = (1 − β )�k + β�

unproj.
k , (26)

1The correspondence is determined from our own numerical evalu-
ation of the matrix element.
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TABLE I. The phases for N = 13. For Geraedts et al.’s definition (old), both the results presented in Ref. [19] and our own calculation are
shown. The results with respect to our definition (new) are shown in the last row. The numerical uncertainties for paths a and b are not shown
because they are too small.

Path

(a) (b) (c)

Ref. [19] 0.813(7) 0.965(6) −0.058(6)old This work 0.821(1) 0.964(2) −0.050(1)

new 1.110 0.906 0.068(1)

where �k is a CFL wave function projected to the LLL [either
Eq. (27) or Eq. (47)], �

unproj.
k is the unprojected form of �k

[i.e., Eq. (27) without applying P̂LLL], and β controls the
strength of the Landau level mixing. One expects that V1

dominates in the scattering amplitude of the unprojected wave
function �

unproj.
k , and V1 > 0 (V1 < 0) for particles (holes).

From Eq. (25), the prefactor contributes a phase 0 (π ) for each
step of transporting a particle (hole) [25]. On the other hand,
for the projected wave function �k, V2 dominates, and the
prefactor contributes a phase ±π/2. In between, for a mixed
wave function, the phase depends on the relative strength of
V1 and V2. Without a reliable way of subtracting the phase
from the scattering amplitude, the determined “Berry phase”
may fluctuate widely. This is indeed observed in Ref. [25].
In contrast, our definition Eq. (18) does not suffer from the
difficulty. It is easy to see that the Berry phase of �

unproj.
k is

always zero. For the mixed wave function, it is reasonable
to expect that the Berry phase accumulated by transporting
a CF around the Fermi circle is a value between zero and that
yielded by �k, i.e., π .

III. BERRY PHASE OF THE STANDARD
CFL WAVE FUNCTION

In this section, we evaluate the Berry phase of the standard
CFL wave function. First, we introduce the explicit form of

the CFL wave function on the torus geometry. Next, we show
its center-of-mass translational symmetry under the mag-
netic translation operator. Then, we analytically determine the
Berry curvature of the standard CFL wave function.

To unify notations, we use the symbols ai ≡ aix + iaiy,
a∗

i ≡ aix − iaiy and ai ≡ (aix, aiy ) to denote an electron-
related variable in its complex form, complex conjugate form,
and vector form, respectively, with the subscript i indexing
electrons. Symbols without a subscript (e.g., a ≡ {ai}) denote
a list of the variables for all electrons, and symbols in the
upper case (e.g., A ≡ ∑

i ai) denote sums of the variables over
all electrons. a · b ≡ ∑

i aibi denotes the inner product of two
lists of variables. The unit of length is set to the magnetic
length lB ≡ √

h̄/e|B|.

A. CFL wave function

The standard CFL wave function for a system on a torus
with a filling fraction ν = 1/m (m is an even integer) can be
written as (omitting the Gaussian factor e− ∑

i |zi|2/4) [26]

�CF
k (z) = P̂LLLdet[ei(kiz∗

j +k∗
i z j )/2]J (z), (27)

J (z) = σ̃ m(Z )
∏
i< j

σ̃ m(zi − z j ), (28)

TABLE II. CF Berry phases φv and minimal overlaps |D|min along different paths for the JK wave function. The paths are indicated by
arrowed solid lines comprised of steps with minimal changes of the quantized wave vectors. Three kinds of paths are considered: (a) the Fermi
circle; (b) a unit plaquette inside (b1) or outside (b2) the Fermi sea; (c) a closed path inside the Fermi sea. Both results for our definition (new)
and Geraedts et al.’s definition (old) are shown. |D|min is the minimum overlap among steps along a path. For the paths inside the Fermi sea,
a hole is transported, and resulting Berry phases are shown with inverted signs. The values marked with ∗ have been scaled by a factor of N .
U.D. indicates an undeterminable result due to a vanishing overlap.

Path

(a)
1 2

(b) (c)

N 13 38 110 36(b1) 38(b2) 36

φv/π old 0.82 0.72 0.57 U.D. U.D. 0.93
new 1.11 1.03 1.01 0.75∗ 0.05∗ 0.61

|D|min
old 0.65∗ 0.36∗ 0.18∗ 0.04∗ 0.01∗ 0.22∗

new 0.94 0.98 0.99 0.99 0.99 0.99
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where P̂LLL denotes the projection to the LLL, which is effec-
tively to replace z∗

i with an operator 2∂zi acting on all zi’s [5],
and J (z) is the Bijl-Jastrow factor [6] expressed in terms of the
modified sigma function σ̃ which has the quasiperiodicity [27]

σ̃ (zi + L) = ξ (L)e
πL∗

A (zi+ 1
2 L)σ̃ (zi ), (29)

where L is a period of the torus, and ξ (L) = 1 if L/2 is
also a period and −1 otherwise, A = 2πNφ ≡ 2πmN is the
total area of the torus, and Nφ is the total number of the
magnetic fluxes passing through the torus. The wave func-
tion is parametrized in a set of wave vectors k which are
quantized as usual, i.e., ki ∈ {n1b1 + n2b2, n1, n2 ∈ Z} with
bα = (2π/A)n × Lα , α = 1, 2, where L1 and L2 denote the
two edges defining the torus. In the complex form, we have
ki ∈ {(n1L1 + n2L2)/Nφ, n1, n2 ∈ Z}.

After applying the projection and expanding the deter-
minant, we write the wave function explicitly as �CF

k (z) =
P̂ϕCF

k (z), and

ϕCF
k (z) = N!eik∗·z/2σ̃ m(Z + iK )

×
∏
i< j

σ̃ m(zi + iki − z j − ik j ). (30)

ϕCF
k is the unsymmetrized form of �CF

k .

B. Translational symmetry

The wave function is an eigenstate of the magnetic center-
of-mass translation operator defined by [28]

T̂ (a) =
∏

i

ea·∂zi + 1
2 i(n×zi )·a

= e
1
4 (aZ∗−a∗Z )

∏
i

ea·∂zi (31)

and a ∈ {nL/N, n ∈ Z}, where L is a period of the torus. To
show that, we apply T̂ (a) to the wave function (30), and have

T̂ (a)ϕCF
k (z)e−

∑
i |zi|2

4

= e
1
2 iK∗a− a∗

2 (Z+ nL
2 )e

1
2 ik∗·zσ̃ m(Z + iK + nL)

× e−
∑

i |zi|2
4

∏
i< j

σ̃ m(zi + iki − z j − ik j ), (32)

where we assume a = nL/N , n ∈ Z . Using Eq. (29), we have

σ̃ m(Z + iK + nL) = e
1
2 a∗(Z+iK+ nL

2 )σ̃ m(Z + iK ). (33)

Substituting the relation into Eq. (32), and noting that T̂ (a)
commutes with P̂ , we obtain

T̂ (a)�CF
k (z)e−

∑
i |zi|2

4 = eiK·a�CF
k (z)e−

∑
i |zi|2

4 . (34)

We can also show that ϕ̃k(z) ≡ eik1·z1∂k1 uk(z)e−
∑

i |zi |2
4 with

uk(z) ≡ e−ik1·z1ϕCF
k (z) is an eigenstate of T̂ (a) of the same

eigenvalue. It is easy to obtain

T̂ (a)uk(z)e−
∑

i |zi|2
4 = ei

∑
i�2 ki·auk(z)e−

∑
i |zi|2

4 . (35)

Using the relation, we obtain

T̂ (a)ϕ̃k(z) = eik1·(z1+a)∂k1 T̂ (a)uk(z))e−
∑

i |zi|2
4 = eiK·aϕ̃k(z).

(36)

It is indeed an eigenstate of T̂ (a) with an eigenvalue eiK·a.

C. Berry phase and Berry curvature

It is obvious from the above discussions that the standard
CFL wave function has all the properties outlined in Sec. II B.
Therefore, the definition of the Berry phase Eq. (18) can be
applied. It turns out that the standard CFL wave function
has a simple structure which makes possible an analytic
determination of the Berry phase.

To determine the Berry phase, we need to determine the
matrix element〈

�CF
k

∣∣ e−iq·z1
∣∣ϕCF

k′
〉 = 〈

�CF
k

∣∣ P̂LLLe−iq·z1
∣∣ϕCF

k′
〉

= e− |q|2
4

〈
�CF

k

∣∣ t̂1
( − q

) ∣∣ ϕCF
k′

〉
, (37)

where k′ ≡ {k1 + q, k2, . . . }, and we define the operator

t̂i(kα ) ≡ exp

(
ikα∂zi + i

2
k∗
αzi

)
. (38)

It is easy to verify the relation

t̂i(kα )t̂i(kβ ) = e
1
2 i(kα×kβ )·nt̂i(kα + kβ ). (39)

On the other hand, apart from an unimportant coefficient,
the unsymmetrized wave function ϕCF

k can be written as

ϕCF
k′ (z) = t̂1(k1 + q)

∏
i�2

t̂i(ki )J (z). (40)

Using Eq. (39), we have

t̂1(−q)ϕCF
k′ (z) = e− i

2 (q×k1 )·n ∏
i

t̂i(ki )J (z)

≡ e− i
2 (q×k1 )·nϕCF

k (z). (41)

Inserting the relation into Eq. (37), we obtain〈
�CF

k

∣∣e−iq·z1
∣∣ϕCF

k′
〉 = e

1
2 i(k1×q)·n− 1

4 |q|2 〈
�CF

k

∣∣�CF
k

〉
. (42)

Applying Eq. (18), we determine the Berry phase in the
e-representation:

φe
k′k = 1

2 (q × k1) · n. (43)

The Berry phase in the CF (v-)representation can be deter-
mined by applying Eq. (21):

φv
k′k = − 1

2 (q × k1) · n. (44)

The Berry connections corresponding to the Berry
phases are

Ae/v
k1

= ±(k1 × n)/2. (45)

They give rise to the Berry curvatures (in the unit of 1/qB)

	
e/v
k1

≡ (∇k1 × Ae/v
k1

) · n = ∓1. (46)

It indicates that the Berry curvature in the momentum space
is a constant, exactly the one suggested in the uniform-Berry-
curvature picture of CFs [14–16].
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IV. BERRY PHASE OF THE JK WAVE FUNCTION

In this section, we evaluate the Berry phase and Berry
curvature of the JK wave function of the CFL. First, we
introduce the JK wave function on the torus geometry. Next,
we describe the numerical implementation of the calculations
of the Berry phase. Then, we numerically evaluate the Berry
curvature and determine its distribution in the whole wave-
vector space.

A. JK Wave function

It is numerically hard to implement the LLL projection in
Eq. (27) since it expands the wave function to N! terms. To
address the issue, Jain and Kamilla introduce an alternative
projection method [21]. The projection method is adopted by
Refs. [18–20] for numerically evaluating the Berry phase. The
wave function (JK wave function) has the form [26]

�JK
k (z) = det[ψi(k j )]σ̃

m(Z + iK )
∏
i< j

σ̃ m−2(zi − z j ), (47)

ψi(k j ) = eik∗
j zi/2

∏
k �=i

σ̃ (zi − zk + imk j − imk̄), (48)

with k̄ ≡ K/N . Its unsymmetrized form is

ϕJK
k (z) = σ̃ m(Z + iK )

∏
i< j

σ̃ m−2(zi − z j )
∏

i

ψi(ki ). (49)

The quantization of k is the same as that in Eq. (27). To
evaluate the wave function, one only needs to calculate a
determinant. As a result, the computational complexity is
greatly reduced compared to the standard CFL wave function.
This enables us to deal with large systems numerically.

It is easy to see that the JK wave function has the same
center-of-mass translational property as that of the standard
CFL wave function (see Sec. III B). Therefore, the Berry
phase definition Eq. (18) can be applied.

It is argued that the two wave functions are equivalent
physically [5,21]. It turns out that this may not be true for
evaluating the Berry phase, as we will show next.

B. Numerical implementation

For both Geraedts et al.’s definition and our definition, the
calculation of the (Berry) phase involves the evaluation of a
matrix element 〈�k|�̃k′ 〉. For Geraedts et al.’s definition, �̃k′

is defined by

�̃k′ = e−iq1·z1�k′ , (50)

where we drop the superscript JK for brevity. We note that
Geraedts et al.’s original definition uses the factor ρq =∑

i e−iq·zi . The two forms are equivalent except for an unim-
portant factor.

For our definition, after inserting P̂ into the matrix element
of Eq. (18), we can write �̃k′ as a form like Eq. (47) but with

the determinant modified to∣∣∣∣∣∣∣∣∣∣∣

e−iq1·z1ψ1(k1 + q1) ψ1(k2) . . . ψ1(kN )

e−iq1·z2ψ2(k1 + q1) ψ2(k2) . . . ψ2(kN )

...
...

. . .
...

e−iq1·zN ψN (k1 + q1) ψN (k2) . . . ψN (kN )

∣∣∣∣∣∣∣∣∣∣∣
, (51)

i.e., the column with respect to the transported wave-vector
(k1) is modified by the “momentum boost operator” e−iq1·zi .

We implement a Metropolis Monte Carlo algorithm similar
to that detailed in Ref. [19]. Specifically, the overlap |D| and
phase φ of the matrix elements are evaluated by

|D|eiφ ≡ 〈�k|�̃k′〉√
〈�k|�k〉〈�̃k′ |�̃k′ 〉

=
1
N

∑′ |�k|2 �̃k′
�k√

1
N

∑′ |�k|2 · ∣∣ �̃k′
�k

∣∣2
, (52)

where N denotes the normalization factor of |�k|2, and
∑′

stands for lattice summation of zi’s [14,19]. The Markov
chains of our Monte Carlo simulation sample zi’s by assuming
a probability density ∝ |�k(z)|2. By using a Markov chain, we
can determine the phases and overlaps with respect to both
the definitions simultaneously, since the two definitions only
differ by �̃k′ .

C. Numerical results

To test our numerical implementation, we first calculate
the Berry phases along the paths calculated in Ref. [19].
The numerical results are presented in Table. I. For Geraedts
et al.’s definition, the results presented in Ref. [19] and
our own calculation results coincide well within numerical
uncertainties. The results with respect to our definition are
also shown.

Berry phases with respect to both definitions for a few
representative paths are shown in Table. II. An immediate
observation is that the calculation with our definition is much
more robust numerically, as is evident from the magnitudes of
the overlap. With our definition, the overlap is always close
to 1 and improves when N is scaled up. For Geraedts et al.’s
definition, the overlap is nowhere close to 1 and further dete-
riorates for larger N , and even nearly vanishes for steps along
directions perpendicular to the Fermi circle, resulting in poor
statistics and undeterminable results. Moreover, our definition
yields directly interpretable results, i.e., no subtraction of the
extraneous ±π/2 phases noted in Ref. [18] is needed.

It is interesting to observe that the two different definitions
actually lead to similar qualitative conclusions as long as φv

is interpreted as the CF Berry phase. With our definition, the
Berry phase of adiabatic transport of a CF around the Fermi
circle is converged to π (path a, N = 110), whereas, with
Geraedts et al.’s definition, it involves guesswork to reach
the same conclusion. We also find that the Berry phase for
transport around a unit plaquette outside the Fermi sea (path
b2) nearly vanishes. This is consistent with Geraedts et al.’s
observation that the phase is independent of the area of the
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FIG. 1. The Berry curvature 	v(|k|) as a function of the CF wave
number |k| for the half-filled CFL (m = 2). The Berry curvature for
the JK wave function is numerically determined by transporting a
CF (hole) outside (inside) the Fermi sea consist of 109 CFs, shown
as filled (empty) dots. The inset bar plot shows its distribution on
the 2D plane of the momentum space. The Berry curvature for the
standard CFL wave function is equal to 1, shown as the solid line.

trajectory enclosing the Fermi sea. The consistencies may not
be a coincidence. See Sec. II D for an interpretation.

The distribution of the Berry curvature, both inside and
outside the Fermi sea, can now be determined because of
the improved numerical robustness. To determine the Berry
curvature, we transport a CF or a hole along the edges of a
unit plaquette (see path b in Table II), and the Berry curvature
for the plaquette is determined by 	v = φv

B/S0, where S0 =
2π/Nφ is the area of the unit plaquette. The result is shown
in Fig. 1. We see that the Berry curvature has a continuous
distribution inside the Fermi sea and vanishes outside. The
distribution is obviously not the singular one implied by the
Dirac interpretation [20,29].

V. UNIFORM BACKGROUND OF THE BERRY
CURVATURE

It is evident that, for both the wave functions, the Berry
curvature is a constant in most of the region of the k-
space except the one occupied by the Fermi sea. In other
words, the Berry curvature has a uniform background. The
values of the background for the two wave functions are
different: 1 for the standard CFL wave function and 0 for the
JK wave function, respectively. In this section, we show that
the values can be determined analytically by inspecting the
quasiperiodicities of the wave functions in the k-space [30]. It
turns out that the two wave functions have different quasiperi-
odicities, resulting in the different values of the uniform
background.

We first examine the standard CFL wave function (30). By
using Eq. (29), it is easy to show that it has the quasiperiodic-
ity in the k-space:

�CF
k

∣∣
k1→k1+L×n = ξNφ (L)e

L∗
2 (ik1+ 1

2 L)�CF
k , (53)

where k1 → k1 + L × n corresponds to ik1 → ik1 + L in the
complex form.

As a result, we can define a super-Brillouin zone (SBZ)
spanned by Kα = Lα × n, α = 1, 2 with L1 and L2 being the
two edges of the torus. From Eq. (53), by applying either
the original definition Eq. (1)2 or the generalized definition
Eq. (17), we find that the Berry connection has the quasiperi-
odicity

Ae
k1+K = Ae

k1
+ 1

2 (K × n), (54)

where K is one of reciprocal lattice vectors of the SBZ.
The total Chern number of the SBZ can be determined by
Ctot = (2π )−1

∮
Ae

k1
· dk1 with the circuit integral along the

boundary of the SBZ [30]. Using Eq. (54), it is easy to show
that the integral is equal to −A/2π = −Nφ . Since the Berry
curvature is a constant in most of region of the SBZ, Ctot is
equal to 	̄eA/2π in the limit of A → ∞, where 	̄e is the
value of the uniform background of the Berry curvature. We
thus obtain

	̄e = −1 (55)

for the standard CFL wave function. For the CF representa-
tion, we have

	̄v = 1. (56)

Similarly, it is easy to show that �JK
k has an approximated

quasiperiodicity:

�JK
k

∣∣
k1→k1+L×n ∝ exp(imL∗k1/2)�JK

k , (57)

where we ignore the small change of k̄ in the limit of N → ∞.
The presence of m in the phase factor is notable. It origi-
nates from the imk j factor in the argument of σ̃ function in
Eq. (48) [26,31]. The quasiperiodicity of the Berry connection
is modified to

Ae
k1+K = Ae

k1
+ m

2
(K × n). (58)

By applying the same analysis as that for the standard CFL
wave function, we obtain that the uniform background of
the Berry curvature for the JK wave function is −m in the
e-representation and 2 − m in the CF representation.

We summarize the values of the Berry curvature back-
ground as follows:

	̄v =
{

1 (CF),

2 − m (JK).
(59)

Note that the result is solely determined by the quasiperi-
odicities of the wave functions. The fact that the two wave
functions have different quasiperiodicities means that they
must have different Berry curvatures.

VI. DISCUSSION AND SUMMARY

In summary, we have (a) derived the definition of the Berry
phase applicable for CFL systems; (b) analytically determined
the Berry phase of the CFL with respect to the standard
CF wave function, and found that it yields a uniform Berry

2Note that for unnormalized wave functions, the Berry connection
is determined by the formula Aα = −Im 〈�α|∂α�α〉 / 〈�α|�α〉.
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curvature; (c) numerically calculated the Berry phase with re-
spect to the JK wave function, and determined the distribution
of the Berry curvature in the whole momentum space; (d)
analytically shown that the Berry phases with respect to the
two wave functions must be different because of their different
quasiperiodicities.

For both the wave functions, we find that a CF adiabatically
transported around the Fermi circle acquires a Berry phase
π in the CF representation. Since the Berry phase can be
interpreted as the intrinsic anomalous Hall conductance [32]
(in units of −e2/2πh for σxy [33]), both the wave functions
can correctly predict the Hall conductance of CFs for a
particle-hole symmetric half-filled Landau level [11], in both
its magnitude and sign. The result is actually consistent with
the Dirac theory. However, microscopically, both the Berry
curvature distributions with respect to the two wave functions
are not the singular one implied by the Dirac picture. We thus
expect that the effective theories with respect to the two wave
functions are not the Dirac theory when physics away from
the Fermi level is concerned.

On the other hand, one may question the physical rele-
vance of these subtle differences between different effective
theories. Indeed, up to now, most predictions of different
effective theories have focused on the effects of the π -Berry
phase, and are indistinguishable. It does not help that the
HLR theory, which has no π -Berry phase, can also correctly
predict the Hall conductance of CFL by considering the effect

of scattering by the fluctuation of the effective magnetic
field [24]. The situation is actually typical, as in other theories
at a similar stage when different pictures compete and seem
to provide equally good explanations for a limited set of
observations. For the CF theory, we would like to argue that
(a) A wave function must have one and only one correct
effective theory, unless different effective theories can be
shown to be equivalent. (b) Microscopic details of different
effective theories are relevant because they may lead to dif-
ferent physical predictions. One such example is shown in
Ref. [34], which indicates that different ways of modulating
CF systems can induce different asymmetries in geometric
resonance experiments [35] as a result of the “subatomic”
dipole structure of the CF. Predictions like that could be tested
experimentally and differentiate different effective theories.
(c) Correct microscopic details may be the key of obtaining
a consistent effective theory free of difficulties such as the
effective mass divergence [10].
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