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Quantum simulation of extended polaron models using compound atom-ion systems
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We consider the prospects for quantum simulation of condensed matter models exhibiting strong electron-
phonon coupling using a hybrid platform of trapped laser-cooled ions interacting with an ultracold atomic gas.
This system naturally possesses a phonon structure, in contrast to the standard optical lattice scenarios usually
employed with ultracold atoms in which the lattice is generated by laser light and thus it remains static. We
derive the effective Hamiltonian describing the general system and discuss the arising energy scales, relating
the results to commonly employed extended Hubbard-Holstein models. Although for a typical experimentally
realistic system the coupling to phonons turns out to be small, we provide the means to enhance its role and
reach interesting regimes with competing orders. Extended Lang-Firsov transformation reveals the emergence
of phonon-induced long-range interactions between the atoms, which can give rise to both localized and extended
bipolaron states with low effective mass, indicating the possibility of fermion pairing.
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I. INTRODUCTION

Strong interactions in quantum many-body systems can
lead to exotic collective effects that are difficult to characterize
and understand at the microscopic level. The combination of
the complexity arising from the Hilbert space exponentially
growing with the particle number and the inherent entangle-
ment of the many-body wave functions limit the power of even
state-of-the-art computational methods. For these reasons,
quantum simulation [1] has emerged as an alternative ap-
proach, aiming to create highly controllable artificial systems
that would be well understood microscopically and easy to
scale in the number of qubits. Multiple physical platforms
have been developed with this task in mind, including su-
perconducting circuits, photonic systems, trapped ions, and
ultracold atoms [2–5].

One major challenge in condensed matter physics is con-
nected with the interplay of strong electron correlations and
large, possibly finite-range, electron-phonon coupling [6].
Such systems have been theoretically studied for a long time
[7–10] and are believed to play an essential role in the
formation of the superconducting state in certain materials
[11–13]. The physical picture behind the phenomenon can be
provided by introducing polarons, which are quasiparticles
composed of electrons dressed with lattice phonons. Their
mutual interaction can lead to the formation of bound states
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with low effective mass that would thus be mobile and Bose
condense at high temperature, leading possibly to high-Tc

superconductivity [14]. However, this might require carefully
tuned system parameters, and in general polaron models can
feature rich physics depending on the system geometry and
the type of interactions [15]. In the strong coupling limit,
analytical predictions for the polaron and bipolaron properties
such as their effective mass can be derived [16,17]. While the
research on the static properties of different polaron models is
still active and fruitful [18–21], there is a growing interest in
polaron dynamics out of equilibrium. A particularly interest-
ing scenario to consider in this context is the light-induced
superconducting response of the system, which has been
observed in several materials [22–28]. The understanding of
high-Tc superconductivity remains incomplete, in particular
on the microscopic level. Nonetheless, enormous advances
in providing insight into the system properties via photonic
spectroscopy of correlated materials in and out of equilibrium
have been attained both theoretically and experimentally [29].

Quantum simulations of polaron physics have been pro-
posed theoretically using ultracold atomic mixtures [30–34],
Rydberg atoms [35,36], cold molecules [37–39], trapped ions
[40], and atom-ion systems [41,42]. In particular, the lat-
ter opens intriguing perspectives, as ions confined in radio-
frequency traps form crystal structures that combined with
fermionic atoms emulate a solid-state material naturally, in
contrast to atoms trapped in optical lattices [43,44], for
which the backaction of the atoms on the lattice potential
is very weak. Given the exceptional control of preparation
and measurement of trapped ion systems [45], especially
of their motion, the compound atom-ion system represents
a promising candidate for quantum simulation of solid-
state physics [46], including extended Hubbard models [47],
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lattice gauge theories [48], topological states [49], and charge
transport [50–52] (see Ref. [53] for a detailed review). On the
experimental side, various strategies have been developed in
order to reach the quantum regime with these systems. In the
most standard state-of-the-art setting utilizing radio-frequency
ion traps, a small atom-to-ion mass ratio (e.g., lithium atoms
and ytterbium ions) enables one to reach the s-wave collision
energy [54]. Successful sympathetic cooling of the ion has
also been reported in optical traps [55]. Furthermore, it has
been shown that sub-microkelvin temperatures can be attained
when ionizing a Rydberg atom inside a Bose-Einstein con-
densate [56]. These pioneering experiments open the door to
study the aforementioned electron-phonon physics in the near
future.

In this paper, we investigate the formation of bipolarons
in extended Hubbard-Holstein models (HHM) that can be
engineered with atom-ion systems. Specifically, we consider a
linear ion crystal superimposed with a degenerate Fermi gas.
Even in such a one-dimensional setting, interesting features
are expected. For instance, it has been predicted that at half
filling a metallic phase in the HHM emerges as a result of
the competition of the charge- and spin-density wave orders
[57–61]. Furthermore, in the strong electron-phonon coupling
regime, a long-ranged (i.e., nonlocal) electron-phonon cou-
pling decreases the effective mass of polarons and bipolarons,
thus enhancing the mobility of those quasiparticles [17,19].
We show that the atom-phonon coupling in a compound
atom-ion system can be made tunable with experimentally
realistic techniques. Compared to previous studies [46,47,62],
here we treat the ions quantum mechanically and show how
the resulting atom-phonon coupling can be exploited to form
bipolarons. Our findings pave the way toward quantum sim-
ulation of extended HHM with tunable long-ranged atom-
phonon couplings, and therefore realization of interesting
quantum phases in the laboratory.

II. SYSTEM AND EFFECTIVE HAMILTONIAN

We consider an ensemble of identical ions in an exter-
nal trap and a gas of fermionic atoms overlapping with
it, schematically presented in the left panel of Fig. 1. To

characterize the ionic part, we first minimize the classical
energy functional consisting of the trapping potential and
Coulomb interaction with respect to the ions’ positions. In
general, the interplay between the trap and the interactions
can lead to various system geometries with structural phase
transitions between them. Here, we assume that the ion chain
is linear and thermodynamically stable so that small displace-
ments of the ions from the equilibrium only give rise to
phonon excitations. A convenient approach to calculate the
phonon spectrum in the general case has been provided, e.g.,
in Ref. [63] (see Appendix A for more details). Each ion
can be associated with its local harmonic oscillator frequency

defined as � j =
√

Vj j

M , where Vi j = ∂2V
∂ (δRi )∂ (δRj )

is the second
derivative of the total potential energy calculated at equilib-
rium and M denotes the mass of the ion, while δRj is the dis-
placement of the jth ion from its equilibrium position. In the
next step, one introduces local ladder operators corresponding
to these local oscillators and rewrites the Hamiltonian. The
latter acquires quadratic form and can be diagonalized using a
generalized Bogoliubov transformation, leading to the phonon
mode structure

Ĥion =
∑

m

h̄ωmb̂†
mb̂m (1)

with ωm being the energy of the mth collective mode, and b̂m,
b̂†

m denoting the phonon creation and annihilation operators
that fulfill the usual bosonic commutation relations. For a
finite ion number, the spectrum is discrete and thus gapped,
as shown in the right panel of Fig. 1, while for an infinitely
long chain it becomes continuous with an acoustic branch
along the chain and an optical one in the transverse directions
[64]. Crucially, the ions can be individually addressed and
driven using additional optical pulses [3], allowing for some
degree of manipulation of the phonon structure and dynamics,
including creation of squeezed states [65,66].

The gas of neutral atoms of mass m is assumed to be con-
fined in a quasi-one-dimensional waveguide, with transverse
confinement being sufficiently strong to freeze the atomic
motion in the ground state. Albeit the gas can be in principle
of either bosonic or fermionic nature, in this work we focus
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FIG. 1. Left: schematic drawing of the system consisting of an ion chain (big orange balls) in an external trap (blue line) and a repulsive
optical lattice potential (orange line). A neutral atom (small green ball) is moving in a periodic potential stemming from the interaction with
the ion chain (black line below). Middle: typical band structure of a single atom moving in the ionic lattice with strong ion-atom interactions.
Right: phonon spectrum of a finite linear ion chain consisting of N = 11 ions as a function of the external lattice depth Aopt. The assumed ion
separation is d = 15R�.
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on the fermionic case only. The atom-ion interaction at large
distances from the ion core (typically above a few nanometers)
is given by the polarization potential

Vai(r) = −C4

r4
(2)

with r = |r| being the separation between the atom and the ion
and C4 = αe2/(8πε0)—in SI units—with α being the static
atom polarizability, e being the electron charge, and ε0 being
the vacuum permittivity. The potential is characterized by the
length R� and energy E � scales

R� =
√

2μC4

h̄2 , E � = h̄2

2μ(R�)2
, (3)

where μ is the reduced mass μ = Mm/(m + M ). A possible
choice for the atom-ion pair is 6Li/174Yb+, which due to the
low mass ratio is the most favorable to attain the ultracold
regime in radio-frequency traps [54,67,68]. For this pair, we
have E �/h � 178.6 kHz, R� � 69.8 nm, and the mass ratio of
about 0.035. In the lowest order, one can assume the ions to be
static and the atoms thus move in a periodic potential resulting
from the interaction with the ions depicted as a black line in
the left panel of Fig. 1. As long as the spacing between the ions
is much bigger than R�, which is a reasonable assumption as
in a typical experimental setup the ion spacing reaches a few
μm, it is sufficient to use the one-dimensional pseudopotential
approximation for Va−i [47]

Va−i(x) = geδ(x) + goδ′(x)∂± (4)

with coefficients ge, go describing the interaction in the even
and odd partial waves (one-dimensional analogues of the
three-dimensional case). The action of the operator on the
right of Eq. (4) on a test function is defined as 2 ∂̂±ψ (x) =
[ψ ′(0+) + ψ ′(0−)] with ψ ′(0±) = limx→0± ψ ′(x), where the
apex ′ denotes the spatial derivative. The periodic potential
gives rise to a band structure which we calculate numerically,
showing an example in the middle panel of Fig. 1. In addition,
the atoms are interacting with each other via van der Waals
forces which have local character described by a pseudopo-
tential similar to (4). Having calculated the band structure and
the corresponding Bloch states, one can switch to the basis
consisting of maximally localized Wannier states in which the
atomic part of the Hamiltonian takes the familiar form of the
extended fermionic Hubbard model [47]

Ĥa =
∑
i jσ

Ji j ĉ
†
iσ ĉ jσ +

∑
i

U n̂i↑n̂i↓ +
∑
i jσσ ′

Vi j n̂iσ n̂ jσ ′ . (5)

Here the ĉiσ are atomic annihilation operators for lattice site
i, with indices σ, ↑, ↓ denoting the two atomic spin states.
The next-neighbor terms omitted here are smaller than the
leading ones, but typically not completely negligible due to
less localized Wannier functions with respect to the case of an
optical lattice potential.

III. ATOM-PHONON COUPLING

The crucial element for the simulation of polaron models
is the coupling of the atoms to the phonons which results from
the ion-atom interaction beyond the static ion approximation.
By expanding to the first order the atom-ion interaction (2)

with respect to the ions’ equilibrium positions, one arrives
at the following textbook expression for the atom-phonon
coupling:

Va−ph(r) = 1√
N

∑
k

Vai(k)eik·rAkk. (6)

Here, N is the number of ions, Vai(k) is the lattice Fourier
transform of the atom-ion interaction, k is the lattice quasi-
momentum, and Ak is defined as

Ak�εk = 1√
N

∑
j

δR je
−ikR j , (7)

being the lattice Fourier transform of the ion displacement
operator with Rn denoting the equilibrium position of the nth
ion. The atom-phonon coupling term in the Hamiltonian is by
definition given as

Ĥa−ph =
∫

drρ̂(r)Va−ph(r) (8)

with ρ̂(r) denoting the atomic density operator, which we
expand in terms of the lattice Wannier states wn and perform
a Fourier transform, such that

ρ̂(k) =
∑
nm

ĉ†
nĉmeikRnαnm(k), (9)

where, assuming an effectively one-dimensional system,
αnn′ (q) = ∫

dy w∗
n (y − Rnn′ )wn(y)eiqy. This results in

Ĥa−ph = −
√

h̄

2MN2

∑
k jnn′σ

αnn′ (k)eikRn j√
� j

|k|Va−i(k)

× ĉ†
nσ ĉn′σ (â j + â†

j ). (10)

Here, Rnn′ = |Rn − Rn′ | = d|n − n′|, d is the equilibrium dis-
tance between the ions, and a summation over the phonon
modes has been performed to shorten the notation, leading to
new local phonon operators connected to a single lattice site
(the summation over j cannot be performed in general, since
the � j values may depend on the site index and the system is
not translationally invariant):

â j =
∑

m

(
um

j − vm
j

)
b̂m. (11)

The terms leading to tunneling of particles between the lattice
sites will in general be suppressed due to the small Wannier
function overlap. We can now introduce the local atom-
phonon coupling coefficient describing the term that does
not involve tunneling (dropping the n, n′ indices in the α

parameter):

Mn j =
√

h̄

2MN� j

1√
N

∑
k

α(k)eikRn j |k|Ve−i(k). (12)

It is convenient to rewrite this in dimensionless form, using
R�, E � as length and energy units. At this point, we also
restrict the consideration to the even part of the interaction (4),
introducing the even scattering length ae = h̄2/μge, which
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gives

Mn j

E �
= 1

N

√
E �

h̄� j

m

M

∑
k

α(k)(|k|R�)eikRn j
2m

μ

R�

ae

R�

d
. (13)

Let us now discuss the interplay of the different quantities
present in the model. Expressing the characteristic phonon

energy scale h̄ω̄ =
√

h̄2e2

4πε0Md3 in the chosen units leads to

h̄ω̄

E �
=

√
4ζ

(
R�

d

)3(R�

ξ

)( m

M

)
, (14)

where ζ denotes the fine structure constant and ξ = h̄/mc
has the dimension of length. For standard ion-atom pairs and
realistic distance d between the ions, the number resulting
from Eq. (14) is on the order of 20. At the same time, the
tunneling and interaction scales as well as Mn j are only a
fraction of E �. This means that typically the phonon dynamics
is largely decoupled from the atoms; i.e., the ion chain is stiff.
In order to tune the system to the more interesting regimes,
one needs to bring the energy scales closer to each other. The
analysis of the Mn j/h̄ω̄ ratio suggests that the most effective
solution is to utilize ion-atom Feshbach resonances to increase
the R�/ae ratio in Eq. (13). Further possible control is to lower
the phonon mode frequencies by shaping the ion trap. One
can, for instance, place the ions in an additional optical lattice
potential [69] antialigned with the ions’ equilibrium positions
Vopt (x) = Aopt cos2 (x/�) with the appropriate wavelength �.
As long as this does not destabilize the chain, such potential
only shifts the mode frequencies to lower energies, which
are more compatible with the other terms in the Hamiltonian.
The example case showing the mode tuning as a function of
the lattice depth Aopt for fixed distance between the ions is
shown in the right panel of Fig. 1, where we mimic the flat-
bottom ion-trapping potential realizable, e.g., using octupole
traps by placing two fixed ions at the edges of the otherwise
untrapped one-dimensional (1D) chain. We have checked that
the lattice has negligible impact on the other parameters, as
the ion equilibrium positions are not displaced, so the atomic
Wannier functions remain intact. Another reasonable way of
tuning the energy scales is to vary the ion separation d using
again the external trap structure, as from Eq. (13) one obtains
Mn j/h̄ω̄ ∝ d5/4.

Figure 2 shows two exemplary cases of the atom-phonon
coupling strength Mi j in a finite chain consisting of N = 11
ions. For the presentation we have chosen experimentally
realistic parameters corresponding to Yb+ ions and Li atoms
with ion separation d = 15 R�. The difference between the
two plots lies in the value of the atom-ion scattering length
ae, which for the case depicted in the upper panel takes the
value ae = 0.1 R�, while for the lower case ae = 0.008 R�,
corresponding to strong, resonant interactions. In the latter
case, we need to include the energy dependence of the scat-
tering length to obtain reliable results. We observe that for
weak atom-ion repulsion the resulting coupling is rather local,
while for strong interactions it extends over the whole chain,
allowing for realization of different regimes.
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FIG. 2. Atom-phonon coupling strength Mi j/E � in a lattice com-
posed of N = 11 ions for two different values of the ion-atom
scattering length ae = 0.1R� (upper) and ae = 0.008R� (lower).

IV. LANG-FIRSOV TRANSFORMATION

Having discussed the system parameters, we now proceed
to the analysis of the connection between the ion-atom simula-
tor and the theoretical models of lattice polarons. As outlined
above, the system can be described with the following Hamil-
tonian:

Ĥ = −
∑

i j

Ji j ĉ
†
iσ ĉ jσ +

∑
i

U n̂i↑n̂i↓ +
∑
i jσσ ′

Vi j n̂iσ n̂ jσ ′

+
∑

m

ωmb̂†
mb̂m +

∑
i jσ

Mil n̂iσ x̂l (15)
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with x̂l = âl + â†
l . Note also the presence of the two types

of phonon operators â, b̂ that we leave for brevity. We have
neglected the impact of the terms that involve phonon-induced
tunneling, as they are suppressed in the same way as the
nearest-neighbor interaction terms due to small Wannier func-
tion overlap.

In order to get more insight into the physics of the ion
chain, it is convenient to perform the generalized Lang-Firsov
transformation H = eSHe−S [8,70] defined by the generator

Ŝ = i
∑
i, j

λi j n̂i(â j − â†
j ), (16)

where λi j are for now arbitrary complex numbers. The trans-
formation, detailed in Appendix B, introduces long-range
phonon-mediated interactions and dresses the tunneling term
with the lattice distortions. We choose the values of λ param-
eters in such a way that the atom-phonon coupling term is
canceled, which requires solving a system of linear equations
due to nontrivial phonon mode structure of the chain. In
contrast, for the case of purely local phonons and translational
invariance, one can eliminate the coupling term with a single
λ parameter that does not depend on the site index, namely
λi j = δi jMii/�. After the transformation, one obtains a new
interaction term Wi jnin j with

Wi j =
(

U

2
δi j +

∑
k

Mi jλk j + 1

4

∑
mkl

ωmγ �
kmγlmλkiλl j

)
,

(17)

with γkm = um
k − bm

k . This is the long-ranged interaction me-
diated by the phonons, containing a direct coupling term,
but also an additional one which arises due to the nontrivial
mode structure of the crystal. Both terms can turn out to be
important depending on the system parameters. Interestingly,
the first term in Eq. (17) contains the information about
the coupling coefficient, while the second one involves the
decomposition of the phonon modes, thus potentially leading
to a difference between the bare coupling and the total induced
interaction. In Fig. 3, we show the effective interaction for
the same parameters as in Fig. 2. For small scattering length
shown in the lower panel, corresponding to strong interac-
tions, we find that the effective term has the form of a decaying
sinusoid, as found also in Ref. [38] for atoms moving in
a molecular crystal. Quite strikingly, in the upper panel the
interactions have a completely different form, attracting each
other weakly on long scales. This is due to the fact that
the effective interaction is mediated mainly by the lowest
phonon mode of the ionic lattice, as the other modes have
much higher energies, and as a consequence can reflect the
shape of a single collective mode. This is in contrast to
the models employing local phonons, which always lead to
the effective interactions of the shape shown in the lower panel
of Fig. 3.

V. POLARON PROPERTIES

The model described by Eq. (15) has a considerably rich
structure and represents a numerical challenge even in one
dimension. Let us first briefly discuss the physics of a simpler

2

4

6

8

10

2 4 6 8 10

2

4

6

8

2 4 6 8

FIG. 3. The effective interaction between the atoms Wi j/E � af-
ter the Lang-Firsov transformation for two different values of the
ion-atom scattering length ae = 0.1R� (upper) and ae = 0.008R�

(lower).

model in which the interactions, coupling to phonons and the
phonon modes, are strictly local. This way one arrives at the
Hubbard-Holstein model given by the Hamiltonian

ĤH−H = −J
∑
i jσ

ĉ†
iσ ĉ jσ +

∑
i

U n̂i↑n̂i↓

+ω0

∑
i

â†
i âi + M0

∑
iσ

n̂iσ x̂i. (18)

This Hamiltonian can be viewed as the simplest possible
extension of the Hubbard model taking into account the cou-
pling to phonons and has been widely studied in the literature
[8,16,20,21,57–60,71,72]. Its main feature is the competition
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between the coupling term and the interaction, which drive
the system toward two different phases, the Mott insulator
and charge density wave. Furthermore, an additional phase
can emerge at the interface of the two insulators. Surprisingly,
this intervening phase has been shown to be conducting
[57]. Extending the model (18), e.g., by including long-range
interactions, can lead to even richer physics, e.g., induce
pairing between the polarons and potentially turn the metallic
phase into a superconducting one [61]. Naturally, the most
interesting and computationally challenging problem emerges
when all the terms in the Hamiltonian compete with each
other.

As shown in Sec. III, the atom-ion platform is suitable for
realizing a wide class of extended Hubbard-Holstein models,
as both the magnitude and range of the atom-phonon coupling
can be tuned in experiment. Multiple available control knobs
make the system versatile. We thus expect that it can serve
as an alternative to numerical methods, which have proven to
be extremely challenging for studying the phase diagram and
the out-of-equilibrium dynamics of such models by means of
analog quantum simulation. Let us consider the example of
the standard Hubbard-Holstein model as given by Eq. (18).
Here one could, e.g., set the phonon frequency ω0, tunneling
coefficient J , and the phonon coupling M0 as constant and
manipulate the atomic interaction U by means of a Feshbach
resonance. Going from strong to weak repulsion, the system
should go from the Mott insulator to a charge density wave
phase via the intermediate metallic phase. Readily developed
detection methods such as absorption imaging and time of
flight would provide access to the quantities needed to dis-
tinguish and characterize these phases, such as the number
fluctuations on a single lattice site, two-point correlations, and
the momentum distribution.

Let us now briefly discuss the emerging physics on the
level of one or two fermions, neglecting the phonon dynam-
ics. After the Lang-Firsov transformation, the atoms become
dressed with the lattice phonons. These new quasiparticles,
called polarons, are now characterized by a new dispersion
relation and modified interactions. Properties and dynamics
of polarons and their possible bound states (bipolarons) can
be studied more easily than the full many-body system, and
provide useful information. For instance, existence of mobile
bipolarons is a precursor for pairing. This is especially rel-
evant in the strong coupling regime in which the coupling
to phonons dominates over the tunneling, where the system
can have substantially different properties from the Hubbard
model.

In order to demonstrate the impact of phonon-induced
interactions, let us discuss the effective mass of the bipolaron,
which is a bound state of two dressed fermions. For a lattice
model with purely local interactions, the only possibility for
the bound state to exist is in the spin singlet state when the
effective onsite interaction taking the phonon contribution
into account is attractive. In contrast, adding a finite-range
interaction leads to two additional states where the fermions
are bound in neighboring sites, regardless of their spin state.
This intuitively provides an additional pairing mechanism,
which can enhance the conductivity [61]. Furthermore, the ef-
fective mass of the singlet localized bipolaron is also strongly
affected by the phonons, especially if the induced interaction

is nonlocal [17]. The impact of nearest neighbor interaction
term on the singlet bipolaron mass is studied in Appendix C.
In brief, even if the bound state is localized on a single lattice
site, the second-order correction to its energy comes from
two virtual hopping events to the adjacent site and back. The
intermediate state with two populated sites is then modified
by the interaction term. As a result, the bipolaron becomes
exponentially lighter by a large factor ∝ exp (εP/ω0), where
εP ∝ M0 denotes the polaron energy. Our calculations indicate
that observation of such effects in a hybrid ion-atom system
can be possible. Indeed, the typical kinetic energy J can take
values of the order of 0.1 E � as shown in the middle panel of
Fig. 1, the phonon frequency ω0 as well as the bare atomic
interaction U can be manipulated via the external potential
and Feshbach resonances, and the induced terms can reach
0.1 E � as can be seen in Fig. 3, leading to high tunability of the
ratio between the local and nonlocal interactions. In principle,
even small ion chains with N � 5 can be sufficient for the
observation of bipolaron states, as they would be strongly
localized.

VI. CONCLUSIONS

In this work, we outlined a possibility for quantum simula-
tion of solid-state models in which the coupling to phonons
competes with strong interactions between fermions. Our
proposal relies on preparing a hybrid ion-atom system with a
chain of ions acting as a lattice for the atoms. While ion chains
are now routinely prepared in laboratories, so far ultracold
ion-atom hybrid systems have only been created using a single
ion [53]. From the atomic side, state-of-the-art atomic setups
provide the possibility to control the number of atoms to
a high degree [73]. In order to gain access to the phonon
spectrum, one needs an exceptional level of control over the
system, but in principle the microscopic parameters of the
model can be tuned via manipulating the trap geometry and
the interparticle interactions. The resulting parameters such as
induced interactions can reach a fraction of the characteristic
energy E �, meaning that observation of interesting quantum
phases will require cooling the system to nanokelvin temper-
atures. Recent experimental advancements [54–56] indicate
that this can be achieved in the near future.

We have considered a quasi-one-dimensional system con-
sisting of a stable linear ion chain. Even in this simplistic
case, the study of the phase diagram and the role of induced
nonlocal interactions would be relevant and complementary
to the numerical calculations. It would also be interesting to
investigate the quantum phase transition to a zigzag geometry,
which would lead to realization of a two-leg ladder lattice.
The particularly interesting region is the phase transition
point itself, where quantum fluctuations of the ions are strong
[74]. Coupling to the atomic gas would presumably affect
the excitation spectrum in this region and could affect the
critical properties. This could be controlled in experiment by
tuning the transverse separation between the linear ion crystal
and the fermionic gas or by laser-controlled long-ranged
atom-ion interactions [75]. Further research directions include
out-of-equilibrium scenarios such as studying the dynamics
of (bi)polarons after quantum quenches and preparation of
nontrivial phonon states, e.g., by squeezing them through
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external driving, possibly making the connection to light-
induced superconductivity [24].
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APPENDIX A: HAMILTONIAN DERIVATION DETAILS

1. Phonon modes

A convenient approach to calculate the phonon spectrum
for an arbitrary array of ions has been provided by Bissbort
et al. [63]. The procedure begins by finding the classical equi-
librium positions of the ions and expansion of the potential
energy around the equilibrium up to the second order Vi j =

∂2V
∂ (δRi )∂ (δRj )

(calculated at equilibrium). The local harmonic
oscillator frequency for the jth ion can then be defined as

� j =
√

Vj j

M
, (A1)

where M denotes the mass of each ion (assuming identical
ions for simplicity). In the next step, one introduces local
ladder operators corresponding to the local oscillators (in the
Appendixes we drop the hats usually denoting the operators):

βl =
√

M�l

2

(
δRl + i

M�l
Pl

)
. (A2)

Rewriting the Hamiltonian in terms of the local operators

results in a quadratic theory Hph = E0 + 1
2 ( β

β† )
†
Hph( β

β† ), which
can be diagonalized using generalized Bogoliubov transfor-
mation on symplectic space. The right eigenvectors have the
form xm = ( um

−vm ). The diagonalized Hamiltonian describes
collective phonon modes

Hph =
∑

m

h̄ωmb†
mbm (A3)

with ωm being the energy of a collective mode m, and bm,
b†

m denoting the phonon creation and annihilation operators
which fulfill the bosonic commutation relations. By inverting
the transformation, they can be connected to the local ion
displacement operators δRj via

δRj =
√

h̄

2M� j

∑
m

[(
um

j − vm
j

)
bm + (

um
j − vm

j

)∗
b†

m

]
. (A4)

2. Atomic band structure

The band structure for an atom moving in the periodic
potential provided by the ion chain has been calculated
in Ref. [47]. It is sufficient to assume static ions at their

equilibrium positions, while the coupling to phonons will
be described in the next section. The one-dimensional ion-
atom interaction can be written using the following general
pseudopotential

Va−i(x) = geδ(x) + goδ′(x)∂± (A5)

with ge = −h̄2/μae and go = −h̄2ao/μ describing the even
and odd part of the interaction and ae, ao are the one-
dimensional energy-dependent scattering lengths.

The lattice Fourier transform of the potential reads

Va−i(q) = (ge + goq2)/d. (A6)

In a periodic chain with ions separated by distance d , the band
dispersion is given by

cos kd = ae + ao

ae − ao
cos qd + q2aeao − 1

(ae − ao)q
sin qd. (A7)

The quasimomentum vector in a finite lattice is quan-
tized k = 2πn/(Nd ) with integer n = 0, ±1, ±2 . . . ± (N −
1)/2. The normalized Bloch functions for periodic boundary
conditions can be found analytically [47]. The Wannier func-
tions are defined as lattice Fourier transform of the Bloch
states. In order to maximize the localization of the Wannier
states, we use Kohn’s prescription [76], namely we multiply
the Bloch functions by a constant phase factor computed such
that Imψk (0) = 0.

APPENDIX B: LANG-FIRSOV TRANSFORMATION

The full Hamiltonian taking into account the ions, atoms,
and the coupling to phonons has the generic form

H = −J
∑
〈i, j〉σ

c†
iσ c jσ + U

∑
j

n j↑n j↓

+
∑

m

ωmb†
mbm +

∑
jl

Mjln j (al + a†
l ), (B1)

where the atom-phonon coupling term is written using local
oscillators a j , in contrast to the collective phonon modes
b j , and we have omitted the phonon-induced tunneling term.
We now perform the generalized Lang-Firsov transforma-
tion, which enables clear identification of different param-
eter regimes as well as further numerical treatment. The
conventional version of the transformation, employed for
local atom-phonon coupling, is generated by the operator
S = i

∑
j λ jn j (a j − a†

j ) with λ being an adjustable param-
eter. This form is sufficient, e.g., to eliminate the atom-
phonon coupling term from the transformed Hamiltonian.
However, in our case we need the generalized version utilizing
S = i

∑
jl λ jl n j (al − a†

l ). The transformed operators are easy

to write down, e.g., c̃ j = c j exp i
∑

lλ j l (al − a†
l ), ãl = al +

1
2

∑
j λ jl n j , but one has also to include the decomposition of

the phonon modes into the local displacements bm = ∑
γimai.
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The transformed Hamiltonian takes the form

H̃ = −J
∑
〈i, j〉σ

c†
iσ c jσ exp

(
i
∑

l

(λ∗
il − λ jl )(al − a†

l )

)
+

∑
m

ωmb†
mbm − U

2

∑
i

ni

+
∑

jl

(
Mjl +

∑
km

1

2
ωmγ ∗

lmγkmλk j

)
n j (al + a†

l ) +
∑

i j

nin j

(
U

2
δi j +

∑
k

Mi jλk j + 1

4

∑
mkl

ωmγ ∗
kmγlmλkiλl j

)
. (B2)

The characteristic features of the model in this reference
frame are the modification of the tunneling term (dressing of
atoms by the lattice distortion), the emergence of long-range
interactions due to the nonlocal atom-phonon coupling term
(both directly and indirectly from the collective character of
the phonon modes), and a modified atom-phonon coupling
term.

It is now possible to choose the λi j coefficients in such
a way that the atom-phonon coupling term is completely
eliminated, leaving behind a potentially long-range effective
interaction between the atoms. However, it is also possible to
optimize the values of λ in a different way, e.g., to minimize
the energy of some variational wave function.

In order to get more insight here, it is useful to consider the
simplified version of the model with translational invariance,
local phonons with frequency ω0 and coupling strength M0,
and no long-range coupling terms [8]. In this case, one has
λ = M0/ω0 and the transformed Hamiltonian reads

H̃ = −J
∑
〈i, j〉σ

c†
iσ c jσ exp [iλ(ai − a†

i − a j + a†
j )]

+ω0

∑
i

a†
i ai − U

2

∑
i

ni +
∑

i j

nin jδi j

(
U

2
− M2

0

ω0

)

(B3)

with the onsite interaction shifted by EP = M2
0/ω0. Also,

in the case of the full model, the induced interactions are
expected to be of the order of M2

0/ω0 with the lowest phonon
frequency inducing the strongest interaction.

Let us discuss several regimes which can simplify the
situation. First, the adiabaticity parameter ε = ω0/J can be
defined. In the antiadiabatic regime ε  1, the phonons are
“fast” compared to the atoms and they can be integrated out,
leading to an extended Bose-Hubbard model with renormal-
ized hopping and long-range interactions. In general, one can
assume the phonons to decouple from the atoms and use a sim-
ple wave function such as the vacuum state, a thermal state,
or a coherent state for the phononic part. This approximation
gets worse as the phonon energy scales become comparable to
the atomic part of the Hamiltonian. It is also worth noting that
in the case of a discrete phonon spectrum the lowest modes
are decisive for the shape and strength of the interaction.
In the antiadiabatic scenario, if M2

0/ω0 � 1, the corrections
induced by the phonons are negligible. In our setup, one can
tune the lowest mode frequency in a wide range, allowing us
to switch between different regimes. Furthermore, in a short
chain already the second lowest mode is separated in energy
scale from the other quantities, making the lowest mode the
only one coupled to the atomic dynamics. This can be seen

in the spatial profile of the induced interaction, which is
reminiscent of the ionic displacement amplitudes of the lowest
mode, as demonstrated in Fig. 3.

APPENDIX C: STRONG COUPLING EXPANSION

Here, we briefly discuss the calculation of the effective
mass in the strong coupling regime based on Refs. [16,17].
After performing the Lang-Firsov transformation as in the
previous section, we consider the case of a single atom or
two atoms in the chain. For simplicity, we neglect finite-
size effects and work with translationally invariant model
described by local phonons with frequency ω0 and coupling
strength M0 = −ω0g2 with dimensionless g parameter. Here
we also take h̄ = 1 and the lattice spacing d = 1 to simplify
the notation. We assume that the wave function separates into
atomic and phononic parts, and take the phonon state to be
the vacuum. This leads to a general model with the interaction
term described by

H0 = U
∑

i

ni,↑ni,↓ − ω0g2
∑
i jl

fl (i) fl ( j)nin j, (C1)

and the kinetic part by

T = −Je−g̃2
∑

jσ

c†
j+1,σ c j,σ e−g

∑
l ( fl ( j+1)− fl ( j))(a†

l −al ) + H.c.

(C2)

Here fl (i) describes the coupling of the atom at site i to the os-
cillator at site l and can be nonlocal. For the Holstein-Hubbard
model, we have fl (i) = δli. In our system, the coupling to the
next nearest neighbors is non-negligible. We will consider a
simplified model in which

fl (i) = δli + κ (δl+1,i + δl−1,i ) (C3)

with 0 < κ < 1 being the model parameter. The band narrow-
ing factor e−g̃2

in Eq. (C2) is given by

g̃2 = g2
∑

l

[ fl (0)2 − fl (0) fl (1)] (C4)

and results in g2 for the Holstein case, but for our model is
equal to g2(2κ2 − 2κ + 1). The polaron shift [the correction
to the onsite interaction from the last term in Eq. (C1)] εP =
ω0g2 for the Holstein model, while in the present model we
have

εP = ω0g2(1 + 4κ + 4κ2). (C5)

This gives the ratio ω0g̃2/εP = 1−2κ+2κ2

1+4κ+4κ2 , in contrast to 1 for
the Holstein case.
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In the strong coupling limit g  1, the kinetic term can be
regarded as a perturbation. The energy can then be calculated
using perturbation theory. For a single atom in the first order,
we have Ep = −εP − 2Je−g̃2

cos k. The second-order correc-
tion to this expression reads

E (2)
p = −J2e−2g̃2

∑
n

[(1 − κ )g]2n

n!nω0
(2 + 2 cos k)2. (C6)

One can now calculate the effective mass of the polaron mp =
limk→0 ( ∂2E (k)

∂k2 )
−1

, which results in

m−1
p = 2Je−g̃2

[
1 + 8Je−g̃2

ω0
(�[0, g2(1 − κ )2]

− log[g2(1 − κ )2] − γ )

]
(C7)

with γ denoting Euler’s γ constant. At this level, the
model does not really differ from the Holstein polaron mass
apart from the modification of the coupling strengths g
and g̃. In the limit g → ∞, the mass approaches the limit
eg̃2

/2J[1 − 8J/ω0g2(1 − κ )2].
The case of the bipolaron is more involved. We expect that

two polarons can create a bound state if there is some effective
attraction in the system. For the Holstein model, this arises
when the effective onsite interaction Ũ = U − 2ω0g2 < 0 and
a localized bipolaron is the ground state. Close to the Ũ = 0
point, a state extending over two lattice sites localized due to
the tunneling exchange can also exist. Nonlocal atom-phonon

coupling changes the situation significantly, as polarons
can bind across the adjacent lattice sites due to the induced
interaction. Furthermore, a bound state can also exist even if
the atoms are in a triplet spin state so that they cannot occupy
the same site, which is not possible in the Holstein model. The
important difference is that due to the coupling to adjacent
phonons, the mass of the bipolaron is much lower than in the
Holstein case. To see this, let us consider the simplest case of
the singlet localized bipolaron, for which up to the first order
we have Eb = U − 2εP. The second-order correction is given
as

E (2)
b = 4J2e−2g̃2

∑
n,m

[g(1 − κ )]2(n+m)[1 + (−1)n+m cos k]2

n!m!(n + m)(ω0 − U + 2εP − ω0g2κ )
,

(C8)

where the denominator is modified by the interaction of
polarons in adjacent lattice sites. The leading term in the
singlet bipolaron mass in the g → ∞ limit reads

mb
g→∞−→ e2g̃2+2g2(1−κ )2 g2ω0 + 0(1 − κ )2

4J2u(u − ω0)
, (C9)

where we introduced u = U − 2εP + ω0g2κ to shorten the
notation. It is interesting to note that while for the Holstein
bipolaron its mass is proportional to exp 4g2, which is equiva-
lent to exp 4εP/ω0, here we have mb ∝ exp 4ξεP/ω0 with ξ =
(1 − 2κ + 3κ2/2)/(1 + 2κ )2 being a correction coefficient.
The bipolaron in our model can thus be much lighter, i.e., by
a factor exp 2εP/ω0 already at κ ≈ 0.12 for which ξ = 0.5.
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