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Thermodynamics of two-dimensional bosons in the lowest Landau level
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We study the thermodynamics of short-range-interacting, two-dimensional bosons constrained to the lowest
Landau level. When the temperature is higher than other energy scales of the problem, the partition function
reduces to a multidimensional complex integral that can be handled by classical Monte Carlo techniques. This
approach takes the quantization of the lowest Landau level orbits fully into account. We observe that the partition
function can be expressed in terms of a function of a single combination of thermodynamic variables, which
allows us to derive exact thermodynamic relations. We determine the asymptotic behavior of this function and
compute some thermodynamic observables numerically.
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I. INTRODUCTION

Two-dimensional quantum matter often responds to an
external magnetic flux with the generation of pointlike vor-
tices. Apart from the celebrated Abrikosov vortices in type-
II superconductors, realizations of such states can also be
found in neutral, harmonically trapped superfluids, where one
can artificially mimic a magnetic field by rotating the fluid
[1–3]. With interactions included, the fate of such a system at
zero temperature is determined by its filling fraction ν [4,5],
defined as the ratio of the density of bosons n to the density of
vortices nv = B/2π . At large fillings, which for short-range
isotropically interacting bosons is ν � 8 [6,7], a compressible
superfluid phase is formed with vortices arranged into a
periodic crystal. At small fillings the vortex crystal melts, and
at some special fillings bosons form incompressible, strongly
correlated fractional quantum Hall states [4,8].

At sufficiently large temperatures, a vortex crystal under-
goes a thermal melting transition. The thermodynamics of
vortex matter and the nature of the melting transition were
mainly discussed in the context of type-II superconductors
within the bosonic Ginzburg-Landau phenomenological the-
ory. The mean-field theory of Abrikosov predicts a continuous
second-order phase transition from the vortex crystal to a
normal state [9]. It was demonstrated in Ref. [10], however,
that fluctuations should invalidate this picture and render the
transition first order, at least close to the upper critical dimen-
sion d = 6. On the other hand, in thin superconducting films
it was proposed [11] that the vortex crystal melts into a vortex
fluid via a pair of Berezinskii-Kosterlitz-Thouless (BKT)–
like phase transitions arising from the unbinding of crystal
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dislocations and disclinations. In the past, a number of stud-
ies of the thermodynamics of the classical Ginzburg-Landau
model have been undertaken [12], leading to contradictory
results for the order of the vortex crystal melting transition.
Recent experimental work with very weakly pinned supercon-
ducting films supports the two-stage BKT melting scenario
[13].

In rotating two-dimensional bosonic superfluids, the
defect-mediated BKT melting of the vortex crystal was dis-
cussed in Ref. [14]. Numerical studies of the thermodynamics
of quantum bosons in magnetic fields are hampered by the
fact that quantum Monte Carlo simulations suffer from the
notorious sign problem.

In this paper, we investigate theoretically the thermody-
namics of a finite-size two-dimensional droplet of bosons
placed into a magnetic field and restricted to the lowest
Landau level (LLL); see Fig. 1.

In this setting, the problem reduces to the quantum statisti-
cal physics of Nv + 1 complex degrees of freedom, where Nv

is the number of quantum vortices. While previously this setup
has been studied at zero temperature (for a review of this vast
field, see Refs. [6,8,16] and cited literature therein), we focus
our attention here on the regime where the temperature is
higher than the remaining energy scales of the problem. In this
limit, we can neglect the quantum fluctuations of the vortices
and derive a simpler model that we study in the remainder of
this paper. We observe that the partition function of this model
is fully specified by a function ψ of only one variable; see
Eq. (6). We use this constrained form to derive exact relations
(9) and (10) between thermodynamic observables. With the
help of classical Monte Carlo simulations, we map out the
function ψ and determine its asymptotics (12). We make
use of the latter to obtain the asymptotics of thermodynamic
observables.

Recent advances in cold atom experiments allowed the
thermodynamics of bosonic and fermionic superfluids to be
determined with unprecedented accuracy [17]. Our work pro-
vides motivation to measure the equation of state and other
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FIG. 1. The physics of a bosonic droplet in the lowest Landau
level (LLL). (a) The magnetic field B constrains N bosons (blue) to
occupy cyclotron orbits. The bosons interact by a two-body short-
range interaction and repel each other when close. (b) Alternatively,
one may view the system as one of Nv interacting vortices (green).
The interaction between vortices is not pairwise, but a sum of
multibody interactions [15], which are indicated by broken lines
enclosing multiple vortices. At low temperatures, the vortices freeze
into an Abrikosov lattice of size ∼√

NvlB in order to minimize the
interaction energy.

thermodynamic observables of two-dimensional bosonic su-
perfluids in effective magnetic fields. The latter have been
realized by external rotation or with the use of artificial gauge
fields; for reviews, see Refs. [18,19]. While ultracold atom
experiments exploring rotating Bose gases were done decades
ago [20,21], the limit of the LLL is reached explicitly in very
recent works [22,23] using new experimental ideas.

II. THERMODYNAMICS IN THE LOWEST
LANDAU LEVEL

The system that we study is a two-dimensional droplet of
identical bosons in a constant magnetic field B that points per-
pendicular to the plane. The bosons interact with each other
by means of a contact repulsive potential. We are interested
in the thermodynamics of this system and to this end consider
the grand canonical quantum partition function expressed in
terms of a functional field integral Z = ∫

D[φ̄, φ]e−S[φ̄,φ] with

S = ∫ β

0 dτ
∫

d2xL and

L = φ̄∂τφ + 1

2m
φ̄(−i∇ − A)2φ − μφ̄φ + g(φ̄φ)2. (1)

Here β is the inverse of the temperature T , m is the mass of the
bosons, μ is the chemical potential which we tune to fix the
number of bosons in the system, and A is the vector potential
corresponding to the magnetic field B. We choose to work in
the symmetric gauge, for which A = (−By/2, Bx/2). In this
paper, we set h̄ = kB = 1 and absorb the electric charge of the
bosons into the magnetic field.

Since bosons are subject to a constant magnetic field,
one can expand the complex field φ in terms of Landau
level eigenfunctions. The spacing between consecutive levels
is given by the cyclotron frequency ωc = B/m. When the
interaction energy per particle gn and the temperature T are
much smaller than ωc, we can restrict our attention only to
the LLL. Formally, this can be realized by taking the limit
ωc → ∞ and m → 0 such that B ∼ nv remains finite. In this
limit, the contributions of the higher Landau levels to the
action vanish and we have effectively restricted the functional
integral to states in the LLL. Thus, the bosonic field can be
expanded in terms of normalized LLL eigenfunctions

φ(z, τ ) =
Nv∑

n=0

cn(τ )√
2n+1πn!ln+1

B

zne−|z|2/4l2
B

≡ C(τ )
Nv∏
i=1

[z − zi(τ )]e−|z|2/4l2
B , (2)

where z = x + iy and the cn(τ ) are dimensionless complex co-
efficients that depend on imaginary time and satisfy cn(β ) =
cn(0). The quantity lB is the magnetic length and equals 1/

√
B.

The degeneracy of the LLL is Nv + 1 and it is related to the
area A of the droplet as Nv ∼ A/l2

B. Clearly the LLL function
φ(z, τ ) has Nv zeros, which are the positions of the vortices,
denoted by zi(τ ) in Eq. (2). Inserting the form (2) into the
action and carrying out the spatial integration, the partition
function takes the form Z = ∫

D[{c̄(τ ), c(τ )}]e−S[{c̄,c}] with
the Lagrangian being

L =
Nv∑

n=0

c̄n(∂τ − μ)cn

+ g

4π l2
B

2Nv∑
s=0

∣∣∣∣∣
∑

m

√
2−s

(
s

m

)
cm(τ )cs−m(τ )

∣∣∣∣∣
2

, (3)

where in the last line the sum runs over all m with 0 � m � Nv

and 0 � s − m � Nv . The chemical potential has been shifted
to absorb the constant energy ωc/2 resulting from the gradient
term [24]. The Lagrangian in (3) contains the two energy
scales |μ| and g′ = g/(4π l2

B). If the temperature is much
higher than both of these scales, i.e., T � |μ|, g′, we are justi-
fied in neglecting quantum fluctuations of the {cn} and treating
the problem classically. Thus, in this high-temperature limit,
we make the static approximation cn(τ ) → cn, giving rise to
the partition function of the form

Z =
Nv∏

n=0

∫
dc̄ndcn

2π
e−βH [{c̄,c}] (4)

with

H[{c̄, c}] = −μ

Nv∑
n=0

c̄ncn

+ g

4π l2
B

2Nv∑
s=0

∣∣∣∣∣
∑

m

√
2−s

(
s

m

)
cmcs−m

∣∣∣∣∣
2

. (5)

We emphasize that despite the seemingly classical form of
the partition function (4), quantum mechanics enters in this
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approach due to the restriction to the lowest Landau level.
Formally, the Hamiltonian (5) depends on the magnetic length
lB, which is the quantum mechanical length scale fixing the
size of cyclotron orbits.

A. Exact relations

We find that, up to a known factor, the classical partition
function (4) is a function of a single dimensionless variable
formed out of the temperature T , chemical potential μ, and
the modified interaction strength g′ = g/(4π l2

B). To show this,
we rescale in Eq. (4) all coefficients by cn → 4

√
T/g′cn. Apart

from changing the terms in the Hamiltonian (5), this rescaling
also affects the integration measure in (4). This brings the
partition function into the form

Z =
(

T

g′

) Nv+1
2

ψ (x), (6)

where x = μ/
√

g′T . First, we explore the general conse-
quences which this functional form entails. The average par-
ticle number is obtained from the thermodynamic potential

 = −T log Z by 〈N〉 = −∂μ
, i.e.,

〈N〉 =
√

T

g′
ψ ′(x)

ψ (x)
, (7)

where the prime on ψ denotes differentiation with respect to
x. Meanwhile, the average energy is 〈E〉 = −∂β log Z + μ〈N〉
and thus

〈E〉 = Nv + 1

2
T + μ

2

√
T

g′
ψ ′(x)

ψ (x)
. (8)

Eliminating the ratio ψ ′/ψ from both equations, we obtain an
exact relation between 〈N〉 and 〈E〉

〈E〉 = Nv + 1

2
T + μ

2
〈N〉. (9)

Along similar lines, one can derive a universal relation that
relates the magnetization 〈M〉 = −∂B
 to the particle num-
ber 〈N〉. The magnetic field enters the partition function
only through the magnetic length lB = 1/

√
B, and thus ∂B =

g/(4π )∂g′ . After carrying out the derivatives, one finds the
relation

〈E〉 = −B〈M〉. (10)

B. Determination of ψ(x) from Monte Carlo simulations

The fact that the partition function has a simple func-
tional form means that one can extract the function ψ (x) by
following a specific curve in the T -μ parameter space. In
the following, we present results obtained from Monte Carlo
simulations, where we calculate the average particle number
〈N〉 at fixed T = g′ and for varying values of μ. As seen
from Eq. (7), on this particular trajectory in T -μ space 〈N (x)〉
reduces to 〈N (x)〉 = ψ ′(x)/ψ (x) and by calculating the left-
hand side numerically, we can obtain the function ψ (x) up to
an overall multiplicative constant. We now briefly describe the
Monte Carlo simulation. Starting from randomized initial val-
ues for the coefficients cn, we repeatedly update their values in
the complex plane. A proposal for an update is either accepted

FIG. 2. Monte Carlo result for the particle number 〈N〉 at fixed
temperature T = g′ and chemical potential μ = xg′ varying with
x. Each plot also shows a snapshot of the vortex positions that is
characteristic for the value of x taken from the simulation. The vortex
positions zi are found from the coefficients cn by factorizing the
polynomial part of φ as shown in Eq. (2). Panel (a) shows 〈N〉 for
negative values of x. The region of large negative x corresponds to
the high-temperature limit, where the vortices form a fluid. Panel
(b) shows 〈N〉 for positive values of x. Large positive x correspond to
low temperatures, at which one finds the vortices to be arranged into
a crystal. A video showing our simulation is found in Ref. [25].

or rejected according to the standard Metropolis rule. The size
of the change of cn is chosen uniformly randomly inside a
circle of a certain radius. This radius is chosen such that the
ratio of accepted updates to proposed updates is around 0.4.
Then we repeat a cycle of thermalization and measurement,
which typically have 105 steps each. The number of cycles is
100.

The two plots in Fig. 2 show 〈N (x)〉 in doubly logarithmic
form for negative and positive values of x. At large and small
|x|, the observable 〈N (x)〉 clearly follows power laws and we
determine the exponents by fitting. We find

〈N (x)〉 =
⎧⎨
⎩

− c
x x → −∞

b x → 0
ax x → +∞.

(11)

The parameters a, b, and c are functions of Nv . For
large Nv , they are well described by a ≈ 0.24(Nv + 1), b ≈
0.4(Nv + 1), and c = Nv + 1. We can now obtain asymptotic
formulas for ψ (x) by solving the differential equation (7) with
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FIG. 3. Monte Carlo result for the specific heat C = −T ∂2
T 
 as

a function of x. The curves reach a plateau at large x. The plateau
height is shown in the inset as a function of Nv � 1.

(11) as input. We obtain

ψ (x) ∼

⎧⎪⎨
⎪⎩

1
|x|Nv+1 x → −∞
ebx x → 0
e

a
2 x2−p log x x → +∞,

(12)

up to multiplicative constants. The limit x → −∞ corre-
sponds to the noninteracting case, g′ → 0, and was therefore
computed exactly. In the third case, we have anticipated a
subleading factor x−p that we will discuss in the context of
the specific heat below.

C. Thermodynamic observables

The Monte Carlo simulation was done along the trajectory
(g′, xg′) in T -μ space by changing x. With the expressions for
ψ (x) in hand, we can now obtain further knowledge about 〈N〉
for general T and μ:

〈N (T, μ, g′)〉 =

⎧⎪⎨
⎪⎩

−(Nv + 1)T /μ g′ → 0, μ < 0

b
√

T/g′ μ → 0

aμ/g′ − pT/μ T → 0, μ > 0.

(13)

The specific heat at constant chemical potential C = T ∂T S =
−T ∂2

T 
 is obtained from the Monte Carlo simulation by cal-
culating the correlator C = β2[〈(E − μN )2〉 − 〈E − μN〉2].
In terms of the function ψ (x), the specific heat can also be
expressed as

C = Nv + 1

2
− x

4

ψ ′(x)

ψ (x)
+ x2

4

(
ψ ′(x)

ψ (x)

)′
. (14)

Clearly this quantity does not depend on the specific trajectory
chosen, since it depends only on x. The result of the Monte
Carlo simulation is shown in Fig. 3.

Inserting the asymptotics (12) in (14), we find predictions
for the specific heat:

〈C〉 =

⎧⎪⎨
⎪⎩

Nv + 1 x → −∞
Nv+1

2 − b
4 x x → 0

Nv+1+p
2 x → +∞.

(15)

At large x, the specific heat approaches a plateau C∞ =
(Nv + 1 + p)/2. As follows from the inset of Fig. 3, for large

FIG. 4. The chemical potential μ as a function of temperature
at fixed particle number 〈N〉 = 104. Here 〈ν〉 = 〈N〉/(Nv + 1) is the
filling fraction defined in the text. The curve for zero vortices is
exact (see Appendix B), while the other lines were obtained from
the Monte Carlo simulation. Using this data, we can find the specific
heat at constant particle number (see Appendix A). The inset shows
such a plot for Nv = 80.

Nv one has p ≈ 0.8(Nv + 1). The region of large positive x
corresponds to low temperatures, and as a consequence the
specific heat of the vortex crystal tends to a constant in our
model when T → 0. This is a well-known deficiency of the
classical treatment [26] that stems from neglecting higher
Matsubara components of the LLL degrees of freedom {cn}.
The fact that C(0) < C(±∞) necessitates the existence of a
global minimum of C(x), which is the dip seen in Fig. 3.

The behavior of the chemical potential as a function of
temperature at fixed particle number is shown in Fig. 4.

The main features of this figure can be understood with the
help of Eq. (13). For high temperatures, the system behaves
essentially as if it were noninteracting, and thus according to
the asymptotics for 〈N〉 the slopes of the curves in the figure
tend to −1. The asymptotics also predicts where the curves
cross the μ = 0 axis, namely at T� = [(Nv + 1)/b]2g′〈ν〉2. For
large Nv , this becomes T� ≈ 6.3g′ν2, which is indeed where
the Nv = 100 curve becomes zero in Fig. 4. Finally, the low-
temperature asymptotics for μ is μ = g′〈N〉/a + pT/〈N〉. For
large Nv , this yields the line μ/(g′〈ν〉) ≈ 4 + 0.8T/(g′〈ν〉2),
correctly reproducing the intercept and slope at T = 0 of the
Nv = 100 curve.

With the aid of the μ(T ) curves in Fig. 4 it is possible to
derive the specific heat CN at constant particle number; see
Appendix A for details. The result is shown in the inset of
Fig. 4. As a consequence of working in the LLL, this specific
heat vanishes at high temperatures.

III. OUTLOOK

An exciting extension of this work would be to take quan-
tum fluctuations of the LLL degrees of freedom fully into
account, since this can shed some light on the low-temperature
properties of the vortex crystal and may even illuminate the
question of the quantum melting transition [4,7]. In the regime
N � Nv , the approach of using the small number Nv + 1
of LLL basis states compared to the large number N of
bosons implies that a quantum Monte Carlo simulation of the
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LLL Lagrangian (3) is actually much more feasible than the
ab initio simulation of interacting bosons in a magnetic field.

In order to clarify the nature of the thermal melting transi-
tion from a vortex crystal to a vortex fluid, it may be fruitful
to study within our approach the hexatic order parameter.
However, studies of melting transitions of two-dimensional
solids revealed that an extremely large number of degrees
of freedom become neccessary. As an example, the melting
transition in the two-dimensional hard-disk model was only
resolved with the invention of an algorithm that was fast
enough to equilibrate ≈106 hard disks [27]. We presume that
a collective-move algorithm similar to the one used for hard
disks may help uncover the nature of the thermal melting
transition of the vortex crystal.
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APPENDIX A: SPECIFIC HEAT AT CONSTANT
PARTICLE NUMBER

The entropy is obtained as usual from S = ∂T (T log Z ) and,
by inserting the specific form of the partition function (6), we
obtain the result

S = Nv + 1

2

(
1 + log

T

g′

)
+ log ψ (x) − x

2

ψ ′(x)

ψ (x)
. (A1)

The specific heat at constant chemical potential is found from
this by C = T ∂T S|μ, which yields

C = Nv + 1

2
− x

4

ψ ′(x)

ψ (x)
+ x2

4

[
ψ ′(x)

ψ (x)

]′
. (A2)

At high temperatures, we find from the asymptotics (12) that
the entropy behaves like

S = Nv + 1

2
+ (Nv + 1) log

(
−T

μ

)

= Nv + 1

2
+ (Nv + 1) log

(
N

Nv + 1

)
, (A3)

where we used the fact that at high temperatures
μ = −(Nv + 1)/N × T . Thus, the entropy of a system
with N particles tends to a constant as T → ∞, despite the
fact that the specific heat C tends to a constant.

In the main text, the μ(T ) curve was determined for fixed
particle number. This function allows us to determine CN , the
specific heat at constant particle number, that is defined as

CN = T
∂S

∂T

∣∣∣∣
N

. (A4)

Since we are working in the grand canonical formalism, the
independent variables are μ and T . The entropy at constant

FIG. 5. Comparison of Monte Carlo result for the particle num-
ber 〈N〉 on T = g′, μ = xg′ trajectory with the exact result (blue) as
given by (B2). The inset shows the MC results for the specific heat
together with the exact result (blue) stated in (B3).

particle number is found from the chain rule

∂S

∂T

∣∣∣∣
N

= ∂S

∂μ

∣∣∣∣
T

∂μ

∂T

∣∣∣∣
N

+ ∂S

∂T

∣∣∣∣
μ

(A5)

and hence

CN = T
∂S

∂μ

∣∣∣∣
T

∂μ

∂T

∣∣∣∣
N

+ C. (A6)

It is straightforward to verify that

∂S

∂μ

∣∣∣∣
T

= β2[〈(E − μN )N〉 − 〈E − μN〉〈N〉] (A7)

holds. Being a correlator, the right-hand side can be computed
within the Monte Carlo simulation.

In order to obtain ∂μ/∂T |N it is useful to differentiate N =√
T/g′ψ ′(μ/

√
T g′)/ψ (μ/

√
T g′) with respect to T , holding

N constant. From this, one obtains the relation

∂μ

∂T

∣∣∣∣
N

= − μ2

8T 2

N

C − Nv+1
2 + μN

4T

+ μ

2T
. (A8)

Together with Eq. (A7), this allows the specific heat at
constant particle number to be determined from (A6). The
result is shown in the inset of Fig. 4.

Differentiating Eq. (A1) and substituting the result into
Eq. (A6), one can also show that the formula

CN = Nv + 1

2
+ C − Nv+1

2

C − Nv+1
2 + μN

4T

μN

4T
(A9)

holds, which provides an alternative way to find CN .
Using the asymptotics for C from the main text, we can

find the limiting behavior of CN . The asymptotics for CN are

〈CN 〉 =
⎧⎨
⎩

Nv+1+p
2 T → 0

Nv+1
2 − b2

8C′′(0) T → T�

0 T → ∞,

(A10)

where C′′(0) = {ψ ′′(0)/ψ (0) − [ψ ′(0)/ψ (0)]2}/2. To lead-
ing order in the series expansion of log ψ (x) around zero,
C′′(0) vanishes, but higher order corrections will generically
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yield a finite value. The case where μ tends to zero, i.e.,
the limit where T → T�, is peculiar since the denominator
vanishes quadratically with μ and not linearly as one might
expect. As a consequence, the second term in Eq. (A9) makes
a finite contribution as μ vanishes.

APPENDIX B: EXACT PARTITION FUNCTION FOR Nv = 0

The case Nv = 0 can be solved exactly and thereby pro-
vides a check for our Monte Carlo simulations. Setting Nv = 0
in Eq. (5) results in a Hamiltonian with only one complex
degree of freedom. The complex integral in the partition
function (4) can be carried out and yields

Z =
√

T

g′ ψ (x),

ψ (x) =
√

π

2
ex2/4

[
1 + erf

( x

2

)]
, (B1)

with the error function defined as erf (u) = 2/
√

π
∫ u

0 e−t2
dt .

We used the shorthand x = μ/
√

g′T , which was introduced in

the main text. The particle number 〈N〉 is given by

〈N〉 = μ

2g′ +
√

T

g′
e−x2/4

1 + erf
(

x
2

) . (B2)

This expression was used in the main text to work out the
behavior of the chemical potential at a given value of 〈N〉.
The specific heat 〈C〉 is given by

〈C〉 = 1

2
− 1

4π

x2[
1 + erf

(
x
2

)]2 e−x2/2

− 1

8
√

π

x3 + 2x

1 + erf
(

x
2

)e−x2/4. (B3)

Figure 5 shows that 〈N〉 and 〈C〉 as given by these formulas
agree very well with the results from the Monte Carlo simula-
tions.

The entropy S = ∂ (T log Z )/∂T is given by

〈S〉 = 1

2
+ 1

2
log

π

4
+ 1

2
log

T

g′ + log
[
1 + erf

( x

2

)]

− x

2

e− x2

4√
π [2 − erf (x/2)]

. (B4)
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