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Despite great successes in the study of gapped phases, a comprehensive understanding of the gapless phases
and their transitions is still under development. In this paper, we study a general phenomenon in the space
of (1 + 1)-dimensional critical phases with fermionic degrees of freedom described by a continuous family of
conformal field theories (CFTs), also known as the conformal manifold. Along a one-dimensional locus on the
conformal manifold, there can be a transition point, across which the fermionic CFTs on the two sides differ
by stacking an invertible fermionic topological order (IFTO), point by point along the locus. At every point on
the conformal manifold, the order and disorder operators have power-law two-point functions, but their critical
exponents cross over with each other at the transition point, where stacking the IFTO leaves the fermionic CFT
unchanged. We call this continuous transition on the fermionic conformal manifold a topological transition. By
gauging the fermion parity, the IFTO stacking becomes a Kramers-Wannier duality between the corresponding
bosonic CFTs. Both the IFTO stacking and the Kramers-Wannier duality are induced by the electromagnetic
duality of the (2 + 1)-dimensional Z2 topological order. We provide several examples of topological transitions,
including the familiar Luttinger model of spinless fermions (i.e., the c = 1 massless Dirac fermion with the
Thirring interaction) and a class of c = 2 examples describing U(1) × SU(2)-protected gapless phases.
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I. INTRODUCTION

The study of gapped topological ordered phases has been
systematically developed over the last 30 years. The field has
moved in the direction of studying (1) the critical theories be-
tween topological phases, or between a topological phase and
a trivial phase, and (2) the gapless phases without quasiparti-
cles. In recent years, there are several progresses in studying
transitions between topological phases. One is to consider the
continuous transition between gapped trivial and gapped topo-
logical ordered phases that do not involve any spontaneously
symmetry breaking [1–5] (but may be viewed as the sponta-
neous breaking of emergent higher symmetry [6] in the sense
of [7,8]). The critical points between symmetry protected
topological phases are also examples of continuous transi-
tions that do not involve any spontaneous symmetry breaking
[9–13]. With or without the spontaneous symmetry breaking,
the critical points for continuous phase transitions are often
gapless states without well-defined quasiparticles [5,14,15].
Moreover, some gapless phases can be strongly correlated and
have no well-defined quasiparticles down to zero energy, such
as the large N QED in (2 + 1) dimensions, certain U(1) spin
liquids [14,15], and QED in (3 + 1) dimensions.
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To characterize gapless phases without quasiparticles, in-
spired by the success in gapped phases, we start with the
question of whether they can be topologically nontrivial.
A far from exhaustive list of reference are [16–27]. To
give an example, one construction is to impose symmetries
and to decorate domain walls in gapless phases by symme-
try charges, in analogy with the construction of symmetry
protected topological phases [28,29]. Overall, this line of
questions is hard and a universal understanding is in demand.

More generally, we would like to understand how to
distinguish the topological nature in a gapless phase. It is
proposed recently to use the topological edge mode in gap-
less phases [30–32]. A numerical success has been made in
identifying ground-state degeneracy in (1 + 1)-dimensional
[(1 + 1)D] gapless models with the open boundary condi-
tion. The energy splitting scales with the system size either
exponentially or with a power law with a large exponent.
The low-energy theories are conformal field theories (CFTs)
without a symmetry-preserving relevant operator. It is also
proposed in the above literature that there can be a topological
invariant defined in the gapless bulk, based on different ways
to assign symmetry charges to the nonlocal operators in the
low-energy effective field theory.

In this paper, we introduce a concrete field-theoretic setup
where the topological nature of a gapless state changes as we
dial the parameters of the model. We consider a one-parameter
family of CFTs in (1 + 1) dimensions with fermionic degrees
of freedom, labeled by an exactly marginal coupling g. The
latter parametrizes a one-dimensional locus of the conformal
manifold where every point defines a fermionic (spin) CFT
with the same central charge. We will be interested in the
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scenario where the CFT F[−g] with negative coupling dif-
fers from that F[g] with positive coupling by an invertible
fermionic topological order (IFTO) (also known as the Arf
invariant), point by point for all couplings g. In other words,
the gapless state F[g] can be viewed as the other state F[−g]
stacked with a (1 + 1)D p-wave superconducting state [33].

The CFT F[0] at the transition point g = 0 enjoys an en-
hanced ZIFTO

2 global symmetry: it is invariant under stacking
an IFTO. Away from the transition point, the ZIFTO

2 action
is not a symmetry, but maps F[g] to F[−g] by stacking
an IFTO. Since the CFTs on the two sides of F[0] differ
by a (1 + 1)D topological order, we will call the transition
F[−g] → F[0] → F[g] a topological transition on the con-
formal manifold. The simplest example is a c = 1 massless
Dirac fermion with a quartic fermion interaction (i.e., the
Thirring coupling) [34], which can be equivalently described
by the Luttinger model of spinless fermions. We will also
discuss a c = 2 example with U(1) × SU(2) global symmetry.

The topological transition is similar to the standard second-
order phase transition, and yet it is different in many aspects.
It is similar in that the gapless states on both sides differ
by a topological order, much as (1 + 1)D massive Majorana
fermions with m > 0 and m < 0 do. However, the gap in a
topological transition is always exactly zero, and the CFT
data (e.g., the spectrum and the quantum numbers of the
local operators) change continuously as we vary the exactly
marginal coupling g. Another resemblance is that while the
order and the disorder operators both have power-law two-
point functions along the topological transition their critical
exponents cross over with each other at the transition point
F[0]. This is to be contrasted with the standard order-disorder
phase transition where in one phase the order operators have
asymptotic constant correlations while the disorder operators
have exponentially decaying correlations, and vice versa in
the other phase.

The topological transition F[−g] → F[0] → F[g] has a
parallel story in the bosonized picture. The bosonization and
fermionization maps in (1 + 1)D quantum field theory (QFT)
have been recently revisited from a more modern point of view
[34–39], which we will review in Sec. III. Let B[g] be the
bosonization of F[g] by gauging the fermion parity, then B[g]
and B[−g] differ by a ZB

2 orbifold [7,34]. In particular, the
bosonic transition point B[0] is self-dual under the ZB

2 orb-
ifold, which generalizes the notion of the Kramers-Wannier
duality [40–42] to the more general bosonic (nonspin) CFT
than the Ising CFT. By exploiting our knowledge on the
bosonic conformal manifold, we produce several examples of
topological transitions for fermionic CFTs.

The line of CFTs under consideration can also be real-
ized by (1 + 1)D lattice models where ZIFTO

2 is a symmetry
of the models. But such a ZIFTO

2 symmetry has a ’t Hooft
anomaly and is not on site in the lattice models.1 We
can also realize the line of CFTs by the boundaries of
(2 + 1)-dimensional [(2 + 1)D] Z2 topological order (i.e., Z2

gauge theory), where ZIFTO
2 is the on-site symmetry of the

1On the lattice model. (In the bosonic model, the Z2 orbifold is
realized by translation by half a site, mapping site degrees of freedom
to link degrees of freedom. The simplest example is the Ising model.)

FIG. 1. We can couple the (2 + 1)D bosonic Z2 gauge theory to
a (1 + 1)D bosonic theory with a nonanomalous ZB

2 symmetry, or to
a (1 + 1)D fermionic theory. The (2 + 1)D electromagnetic duality
implements either the Kramers-Wannier duality (ZB

2 orbifold) when
the (1 + 1)D boundary is bosonic or the IFTO stacking (ZIFTO

2 ) when
the boundary is fermionic.

2+1 models that exchange the Z2 charge e and the Z2 vortex
m. In the above two families of CFTs with ZIFTO

2 symmetry,
F[g] and F[−g] represent the two degenerate ground states
from spontaneous ZIFTO

2 -symmetry breaking.
Both the Kramers-Wannier duality of (1 + 1)D bosonic

theories and the IFTO stacking ZIFTO
2 action of (1 + 1)D

fermionic theories are intimately related to electromagnetic
duality in the (2 + 1)D bosonic untwisted Z2 gauge theory
[43]. Indeed, the electromagnetic duality of the Z2 gauge
theory extends to the boundary with local bosons (with an
anomaly-free ZB

2 twisting) as the Kramers-Wannier duality
[44,45]. On the other hand, when the (1 + 1)D boundary has
local fermions, the electromagnetic duality extends to stack-
ing an IFTO [46]. Purely from the (1 + 1)D boundary point
of view, the Kramers-Wannier duality is related to the ZIFTO

2
stacking via bosonization/fermionization (as we will discuss
in Sec. III), which provides a direct translation between the
two extensions. This is analogous to the relation between
the (3 + 1)-dimensional [(3 + 1)D] Maxwell theory and the
(2 + 1)D particle-vortex dualities [47,48]. See Fig. 1.2

The generalized Kramers-Wannier duality of a bosonic
CFT B0 can be implemented by the noninvertible duality
defect line in the (1 + 1)D space-time [49–55]. We give a
detailed analysis of the duality defect in several examples,
and discuss its relation to the ZIFTO

2 symmetry defect of the
corresponding fermionic CFT F0.

This paper is organized as follows. In Sec. II, we review the
IFTO and discuss general features of topological transitions
on fermionic conformal manifolds. We also discuss the inter-
pretation of stacking an IFTO from the (2 + 1)d Z2 gauge
theory point of view. In Sec. III, we review the bosonization
and the fermionization procedures in (1 + 1) dimensions. In
particular, we show that two fermionic theories differ by an
IFTO if and only if their bosonized theories are related by a Z2

orbifold. In Sec. IV, we discuss several examples of bosonic
conformal manifolds where CFTs are related by a Z2 orb-
ifold, which includes the c = 1 compact boson S1, the c = 1
orbifold theory S1/Z2, as well as a c = 2 T 2 CFT example.
These bosonic examples pave the way for the topological tran-
sition of their fermionizations, including the c = 1 massless

2Throughout the paper, we will assume that the gravitational
anomaly of the (1 + 1)D fermionic theory is cL − cR = 0 mod 8, and
the (−1)F fermion parity has no ’t Hooft anomaly.
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Thirring model (also known as the Luttinger liquid), which
we discuss in Sec. V. We will also discuss a c = 2 fermionic
CFT describing a spin- 1

2 gapless phase beyond the Luttinger
liquid type. In Sec. VI, we discuss how a symmetry defect in a
fermionic theory becomes a duality defect under bosonization.
We end with several future directions in Sec. VII.

II. TOPOLOGICAL TRANSITION ON THE FERMIONIC
CONFORMAL MANIFOLD

In this paper we consider gapless states described by CFTs
with fermionic degrees of freedom. In particular, we focus on
CFTs with exactly marginal deformations. By turning on the
exactly marginal deformations, one generates a continuous
family of CFTs parametrized by the exactly marginal cou-
plings. The space of this family of CFTs is called a conformal
manifold. In this section, we describe a general phenomenon
where along a one-dimensional slice of the conformal mani-
fold there is a transition point across which the CFTs on the
two sides differ by an IFTO stacking.

A. Invertible fermionic topological order

We start by reviewing the IFTO, which is the Kitaev chain
of p-wave superconductors [33] (see [7,34,56–59] for further
discussions).

Given a Riemann surface � with a spin structure ρ, the Arf
invariant Arf[ρ] is defined as [60]

Arf[ρ] =
{

1, if ρ is odd,

0, if ρ is even.
(2.1)

On a genus-g Riemann surface, there are 2g−1(2g − 1) odd
spin structures and 2g−1(2g + 1) even spin structures.

A Z2 gauge connection s ∈ H1(�,Z2) is specified by the
holonomy

∮
γ

s ∈ {0, 1} around each cycle γ of �. Given a
spin structure ρ and a Z2 connection, we can construct a new
spin structure modified by the Z2 twist. We will denote this
spin structure by s + ρ.

Using the Arf invariant, we can define a (1+1)D IFTO. The
partition function of this IFTO on a Riemann surface with spin
structure ρ is simply given by

ZIFTO[ρ] = e i πArf[ρ]. (2.2)

This IFTO is protected by the (−1)F symmetry. The sign of
ZIFTO[ρ], compared to the trivially fermionic gapped phase
Z[ρ] = 1, measures the parity of the number of Majorana
zero modes [33], or the parity change of the number of
negative-energy eigenstates. If we stack two IFTOs together,
then it becomes a trivial phase. Let the Z2 background gauge
field of (−1)F be S. The partition function of the IFTO cou-
pled to a background (−1)F gauge field S is ZIFTO[S + ρ] =
e i πArf[S+ρ].

B. Topological transition of the fermionic gapless states

We start with a general discussion on fermionic states in
(1+1) dimensions described by a fermionic QFT F .3 From

3A QFT whose partition function requires a choice of the spin
structure is called a spin or a fermionic QFT, such as the Majorana

F we can construct another fermionic theory F ′ by stacking
with an IFTO ZIFTO:

ZF ′ [ρ] = ZIFTO[ρ]ZF [ρ]. (2.3)

The partition functions for F and F ′ are identical on Riemann
surfaces with even spin structure, but differ by a sign for odd
spin structure.

On a space-time torus with complex structure moduli q =
exp(2π iτ ), a fermion system has four partition functions:

ZF [AE ] = TrHA

[
1 + (−1)F

2
q

H+K
2 q̄

H−K
2

]
,

ZF [AO] = TrHA

[
1 − (−1)F

2
q

H+K
2 q̄

H−K
2

]
,

ZF [PE ] = TrHP

[
1 + (−1)F

2
q

H+K
2 q̄

H−K
2

]
,

ZF [PO] = TrHP

[
1 − (−1)F

2
q

H+K
2 q̄

H−K
2

]
, (2.4)

where HP (HA) is the Hilbert space with the periodic (an-
tiperiodic) boundary condition for the fermions.4 H and K
are the eigenvalues of the Hamiltonian and momentum in the
corresponding Hilbert space. In a CFT with central charges
c = cL = cR, H and K are related to the conformal weights
as h − c

24 = H+K
2 and h̄ − c

24 = H−K
2 . Here E and O stand for

the (−1)F -even and (−1)F -odd sectors, respectively.
Alternatively, we may define the torus partition functions

for fermion systems through the space-time path integral,
which also include four types, ZF [AA], ZF [AP], ZF [PA], and
ZF [PP]. Here the first and second subscriptions P and A cor-
respond to the periodic and antiperiodic boundary conditions
for fermions in x and t directions, respectively. The two sets
of partition functions are related:

ZF [AE ] = 1
2 (ZF [AP] + ZF [AA]),

ZF [AO] = − 1
2 (ZF [AP] − ZF [AA]),

ZF [PE ] = 1
2 (ZF [PP] + ZF [PA]),

ZF [PO] = − 1
2 (ZF [PP] − ZF [PA]). (2.5)

The boundary conditions AP, PA, and AA correspond to the
even spin structures and PP corresponds to the odd spin struc-
ture. Thus, on a torus, (2.3) implies

IFTO stacking:

ZF [AA] = ZF ′ [AA], ZF [AP] = ZF ′ [AP],

ZF [PA] = ZF ′ [PA], ZF [PP] = −ZF ′ [PP]. (2.6)

This implies that F and F ′ share the same Hilbert space in the
antiperiodic sector, while the fermion parity differs by a sign
in the periodic sector.

fermion. By contrast, a QFT whose partition function does not re-
quire a choice of the spin structure is called a nonspin or a bosonic
QFT, such as the Ising CFT.

4In the high-energy terminology, HP is the Ramond sector while
HA is the Neveu-Schwarz sector.
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If a fermionic CFT F0 satisfies

ZF0 [ρ] = ZIFTO[ρ]ZF0 [ρ], (2.7)

then F0 remains unchanged after stacking with an IFTO. This
means that the fermionic CFT F0 is at the phase transition
boundary between a trivial order and an IFTO. In other words,
the fermionic CFT F0 describes a continuous phase transition
between two fermionic CFTs F and F ′ that differ by an IFTO.
For such a fermionic CFT, it satisfies

ZF0 [ρ] = 0, ρ : odd. (2.8)

On the torus, its partition function with periodic conditions on
both cycles (PP) vanishes, i.e., ZF0 [PP] = 0.

The classic example is a single Majorana fermion theory,
governed by the action

S = 1

2π

∫
d2z(ψ∂̄ψ + ψ̄∂ψ̄ + imψ̄ψ ), (2.9)

where ψ (z) and ψ̄ (z̄) are right- and left-moving Majorana
fermion fields. It is the low-energy description of Kitaev’s
fermionic chain model [33] near the transition from the trivial
insulator to the p-wave superconductor. Here F[m] is the
Majorana fermion with mass m. The difference between a Ma-
jorana fermion with positive mass m and one with a negative
mass −m is precisely the IFTO:

ZMaj[ρ, m] = ZIFTO[ρ] ZMaj[ρ,−m]. (2.10)

This implies at the critical point m = 0 that a single mass-
less Majorana fermion CFT F0 = F[0] is invariant under the
stacking with the IFTO.

1. Exactly marginal deformation

In the example of a single Majorana fermion, the mass
term, i.e., the deformation operator O that drives the transition
through F0, is relevant. When O is exactly marginal, it moves
the CFT F0 along two different directions onto the conformal
manifold (leaving the central charge unchanged). Let g be the
exactly marginal coupling; we will denote the fermionic CFT
on the conformal manifold as F[g] with F[g = 0] = F0. The
main point of this paper is to give examples of the transition
on a one-dimensional locus of the conformal manifold, where
CFTs on the two sides F[g] and F[−g] differ by an IFTO,
much as the positive mass and the negative mass Majorana
fermions do. More precisely,

ZF [ρ, g] = ZIFTO[ρ] ZF [ρ,−g], (2.11)

point by point for every g.5 We will call such a transition
F[−g] → F0 → F[g] on the conformal manifold a topolog-
ical transition. This is to be distinguished from the standard
second-order phase transition where the gap is closed at the
critical point but then opens again. In the topological transi-
tion, every point is a CFT and the gap is always zero.

More generally, starting from a fermionic CFT F0, we
can turn on two different exactly marginal deformations O

5This difference in the IFTO can also be thought of as an anomaly
involving the coupling g and the spin structure ρ in the sense of
[61,62].

and O′ with couplings g � 0 and g′ � 0. There can also be
topological transitions from F ′[g′] → F0 → F[g] such that
F[g] differs from F ′[ f (g)] by an IFTO for some function
f (g).

In the order phase of a standard second-order phase transi-
tion, the two-point function of an order operator approaches a
constant at large separation, while that of the disorder operator
decays exponentially. The situation is reversed in the disorder
phase. By contrast, along the topological transition F ′ →
F0 → F on the conformal manifold, the two-point functions
of the order and disorder operators both fall off by power laws.
We illustrate the two-point functions of order and disorder
operators in both cases in Fig. 2. The critical exponents (i.e.,
the scaling dimensions) of the order operator and the disorder
operator cross over with each other at the transition point F0.
We will demonstrate this in explicit examples in Sec. V.

The mapping from F to F ′, i.e., the stacking with the
IFTO, resembles a Z2 transformation. Indeed, in the Majo-
rana fermion example, such a Z2 transformation is the chiral
fermion parity (−1)FL , which flips the sign of the left-moving
fermion but not that of the right-moving one. This Z2 trans-
formation maps F[m] to F[−m], and it is a global symmetry
of the theory at the transition point F0. More generally, in the
topological transition, we will denote this Z2 action as ZIFTO

2 ,
since its action is to stack an IFTO.6

2. (2+1)D Z2 topological order

The ’t Hooft anomaly of a Z2 internal, unitary global
symmetry in (1 + 1) dimensions has a Z8 classification
[56,63–67]. The ZIFTO

2 has odd units of the mod 8 anomaly
(see Sec. VI). Consequently, there is no (1 + 1)D lattice UV
completion of F0 such that ZIFTO

2 is realized as an on-site
symmetry. Instead, there is a (2 + 1)D lattice UV completion
of F0 as a boundary theory, such that ZIFTO

2 is realized as
an on-site symmetry on the (2 + 1)D lattice [68,69]. To see
this, we note that the four-component partition functions for a
fermionic CFT F0 are given by the partition functions on the
four sectors of the boundary of the (2 + 1)D Z2 topological
order (i.e., the untwisted Z2 gauge theory [70]),

ZF [AE ] = Z1, ZF [PO] = Ze,

ZF [PE ] = Zm, ZF [AO] = Z f , (2.12)

that are labeled by four types of anyons: 1, e, m, and f [46].
Physically, the operators in each of the four sectors HE/O

A/P
become the operators on the (1 + 1)D boundary that live at
the end of the corresponding anyon in the coupled system.
The ZIFTO

2 transformation maps ZF [PP] to −ZF [PP] for the
boundary theory on a torus. Thus, in the (2 + 1)D system, the
IFTO-stacking ZIFTO

2 symmetry is the electromagnetic duality
(which is a 0-form Z2 symmetry of the Z2 gauge theory) that
exchanges e and m but leaves 1 and f unchanged.

6Despite what the notation might have suggested, ZIFTO
2 is not a

global symmetry of the IFTO (2.2) (but of the theory F0). The only
Z2 symmetry of the IFTO is the fermion parity (−1)F .
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FIG. 2. Top: The Landau phase transition between the symmetry-breaking phase (the order phase) and the symmetric phase (the disorder
phase). Bottom: The topological transition between two families of gapless phases with power-law decaying correlation functions for both the
order and the disorder operators. In one family, the scaling dimension of the order operator is smaller than that of the disorder operator, i.e.,
	ord < 	dis, while in the other family we have 	ord > 	dis.

III. INVERTIBLE FERMIONIC TOPOLOGICAL ORDER
AND THE Z2 ORBIFOLD

In this section we provide an equivalent bosonic descrip-
tion of the topological transition for the fermionic CFT
discussed in Sec. II B.

A. Bosonization and fermionization

We start by reviewing the procedure of bosonization and
fermionization in (1+1) dimensions that has been developed
in [34,35,37–39]. See [71] for related discussions on the lat-
tice from a modern perspective.

1. Fermion → boson

Our starting point is a general (1+1)-dimensional
fermionic QFT F with partition function ZF [ρ]. A universal
symmetry for any fermionic QFT is the fermion parity (−1)F .
The partition function with a nontrivial background field S for
the (−1)F is ZF [S + ρ].

Next, we would like to gauge the (−1)F to obtain a bosonic
theory B which is independent of the choice of the spin struc-
ture. We will promote the (−1)F background gauge field S
to a dynamical gauge field s, and sum over it with an overall
normalization factor 1

2g . The resulting partition function of the
bosonic theory is

ZB = 1

2g

∑
s

ZF [s + ρ]. (3.1)

Note that the right-hand side is independent of the choice
of ρ.

In (1+1) dimensions, gauging a Z2 symmetry [in this case,
the fermion parity (−1)F ] gives rise to a dual ZB

2 symme-
try [72] in the gauged theory. The partition function of the
bosonic theory B with a nontrivial dual ZB

2 background field

T is

ZB[T ] = 1

2g

∑
s

ZF [s + ρ]

× exp

[
iπ

(∫
s ∪ T + Arf[T + ρ] + Arf[ρ]

)]
.

Indeed, one can check that the right-hand side is independent
of the choice of the spin structure ρ. We will call the bosonic
theory B the bosonization of the fermionic theory F . Note that
in this terminology bosonization is a map from a fermionic
theory to a bosonic theory, not an equivalence of the two
theories. In string theory, this is known as the Gliozzi-Scherk-
Olive projection [73].

2. Boson → fermion

Suppose instead we start with a bosonic theory B with a
nonanomalous ZB

2 symmetry. How do we obtain a fermionic
theory via gauging? We first couple B to the ZB

2 background
field T in a way that depends on the choice of the spin
structure:

ZB[T ] e i πArf[T +ρ]+ i πArf[ρ]. (3.2)

This can be interpreted as coupling the bosonic CFT B
to the IFTO via the term Arf[T + ρ]. Next, we promote
the background field T to a dynamical field t , and obtain a
fermionic theory that depends on the spin structure:7

ZF [S + ρ] = 1

2g

∑
t

ZB[t]

× exp

[
iπ

(
Arf[t + ρ] + Arf[ρ] +

∫
t ∪ S

)]
.

7For those not familiar with cup products, a condensed-matter
oriented reference is [74].
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In the resulting fermionic theory, the dual symmetry is identi-
fied as the fermion parity (−1)F , and S is its background field.
We will call the fermionic theory F the fermionization of the
bosonic theory B with respect to ZB

2 .8 This can be thought of
as the continuum version of the Jordan-Wigner transformation
on the lattice [76]. Using (A2), we see that the fermioniza-
tion (3.3) with respect to the ZB

2 symmetry is the inverse
of bosonization [i.e., gauging (−1)F ] (3.2). Importantly, the
fermionization depends on a choice of a nonanomalous ZB

2
global symmetry.9 Generally, a bosonic theory might have
more than one nonanomalous Z2 symmetry, and its fermion-
ization might not be unique.

3. Torus partition functions

Let us apply the bosonization and fermionization proce-
dures to torus partition functions of CFTs. In a bosonic CFT
with a global symmetry ZB

2 , we define ZB[αxαt ] with αx, αt =
0, 1 as the torus partition functions with (α = 1) or without
(α = 0) the ZB

2 twists in the x and t directions. These torus
partition functions have the following trace interpretations:

ZB[00] = TrH
[

q
H+K

2 q̄
H−K

2
]
,

ZB[01] = TrH
[
η q

H+K
2 q̄

H−K
2

]
,

ZB[10] = TrH̃
[

q
H+K

2 q̄
H−K

2
]
,

ZB[11] = TrH̃
[
η q

H+K
2 q̄

H−K
2

]
, (3.3)

where H is the Hilbert space where all operators have the
periodic boundary condition, while H̃ is the Hilbert space
where the ZB

2 -even (ZB
2 -odd) operators have the periodic

(antiperiodic) boundary condition. Here η is the ZB
2 charge

operator. We will call H the untwisted sector and H̃ the
twisted sector with respect to ZB

2 . Via the operator-state cor-
respondence, states in H are in one-to-one correspondence
with the local operators, while states in H̃ are in one-to-one
correspondence with the nonlocal operators living at the end
of the ZB

2 line defect [54].
Alternatively, we can consider the Z2-even/-odd subsec-

tors HE/O of the untwisted sector H, and similarly the
ZB

2 -even/-odd subsectors H̃E/O of the twisted sector H̃. The
associated torus partition functions are

ZB[0E ] = 1
2 (ZB[00] + ZB[01]),

ZB[0O] = 1
2 (ZB[00] − ZB[01]),

ZB[1E ] = 1
2 (ZB[10] + ZB[11]),

ZB[1O] = 1
2 (ZB[10] − ZB[11]). (3.4)

Following the fermionization procedure (3.3), we can
relate the four bosonic torus partition functions ZB[0E ],
ZB[0O], ZB[1E ], and ZB[1O] to the four fermionic torus

8In the context of vertex operator algebra, the fermionization F is
called a nonlocal ZB

2 cover of B [75].
9The fermionization described above does not hold when the ZB

2

is anomalous, in which case the partition function Z[A] depends not
just on the cohomology class of the background field A, but also on
the choice of the representative.

partition functions ZF [AE ], ZF [AO], ZF [PE ], and ZF [PO]
[defined in (2.4) and (2.5)] for fermionization/bosonization:

ZF [AE ] = ZB[0E ], ZF [AO] = ZB[1O],

ZF [PE ] = ZB[0O], ZF [PO] = ZB[1E ]. (3.5)

As a special example, consider the case when F is the
massless Majorana fermion and B is the Ising CFT. The Vira-
soro primaries and their conformal weights (h, h̄) in the four
Hilbert spaces of the Majorana fermion CFT, or equivalently
via (3.5) the four sectors of the Ising CFT Hilbert space,
are

HE
A [Maj] = HE [Ising] 1 : (0, 0), ε :

(
1

2
,

1

2

)
,

HO
A [Maj] = H̃O[Ising] ψ :

(
1

2
, 0

)
, ψ̄ :

(
0,

1

2

)
,

HE
P [Maj] = HO[Ising] σ :

(
1

16
,

1

16

)
,

HO
P [Maj] = H̃E [Ising] μ :

(
1

16
,

1

16

)
. (3.6)

Here ψ, ψ̄ are the left- and the right-moving Majorana
fermions, ε = ψψ̄ is the energy operator, σ is the spin (or
order) operator, and μ is the disorder operator.

This bosonization/fermionization relation generalizes the
familiar relation between the Ising CFT and the Majorana
fermion to any bosonic CFT with a nonanomalous ZB

2 global
symmetry and any fermionic CFT. In going from F to B, we
gauge the (−1)F of F to obtain a bosonic theory B with ZB

2
symmetry via (3.2). Conversely, using (3.3), we gauge ZB

2
(with a nontrivial coupling to the IFTO) of B to retrieve the
fermionic theory F we start with.

B. Gauging with the invertible fermionic topological order

Starting with a fermionic theory F , consider another
fermionic theory F ′ defined as multiplying F by the IFTO
(2.2):

ZF ′ [S′ + ρ] = ZF [S′ + ρ] e i πArf[S′+ρ]. (3.7)

Here S′ is the background field for the (−1)F symmetry in
F ′. The partition functions for F and F ′ are identical on
Riemann surfaces with even spin structures, but differ by a
sign on manifolds with odd spin structures. Next we gauge the
(−1)F of F ′ to obtain a bosonic theory B′ following the recipe
(3.2):

ZB′[T ′] = 1

2g

∑
s′

ZF [s′ + ρ] exp

[
iπ

(
Arf[s′ + ρ]

+
∫

s′ ∪ T ′ + Arf[T ′ + ρ] + Arf[ρ]

)]
(3.8)

We can use (A1) to rewrite the partition function of B′ as

ZB′[T ′] = 1

2g

∑
s′

ZF [s′ + ρ] exp{iπArf[s′ + T ′ + ρ]}

(3.9)
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How is B′ related to B? Let us consider the ZB
2 orbifold of

B, which has a dual Z2 symmetry. Its partition function for
B′, with the background field T ′ for the dual Z2 symmetry, is

1
2g

∑
t ZB[t]e i π

∫
t∪T ′

, where t is the dynamical gauge field for
ZB

2 . It follows from (3.2) that we can write ZB′ in terms of the
fermionic theory ZF :

1

2g

∑
t

ZB[t]eiπ
∫

t∪T ′ = 1

2g

∑
t

1

2g

∑
s

ZF [s + ρ] exp

[
iπ

(∫
t ∪ T ′ +

∫
s ∪ t + Arf[t + ρ] + Arf[ρ]

)]
= 1

2g

∑
s′

ZF [s′ + ρ] exp{iπArf[s′ + T ′ + ρ]} (3.10)

where in the second line we have used (A1) and renamed s as
s′. Matching (3.9) with (3.10), we have shown that B′ is the
ZB

2 orbifold of B, i.e., B′ = B/ZB
2 .

1. (2+1)D Z2 topological order and the electromagnetic duality

The torus partition functions of B and B′ are related as
follows:

ZB
2 orbifold:

ZB[0E ] = ZB′[0E ], ZB[0O] = ZB′[1E ],

ZB[1E ] = ZB′ [0O], ZB[1O] = ZB′ [1O].

The ZB
2 -odd untwisted sector HO and the ZB

2 -even twisted
sector H̃E are exchanged under the ZB

2 orbifold. The ZB
2 orb-

ifold in (1 + 1) dimensions has a natural interpretation from
the (2 + 1)D Z2 gauge theory, which we explain below. In
Sec. II B, we realize the four-component fermionic partition
functions in terms of the four boundary partition functions
Z1,e,m, f of the (2 + 1)D Z2 topological order, as in (2.12). The
same four boundary partition functions Z1,e,m, f also give rise
to the four-component partition functions for a bosonic CFT
with ZB

2 symmetry [46,77]:

ZB[0E ] = Z1, ZB[0O] = Ze,

ZB[1E ] = Zm, ZB[1O] = Z f . (3.11)

The operators in each of the four sectors HE/O and H̃E/O

become the operators on the (1 + 1)D boundary that live at the
end of the corresponding anyon in the coupled system. From
the point of view of the (2 + 1)D Z2 topological order, the ZB

2
orbifold exchanges Ze and Zm, which is the electromagnetic
duality [43–45]. Therefore, the electromagnetic duality of the
(2 + 1)D Z2 topological order induces the Kramers-Wannier
duality of the boundary (1 + 1)D bosonic CFTs.

We summarize the above discussion in the commutative
diagram [7,39] shown in Fig. 3. Given any bosonic CFT B
with a nonanomalous ZB

2 symmetry, we obtain two fermionic
CFTs F and F ′ that differ by an IFTO. Conversely, given any
fermionic CFT F and its IFTO-stacked theory F ′, we obtain
two bosonic CFTs B and B′ related by a ZB

2 orbifold. Under
the IFTO stacking, the bosonization/fermionization, and the
ZB

2 orbifold, the Hilbert spaces are permuted as in (2.6), (3.5),
and (3.10), respectively. Both the fermionic CFT F and the
bosonic CFT B can be realized as the boundary of the (2 +
1)D untwisted Z2 gauge theory. For the fermionic boundary,
the electromagnetic duality in the bulk exchanging the electric
e and the magnetic m anyons induces the IFTO stacking, while

for the bosonic boundary it induces the ZB
2 orbifold (i.e., the

Kramers-Wannier duality).

IV. TRANSITION BETWEEN BOSONIC CFTs
AND THEIR Z2 ORBIFOLDS

In Sec. III, we see that the IFTO stacking of fermionic
CFTs is mapped to the ZB

2 orbifold of bosonic CFTs via
bosonization. Therefore, the topological transition introduced
in Sec. II B on the fermionic conformal manifold is equivalent
to a one-dimensional bosonic conformal manifold where the
CFTs are related by a ZB

2 orbifold point by point across the
transition point B0. In this section we discuss several such
bosonic examples, paving the way for their corresponding
fermionic models in Sec. V.

A. Kramers-Wannier duality defect

1. Kramers-Wannier duality

Let B′ → B0 → B be the bosonization [i.e., gauging
(−1)F ] of the topological transition F ′ → F0 → F , and let
ZB

2 be the emergent symmetry from gauging (−1)F . The
exactly marginal deformation that interpolates between F and
F ′ survives the bosonization, and gives an exactly marginal
deformation interpolating between B and B′. From Sec. III B
and (2.3), we learn that

B′ = B/ZB
2 . (4.1)

In particular, at the origin of the deformation, the bosonic CFT
B0 is self-dual under the ZB

2 orbifold:

B0 = B0/Z
B
2 . (4.2)

In the example when F0 is a single Majorana fermion, its
bosonization B0 is the Ising CFT. The self-duality (4.2) is then

FIG. 3. The commutative diagram of fermionic CFTs F and F ′

and their bosonizations B and B′.
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FIG. 4. The action of topological defect lines on local and nonlocal operators in the Ising CFT [49]. The ZB
2 defect line η acts on operators

with ±1 sign. The duality defect N exchanges the local order operator σ (z, z̄) with the nonlocal disorder operator μ(z, z̄), which lives at the
end of the ZB

2 defect line η.

nothing but the Kramers-Wannier duality [40,41]. More gen-
erally, (4.2) generalizes the familiar Kramers-Wannier duality
to any bosonic CFT that is self-dual under the ZB

2 orbifold.

2. Topological defect line

Our description of the bosonic model will rely on the
topological defect lines, which are one-dimensional extended
objects in space-time. We will give a brief review on this
subject, while the readers are referred to [53,54] for a more
complete introduction. Any global symmetry in (1+1) dimen-
sions is associated with a topological defect line that imple-
ments the symmetry action on local operators [7,8]. However,
not all topological defect lines are associated with a global
symmetry. Such a topological defect line is called noninvert-
ible, or nonsymmetric [54]. One feature of the noninvertible
topological defect line is that its action, when restricted to
the local operators, is not invertible, and therefore not grou-
plike. More precisely, as we bring a noninvertible topological
defect line past a local operator, we might create a nonlocal
operator.

The Kramers-Wannier duality (4.2) of the bosonic CFT B0

is implemented by such a noninvertible defect N , sometimes
also called the duality defect [49–51,53,54]. The duality defect
N , together with the ZB

2 defect η, form a fusion category
known as the Z2 Tambara-Yamagami (TY) category [78] with
the Ising fusion rules:

η2 = I, N 2 = 1 + η, Nη = ηN = N , (4.3)

where I is the trivial topological line.10

Let us discuss the duality defect in the Ising CFT [49]
in detail as an example. In the Ising sector, we will de-
note the energy operator as ε(z, z̄) with conformal weights

10Given the above fusion rules, there are two solutions to the pen-
tagon identities for the F moves. One of them is realized in the Ising
CFT, and the other is realized in the SU(2)2 WZW model. See [78]
for their respective F symbols.

(h, h̄) = ( 1
2 , 1

2 ), and the spin operator (also known as the order
operator) as σ (z, z̄) with conformal weights (h, h̄) = ( 1

16 , 1
16 ).

As we sweep the duality defect N past the energy operator
ε, the latter obtains a minus sign. On the other hand, as we
sweep the duality defect N past the spin order σ (z, z̄), a ZB

2
line η is created with the disorder operator μ(z, z̄) sitting at the
end point. Therefore the duality defect N exchanges the order
operator σ (z, z̄) (which is a local operator) with the disorder
operator μ(z, z̄) (which is a nonlocal operator attached to a
line). See Fig. 4.

3. Duality interface

Now consider the bosonic CFT B0 with a duality defect
N inserted along the time direction (see Fig. 5). Let O be an
exactly marginal deformation, and O′ be the local operator

FIG. 5. The duality defect N in the self-dual bosonic CFT B0

becomes a duality interface between B and B′ after renormalization
group flow. The duality defect N in B turns into the ZIFTO

2 symmetry
defect of F under fermionization.
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FIG. 6. Under bosonization/fermionization, the fermion parity
(−1)F is the dual symmetry of ZB

2 , while the IFTO stacking ZIFTO
2

symmetry of F0 is extended to a noninvertible duality defect N
in B0.

obtained by sweeping the duality defect N past O.11 We
now turn on the exactly marginal deformation O to the left
of N , and O′ to the right of N . The deformation drives the
systems on the two sides to two different CFTs, B and B′, and
the duality defect N becomes a topological duality interface
between the two CFTs. The duality interface implements the
duality B′ = B/ZB

2 , but it is not a topological defect line in
either B or B′.

Under fermionization, the duality defect N of the bosonic
CFT B0 becomes the ZIFTO

2 symmetry in the fermionic CFT
F0. See Fig. 6 and Sec. VI for more discussions. By turning
on the deformation O and O′, the ZIFTO

2 symmetry defect
becomes an interface separating two fermionic theories F and
F ′ that differ by an IFTO. See Fig. 5.

To summarize, the topological transition of fermionic
CFTs can be equivalently recast into the following bosonic
data (see Fig. 7): (1) a bosonic CFT B0 that is self-dual un-
der gauging a nonanomalous ZB

2 global symmetry, i.e., B0 =
B0/ZB

2 , where the self-duality is implemented by a duality
defect N , and (2) an exactly marginal deformation O.

B. Free compact boson S1

Our first example is the c = 1 free compact boson theory
(see, for example, [79] for a review). The conformal manifold

11Here we assume O′ �= O. If O′ = O, i.e., if the duality defect
N commutes with O, then B = B′ and F = F ′, and there is no
interesting topological transition to discuss.

FIG. 7. The topological transition on the fermionic conformal
manifold can be equivalently bosonized to a family of bosonic CFTs
that are related by the ZB

2 orbifold.

FIG. 8. The conformal manifold of the bosonic c = 1 CFTs. The
conformal manifold has an S1 branch labeled by RS1 � 1, and an
orbifold branch S1/Z2 labeled by RS1/Z2

� 1. The end point of the
S1 branch at RS1 = 1 is the SU(2)1 WZW model. The two branches
meet at the Kosterlitz-Thouless point, which is described by RS1 = 2
or equivalently by RS1/Z2

= 1. The bosonized Dirac fermion and
the Ising2 theories are the self-dual points of the ZB

2 symmetries
defined in (4.11) and (4.16), respectively. The SU(2)1/� orbifold
models for � = T, O, I are isolated points in the moduli space. T, O,
and I represent the tetrahedral, octahedral, and icosahedral groups,
respectively.

of c = 1 CFTs consists of two branches, the S1 branch and the
S1/Z2 branch, together with three isolated points. See Fig. 8.
In this section we start with the S1 branch, which has the de-
scription of the free compact boson X (z, z̄) = XL(z) + XR(z̄)
with identification X (z, z̄) ∼ X (z, z̄) + 2πR with R � 1. Our
convention for the radius R is such that T duality acts as12

S1[R] = S1

[
1

R

]
. (4.4)

The free boson field is normalized such that X (z, z̄)X (0, 0) ∼
− 1

2 log |z|2. On the S1 branch, the theory has the U(1) × U(1)
chiral algebra generated by the currents ∂X (z) and ∂̄X (z̄).
At a generic radius, there is one exactly marginal operator
generating the conformal manifold:

O = ∂X ∂̄X. (4.5)

1. Primary operators

The local primary operators with respect to the U(1) ×
U(1) chiral algebra are

Vn,w(z, z̄) = exp
[

i
( n

R
+ wR

)
XL(z) + i

( n

R
− wR

)
XR(z̄)

]
,

(4.6)

12Our convention for the radius is related to that in [79] as
RGinsparg′s = ROurs/

√
2.
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which are labeled by two integers, the momentum number n ∈
Z and the winding number w ∈ Z. The conformal weights of
Vn,w are

h = 1

4

( n

R
+ wR

)2
, h̄ = 1

4

( n

R
− wR

)2
. (4.7)

The torus partition function ZS1 (R) is therefore13

ZS1 (R) = 1

|η(q)|2
∑

n,w∈Z
q

1
4 ( n

R +wR)2
q̄

1
4 ( n

R −wR)2
. (4.8)

The global symmetry at a generic radius contains (U (1)n ×
U (1)w ) � Z2, where the Z2 acts as X → −X . The U(1)n and
U (1)w correspond to momentum and winding, which act by
phases e i nθ and e i wθ on the primary operator (4.6), respec-
tively. They act on XL(z) and XR(z̄) by shifts:

U (1)n : XL(z) → XL(z) + R

2
θn,

XR(z̄) → XR(z̄) + R

2
θn,

U (1)w : XL(z) → XL(z) + 1

2R
θw,

XR(z̄) → XR(z̄) − 1

2R
θw, (4.9)

with θn,w ∼ θn,w + 2π . Both U(1)n and U(1)w are nonanoma-
lous for all R. In particular, this implies that U(1)n is neither
holomorphic nor antiholomorphic at any radius R. The same
is true for U(1)w. When R2 is rational, a certain integral
combination of U(1)n and U(1)w becomes holomorphic or
antiholomorphic, and the CFT enjoys an enhanced chiral al-
gebra.

Let Z(1,0)
2 and Z(0,1)

2 be the Z2 subgroups of U(1)n and
U(1)w, which act on the primary operators by signs e i πn

and e i πw, respectively. There is no ’t Hooft anomaly for the
momentum Z(1,0)

2 , nor for the winding Z(0,1)
2 alone, but there

is a mixed anomaly between the momentum Z(1,0)
2 and the

winding Z(0,1)
2 .

2. Twisted sector ˜H
Let us discuss the nonlocal operators that live in the twisted

sector with respect to a Z2 global symmetry. The twisted
sector operators of Z(m1,m2 )

2 (mi = 0, 1) are given by the same
form as (4.6), but generally with fractional momentum ñ and
winding number w̃:

Vñ,w̃(z, z̄) : ñ ∈ m2

2
+ Z, w̃ ∈ m1

2
+ Z. (4.10)

In other words, the momentum Z(1,0)
2 twist makes the winding

number fractional due to the mixed anomaly, and vice versa.

3. ZB
2 orbifold of S1

We will choose the ZB
2 symmetry to be the momentum

Z(1,0)
2 :

ZB
2 : Vn,w → (−1)nVn,w. (4.11)

13Here, η(q) is the Dedekind eta function defined as η(q) =
q1/24

∏∞
i=1(1 − qi ).

The ZB
2 orbifold of the c = 1 compact boson theory at radius

R is another compact boson at radius R/2, which by T duality
is equivalent to the theory at radius 2

R :

S1[R]

ZB
2

= S1

[
2

R

]
. (4.12)

We compute the twisted torus partition functions of the S1[R]
theory and give the proof of this relation in Appendix B 1.

The fixed point of this orbifold, i.e., the Kramers-Wannier
self-dual point, is at R = √

2, which is described by the
bosonization of a Dirac fermion. This is our first example of a
family of bosonic CFTs related by the ZB

2 orbifold.
The Kramers-Wannier duality is implemented by the

(0+1)-dimensional [(0+1)D] duality defect line N satisfying
(4.11). As we bring a local operator Vn,w past through N , it is
mapped to (see Sec. V A for derivation)

Vn,w → V−2w,− n
2
. (4.13)

The right-hand side is only a local operator if n ∈ 2Z, i.e.,
when Vn,w is ZB

2 even. On the other hand, when Vn,w is ZB
2

odd, i.e., n ∈ 2Z + 1, it is mapped to a nonlocal operator liv-
ing at the end of the ZB

2 line η. This is indeed the characteristic
way how a duality defect acts on operators. For example, the
duality defect N in the Ising CFT maps the local ZB

2 -odd
order operator σ to the nonlocal disorder operator μ, while
it maps the local ZB

2 -even energy operator ε to itself with a
sign. See [80] for a thorough discussion on the topological
defect lines in c = 1 CFTs.

C. Bosonic S1/Z2 orbifold

The next example is the c = 1 theory S1/Z2[R] defined as
the Z2 orbifold of the c = 1 compact free boson theory at
radius R, where the Z2 acts as X → −X . The exactly marginal
operator is again (4.5).

The torus partition function of the c = 1 S1/Z2 orbifold
theory at radius R is14

ZS1/Z2
(R) = 1

2
ZS1 (R) +

∣∣∣∣ η(q)

θ2(q)

∣∣∣∣ +
∣∣∣∣ η(q)

θ4(q)

∣∣∣∣ +
∣∣∣∣ η(q)

θ3(q)

∣∣∣∣,
(4.14)

where the first two terms come from the untwisted sector and
the last two terms come from the twisted sectors of the S1

theory. The latter comes from the two twist fields σ1,2(z, z̄),
corresponding to the two fixed points of S1/Z2 and their
descendants. Both σ1,2 have h = h̄ = 1

16 .
At R = √

2, the S1/Z2 theory is equivalent to two copies
of the Ising CFT. At this point, the two twist fields σ1,2 are the
spin operators of the two Ising CFTs. The exactly marginal
operator O in (4.5) becomes

O(z, z̄) = ε1(z, z̄) ε2(z, z̄), (4.15)

where εi(z, z̄) is the energy operator of weight (h, h̄) = ( 1
2 , 1

2 )
of the ith Ising CFT.

14Here θ2(q) = 2q1/8
∏∞

i=1(1 − qi )(1 + qi )2, θ3(q) = ∏∞
i=1(1 −

qi )(1 + qi−1/2)2, θ4(q) = ∏∞
i=1(1 − qi )(1 − qi−1/2)2, and η(q) is the

Dedekind eta function as given in footnote 13.
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1. ZB
2 orbifold of S1/Z2

At a generic radius of the S1/Z2 theory with radius R � 1,
the theory has a ZB

2 symmetry [81]:15

ZB
2 : σ1 → −σ1, σ2 → σ2, Vn,w → (−1)n Vn,w. (4.16)

At the Ising2 point, ZB
2 is just the Z2 symmetry of one of the

Ising CFTs. The theory enjoys the Kramers-Wannier duality
for each copy of the Ising CFT:

S1/Z2[R = √
2]

ZB
2

= S1/Z2[R =
√

2]. (4.17)

The Kramers-Wannier duality is implemented by a duality
defect N , which flips the sign of ε1 and maps the order
operator σ1 to the disorder operator μ1.

The exactly marginal deformation O = ε1ε2 is odd for the
duality defect N . This implies that starting from the B0 ≡
Ising2 point the theory B deformed by +O and the theory B′
deformed by −O are related to each other by the ZB

2 orbifold.
The radii of the theories on two sides can be worked out to
be16

S1/Z2[R]

ZB
2

= S1/Z2

[
2

R

]
(R � 1). (4.18)

We show this equality explicitly at the level of the torus
partition function in Appendix B 2.

D. Bosonic T 2 CFT

The third example is the c = 2 CFT the target space of
which is a torus T 2. The conformal manifold is four dimen-
sional, and we will identify a particular locus along which the
family of CFTs are related to each other by the ZB

2 orbifold.
Our exposition follows [82] (see also [83] for the classification
of rational points on the conformal manifold of the T 2 CFT).

We will normalize the two scalar fields to have periodic-
ities X 1(z, z̄) ∼ X 1(z, z̄) + 2πR, X 2(z, z̄) ∼ X 2(z, z̄) + 2πR.

The metric and the B field of the T 2 CFT will be denoted
as Gi j and Bi j with i, j = 1, 2, parametrizing the conformal
manifold of the T 2 CFT. Since we only have two scalars, there
is only one B field, b ≡ B12. The B field modulus is periodic,
b ∼ b + 1.

The metric moduli include the Kähler modulus R and the
complex structure moduli τ. The latter are encoded in Gi j as

Gi j =
(

1 τ1

τ1 |τ|2
)

, (4.19)

15If we choose to describe the same theory in the T dual frame
with radius RT = 1/R � 1, then the ZB

2 symmetry acts on Vn,w in
the T dual frame by a phase (−1)w because T duality exchanges n
with w.

16Using T duality we can rewrite (4.18) as S1/Z2[R]
ZB

2
= S1/Z2[R/2].

However, the definition of ZB
2 in (4.16) is not T-duality invariant, so

S1/Z2[R]
ZB

2
�= S1/Z2[1/R]

ZB
2

.

where τ = τ1 + iτ2 and |τ|2 = τ2
1 + τ2

2.17 The complex struc-
ture moduli τ are subject to the PSL(2,Z) identification. Let
us summarize the exactly marginal deformations of the T 2

CFT:

R > 0, τ ∼ aτ + b

cτ + d
, b ∼ b + 1, (4.20)

where a, b, c, d ∈ Z and ad − bc = 1. There are also T-
duality identifications but we will not discuss them here.

1. Primary operators

The local primary operators Vn1,w1,n2,w2 (z, z̄) of the
U(1)2

L × U(1)2
R current algebra are labeled by four integers,

two momentum numbers n1 and n2 and two winding numbers
w1 and w2. Its conformal weights are given as follows. Let

vi ≡ ni

R
− Bi jw

jR. (4.21)

Next we define vi
L = vi + wiR, vi

R = vi − wiR, where the in-
dices are raised and lowered by Gi j and Gi j . The conformal
weights of Vn1,w1,n2,w2 are

h = 1
4 Gi jv

i
Lv

j
L, h̄ = 1

4 Gi jv
i
Rv

j
R. (4.22)

The Lorentz spin of the operator is s = h − h̄ = niw
i. The

primary operator Vn1,w1,n2,w2 can be written in terms of the left-
and right-moving compact bosons as

Vn1,w1,n2,w2 (z, z̄) = exp

[
2∑

i=1

ivi
LX i

L(z) + ivi
RX i

R(z̄)

]
. (4.23)

There are special points on the conformal manifold where
the CFT is described by the Wess-Zumino-Witten (WZW)
model:

(1) SU(2)1 × SU(2)1 = SO(4)1 : R = 1, (τ1, τ2) =
(0, 1), b = 0.

(2) SU(3)1 : R = 1, (τ1, τ2) = ( 1
2 ,−

√
3

2 ), b = 1/2.

(3) SU(2)1 × U(1)6 : R = 1, (τ1 = 0, τ2 = √
3), b = 0.

2. ZB
2 self-dual locus

We will be interested in a particular nonanomalous ZB
2

global symmetry that exists at any point on the confor-
mal manifold of the T 2 CFT. Its action on the local oper-
ator is

ZB
2 : Vn1,w1,n2,w2 → (−1)n1+w1+n2+w2

Vn1,w1,n2,w2 . (4.24)

At the special point of SU(2)1 × SU(2)1, this ZB
2 symme-

try is the diagonal subgroup of the center Z2’s of the two
left-moving SU(2)’s. We discuss the twisted torus partition
functions of the T 2 CFT with respect to ZB

2 in Appendix B 3.
Now consider two one-dimensional loci B and B′ on the

conformal manifold, joining at the SU(2)1 × SU(2)1 point

17To distinguish the target space torus from the space-time torus,
we use τ for the complex structure of the former, while we use τ for
the latter. For the space-time torus, we also use q = e2π i τ .
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(R = 1, τ1 = 0, τ2 = 1, b = 0):18

B[τ2] : R = 1, τ1 = 0, τ2 � 1, b = 0,

B′[b] : R = 1, τ1 = b, τ2 =
√

1 − b2, 1 > b � 0.

(4.25)

The two families of theories B and B′ are obtained from
SU(2)1 × SU(2)1 by the following two exactly marginal de-
formations O and O′, respectively:

O(z, z̄) = ∂X 2(z)∂̄X 2(z̄),

O′(z, z̄) = ∂X 2(z)∂̄X 1(z̄). (4.26)

Note that each O and O′ preserves a copy of the SU(2) ×
U(1) × SU(2) × U(1) current algebra, but they preserve
different subalgebras of SU(2) × SU(2) × SU(2) × SU(2).
More explicitly, the SU(2) × SU(2) currents along the B[τ2]
path are

B[τ2] : (h, h̄) = (1, 0) : J x
L ± i J y

L ∼ V(±1,±1,0,0),

J z
L ∼ i∂X 1(z),

(h, h̄) = (0, 1) : J x
R ± i J y

R ∼ V(±1,∓1,0,0),

J z
R ∼ i ∂̄X 1(z̄). (4.27)

On the other hand, those on the B′[b] path are

B′[b] : (h, h̄) = (1, 0) : J x
L ± i J y

L ∼ V(±1,±1,0,0),

J z
L ∼ i∂X 1(z),

(h, h̄) = (0, 1) : J x
R ± i J y

R ∼ V(0,0,±1,∓1),

J z
R ∼ i ∂̄X 2(z̄). (4.28)

Below we will show that

B′[b] = B[τ2]

ZB
2

, τ2 =
√

1 + b

1 − b
. (4.29)

The structure of this one-dimensional locus on the conformal
manifold is shown in Fig. 9. To show (4.29), we will write
down a one-to-one map between the operators V ′

n′
1,w

′1,n′
2,w

′2 of

B′[b] and the untwisted and the twisted sectors of the orbifold
theory B[τ2]/ZB

2 for all τ2 � 1. Let us start with the un-
twisted sector, which consists of ZB

2 even operators Vn1,w1,n2,w2

satisfying n1 + w1 + n2 + w2 ∈ 2Z. The untwisted sector op-
erators are mapped to V ′

n′
1,w

′1,n′
2,w

′2 of B′[b] as

n′
1 = 1

2 (n1 + w1 − n2 + w2),

w′1 = 1
2 (n1 + w1 + n2 − w2),

n′
2 = 1

2 (n1 − w1 − n2 − w2),

w′2 = 1
2 (−n1 + w1 − n2 − w2). (4.30)

Note that since the untwisted sector operators satisfy n1 +
w1 + n2 + w2 ∈ 2Z the resulting n′

i and w′i are integers. Fur-
thermore, n′

1 + w′1 + n′
2 + w′2 ∈ 2Z, so these operators are

even under the ZB
2

′
symmetry in B′[b].

18The theory B[τ2] with τ2 � 1 is identical to a theory with τ2 � 1
by T duality, and similarly for B′[b] with b < 0.

FIG. 9. A one-dimensional locus on the conformal manifold of
the T 2 CFT. The two families of CFTs B[τ2] and B′[b] are related by

gauging ZB
2 point by point with τ2 =

√
1+b
1−b .

The rest of the V ′
n′

1,w
′1,n′

2,w
′2 operators come from the ZB

2 -

even, twisted sector of B/ZB
2 , which consists of operators

Vñ1,w̃1,ñ2,w̃2 with ñi, w̃
i ∈ 1

2 + Z and ñ1w̃
1 + ñ2w̃

2 ∈ Z. The
latter two conditions imply that ñ1, w̃

1, ñ2, w̃
2 ∈ 2Z + 1. The

twisted sector operators are mapped to V ′
n′

1,w
′1,n′

2,w
′2 of B′[b] by

the same map (4.30) but with the tilde on the right-hand side.
These V ′

n′
1,w

′1,n′
2,w

′2 ’s have n′
1 + w′1 + n′

2 + w′2 ∈ 2Z + 1, so

they are odd under the ZB
2

′
symmetry in B′[b].

We have therefore shown that the spectrum of local op-
erators of B[τ2]/ZB

2 is isomorphic to B′[b] with the moduli

identified as τ2 =
√

1+b
1−b .

The duality between B and B′ is implemented by a (0+1)-
dimensional duality interface. At the SU(2)1 × SU(2)1 point,
this duality interface becomes a duality defect N . From
(4.26), we see that O and O′ are related by exchanging the X 1

R

with X 2
R (but leaving X 1,2

L as they were). Naively, one might
think this exchange action is a Z2 global symmetry of the full
(bosonic) theory. This is, however, not true, because we cannot
consistently extend such an exchange action to an invertible
map from local operators to local operators. For example,
this exchange action would have mapped the primary operator
Vn1,w1,n2,w2 to

Vn1+w1+n2−w2

2 ,
n1+w1−n2+w2

2 ,
n2+w2+n1−w1

2 ,
n2+w2−n1+w1

2

. (4.31)

Similar to the compact boson CFT, the right-hand side is
only a local operator if n1 + w1 + n2 + w2 ∈ 2Z, i.e., when
Vn1,w1,n2,w2 is ZB

2 even. On the other hand, when Vn1,w1,n2,w2

is ZB
2 odd, it is mapped to a nonlocal operator in the twisted

sector of ZB
2 . Therefore, we conclude that N acts on local

operators in a noninvertible way, which is a characteristic
feature of a duality defect.

V. FERMIONIC MODELS

In this section, we discuss the fermionic dual of the
Kramers-Wannier transitions on the bosonic conformal
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manifold. See [34,84] for discussions on the c = 1 fermionic
(spin) CFTs.

A. Dirac fermion

The simplest example of a topological transition on the
conformal manifold is to take F0 to be the c = 1 free massless
Dirac fermion, which is equivalent to two left-moving Majo-
rana fermions ψ i

L(z) and two right-moving Majorana fermions
ψ i

R(z̄), with i = 1, 2.19 Let �L,R ≡ ψ1
L,R + iψ2

L,R, �
†
L,R ≡

ψ1
L,R − iψ2

L,R. The theory has a left and a right U(1) × U(1)
current algebra generated by �L(z)�†

L (z) and �R(z̄)�†
R(z̄),

respectively. The Dirac fermion theory is the fermionization
of the c = 1 compact boson discussed in Sec. IV B at R = √

2
with respect to the ZB

2 = Z(1,0)
2 symmetry defined in (4.11).

There is one exactly marginal deformation, the Thirring
deformation:

O(z, z̄) = �L(z)�†
L (z)�R(z̄)�†

R(z̄). (5.1)

The relation between the Thirring coupling and the radius R
of the compact boson theory was derived in [86]. We will
therefore use R to denote exactly marginal coupling for (5.1)
and denote the deformed Dirac fermion theory as Dirac[R]. In
particular, Dirac[

√
2] is the free, massless Dirac fermion.

1. Topology of the Dirac branch

Let us comment on the global topology of the conformal
manifold for the Dirac fermion branch parametrized by R. We
start by noting that, due to the T duality S1[R] = S1[1/R], the
S1 branch of the compact boson theory is a half line, with the
end point located at R = 1, i.e., the SU(2)1 WZW model. On
the fermion side, Dirac[R] is the fermionization of S1[R] with
respect to ZB

2 = Z(1,0)
2 . Since the momentum ZB

2 = Z(1,0)
2 is

exchanged with the winding Z(0,1)
2 under the T duality, the

fermionization does not commute with the T duality of the
bosonic theories. Therefore Dirac[R] �= Dirac[1/R].20 Con-
sequently, the topology of the Dirac branch of the c = 1
fermionic CFT is R instead of a half line [34].21 See Fig. 10.

19As a fermionic theory, there is no distinction between a Dirac
fermion and two Majorana fermions. However, there are different
ways to sum over the spin structures when trying to obtain a bosonic
theory. In [85], the authors use “Dirac fermion” and “two Majo-
rana fermions” to refer to two different ways of summing over the
spin structures, corresponding to the R = √

2 compact boson theory
(discussed in Sec. IV B) and the R = √

2 orbifold theory S1/Z2

(discussed in Sec. IV C), respectively.
20Put differently, we can define another family of fermionic the-

ories, denoted as D̃irac[R], by fermionizing S1[R] with respect to
Z(0,1)

2 . Then D̃irac[R] = Dirac[1/R].
21One can alternatively regard the IFTO as a (1 + 1)D local

counterterm, and identify Dirac[R] with Dirac[2/R]. From this per-
spective the Dirac branch of the fermionic conformal manifold is
again a half line, but the origin is now located at the Dirac point
R = √

2 instead of the SU(2)1 point R = 1.

FIG. 10. The conformal manifold of the c = 1 compact boson
theory S1[R] (top) and that of the Dirac fermion perturbed by the
Thirring coupling Dirac[R] (bottom). The former is a half line, while
the latter is a full line.

2. ZIFTO
2 symmetry

The ZIFTO
2 symmetry is defined as

ZIFTO
2 : �L(z) → �

†
L (z), �†

L (z) → �L(z),

�R(z̄) → �R(z̄), �†
R(z̄) → �

†
R(z̄), (5.2)

which is the particle-hole transformation ZCL
2 on the left-

moving fermion operators. Given a fixed spin structure, if
we treat the Dirac fermion as two Majorana fermions, then
ZIFTO

2 is the chiral fermion parity (−1)FL for one copy of the
Majorana fermion. Note that the exactly marginal operator O
is ZIFTO

2 odd.
In Sec. IV B we showed that the bosonic theory S1[R] is

related to S1[2/R] by the ZB
2 orbifold. It follows from the

commutative diagram in Fig. 3 that

ZDirac[ρ, R] = ZIFTO[ρ]ZDirac[ρ, 2/R]. (5.3)

Hence as we move along the one-dimensional conformal man-
ifold generated by O from R <

√
2 to R >

√
2, the models on

the two sides F and F ′ of a free massless Dirac fermion differ
by an IFTO [34]. This is our first example of a topological
transition on the fermionic conformal manifold. Table I shows
the operator spectrum of c = 1 fermionic CFTs.

Let us describe the local operators of the fermionic model
in terms of Vn,w. In the antiperiodic (A) sector of the Dirac
fermion, the local operators come from (1) the ZB

2 -even local
operators plus (2) the ZB

2 -odd nonlocal operators from the ZB
2

twisted sector [see (3.6)]. The former are operators Vn,w with
n ∈ 2Z, w ∈ Z, while the latter are Vñ,w̃ with ñ ∈ 2Z + 1, w̃ ∈
1
2 + Z. We have used the fact that the twisted sector operator
Vñ,w̃ is ZB

2 even if the spin s = ñw̃ is an integer, while it is ZB
2

odd if s is a half integer [54,77,87]. We identify the fermion
operators as

�L(z) = V1, 1
2
, �

†
L (z) = V−1,− 1

2
, (h, h̄) =

(
1

2
, 0

)
,

�R(z̄) = V1,− 1
2
, �

†
R(z̄) = V−1, 1

2
, (h, h̄) =

(
0,

1

2

)
. (5.4)

It is then straightforward to see that ZIFTO
2 acts as

ZIFTO
2 : Vn,w(z, z̄) → V−2w,− n

2
(z, z̄). (5.5)
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TABLE I. Operators Vn,w in the c = 1 fermionic CFT Dirac[R]. This is analogous to (3.7) for the Ising CFT and the Majorana fermion.
Together with chiral fermion operator �L and by operator product expansion, they generate other sectors from HE

A , Oe : HE
A → HE

P , Om :
HE

A → HO
P , �L : HE

A → HO
A .

Bosonic sector Fermionic sector Range of n Range of w Example operators

HE HE
A 2Z Z V2,0 = �L�R, V0,−1 = �†

L�R

HO HE
P 2Z + 1 Z Oord = V1,0

H̃E HO
P 2Z 1

2 + Z Odis = V0,− 1
2

H̃O HO
A 2Z + 1 1

2 + Z �L, �
†
L, �R, �†

R

For example, ZIFTO
2 exchanges V1,1/2 = �L(z) with

V−1,−1/2 = �
†
L (z), but leaves V1,−1/2 = �R(z̄) with

V−1,1/2 = �
†
R(z̄) invariant. Note that ZIFTO

2 anticommutes
with the left-moving current algebra generator �L(z)�†

L (z)
but commutes with the right-moving one �R(z̄)�†

R(z̄).
What happens when we extend the ZIFTO

2 symmetry in the
fermionic theory to its bosonization? In the latter, the local
primary operators are labeled by integral n and w. Hence the
ZIFTO

2 symmetry in the fermionic theory does not extend to an
action that maps a local operator to another local operator. In
fact, it maps the ZB

2 -odd operators (i.e., those with odd n) to
a nonlocal operator in the ZB

2 -twisted sector. This is indeed
how the noninvertible duality defect N acts as discussed in
Sec. IV B. We have therefore demonstrated how a symmetry
action in a fermionic theory is extended to a noninvertible
defect under bosonization (see Sec. VI).

3. Order and disorder operators

From the bosonic S1[R] point of view, it is natural to iden-
tify the lightest ZB

2 -odd local operator V1,0 in HO as the order
operator, and the lightest ZB

2 -even nonlocal operator V0,−1/2

in H̃E as the disorder operator:

Order: Oord = V1,0, 	ord = 1

2R2
.

Disorder: Odis = V0,− 1
2
, 	dis = R2

8
. (5.6)

That the order and disorder fields are mutually nonlocal in
the field theory with U(1) symmetry has been studied for a
long time [88–91] in one dimension, and more recently in
higher dimensions [92,93]. Here we identify the order field
as through the study of (nonanomalous) Z2 global symmetry.
It does not require U(1) symmetries. Note that both Oord

and Odis are scalar operators, i.e., s = h − h̄ = 0. From the
fermionic CFT Dirac[R] point of view, both Oord and Odis

are in the P sector, with opposite (−1)F quantum numbers.
At the Dirac point R = √

2, ZIFTO
2 is a global symmetry that

exchanges the order with the disorder operators:

ZIFTO
2 : Oord �→ Odis. (5.7)

Indeed, the ZIFTO
2 becomes the Kramers-Wannier duality de-

fect under bosonization.
In the topological transition from Dirac[R <

√
2] to

Dirac[R >
√

2], both the order and the disorder operators have

power-law two-point functions at all radii:

〈Oord(z, z̄)Oord(0)〉 = 1

|z|2	ord
,

〈Odis(z, z̄)Odis(0)〉 = 1

|z|2	dis
. (5.8)

The exponents of the power-law fall-off obey

	ord > 	dis, R <
√

2,

	ord < 	dis, R >
√

2. (5.9)

When R <
√

2, the two-point function of the order operator
Oord approaches zero asymptotically faster than that of the
disorder operator, and vice versa for R >

√
2. This is to be

contrasted with the standard second-order phase transition,
where in one phase the order two-point function falls off ex-
ponentially while the disorder two-point function approaches
a constant at large distance, and vice versa in the other phase.
See Fig. 2.

4. Ultraviolet realization on the lattice

The complex fermion CFT arises as the infrared (IR) de-
scription of the Luttinger liquid [94–97], a (1 + 1)D spinless
electron system appearing in condensed matters. In the Lut-
tinger liquid at a generic filling, the UV symmetry is GUV =
U(1)C × U(1)trn, where U(1)C is the total charge conserva-
tion and U(1)trn is the translation symmetry. The operator
Vn,w(z, z̄) has charge qC = n, qtrn = −2wkF , where kF is the
Fermi momentum. This is determined from the fact that �L(z)
carries qC = 1, qtrn = −kF , and �R(z̄) carries qC = 1, qtrn =
kF . In particular, the fermion bilinear �L(z)�R(z̄) has charge
qC = 2 and �

†
L (z)�R(z̄) has charge qtrn = 2kF . There is no

symmetric relevant operator in the A sector satisfying 	 <

2, qC = qtrn = 0. The Thirring deformation O in (5.1) is the
symmetric perturbation with the lowest weight. Tuning its
coupling from negative to positive through the free Dirac
fermion drives a topological phase transition differing by an
IFTO.

In the lower-energy theory of the Luttinger liquid, V2,0 =
�L�R carries qC = 2, qtrn = 0, representing the supercon-
ducting (SC) order operator, while V0,−1 = �

†
L�R carries

qC = 0, qtrn = 2kF , representing the charge density wave
(CDW) order operator. At the Dirac point R = √

2, the ZIFTO
2

acts as

ZIFTO
2 : V2,0 = �L�R �→ V0,−1 = �

†
L�R. (5.10)
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This is the well-known duality between the SC order and the
CDW order in the Luttinger liquid. The duality exchanges
the Luttinger parameter K ↔ 1/K , which maps the K < 1
attractive interacting region to the K > 1 repulsive interacting
region. (As we reviewed in Appendix C, the Luttinger param-
eter K is related to the compact boson radius R as R = √

2K .)
Meanwhile, the ZIFTO

2 exchanges the order and the disorder
operators as in (5.7). We have therefore demonstrated that
the attractive/repulsive duality in the bosonized Luttinger liq-
uid is parallel to the Kramers-Wannier duality in the Ising
CFT.

B. Majorana × Ising

Next we consider a fermionic c = 1 CFT that is the direct
product of a single Majorana fermion ψL(z), ψR(z̄) and the
bosonic Ising CFT, i.e., F0 = Maj × Ising.

The ZIFTO
2 symmetry is taken to be the left-moving fermion

parity (−1)FL that flips the sign of ψL(z) but not that of
ψR(z̄):

ZIFTO
2 = (−1)FL : ψL(z) → −ψL(z), ψR(z̄) → ψR(z̄).

(5.11)

The theory F0 has one exactly marginal operator

O(z, z̄) = ψL(z)ψR(z̄)ε(z, z̄), (5.12)

which is odd under ZIFTO
2 . We immediately learn that

ZMaj×Ising[ρ, R] = ZIFTO[ρ]ZMaj×Ising[ρ, 2/R], (5.13)

where we have used the radius R of S1/Z2 to represent the
coupling of O. Again, we have shown in Sec. IV C that
the corresponding bosonic theories B and B′ are related by
the ZB

2 orbifold.
There is no continuous internal global symmetry in F0. The

discrete symmetry is D8 [81], whose action on the twist fields
is generated by σ1 → −σ1, σ2 → σ2, and σ1 ↔ σ2. There is,
however, a D8-invariant relevant deformation, ε1 + ε2.

C. Four Majorana fermions

Let us take F0 to be a free theory of four Majorana
fermions, which is the fermionization of the c = 2 model in
Sec. IV D. We will denote the four left-moving (right-moving)
Weyl fermions as �L,± 1

2
, �

†
L,± 1

2

(�R,± 1
2
, �

†
R,± 1

2

). (The mean-

ing of the subscripts ± 1
2 will be explained momentarily

from the lattice realization.) These fermion operators can be
written in terms of the exponential operators Vn1,w1,n2,w2 in
(4.23) as

�L,± 1
2

= V± 1
2 ,± 1

2 , 1
2 , 1

2
= e i (±X 1

L +X 2
L ),

�
†
L,± 1

2

= V± 1
2 ,± 1

2 ,− 1
2 ,− 1

2
= e i (∓X 1

L −X 2
L ),

�R,± 1
2

= V± 1
2 ,∓ 1

2 , 1
2 ,− 1

2
= e i (±X 1

R +X 2
R ),

�
†
R,± 1

2

= V∓ 1
2 ,± 1

2 ,− 1
2 , 1

2
= e i (∓X 1

R −X 2
R ). (5.14)

The theory F0 has a SO(4) × SO(4) = SU(2) × SU(2) ×
SU(2) × SU(2) current algebra at level 1. The ZIFTO

2 is given

by the duality defect action (4.31) in the bosonic model, which
exchanges the currents SU(2)1 with SU(2)2. It acts on the
fermion by

ZIFTO
2 : �R,− 1

2
↔ �

†
R,− 1

2

, (5.15)

leaving the other fermions � invariant.
The theory F0 has two exactly marginal operators

O(z, z̄) ∼ (
�L, 1

2
�

†
L,− 1

2

+ �L,− 1
2
�

†
L, 1

2

)
× (

�R, 1
2
�

†
R, 1

2

+ �R,− 1
2
�

†
R,− 1

2

)
,

O′(z, z̄) ∼ (
�L, 1

2
�

†
L,− 1

2

+ �L,− 1
2
�

†
L, 1

2

)
× (

�R, 1
2
�

†
R, 1

2

− �R,− 1
2
�

†
R,− 1

2

)
, (5.16)

that are mapped to each other under ZIFTO
2 . Note that O and O′

are not proportional to each other as in the previous examples,
but different operators. O and O′ drive the transitions from
F0 to F and F ′, respectively. Following the discussions in
Secs. II B and IV D, we conclude that there is a topological
transition F ′[b] → F0 → F[τ2]. In particular, the bosonic
relation (4.29) is translated into

ZF ′ [ρ, b] = ZIFTO[ρ]ZF [ρ, τ2], τ2 =
√

1 + b

1 − b
. (5.17)

That is, the two families of theories F and F ′ differ by an
IFTO point by point.

1. Ultraviolet realization on the lattice

The fermionic CFT can arise as the infrared description
of a lattice theory in the ultraviolet. Let us suppose the
UV symmetry on the lattice is GUV ≡ U(1)C × U(1)trn ×
SU(2), where U(1)C is the total charge conservation, SU(2)
is the spin rotation symmetry in a spin- 1

2 fermion lattice
model, and U(1)trn is the translation symmetry for fermions
at incommensurate filling. The UV symmetry is embedded
in the emergent IR symmetries for the theory F and F ′
in two different ways. The symmetry generators, actions,
and U(1)C, U(1)trn, SU(2)L, and SU(2)R quantum numbers
for Vn1,w1,n2,w2 are as follows:

For F[τ2],

JC = i(∂X 2 + ∂̄X 2),

U(1)C : Vn1,w1,n2,w2 → e i 2n2γCVn1,w1,n2,w2 ,

Jtrn = i (∂X 2 − ∂̄X 2),

U(1)trn : Vn1,w1,n2,w2 → ei2w2γtrnVn1,w1,n2,w2 . (5.18)

qC = 2n2, qtrn = 2w2,

jz
L = 1

2 (n1 + w1), jz
R = 1

2 (n1 − w1). (5.19)
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For F ′[b],

JC = i (∂X 2 + ∂̄X 1),

U(1)C : Vn1,w1,n2,w2 → e i (n1−w1+n2+w2 )γCVn1,w1,n2,w2 ,

Jtrn = i (∂X 2 − ∂̄X 1),

U(1)trn : Vn1,w1,n2,w2

→ e i (−n1+w1+n2+w2 )γtrnVn1,w1,n2,w2 .

(5.20)

qC = n1 − w1 + n2 + w2, qtrn = −n1 + w1 + n2 + w2,

jz
L = 1

2 (n1 + w1), jz
R = 1

2 (n2 − w2). (5.21)

2. Absence of symmetry-preserving relevant operators

To ensure the perturbative stability of the fermionic the-
ories, we need to exclude GUV-invariant relevant operators
in the antiperiodic (A) sector. Recall that the theories F
and F ′ share the same A sector, i.e., ZF [AA] = ZF ′ [AA] and
ZF [AP] = ZF ′ [AP]. From (3.6) and Sec. IV D, we learn that
the A-sector primary operators of F are of the form Vn1,w1,n2,w2

satisfying

(i) ni,w
i ∈ Z, n1 + w1 + n2 + w2 ∈ 2Z,

(ii) ni,w
i ∈ 1

2 + Z, n1w
1 + n2w

2 ∈ 1 + 2Z. (5.22)

The GUV-invariant operators further satisfy qC = 0, qtrn =
0, jz

L + jz
R = 0, which implies

F : n1 = n2 = w2 = 0,

F ′ : n1 = w1 = −n2 = w2. (5.23)

The lightest (i.e., the smallest scaling dimension) scalar oper-
ators satisfying the above constraints are

F : V0,2,0,0, (h, h̄) = (1, 1),

F ′ : V1,1,−1,1, (h, h̄) = (1, 1), (5.24)

which are marginal but not relevant. Therefore, we conclude
that in either F or F ′ there is no relevant operator neutral
under the microscopic symmetry GUV. Both theories describe
(1 + 1)D symmetry protected gapless phases.

3. Topological transition and symmetry embedding

A given embedding of the UV symmetry GUV into the IR
emergent symmetry is consistent with either the fermionic
CFT F or F ′, but not both. Hence a fermionic lattice model
can realize either F or F ′, but not the topological transition
from F to F ′. However, if there is no symmetry constraint,
both theories can describe the multicritical theories of the
same lattice model. In this case, by tuning the exactly marginal
perturbations O and O′ along the path described by Fig. 11,
one can realize the topological transition from the lattice
model.

VI. DUALITY DEFECT AND THE CHIRAL
FERMION PARITY

The duality defect N arises from the ZIFTO
2 line in F0

before gauging (−1)F . Due to the mixed anomaly between
ZIFTO

2 and (−1)F , the former becomes a noninvertible topo-
logical defect N in the gauged theory B0 [36,38]. This is a

FIG. 11. A one-dimensional locus on the conformal manifold of
four Majorana fermions. The two families of CFTs F [τ2] and F ′[b]
differ by an invertible fermionic topological order.

generalization to the symmetry extension in gauging a bosonic
global symmetry in (1+1) dimensions with mixed anomaly,
which we will briefly discuss below.22

We start with an example of the usual symmetry extension
from the mixed anomaly. Consider the c = 1 compact boson
CFT and let Z(1,0)

2 and Z(0,1)
2 be the π rotations of the momen-

tum and winding symmetries, respectively. While Z(1,0)
2 and

Z(0,1)
2 by themselves are free of anomalies, there is a mixed

anomaly between the two. Now suppose we gauge Z(1,0)
2 ,

then we throw away operators with odd momentum number
n ∈ 2Z + 1, but introduce operators with half-integral wind-
ing numbers w ∈ 1

2 + Z from the twisted sector. It follows
that the winding Z(0,1)

2 acts by a factor of ± i on these new
twisted sector states, and hence it is extended to Z4 in the
gauged theory.

In the case of gauging the (−1)F of F0, we might intro-
duce twisted sector states that might not have a well-defined
ZIFTO

2 action. In the example of a single massless Majorana
fermion, the ZIFTO

2 symmetry is the chiral fermion parity
(−1)FL . In the corresponding bosonic theory, i.e., the Ising
CFT, the would-be ZIFTO

2 acts by a sign on the energy oper-
ator ε(z, z̄) = ψL(z)ψR(z̄). However, this is incompatible with
the fusion rule of the primary operators, σ × σ = 1 + ε. The
obstruction is precisely that there is no invertible action of the
would-be ZIFTO

2 on the spin operator σ , which comes from the
twisted sector when gauging F0. Hence there is no extension
of ZIFTO

2 in F0 to any bigger group that can be consistent with
the above fusion rule. Instead, the ZIFTO

2 of F0 is extended
to a noninvertible defect N of B0, satisfying non-group-like
fusion rules (4.3) (see Fig. 6). One can show that the duality
defect N is compatible with the fusion rule of local operators
σ × σ = 1 + ε [49,54].

22We thank Kantaro Ohmori and Yuji Tachikawa for discussions on
this point.
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More generally, consider N Majorana fermions. Let (−1)FL

be the chiral fermion parity that flips the signs of all the left-
moving fermions. The (1 + 1)D fermionic ’t Hooft anomaly
of (−1)FL is N mod 8 [56,63–67]. The bosonization is the
bosonic spin(N )1 WZW model, in which the chiral fermion
parity (−1)FL has become the following [77,98].23

(1) N = 1, 7 mod 8: a duality line N obeying the Z2

Tambara-Yamagami category TY+ [78].
(2) N = 3, 5 mod 8: a duality line N obeying the other Z2

Tamabara-Yamagami category TY−.
(3) N = 0 mod 8: a Z2 line that is nonanomalous.
(4) N = 4 mod 8: a Z2 line that is anomalous, correspond-

ing to the nontrivial element of H3(Z2, U(1)) = Z2.
(5) N = 2, 6 mod 8: a Z4 line. The Z4 is anomalous, cor-

responding to the square of the generator of H3(Z4, U(1)) =
Z4.

Both TY± share the same fusion rules (4.3), but different
F symbols. TY+ is realized by the Ising CFT, while TY− is
realized by the SU(2)2 = spin(3)1 WZW model.

Note that in our discussion of the three fermionic models in
Sec. V our choice of the ZIFTO

2 [see (5.2), (5.11), and (5.15)]
always flips the sign of a single Majorana-Weyl fermion.
Hence our ZIFTO

2 has ’t Hooft anomaly 1 mod 8 and turns into
a duality defect TY+ as in the N = 1 mod 8 case above.

VII. OUTLOOK

A natural configuration for the topological transition is
a (1 + 1)D system with a (0+1)D interface separating a
fermionic CFT F with F ′ = F ⊗ IFTO as in Fig. 5. Since
the two fermionic CFTs F and F ′ differ by an IFTO, one
may wonder if the domain wall between F and F ′ contains a
Majorana zero mode or not. This question can be approached
by density-matrix renormalization-group theory [100], ten-
sor networks [101], multi-scale entanglement renormalization
ansatz (MERA) [102], or the conformal interface [80].

We can also study a (1 + 1)D gas of spinless fermions on
an open chain with attractive or repulsive interactions. We
know that a single IFTO on an open chain has a twofold
topological degeneracy, which comes from two Majorana zero
modes from the two ends of the chain. Here the topological
degeneracy has an energy splitting of order e−L/ξ , where L
is the length of the chain and ξ is a length scale. Since the
fermion system with attractive interaction and that with re-
pulsive interaction differ by an IFTO, one may wonder if one
of the above two systems might have topological degeneracy
(i.e., the Majorana zero modes) localized at the chain ends.
More generally, an energy splitting of order O( 1

Lα ) with α > 1
as L → ∞ is a splitting less than that of the many-body energy
levels, which is of order 1/L, and can indeed be viewed as
a topological degeneracy even for gapless CFT. The above
question can be addressed via bosonization which maps an

23The fusion category of the spin(N )1 WZW model can also be read
off from the modular tensor category for the spin(N )1 Chern-Simons
theory (which is a nonspin topological quantum field theory (TQFT))
by forgetting the braiding. The latter can be found, for example, in
Tables 1–3 of [99]. Note that the periodicity of N for the former is 8,
while that for the latter is 16.

TABLE II. The low energy spectrum of the 1d spinless interact-
ing fermion (7.1).

V L n = 0 1 2 3

−1 20 0.0 0.439154 0.439154 1.3235
−1 10 0.0 0.444899 0.444899 1.35815
0 20 0.0 0.999068 0.999068 1.99814
0 10 0.0 0.996605 0.996605 1.99321
1 20 0.0 1.65908 1.65908 2.44906
1 10 0.0 1.61755 1.61755 2.35127

interacting fermion gas on a 1D chain to a free compact boson
system on a 1D chain, at low energies. The free compact
boson system can be solved exactly, and we find that the
degeneracy of the ground state is always independent of the
interaction. More specifically, the Hilbert space of a compact
boson with the Neumann boundary condition on an open
chain corresponds to that of a Dirac fermion with the same
left and right boundary condition ψ i

L = +ψ i
R (i = 1, 2) on an

open chain.24 The spectrum does not have a nearly degenerate
ground state with splitting of order O( 1

Lα ) with α > 1 as L →
∞, regardless of whether the fermion interaction is repulsive
or attractive. We confirm this with the exact computation of
the low-energy spectrum of the following spinless interacting
fermions on a 1D chain of size L:

H =
L−1∑
i=1

(−c†
i ci+1 + H.c.) + V

(
c†

i ci − 1

2

)(
c†

i+1ci+1 − 1

2

)
.

(7.1)

After shifting the ground-state energy to zero, we find the
spectrum En/( π

L+1 ) as in Table II. We see that, indeed, re-
gardless of whether the fermion interaction is repulsive or
attractive, the ground state is always unique, and the energy
to reach the first excited state is always of order O( 1

L ).
The topological transition in the c = 2 fermionic CFT in-

volves two different interactions O and O′. The transition is
forbidden if we impose the UV symmetry U(1)c × U(1)trn ×
SU(2). This exotic phenomenon may appear in the doped
spin- 1

2 fermionic models [26].
In this paper, we explored an interesting phenomenon that

a ZIFTO
2 symmetry of a (1 + 1)D system is generated by stack-

ing a (1 + 1)D invertible topological order. Such a symmetry
turns out to be anomalous as discussed in Sec. VI.

This phenomenon can be quite general. For bosonic
systems, we have invertible topological orders in (2 +
1) dimensions classified by Z, and invertible topological or-
ders in (4+1) dimensions classified by Z2. For fermionic sys-
tems, we have invertible topological orders in (0+1) and (1 +

24More generally, there are two natural boundary conditions for a
single Majorana fermion: ψL = ηψR, η = ±1. On an open chain, we
will choose the same boundary condition on the left end as that of
the right end. Therefore, a Dirac fermion composed of two flavors of
Majorana fermions can have four choices of the boundary conditions.
Here, we choose η = +1 for both Majorana fermions and for both
boundaries, which corresponds to the Neumann boundary condition
after bosonization.
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1) dimensions classified by Z2, and invertible topological or-
ders in (2 + 1) dimensions classified by Z. Therefore, we may
have (0+1)D fermionic systems with a Z2 symmetry gener-
ated by adding a fermion. Such a symmetry is analogous to
supersymmetry. In fact, such a (0+1)D fermionic system does
exist, which can be formed by two Majorana zero modes at the
two ends of the p-wave superconducting chain. Similarly, we
may have (1 + 1)D fermionic systems with a Z2 symmetry
generated by adding a (1 + 1)D IFTO, which is what we
studied in this paper. We may also have (4+1)-dimensional
bosonic systems with a Z2 symmetry generated by adding a
(4+1)-dimensional invertible bosonic topological order.
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APPENDIX A: IDENTITIES FOR THE ARF INVARIANTS

Here we record some important identities for the Arf in-
variant and Z2 connections (see, for example, [34]):

Arf[s + t + ρ]

= Arf[s + ρ] + Arf[t + ρ] + Arf[ρ] +
∫

s ∪ t,

1

2g

∑
s

e i π(Arf[s+ρ]+Arf[ρ]+∫
s∪t ) = e i πArf[t+ρ], (A1)

and

1

2g

∑
s

e i π
∫

s∪t =
{

2g, if t = 0,

0, otherwise. (A2)

APPENDIX B: TWISTED TORUS PARTITION FUNCTIONS

1. Compact boson

In this Appendix we compute the torus partition function
of the S1 CFT with nontrivial ZB

2 = Z(1,0)
2 twist [defined in

(4.11)], and prove (4.12). We will use 0 (1) to denote the trivial
(nontrivial) ZB

2 twist in either the space or time direction. In
particular, the torus partition function ZS1 (R) (4.8) with trivial
ZB

2 background will be denoted as ZS1 [00].
The torus partition function of S1 with a ZB

2 twist in the
time direction is

ZS1 [01] = 1

|η(q)|2
∑

n,w∈Z
(−1)nq

1
4 ( n

R +wR)2
q̄

1
4 ( n

R −wR)2
. (B1)

Next, we compute the torus partition function ZS1 [10] for the
twisted sector of ZB

2 , corresponding to a nontrivial twist along
the spatial direction. From the discussion in Sec. IV B, we see
that the twisted sectors of ZB

2 = Z(1,0)
2 are operators Vñ,w̃ with

half-integral winding number w. Hence

ZS1 [10] = 1

|η(q)|2
∑

ñ∈Z,w̃∈ 1
2 +Z

q
1
4 ( ñ

R +w̃R)2
q̄

1
4 ( ñ

R −w̃R)2
. (B2)

Finally, the torus partition function with nontrivial ZB
2 twists

in both cycles is the modular T transform τ → τ + 1 of
ZS1 [10]:

ZS1 [11] = 1

|η(q)|2
∑

ñ∈Z,w̃∈ 1
2 +Z

(−1)ñq
1
4 ( ñ

R +w̃R)2
q̄

1
4 ( ñ

R −w̃R)2
.

(B3)

Adding the above four twisted torus partition functions ZS1 ’s
together and dividing by 2, we obtain the torus partition func-
tion of the S1[R]/ZB

2 theory:

ZS1/ZB
2

(R)

= 1
2 {ZS1 [00](R) + ZS1 [01](R) + ZS1 [10](R) + ZS1 [11](R)}

= ZS1 (R/2). (B4)

Finally, by T duality, ZS1 (R/2) = ZS1 (2/R). Hence, we have
shown (4.12) at the level of the torus partition function.

2. S1/Z2

In this Appendix we compute the twisted torus partition
functions of S1/Z2[R] and show (4.18). The torus partition
function of S1/Z2 with a nontrivial ZB

2 twist in the time
direction is

ZS1/Z2
[01] = 1

|η(q)|2
∑

n,w∈Z
(−1)nq

1
4 ( n

R +wR)2
q̄

1
4 ( n

R −wR)2

+
∣∣∣∣ η(q)

θ2(q)

∣∣∣∣. (B5)

Note that the twisted sector of σ1 contributes oppositely com-
pared to that of σ2, so their contributions cancel each other.
The other two can be immediately obtained from the modular
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S : τ → −1/τ and T : τ → τ + 1 transformations:

ZS1/Z2
[10] = 1

|η(q)|2
∑

n∈Z,w∈ 1
2 +Z

q
1
4 ( n

R +wR)2
q̄

1
4 ( n

R −wR)2

+
∣∣∣∣ η(q)

θ4(q)

∣∣∣∣,
ZS1/Z2

[11] = 1

|η(q)|2
∑

n∈Z,w∈ 1
2 +Z

(−1)nq
1
4 ( n

R +wR)2
q̄

1
4 ( n

R −wR)2

+
∣∣∣∣ η(q)

θ3(q)

∣∣∣∣.
(B6)

Adding the four ZS1/Z2
’s together and dividing by 2, we obtain

the partition function for S1/Z2

ZB
2

:

Z S1/Z2
ZB

2

(R)

= 1

2

1

|η(q)|2

⎛⎝ ∑
n∈2Z,w∈Z

+
∑

n∈2Z,w∈ 1
2 +Z

⎞⎠q
1
4 ( n

R +wR)2
q̄

1
4 ( n

R −wR)2

+
∣∣∣∣ η(q)

θ2(q)

∣∣∣∣ +
∣∣∣∣ η(q)

θ4(q)

∣∣∣∣ +
∣∣∣∣ η(q)

θ3(q)

∣∣∣∣. (B7)

Finally, we note that⎛⎝ ∑
n∈2Z,w∈Z

+
∑

n∈2Z,w∈ 1
2 +Z

⎞⎠q
1
4 ( n

R +wR)2
q̄

1
4 ( n

R −wR)2

=
∑

n,w∈Z
q

1
4 ( n

R′ +wR′ )2
q̄

1
4 ( n

R′ −wR′ )2
(B8)

with R′ = 2
R . Comparing the above with (4.14), we have

shown (4.18).

3. T 2 CFT

The torus partition function of the T 2 CFT at a generic
point on the conformal manifold is given by

ZB[00] = TrH
[
qL0− c

24 q̄L̄0− c
24

] = 1

|η(q)|4
∑

ni,wi∈Z
qh− 1

12 q̄h̄− 1
12

(B9)

where h and h̄ are given as in (4.22).
The torus partition function with a ZB

2 twist along the time
direction is

ZB[01] = TrH
[
η qL0− c

24 q̄L̄0− c
24

]
= 1

|η(q)|4
∑

ni,wi∈Z
(−1)n1+w1+n2+w2

qh− 1
12 q̄h̄− 1

12 .

Next, we consider the torus partition function with a ZB
2

twist in the spatial direction, which counts nonlocal operators
living in the twisted sector H̃. These nonlocal operators are
of the form (4.23) but with fractional momentum and winding
numbers ñi and w̃i:

Vñ1,w̃1,ñ2,w̃2 : ñi, w̃
i ∈ 1

2 + Z. (B10)

Note that the spin s = ñiw̃
i of such an operator is either an

integer or a half integer, consistent with the spin selection
rule for a nonanomalous ZB

2 [54,77,87]. The ZB
2 charge of

Vñ1,w̃1,ñ2,w̃2 is given by (−1)2s. The partition function with a
ZB

2 twist in the time direction is therefore

ZB[10] = TrH̃
[
qL0− c

24 q̄L̄0− c
24

]
= 1

|η(q)|4
∑

ñi,w̃i∈ 1
2 +Z

qh− 1
12 q̄h̄− 1

12 .

Finally, the torus partition function with ZB
2 twists both in the

spatial and in the time direction is

ZB[11] = TrH̃
[
η qL0− c

24 q̄L̄0− c
24

]
= 1

|η(q)|4
∑

ñi,w̃i∈ 1
2 +Z

(−1)2ñiw̃
i
qh− 1

12 q̄h̄− 1
12 .

At the special point of SU(2)1 × SU(2)1, the torus partition
functions are

ZB[00] = (∣∣χSU21
0

∣∣2 + ∣∣χSU21
1
2

∣∣2)2
,

ZB[01] = (∣∣χSU21
0

∣∣2 − ∣∣χSU21
1
2

∣∣2)2
,

ZB[10] = (
χ

SU21
0 χ̄

SU21
1
2

+ χ
SU21
1
2

χ̄
SU21
0

)2
,

ZB[11] = −(
χ

SU21
0 χ̄

SU21
1
2

− χ
SU21
1
2

χ̄
SU21
0

)2
, (B11)

where χ
SU21
j (q) is the SU(2)1 current algebra characters

with SU(2) spin j. At level 1, there are only two allowed
spins, j = 0 and 1/2, the conformal weights h of which
are 0 and 1/4, respectively. Their characters are χ

SU21
0 (q) =

θ3(q2 )
η(q) and χ

SU21
1
2

(q) = θ2(q2 )
η(q) . The torus partition functions of

the fermionized theory, i.e., four Majorana fermions, with
respect to the four spin structures are

ZF [AA] =
[(

χ
SU21
0

)2 + (
χ

SU21
1
2

)2
][(

χ̄
SU21
0

)2 + (
χ̄

SU21
1
2

)2
]
,

ZF [AP] =
[(

χ
SU21
0

)2 − (
χ

SU21
1
2

)2
][(

χ̄
SU21
0

)2 − (
χ̄

SU21
1
2

)2
]
,

ZF [PA] = 4 χ
SU21
0 χ

SU21
1
2

χ̄
SU21
0 χ̄

SU21
1
2

,

ZF [PP] = 0. (B12)

APPENDIX C: THE TOMONAGA-LUTTINGER
LIQUID THEORY

In this Appendix we distinguish two different duality maps
in the Tomonago-Luttinger (TL) model [96,103,104]. The TL
liquid is described by the following action, in the imaginary
time with coordinate (x1, x2) = (x,− i t ):

STL = vF

2π

∫
d2x

[
1

K
(∂1φ)2 + K (∂1θ )2

]
− i

π

∫
d2x∂1θ∂2φ. (C1)
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The canonical commutation relation is[
∂1φ(x),

1

π
∂2θ (x′)

]
= iδ(x − x′), (C2)

which is independent of K . It follows that when K = 1 the
theory is equivalent to the bosonized theory of the free Dirac
fermion.

From this action, one can integrate out θ to obtain an action
for the φ field:

STL[φ] = 1

2πKvF

∫
d2x

[
(∂2φ)2 + v2

F (∂1φ)2
]

(C3)

where

φ(x1 + 2π, x2) = φ(x1) + 2πRφQφ, Q ∈ Z (C4)

with Rφ = √
2K , normalized such that the free Dirac theory

with K = 1 has Rφ = √
2. This is nothing but the action of

free boson CFT S1[R] with compactification radius R = Rφ .
The Luttinger liquid theory of the interacting spinless fermion
is, more precisely, the fermionized theory Dirac[R].

Alternatively, one can integrate out φ to obtain an action
for the θ field:

STL[θ ] = K

2πvF

∫
d2x[(∂2θ )2 + v2

F (∂1θ )2] (C5)

where

θ (x1 + 2π, x2) = θ (x1) + 2πRθQθ , Qθ ∈ Z (C6)

with Rθ =
√

2
K . The normalization is to be consistent with

(C2). The field φ and dual field θ can be equivalently repre-
sented by chiral fields φ(z, z̄) = XL(z) + XR(z̄) and θ (z, z̄) =
XL(z) − XR(z̄).

There are two distinct maps along the moduli space of c =
1 CFT parametrized by the radius R = Rφ . For T-duality,

R → 1

R
, XL → XL, XR → −XR, (C7)

under which the bosonic operator Vn,w(R) → Vw,n( 1
R ).

Namely, the T-duality exchanges the momentum n and the
winding w numbers of local operators Vn,w in the bosonic
CFT. In terms of the fields in the Luttinger model, the T-
duality maps φ → θ, Rφ → 1

Rφ
�= Rθ . Under T-duality, the

free Dirac point with Rφ = √
2 is not the self-dual point.

Instead, the SU(2)1 CFT with R = 1 is the self-dual point.
For IFTO stacking,

R → 2

R
, XL → XL, XR → −XR, (C8)

under which the fermionic operator Vn,w(R) → V−w,− n
2
( 2

R ).
The corresponding map in the Luttinger model is K →
1
K , φ → θ, Rφ → Rθ . Under this map, the Dirac theory is the
self-dual point [34].
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