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Superconductivity in a disordered metal with Coulomb interactions
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We study electronic densities of states (DOS) of strongly disordered superconducting thin films of TiN. We
find through scanning tunneling microscopy (STM) measurements that the DOS decreases towards the Fermi
level in the normal phase obtained by applying magnetic fields. The DOS shows spatial fluctuations whose length
scale is related to the energy-dependent decrease in the DOS close to the Fermi level and is similar in normal and
superconducting phases. This shows that Coulomb interaction in disordered metals strongly influences the nor-
mal DOS and suggests that reduced Coulomb screening leads to spatial variations in the superconducting DOS.
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I. INTRODUCTION

Superconductor-insulator transition (SIT) is an exemplary
quantum phase transition occurring in disordered supercon-
ducting films [1–3]. The SIT manifests a dramatic change in
the ground state of the system from superconducting (zero
resistance) to insulator (infinite resistance) often occurring in
a small parameter range. The resulting phase diagram bears
similarities to cuprates and interface superconductors, which
also show zero temperature phase transitions between insulat-
ing and superconducting phases [4–9]. In those systems, the
tuning parameter is chemical or electrical doping [7,10,11].
Disorder remains very difficult to identify and study as it
is probably intertwined with modifications of an anisotropic
electronic band structure. In the SIT, the transition occurs
purely as a function of the degree of disorder, and in the metal-
lic side disorder has washed out all anisotropies [1,12]. The
disorder is characterized through the temperature dependence
of the normal state resistivity, which increases with decreasing
temperature in the insulating phase.

Studies of the SIT show some similar aspects as for in-
stance studies in the cuprates, such as a pseudogap above
the superconducting critical temperature Tc [13–17]. Disorder
modifies the ratio between Coulomb and superconducting
coupling energies [18]. Suppressed Coulomb screening results
in the depletion of the normal state density of states (DOS)
near the Fermi level, which is often termed the zero bias
anomaly (ZBA) [19,20]. In disordered Be films, the DOS
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evolves upon cooling from a Coulomb-like gap [21] to a well
opened, semiconducting like gap which is often termed a hard
gap [22]. This points out that there can be a self-induced
electronic granular structure [23,24] comprising supercon-
ducting droplets hosting a superconducting gap [18,25,26].
In presence of strong disorder, the superconducting gap does
not show coherence peaks, suggesting that Cooper pairs
are localized [27]. These experiments mostly address the
properties of systems with very strong disorder. However, it
has been suggested that the role of disorder might crucially
modify the temperature dependence of the DOS in a metallic
system showing an incipient decrease of Coulomb screening.
Bartosch and Kopietz showed that, as a consequence of re-
duced Coulomb screening, a disordered metal loses the Fermi
liquid regime at sufficiently low temperatures. Instead of the
energy and temperature independent DOS of a usual metal,
the disordered metal presents at very low temperature a DOS
vanishing at the Fermi level with N (E ) ∝ |E | that is washed
out into an energy independent DOS when increasing temper-
ature [28,29]. This suggests that the onset of the reduction in
Coulomb screening occurs relatively far from the transition
and leads to identifiable zero bias anomalies in disordered
metals. Here we make a comparative study of the low energy
normal and superconducting DOS in disordered metallic TiN.
We find that the DOS in the normal phase has a strong V-shape
anomaly which follows closely analytical expressions pro-
vided in Refs. [28,29]. We also show that the spatially fluctuat-
ing DOS of the normal state leads to spatial fluctuations in the
superconducting state, suggesting that the energy and spatial
DOS dependencies are interlinked in presence of disorder.

II. METHODS

We study a 5-nm-thick TiN film deposited on a Si/SiO2

substrate at T = 350 ◦C by atomic layer deposition, whose

2643-1564/2020/2(3)/033307(14) 033307-1 Published by the American Physical Society

https://orcid.org/0000-0003-4148-0752
https://orcid.org/0000-0001-5976-162X
https://orcid.org/0000-0002-8779-1698
https://orcid.org/0000-0002-5902-1880
https://orcid.org/0000-0002-9677-1293
https://orcid.org/0000-0002-0977-3515
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.033307&domain=pdf&date_stamp=2020-08-25
https://doi.org/10.1103/PhysRevResearch.2.033307
https://creativecommons.org/licenses/by/4.0/


SVETLANA V. POSTOLOVA et al. PHYSICAL REVIEW RESEARCH 2, 033307 (2020)

transport properties were chosen to be as close as possible
to film TiN2 and TiN3 in Ref. [25]. A detailed analysis of
the morphology of the film using x-ray, transmittion electron
microscopy (TEM), and atomic scale scanning tunneling mi-
croscopy (STM) is provided in Appendix A. The film consists
of a network of strongly interconnected single crystal like
structures oriented randomly on the substrate and separated
by only small angle grain boundaries. The crystal lattice
parameters are the same as bulk TiN. The STM results were
carried out using a home made dilution refrigerator with a
voltage resolution of about 15 μV [30–32]. The junction
resistance was always well above a M�, much larger than the
film’s sheet resistance. We comment on details about STM
measurements in high resistance samples in Appendix D and
note that we normalize the results at a fixed bias voltage and
that its value does not influence the obtained bias voltage
dependence. We also note that generally we do not maintain
the same field of view when modifying the magnetic field. We
term our sample D15. We also provide in Appendix B results
on the same sample, but with an additional heat treatment (2
minutes heating to 200 ◦C on air). The heat treatment lead
to more insulating behavior. In D15, we performed atomic
scale STM and spectroscopic studies at a magnetic field of
4 T and at zero field. We studied a grid similar to the one
in Ref. [25]. After the STM measurements we performed
transport experiments obtaining the results expected from
Ref. [33]. For the heated sample, discussed in Appendix B,
we were not able to scan or obtain atomic resolution, probably
due to surface degradation from heat treatment. However, we
could obtain tunneling conductance curves at a few locations
and the results are consistent with the transport experiments.
In the following, we focus mainly on results in D15.

III. RESULTS

Figure 1 shows the temperature evolution of tunneling con-
ductance G(V, T ) together with the temperature dependence
of resistance R(T ) [solid line in Fig. 1(b)] under magnetic
fields in the normal phase. Here, Tc = 1.1 K and Hc2 = 2.6 T
(see Appendix B, Fig. 5). The tunneling conductance G(V )
[Fig. 1(a)] shows a very strong suppression near zero bias
which evolves when decreasing temperature. The suppression
goes in parallel to the increase of the resistance R when
decreasing temperature. The noticeable suppression of G(V )
near EF persist up to 10 K, as well as the negative slope
in R(T ).

In Fig. 2 (a), we show the tunneling conductance G(V ) for
different temperatures. Note that there is a strong decrease
of the tunneling conductance towards zero bias. To analyze
this behavior in more detail we remind that the sample can be
considered as a 2D metal in this temperature range [20,33].
There is indeed a crossover from 3D to 2D behavior when the
diffusion length, 2π h̄D/E , approaches the film thickness [20].
Taking the film thickness d and diffusion coefficient D (see
Table I in Appendix B), we obtain E � 5 meV, which is the
voltage range we work with. We use the model of Bartosch
and Kopietz (BK) [28,29] which, as we will show, provides
an accurate description of our data. The model treats a low-
dimensional metal with long-range Coulomb interactions in

0 1 2 3 4 5 6 7 8 9 100

2

4

6
(b)

B=7T

B=0T

R
(κ
Ω

)

T (K)

-4

-2

0

2

4(a) B = 7 T

V
(m

V)

G(V)
normalized

0.4

0.6
0.8

1.0

0.3

FIG. 1. (a) The tunneling conductance vs. voltage normalized to
its value at 5 mV is shown as a color scale (scale bar on the right)
and is plotted as a function of temperature at a magnetic field of
7 T. (b) Sheet resistance vs temperature in the same sample at the
same magnetic field (orange line). The result at zero magnetic field
is shown by the black dashed line. Vertical dashed line provides Tc

at zero magnetic field. The magnetic field is applied perpendicular to
the film, well above the critical field. Inset in (b) shows the resistance
vs 1/T in a log scale. All resistance vs temperature measurements
are provided in Appendix B, the sample is named D15. Well above
Hc2 (of about 2 T at zero temperature), i.e., above about 4 T, the
resistance vs temperature and the tunneling conductance shows a
weak magnetic field dependence.

the limit of small eV . The BK model was used for various
1D systems, in which a dip around zero bias was observed
in the tunneling conductance [34–36]. The model starts de-
scribing a usual metal and takes into account the absence of
Coulomb screening when correlations are enhanced by disor-
der. The model provides the DOS as a function of temperature,
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FIG. 2. In (a), we show the tunneling conductance G(V ) as grey
filled symbols for sample D15 (a) normalized to about 3 mV for
different temperatures, marked in the figure and a magnetic field of
7 T (magnetic field dependence is shown in Appendix F, Fig. 12).
Dashed lines provide the fits of the tunneling conductance discussed
in the text. Lines show the corresponding DOS, N (eV ), obtained
after eliminating the temperature induced smearing in G(V ). In (b),
we show the derivative of the DOS N ′

N = dN (E )/dE
N (E ) as a function of

temperature.
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TABLE I. The sample D15e was made from a sample identical
to D15 by heating. R� is the resistance of the film per square at
room temperature; Bc2(0) is the upper critical field at T = 0; and
D is diffusion coefficient (D = ( π

2γ
)( kBTc

eBc2(0)
), with γ = 1.781 being

Euler’s constant).

R� Bc2(0) Tc D
Sample k� T K cm2/s

D15 2.94 2.65 1.12 0.32
D15e 3.87 2 0.66 0.25

showing a dip which develops when decreasing temperature.
The energy scale for the dip is related to the scattering
parameters, particularly τ0, the defect scattering time and an
additional time related to electron-electron interactions, τ1.
We can write, following Refs. [28,29], that the tunneling
conductance is given by

G(V, T ) ∝ coth

(
V

2T

)
2T

∫ ∞

τ0

dt
sin(V t )

sinh(πtT )

× exp

[
− r0

4
ln

(
t

τ1

)
ln

(
t

τ0

)]
, (1)

where we have taken into account temperature induced smear-
ing of the Fermi function in the DOS. r0 is a dimensionless
measure for system’s resistance [29] and τ1 = 4τ0/(κl )4,
where κ is the Thomas-Fermi screening wave vector. For
a good metal, the Thomas-Fermi screening length is short
compared with the mean free path (κl � 1) so that τ1 � τ0

and we find flat G(V ) and an energy independent DOS [29].
In our case, τ1 and τ0 are of the same order, leading to the
observed ZBA [29].

In Fig. 2(a), we show as dashed lines the temperature evo-
lution of G(V ) together with curves calculated with Eq. (1).
Notice the similarity to the actual DOS, shown by the lines
in Fig. 2(a), indicating that temperature smearing is weak as
compared to the effect of Coulomb correlations. We use just
two parameters, r0 and τ0 (taking τ1 = τ0), which already
provides an excellent fit. We find τ0 = 7.3 ± 0.3 × 10−15 s.
With this, we find R = 3 ± 0.05 k� [from r0 = R/(h/e2)],
which is very close to sample’s sheet resistance at room
temperature R� = 2.94 k�. Furthermore, this value also de-
scribes the suppression of the superconducting critical tem-
perature Tc, following an expression originally proposed by
Finkel’stein [37,38] (see also Appendix B). The suppression
of Tc is due to scattering and electron density fluctuations pro-
duced by the reduction of Coulomb screening. As we will see
below, the length scale associated to spatial DOS fluctuations
we measure here is related to τ0. BK model exemplarily shows
how the Fermi liquid regime is lost by Coulomb interactions in
low dimensionality. In essence, the Coulomb gap N (E ) ∝ |E |
appears in the DOS in a system with finite conductance at a
finite temperature at energies sufficiently close to the Fermi
level [28].

Notice that we are in the peculiar situation where the
normal state DOS N (E ) varies in the same energy scale as
the superconducting gap. The shift in the chemical potential
occuring in BCS theory below Tc (μ0 − �2

μ0
where μ0 is the

chemical potential of the normal phase) is then modified

by a factor N ′
N (EF ), giving μ0 − c N ′

N (EF )�2 (with c being
a constant) [39]. EF is taken in this simple approach to be
the Fermi level. In Fig. 2(b), we show N ′

N (E ) for different
temperatures. We see that N ′

N (E ) is a nonmonotonic function
with a well developed maximum that rapidly increases with
cooling. The energy where the maximum occurs is decreasing
with temperature. For temperatures below Tc, the maximum
is very close to the Fermi level. We can take the point
where N ′

N (E ≈ EF ) is not zero as determining the shift in
the chemical potential. This provides in our case a value that
is considerably larger than the one found for noninteracting
electrons. Furthermore, it increases most when crossing Tc

towards lower temperatures. We should note that the value
of the gap in the DOS below Tc (or the position of the
quasiparticle peaks) is also considerably larger than the BCS
superconducting gap value ≈1.76 kBTc [25]. This suggests
that there could be a link between the increased shift in the
chemical potential due to the shape of the normal DOS and
the gap in the DOS in the superconducting phase. On the
other hand, at temperatures well above Tc, the maximum in
N ′
N (E ) is shallow and separated from the Fermi level. Thus,
the reduction of Coulomb screening and the decrease in the
Fermi level DOS prevents the formation of Cooper pairs,
explaining the decrease in Tc when increasing disorder. The
same tendency is obtained for sample D15e, as shown in
Appendix B.

The normal phase DOS, according to BK, might also
show small spatial fluctuations, if the scattering is spatially
dependent, which implies a spatially dependent r0 [28,29].
We indeed find fluctuations in the normal phase tunneling
conductance which connect to the zero field DOS fluctuations.

In Figs. 3(a)–3(d), we show the spatially fluctuating tun-
neling conductance acquired in the normal and superconduct-
ing phases. The fluctuations in the tunneling conductance
amount to small variations of a few percent as a function
of the position. To obtain a length scale associated to these
fluctuations we calculate the autocorrelation function of the
tunneling conductance images. The autocorrelation function
ACF(	r) provides the statistical correlation between any two
points in an image separated by a vector 	r (see Refs. [11,40]
and Appendix C). As there are no symmetric patterns in our
images, we plot the radially averaged ACF(r) in Figs. 3(e)
and 3(f). We observe that ACF(r) decreases exponentially
with r. When we average over all bias voltages, we find
ACF(r) ∝ e− d

r with d ≈ 20 nm [Fig. 3(g)]. Thus we identify a
length scale d ≈ 20 nm, which is shared by normal and super-
conducting phases. Taking a value of vF = 2 × 106m/s con-
sistent with bandstructure calculations for bulk TiN [41] and
the above value of τ0 = 7.3 ± 0.3 × 10−15 s, we find that d ≈
vF τ0. Thus the depression of the DOS induced by Coulomb
interactions also leads to spatial fluctuations in the DOS.

The detailed spatial distribution of the conductance suffers
however changes when entering the superconducting phase.
The absolute value of ACF(r) is slightly larger at 4 T than
at 0 T, indicating that the variations of the conductance are
stronger in the normal phase. To characterize the spatial distri-
bution of these variations, we have calculated the distribution
function of multifractal exponents F (α).

In a usual metallic system, the amplitude of the wave
function scales as the inverse of the size of the system
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FIG. 3. In (a) and (b), we show the tunneling conductance normalized to its value at 1 mV as a function of the position along a line (black
arrow) at zero field (a) and with a magnetic field of 4 T (b). Data are taken at 0.3 K. The color scale provides the normalized conductance
following the scale bar in the right of each panel. In (c) and (d), we show tunneling conductance maps over an area of 400 nm at zero magnetic
field (c) and with a magnetic field of 4 T (d). The field of view is different, due to a modification of the position when applying the magnetic
field. We show maps at the bias voltages 0, 0.15, and 0.3 mV, from left to right. The normalized conductance is shown by the bars in the
right side of each figure. The arrows provide the scan over which we trace the tunneling conductance in (a) and (b). Note that we make one
tunneling conductance curve approximately each 5 nm. In (e) and (f), we show the ACF(r) at zero field and at 4 T. The amplitude of the ACF
is given by the color bar on the right of each figure and has been normalized to show directly the spatial variations in the conductance. In (g),
we show ACF(r) averaged for all bias voltages at zero magnetic field (green squares) and at 4 T (red circles). In (h), we show the position of
the maximum of the distribution function of multifractal exponents F (α) as a function of the bias voltage. We mark by a black vertical dashed
line the position of the quasiparticle peaks and by a blue dashed line the position of the maximum in F (α).

Ld where L is the lateral size and d the dimension, e.g.,
in 2D as ∝L−2. In a fully localized electronic system,
wavefunctions decay however exponentially. It was shown
that at the Anderson transition wavefunctions have a diver-
gent localization length following power laws that are scale
independent [42,43]. Such a situation can be characterized by
calculating the areas where the wavefunctions decay as ∝L−α

and obtaining from it F (α) (see also Appendix E). When the
DOS shows just random changes, F (α) is only defined around
α = 2. The function F (α) is very useful to identify situations
when the DOS (which is proportional to the square of the
electronic wavefunction) forms areas that have either a small
or a large DOS, instead of totally random distributions. When
the spatial variations show some structure and deviate from
random behavior, F (α) broadens and becomes an inverted
parabola whose maximum value is no longer located at α =
2. Often, the deviations from 2 are in the 0.1% range and
have been associated to critical behavior at the localization
transition [42–45], multifractal superconductivity in 2D layers
of transition metal dichalcogenides [46–49] and to fractal
superconductivity close to the SIT [50,51].

We observe a deviation from 2 in a similar, but smaller
range in the normal phase under magnetic fields [Fig. 3(h)].
We are far from the SIT in the metallic site and the correlations
we observe are of very small magnitude. Inside the super-
conducting phase we can however identify spatial structure.
This occurs particularly for bias voltages of about half the

quasiparticle peak position or at the same value of the BCS
superconducting gap [Fig. 3(h)] and suggests that there is an
emergent granularity inside the superconducting phase. We
can speculate that the tendency continues when approaching
and crossing the SIT, probably with a shift in the maximum
granularity towards the gap edge [50,51].

IV. DISCUSSION

Recently, authors of Ref. [52] analyzed the DOS for ener-
gies above the superconducting gap and found a connection
between the Coulomb-like variation of the normal DOS and
the size of the superconducting gap in thin NbN films. Since
the upper critical field was too high, the low energy DOS
could not be established. Nevertheless, they found a neat
anticorrelation between the power law of the ZBA and the
size of the superconducting gap, which is not related to the
topography of the sample. As we state above, we do not
correlate images at different magnetic fields, because we take
the images at different fields of view. Here we focus instead
on the size of the relevant length scales. In Ref. [52], they
showed that the Coulomb interactions modify the value of the
superconducting gap and are responsible for the granularity in
the superconducting phase. Here we find instead that there are
random variations of the ZBA which show a tendency to form
spatial structures in the superconducting phase [Fig. 3(h)].
Other important measurements in NbN showed the presence
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of a pseudogap at high magnetic fields, with a nearly magnetic
field independent temperature onset when cooling [17]. The
magnetic field induced a gradual suppression of superconduc-
tivity which became more granular with field, suggesting the
presence at high magnetic fields of fluctuating Cooper pair
islands connected among each other and leading to a pseu-
dogap feature in the DOS [16,17]. We observe a similar
DOS at high magnetic fields, although the structure is es-
tablished at zero field. Furthermore, we identify a connec-
tion between energy- and spatial-dependent DOS, which is
well accounted for by taking exclusively into account the
reduction of Coulomb screening. Finally, the magnetic field
dependence, as shown in Appendix F, is very weak. Thus,
while we cannot completely rule out temperature induced su-
perconducting fluctuations, we can explain all of our findings
using Coulomb screening.

V. CONCLUSIONS

To sum up, we connect the energy dependence of the
suppression of DOS near Fermi energy in a two-dimensional
metal with long-range Coulomb interactions [28,29]. Our
results show how the Fermi liquid regime is lost in presence
of disorder due to Coulomb correlations and that this leads
to a fluctuating DOS with a length scale shared by normal
and superconducting phases. Future work might address the
detailed temperature and field dependence. More detailed
measurements at higher magnetic fields might provide further
information fluctuations and their role. Furthermore, it is
of interest to study the vortex lattice in such a disordered
superconductor.

It is also interesting to ask about the possible consequence
of our findings to crystalline systems with doping or inter-
face superconductors, in particular those where a pseudogap
is observed, as for instance cuprates. Quite generally, our
results suggest that a reduction of Coulomb screening can
be accounted for within analytical expressions [28,29] and
that it is accompanied by spatial fluctuations. It would be
good to examine deviations from a Fermi liquid picture in
the light of our measurements. For instance, the formation of
spatial structures such as stripes or fluctuating charge order
in crystalline systems [8,9]. The role of disorder induced
by dopants, particularly in materials with a small electronic
density, might also influence Coulomb interactions in systems
that mostly show metallic properties.
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APPENDIX A: STRUCTURAL CHARACTERIZATION OF
TIN THIN FILMS

We made a characterization of the morphology of the film
studied in the main text (D15) by combining x-ray, TEM and
STM results.

If there is crystalline order at some length scale, x-ray
scattering leads to rings located at Bragg peaks of the lattice
constant. Indeed, x-ray scattering of our thin films leads to
ring like patterns, which are superposed to the fourfold crys-
talline Bragg peaks of the Si substrate [Figs. 4(a) and 4(b)].
We can index all peaks with the planes corresponding to
the bulk crystal structure [Fig. 4(a)]. This shows that growth
favors the nucleation of the bulk crystalline structure.

When analyzing the films with TEM, we observe a distri-
bution of many small angle boundaries between small crystals
of slightly differing orientations [Fig. 4(c)]. The correspond-
ing Fourier transform [Fig. 4(d)] shows again the Bragg peaks
of the substrate and those of the crystalline structure of TiN.
Because the field of view is limited, we observe many Bragg
peaks, all located at the same distance, instead of the ring that
is observed for the whole film in x-ray scattering. Notice the
small difference between orientations of crystals. Analyzing
the TEM image, we can obtain the distribution of the distance
between boundaries. As we show in the inset of [Fig. 4(c)],
we find a broad distribution, starting at about 2 nm and ending
at about 7 nm. The average distance between small angle
boundaries is of 5 nm.

In a STM experiment, we can zoom into a small single
crystal, as shown in Fig. 4(e). We can observe the atomic
lattice. The square lattice is somewhat distorted due to dis-
order or tip related effects during scanning, but in the Fourier
transform, Fig. 4(f), we identify again peaks at the interatomic
distances.

Thus, in all, we have a highly disordered system. Scatter-
ing centers are unlikely coinciding always with small angle
boundaries, so that the relevant length scale can be much
larger, as we actually show from our experiments and discuss
in the main text.

APPENDIX B: TRANSPORT IN THE SAMPLE OF THE
MAIN TEXT AND IN ANOTHER,
MORE INSULATING, SAMPLE

It is useful to show and discuss the whole temperature
and magnetic field dependence of the resistance. In Fig. 5,
we show the result for the sample discussed in the main text.
Notice that the upper critical field is of approximately 2.6 T
and that the variation of the resistance with the magnetic
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FIG. 4. In a we show the intensity vs reciprocal distance obtained in x-ray scattering of a thin film of TiN. We index each peaks with their
corresponding lattice planes. The space group is given in the legend. The structure is depicted in the upper right part of the figure. In (b), we
show the actual x-ray scattering experiment. The blue line provides the scan made to obtain (a). The green circles show the single crystalline
Si substrate. We mark with a red dashed line circle the reciprocal size of the lattice constant a, as defined in the upper right inset of (a). In (c),
we show a transmission electron microscopy (TEM) image of the TiN film. We observe that the film consists of a TiN crystals separated by
small angle grain boundaries. We measured the distance between boundaries and show the result as a histogram in the inset. In (d), we show
the Fourier transform of (c). We remark the peaks corresponding to the Si substrate by green circles. The spots coming from the crystallites
are distributed on a circle. We mark the reciprocal lattice constant a by red circles. In (e), we show a STM image of a single grain of the TiN
film. We observe the atomic lattice. The corresponding Fourier transform is shown in (f). We highlight the reciprocal distance a again with red
circles and a line.
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FIG. 5. In (a), we show the temperature and magnetic field dependence of the sheet resistance of the TiN film discussed in the main text. In
(b), we show the same data with the resistance plotted in a color scale. The bar providing the scale for the resistance is given in the right of (b).
In (c), we show the resistance vs temperature for different magnetic fields. The color corresponds to the value of the magnetic field, following
the bar on the upper right. In the inset, we show the conductance as a function of temperature (normalized to the quantum of conductance G00),
in a logarithmic scale.

field strongly flattens out for fields above the critical field.
The resistance [inset of Fig. 5(c)] shows an increase with
decreasing temperature in the normal phase above 4 T.

In Fig. 6, we show the results other film mentioned in the
text, D15e, which was obtained from the same film after an
additional heat treatment. We observe that the critical temper-

(a)

(b)

(c)

FIG. 6. In (a), we show the sheet resistance vs temperature and magnetic field of a thin film with a larger normal phase resistance than the
one discussed in the main text. In (b), we show the corresponding colormap, with the resistance given as a color. The scale follows the bar on
the right. In (c), we show the resistance as a function of temperature for different magnetic fields, with the magnetic field given by the bar on
the bottom right. The top right inset is the normalized conductance G/G00 vs. temperature at zero magnetic field and at B = 7 T.
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FIG. 7. In (a), we show the temperature evolution of the tunnel-
ing conductance G(V ) for a sample which is more resistive than the
one discussed in the main text. The sample is termed D15e. We show
the data as black circles. The fits to the tunneling conductance G(V )
are given as dashed lines. The DOS according to Bartosh-Kopietz
is given by the lines. In (b), we show the derivative of the DOS for
different temperatures.

ature and the upper critical field are considerably smaller. At
the same time, the resistance shows a stronger increase with
decreasing temperature in the normal phase under magnetic
fields.

In the sample D15e, we took several tunneling conductance
curves. We show the result in Fig. 7. We only show data in
the normal phase obtained by applying a magnetic field of
7 T. The superconducting gap opens as a tiny feature in the
center of the curve and we could not analyze this in detail.
We see that in this sample the tunneling conductance drops
to zero at low temperatures much more strongly than in D15.
The behavior is also captured by BK model, which provides
a temperature variation of N ′

N [Fig. 7(b)] leading to a peak at
energies that are slightly smaller, but of the same order as in
D15.

We summarize some parameters obtained previously in
both samples in Table I.

In the Fig. 8, we provide the critical temperature
versus sheet resistance in TiN films, from [38]. There,
we calculated the dependence of Tc using ln ( Tc

Tc0
) = γ +

0 1 2 3 4 50

1

2

3

T c
(K
)

R (kΩ)

FIG. 8. We reproduce data and model of Ref. [38]. We show the
critical temperature vs the sheet resistance in different TiN samples
as black points. The magenta line is the same quantity calculated
using Ref. [53].

1√
2r

ln ( 1/γ+r/4−√
r/2

1/γ+r/4+√
r/2

), where r = G00 R, R is the normal re-
sistance per square, γ = ln[h̄/(kTc0τ )]. This expression was
derived by Finkel’stein to explain the decrease in Tc in
disordered thin films due to scattering and electron density
fluctuations (Ref. [24]). We see that this expression explains
the variation of Tc with R. By taking γ = 5.73 we found
τ = 7.3 × 10−15 s, the value we obtain in the main text from
our fits to the conductance and from the measured spatial
dependence of the DOS fluctuations in the normal phase.

APPENDIX C: CALCULATION OF THE
AUTOCORRELATION FUNCTION

In absence of visible patterns, the most efficient way
to define a length scale is to calculate the autocorrelation
function ACF. This was made in Refs. [11,40] to obtain
spatial dependencies related to the opening of the pseudogap
in cuprates and to analyze patterns in an oxyde sample.

We should distinguish between the autocorrelation func-
tion often used to analyze pictures or images and the statistical
ACF we use here.

The usual method starts by defining two arbitrary matrices
A and B [54]. The cross-correlation matrix C is a measure of
similarity between A and B as a function of the displacement
of one relative to the other. The elements of C are calculated
by displacing A over B a given vectorial lag, then calculating
the element to element product of the overlapping elements
and finally taking the sum of them. If we take a 2 × 2 matrix

A =
[

a11 a12
a21 a22

]
and a 3 × 3 matrix B =

[
b11 b12 b13
b21 b22 b23
b31 b32 b33

]
,

C =

⎡
⎢⎣

c−1,−1 c−1,0 c−1,1 c−1,2

c0,−1 c0,0 c0,1 c0,2

c1,−1 c1,0 c1,1 c1,2

c2,−1 c2,0 c2,1 c2,2

⎤
⎥⎦.

Each element of C is calculated by displacing A over B
according to the corresponding index, being the (0,0) case
when both have the [11] element aligned, then multiplying the
overlapping region element-by-element and taking their sum.
According to this, let’s see how to calculate some elements
of C:

c0,0 = a11b11 + a12b12 + a21b21 + a22b22,

c2,1 = a11b23 + a21b33,

c−1,−1 = a22b11,

c2,2 = a11b33,

Thus the self correlation of a matrix is just the cross-
correlation of the matrix with itself.

However, the statistical ACF measures correlations be-
tween two points separated by a distance r. The spatial
autocorrelation function ACF(r) of an image is given by the
correlation of any two pixels i and j of the image, separated
by a given vector r = (r, θ ) = ri − rj, where ri and rj the
position of those pixels [11,40]. This leads to the following
definitions:

ACF(r) = 1

N (r)

∑
i, j

(Ii − 〈I〉1)(I j − 〈I〉2)

σ1σ2
, (C1)
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where

N (r) =
∑
i, j

δr,(ri−rj ), (C2)

〈I〉1 = 1

N (r)

∑
i, j

δr,(ri−rj )Ii, (C3)

〈I〉2 = 1

N (r)

∑
i, j

δr,(ri−rj )I j, (C4)

σ 2
1 =

(
1

N (r)

∑
i, j

δr,(ri−rj )I
2
i

)
− (〈I〉1)2, (C5)

σ 2
2 =

(
1

N (r)

∑
i, j

δr,(ri−rj )I
2
j

)
− (〈I〉2)2. (C6)

The radial averaged spatial autocorrelation function
ACF(r) is the result of averaging the autocorrelation function
value for all the vectors with the same magnitude r = |r|. It
gives an idea of the spatial extension of the correlated regions
in the image. A white noise image has a flat and close to zero
ACF(r), with however a sharp peak at r = 0, because every
pixel is correlated with itself. In real images, peaks ACF(r)
mean that there are regions where pixel intensities are spa-
tially correlated, within the same region or with neighboring
regions.

The often used correlation method for images is computa-
tionally very fast, since it just needs to “slide, multiply, and
sum” the matrix over itself a total of (2d − 1)2 times, being d
the dimension of the matrix. However, it is extremely sensitive
to offsets and does not produce the statistical correlation
among points exactly. For the calculation of one element,
it blindly multiplies and sums neighboring pixels regardless
of their relative intensities, orientation or distance. This can
cause that two actually correlated elements or regions vanish
or are obscured because of negative-plus-positive sums of
their surrounding region. Also, it has no renormalization or
consideration for the bright center. When images are only
slightly displaced they have much more overlapping pixels
contributing to the sum than when they are barely touch-
ing, making the edge of the image self correlation matrix
fainter.

The calculation of the statistical ACF(r) [11,40] by con-
trast is an offset-independent method, i.e. the result depends
only on the relative difference of intensity between two pixels,
not on their absolute value. It does not have the drawbacks
mentioned in the previous paragraph and provides the connec-
tions present between points of a certain distance. The main
drawback is of course that it is computationally much more
demanding, because it individually checks, counts, multiplies
and classifies every possible pair of pixels on the image
several times, in order to calculate every parameter needed
for the sums.

We can see the results of both methods in Fig. 9. We take a
simple vortex lattice image taken in β − Bi2Pd from Ref. [55].
There is experimental noise in the image and vortices appear
as blue circles. The statistical correlation is in essence the size
of a vortex. We expect that ACF(r) decreases with r, with a
length scale that is the vortex size, and becomes negative at
the intervortex distance.

We produce three columns where we have arbitrarily
moved the colorscale zero vale. At one side of the histogram
containing the values of the pixels [Figs. 9(a), 9(d), and 9(g)],
at the center of the pixel values [Figs. 9(b), 9(e), and 9(h)] and
at the average pixel of the histogram [Figs. 9(c), 9(f), and 9(i)].

In that way, we see that the result of the calculation is
independent of the choice [Figs. 9(d), 9(e), and 9(f)] only
when we use the statistical ACF(r). As expected, we can
determine the vortex core size from the decay at small r, and
find a value which coincides with those provided in literature
by analyzing the shape of isolated vortices [55]. The ACF(r)
becomes negative at the intervortex distance and oscillates,
with a spatially decaying amplitude. The latter is due to the
ratio of regions with zero DOS with respect to those with a fi-
nite DOS. The former is particularly large in this system [55].

By contrast, the computationally less demanding method
of multiplying matrices only leads to a similar result when the
zero of the histogram of the values in the image is centered
at the average of the histogram [Fig. 9(i)]. Furthermore, the
obtained length scale is strongly distorted.

Of course, a multiplication of 2D images also leads to a
2D image Figs. 9(g), 9(h), and 9(i). When using a statistical
ACF, the result just depends on the polar coordinates (r, φ). In
images that show no in-plane symmetry, as those discussed in
the text, there is no angular dependence either and everything
is in the radial dependence. When treating a vortex image with
a sixfold symmetry, the radial dependence is as shown in the
insets of Figs. 9(d), 9(e), and 9(f). The angular dependence is
given however as a function of a single coordinate, φ. For the
purpose of comparison, we have stretched this φ dependence
into a 2D matrix in Figs. 9(d), 9(e), and 9(f). The relevant
parameter is, though, the radial dependence of the correlations
[insets of Figs. 9(d)–9(i)].

We note again that we normalize ACF in such a way as
to obtain a percentage variation of the conductance over its
average value. In particular, the variations we see in the main
text are between 5% and 10% of the conductance, providing
accordingly the y-axis in Fig. 3(e)–3(g).

We provide in Fig. 10 the whole ACF as a function of
the position. This is radially averaged in Fig. 3. There are a
few remarks in place. First, the central peak is removed, as
it is divergent due to the conversion from cartesian to radial
coordinates. Second, we should note that the ACF always
provides a variation relative to the average conductance value,
whatever the latter is. That means that each panel shows the
conductance variations with a maximized contrast. Therefore
the minimal conductance variations found close to zero bias
at zero field Fig. 10(a) are highlighted in such a plot. Third,
as we plot the ACF with respect to the average value of the
conductance, it can become negative and even oscillate. This
is quite apparent at some bias voltage some images in Fig. 10.
There is clearly no ordered pattern in the ACF (the images
consist of bumps and stripes which vary as a function of the
bias voltage, as we see in Fig. 10), although the orientation
and level of correlation certainly varies in different positions.
It will be interesting to analyze in future the statistics of
such a behavior over very large areas and many images, as it
might provide further clues about the deviation from random
behavior induced by electronic correlations.
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FIG. 9. In (a)–(c), we show a test image with a vortex lattice, from Ref. [56]. The color scale is given by the scale bar at the right in
arbitrary units. The inset shows the color scale (from blue to yellow) and in white the color histogram from the image. The red line shows the
position of zero in the image. In (a), the bottom of the scale is given the zero value, in (b) the center of the scale and in (c) the position of the
average pixel value. In (d)–(f), we show the result of the statistical ACF(r, φ) following the model described in the text for each of the images
in (a)–(c). The bar in the right of each image provides the amplitude of the ACF(r). In the insets we show ACF(r). We see that all figures
(d)–(f) are identical. In (g)–(h), we show the correlation function obtained applying usual image analysis software to the images (a)–(c). Insets
provide the radial average and the color bar at the right the amplitude. The result is strongly dependent on the average value of the color scale
of the image. Black scale bars are 100 nm long.

APPENDIX D: ASPECTS OF STM IN HIGH
RESISTANCE FILMS

Let us remind a few basic aspects of tunneling STM
experiments. In a usual STM experiment, there is often a small
resistance in series with the tunnel junction. This helps con-
trolling the noise level by producing low-pass filters together
with capacitors. The tunneling current is given by

I (V ) = V0R + V1
1

σJunction(V1)
(D1)

where R is the resistance in series, V0 the voltage drop in
that resistance, V1 the voltage drop at the tip-sample junction
and σJunction the actual conductance of the junction. Usually,

1
σJunction

� R, so that V0 ≈ 0 and V ≈ V1 and we can write
the widely used relation between the tunneling current in a
junction and the DOS:

It (V ) ∝
∫ eV

0
dEN (E − eV ). (D2)

Its derivative is σJunction(V ) = dI
dV is zero for V < �, with �

being the superconducting gap, finite V > � and eventually
diverges exactly at the quasiparticle peaks for a conventional
s-wave BCS superconductor. In our case, R ≈ 20 k�, and

1
σJunction

is well above a M�, so that the condition 1
σJunction

� R is
maintained for every purpose during the voltage ramp.

However, the current flows through the sample before
reaching the tip-sample junction. Thus, there is an additional
resistance RS which adds to R due to the sample. It is impor-
tant to see that the value of RS is the one found in macroscopic
transport experiments and does not considerably modify R.
For example, a sample resistance of 10 k� with a current flow
of 1 nA leads to a voltage drop of 10 μV. Thus, the effect of
R + RS is of at most a voltage shift of a few tens of μV . If we
assume a non-Ohmic RS , the voltage drop in the sample might
become larger. However, by varying the tip-sample distance
we can modify σJunction, and thus the relative role of RS in the
tunneling experiment. With a voltage drop in the sample, we
expect to see shifts of features in the DOS of the sample. We
do not observe such shifts, showing that RS is ohmic.

On the other hand, a DOS strongly varying with energy
has further consequences that we need to discuss. To see
this, we remind that the tip is positioned through a feedback
mechanism that maintains a constant tunneling current at a
bias of several mV, which is usually of order of a nA. The
feedback mechanism thus imposes a relation between It (V )
which can be written as

It (V ) ∝
∫ eV

0 dEN (E − eV )∫ eVB

0 dEN (E − eV )
, (D3)
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FIG. 10. We show the ACF as a function of the position in (a)–(f) for different bias voltages. The color scale is give by the scale bars on
the right. Bias voltages and magnetic fields are given in each panel. We obtain from these images the radial average discussed in the Figs. 3(e)
and 3(f). We show the radial average of each image in the lower right insets. Dashed vertical line in the insets and circle in the main panels
provide the distance discussed in the text, 20 nm, as a guide.

where VB is the bias voltage at which the control system of the
STM is working [57]. Thus, when modifying the bias voltage

VB1 > VB, It (V ) is modified by a factor that depends on the
DOS integrated between the Fermi level and VB. Its derivative

(a) (b)

FIG. 11. In (a), we show as lines the distribution of fractal exponents at zero magnetic field and in (b), at a magnetic field of 4 T. The bias
voltage dependence is given by the color scale on the right. Random behavior produces a point at α = 2 and F (α = 2) = 2. Deviations from
random behavior increase the range of F (α) in α and displace the maximum of F (α) from 2. Notice that the distribution at zero field is close
to random at low and high bias voltage. The deviations from random behavior slightly increase when decreasing bias voltage at 4 T. In Fig. 3,
we plot the position of the maximum in F (α), αmax.
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is accordingly modified too. However, normalizing the current
or its derivative at, say V0 < VB, eliminates this factor

It (V )

It (V0)
∝

∫ eV
0 dEN (E − eV )∫ eVB

0 dEN (E − eV )

∫ eVB

0 dEN (E − eV )∫ eV0

0 dEN (E − eV )

∝
∫ eV

0 dEN (E − eV )∫ eV0

0 dEN (E − eV )
(D4)

and provides curves that are comparable to each other with
different bias voltages.

In the case we consider here, It (V1) is linked to the DOS,
but we measure It (V ). The feedback mechanism acts in the
same way, with modified normalization constants, which are
eliminated by normalizing the current to I at another bias
voltage, It (V0). The same applies for the tunneling conduc-
tance G(V ). Although the influence of the feedback loop
becomes more important in more resistive samples (as the
heated D15), normalization at a fixed voltage can be used
to obtain results that can be compared among samples and
measurement conditions.

APPENDIX E: MULTIFRACTAL ANALYSIS OF IMAGES

The distribution function of multifractal exponents F (α)
provides the dimensions α that are found in a given field of
view and is often used in characterization of 2D images. We
describe our method in detail in Appendix F of Ref. [58] and
the code is available at Ref. [59]. Here we provide a few
details as a guide. We first remind the properties of F (α).
F (α) consists of just a point at α = 2 for a fully random
image. For an image containing a monofractal distribution of
points, F (α) is just a point at α equal to the fractal dimension.
In a multifractal distribution F (α) is an inverted parabola with
a maximum F (αmax) at αmax. The parabola is defined around
a range of α, as shown in Fig. 11, where we show F (α) in our
images.

We use the box counting method to obtain F (α), described
in Ref. [60]. We first calculate the sum of all conductances
in a box of length ε, normalized to the sum over all possible
boxes, Pi(ε). We vary the box size between 64 × 64 and 1 × 1.
Then we introduce a set of exponents q and calculate the
sum over all possible Pi(ε)q, where i is a counting index
(we use −10 < q < 10). This has an exponential dependence
as a function of the box size with a set of exponents τ (q),
which can be found from the logarithmic derivative of the
sum over the box size over q. The set of dimensions α

present in the patterns forming the image are distributed with
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0.6

0.8

1.0

1.2

ecnatcudnoc dezila
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FIG. 12. We plot as points the normalized tunneling conductance
vs bias voltage at zero field (red points) and under magnetic fields of
4 T (light blue points) and 7 T (blue points). Data are taken at 0.3 K.
We provide as lines the fits to BK model under magnetic fields. At
zero field, we use the same fit, numerically modified as described in
the text.

a function F (α) which is obtained from τ (Q), α(Q) and the
said logarithmic derivative as explained in Refs. [58,60].

Thus the x axis in Fig. 11 provides the set of dimensions
that are found in the image and the most probable dimension
occurs at the maximum of F (α). Thus the position of the
maximum F (α) at αmax deviates from 2 as the image deviates
from a random distribution. In Fig. 3(h), we plot αmax − 2.

APPENDIX F: MAGNETIC FIELD DEPENDENCE

In Fig. 12, we compare tunneling spectroscopy data ob-
tained at zero field with data obtained above the critical field.
We can see that the magnetic field induced modifications in
the normal phase above Hc2 are small. This is not surprising.
As we can see in Fig. 5, the resistance varies only slightly with
magnetic field at low temperatures in the normal phase above
Hc2. We also include the fit discussed in the text. To account
for the zero field data, we use the fit obtained under magnetic
fields multiplied by an arbitrary function σ (V ) which is
chosen to maintain the same area below the conductance vs
voltage curves at zero field and under magnetic fields.
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