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Spread of infectious disease and social awareness as parasitic contagions on clustered networks
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There is a rich history of models for the interaction of a biological contagion like influenza with the spread
of related information such as an influenza vaccination campaign. Recent work on the spread of interacting
contagions on networks has highlighted that these interacting contagions can have counterintuitive interplay with
network structure. Here, we generalize one of these frameworks to tackle three important features of the spread
of awareness and disease: one, we model the dynamics on highly clustered, cliquish, networks to mimic the role
of workplaces and households; two, the awareness contagion affects the spread of the biological contagion by
reducing its transmission rate where an aware or vaccinated individual is less likely to be infected; and three,
the biological contagion also affects the spread of the awareness contagion but by increasing its transmission
rate where an infected individual is more receptive and more likely to share information related to the disease.
Under these conditions, we find that increasing network clustering, which is known to hinder disease spread, can
actually allow them to sustain larger epidemics of the disease in models with awareness. This counterintuitive
result goes against the conventional wisdom suggesting that random networks are justifiable as they provide
worst-case scenario forecasts. To further investigate this result, we provide a closed-form criterion based on
a two-step branching process (i.e., the numbers of expected tertiary infections) to identify different regions in
parameter space where the net effect of clustering and coinfection varies. Altogether, our results highlight once
again the need to go beyond random networks in disease modeling and illustrate the type of analysis that is
possible even in complex models of interacting contagions.
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I. INTRODUCTION

Models of contagion are used to study the transmission
dynamics of a pathogen or information being transmitted
through a structured population. Most of these are defined
as compartmental models [1], which mathematically distin-
guishes individuals based on their state; i.e., whether they are
susceptible to a contagion or infectious with that contagion.
Using this approach, coupling different contagions to model
their interactions is straightforward as we can then simply
distinguish individuals based on all possible combinations
of states for the different contagions. Of particular interest
is the coupling of an infectious disease with the spread of
preventative information related to the disease [2]. We typi-
cally expect this “disease awareness” to at least hinder, if not
completely stop, the spread of the pathogen. Since both the
pathogen and the information spread through standard conta-
gion mechanisms, their coupled dynamics is often referred to
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as either antagonistic or dueling contagions. Here, we assume
that the coupling between awareness and disease is twofold:
Awareness reduces the transmission rate of a disease, but sees
its own transmission rate increased by the presence of the
disease. Studies in health psychology suggest that individuals
are more likely to adopt preventative behaviors related to a
disease—hand washing, self-isolation, vaccination, treatment-
seeking—if people around them adopt that behavior and/or
if they perceive themselves to be at high risk of infection
[3,4]. Indeed, data collected during and after the 2003 SARS
coronavirus outbreak and the 2009 influenza A (H1N1) pan-
demic indicate the adoption of preventative behaviors such as
increased hand washing, the use of face masks, and avoiding
crowded public spaces in response to these outbreaks and
the increased perception of infection risk [5–7]. We therefore
refer to this coupled awareness-disease system as one of
parasitic contagions, since one contagion (awareness) both
hurts and benefits from the other (the disease).

Research on dueling or parasitic contagions tend to assume
well-mixed populations [2,8], in line with classic epidemic
models. However, there are a number of generalized frame-
works that account for the fact that information and disease
both spread over a network structure [9–11], and these frame-
works have become more common in recent years with the
rise in popularity of multiplex or multilayer network models
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[12–16]. In the current work, we relax the well-mixed assump-
tion to consider the community structure of most networks
where connections are often grouped in dense environments
such as households and workplaces. To do so, we rely on two
recent mathematical approaches: (i) a compartmental model
coupled to a clique-based master equation formalism [17,18]
that explicitly tracks the state of different groups; and (ii)
a more straightforward two-step branching process analysis
[18] that approximates network clustering.

In Sec. II we present our general model of interacting
contagion and provide the mean-field formalism to follow its
evolution. We find that the impact of network clustering on
the interaction of disease and awareness can be nontrivial to
predict, and can even accelerate the spread of the disease. In
Sec. II E, we then develop a purely analytical tool based on
a two-step branching process to better inform us of the net
effect of clustering on the dynamics. The two approaches are
leveraged together in a case study presented in Sec. III where
we show that there can be finite regions in parameter space
where the disease can actually benefit from network cluster-
ing. Section IV provides conclusions and outlines potential
areas of future work. Altogether, our results raise potential
questions about optimal coupling between the epidemiolog-
ical parameters of a disease, the behavioral parameters of
awareness, and the network structure of the population.

II. AWARENESS AND DISEASE AS
PARASITIC INFECTIONS

A. Network structures

To study parasitic contagions on clustered contact net-
works, we use a general definition of community structure
where every network is decomposed in terms of groups
[19]. The contact network between individuals can thus be
interpreted as the projection of a bipartite networks where
nodes are connected to social groups of different sizes. In
this context, even random links are interpreted as groups of
size two. The network topology of our model is illustrated
in Fig. 1. In order to highlight the effects of community
structure (CS) versus random network, the CS network will
be compared with its equivalent random network (ERN): a
network with exactly the same degree distribution, but with
randomly connected nodes. Both topologies will be studied
analytically and numerically.

Typical network datasets are often only available as a col-
lection of pairwise edges rather than higher-order structure-
like groups. One then has to rely on some numerical methods
such as community detection to infer group structure [20].
Likewise, for theoretical models, one can simply rely on
known distributions of groups per node (membership) and
of nodes per group (group size) from previous studies on
overlapping communities [21,22]. We here use the simplest
possible distributions in order to avoid confounding the im-
pact of group structure from that of degree heterogeneity or
degree correlations [23].

The dynamics of a single contagion on this community
structure model was studied in [17]. Using a mean-field
description, it was shown that the clustering of links in groups
slowed down propagation as links are wasted on redundant

FIG. 1. Schematization of the particular topology and dynamics
studied in this paper. An open circle represents a susceptible in-
dividual; a shaded one, a contagious individual (infected with the
disease, awareness, or both); and a black circle represents a group
(or clique). The topology is constructed by allowing individuals
to belong to a given number of cliques where they can be linked
to other participants (solid lines). Note that in the formalism, the
cliques are distinguished by their exact population and state, while
the precise connections between them remain unspecified. Modified
from Ref. [17].

connections instead of reaching new individuals. Expanding
on this study, we more recently introduced a similar mean-
field description for two synergistic disease [18], which is the
model that we here generalize to interactions of other nature.

B. Dynamical process

To model the concurrent spread of an infectious disease
and awareness of it on clustered networks, we will introduce
a generalization of the model of interacting contagions used
in Ref. [18]. We study the coevolution of two susceptible-
infectious-susceptible (SIS) processes such that, at any given
time, the state of each individual is determined by their status
regarding the two contagion processes. Without interaction
with the other contagion, an individual with contagion i would
infect its susceptible neighbors at a rate βi and recover at a
rate αi, but we will here introduce a parametrization scheme
to modify these rates and model possible interactions as gen-
erally as possible. Our model is flexible and could be applied
to any type of pairwise interaction between two SIS processes.
However, as the notation will become quite involved we will
ground our presentation by referring to the first contagion as
the disease (with natural parameters βD and αD) and to the
second contagion as awareness (with natural parameters βA

and αA). All parameters are summarized in Table I.
To keep track of both contagions simultaneously, we distin-

guish nodes by their state [XY ]m, where m is their membership
number, X ∈ {SD, ID} corresponds to their state regarding the
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TABLE I. Description of all parameters in the model.

Symbol Definition

{gm} Distribution of groups per node (memberships)
{pn} Distribution of nodes per group (sizes)
βD Transmission rate of the disease (SD → ID)
βA Transmission rate of awareness (SA → IA)
αD Recovery rate of the disease (ID → SD)
αA Recovery rate of awareness (IA → SA)
dII

SS Factor of βD when the infector is aware
dIS

SI Factor of βD when the infectee is aware
dII

SI Factor of βD when infector and infectee are aware
aII

SS Factor of βA when the infector is sick
aSI

IS Factor of βA when the infectee is sick
aII

IS Factor of βA when infector and infectee are sick
dII Factor of αD when the infected is also aware
aII Factor of αA when the infected is also sick

disease (susceptible or infectious), and Y ∈ {SA, IA} their state
regarding the awareness (“susceptible to awareness” meaning
naive, and “infectious to awareness” meaning aware). Simi-
larly, we will distinguish groups by their size n and the states
of the nodes they contain. For instance, [i jk]n, where i is the
number of [IDSA] nodes, j is the number of [SDIA], and k is the
number of [IDIA]; such that n − i − j − k yields the number
of [SDSA]. Keeping track of the number of nodes with both
contagions is critical considering that we are interested in the
effect of coinfection.

In the original model of Ref. [18], coinfection had symmet-
ric effect on both contagions, embodied in a single interaction
parameter. For parasitic contagions, we want one contagion—
the awareness—to benefit from being in the neighborhood of
the other, the disease. Individuals might be more likely to
listen to an awareness campaign (an increase in βA) if they are
themselves sick or if the message comes from a sick individual
[3,4]. Likewise, they might be less likely to forget important
information related to a disease if they are currently infected
(a decrease in αA). Second, we also want the disease to be
hindered whenever nodes in a given neighborhood are aware
of transmission risks or treatment options. Awareness can for
example lead both healthy and sick individual to wear a mask
(a decrease in βD) or infectious individuals to treat themselves
with antibiotics if appropriate (an increase in αD) [24]. Over-
all, we thus expect an increase in awareness transmission rate
around infected individuals, a decrease in loss of awareness
for infected individuals, a decrease in disease transmission
rate around aware individuals, and/or an increase in disease
recovery rate for aware individuals who might avoid contacts
and seek treatment.

To track all these possible interactions, we therefore need
to distinguish each possible infection by the state [XY ] of
the infector and the state [UV ] of the infectee, where we
omit the subscript A and D for clarity but use the first state
to refer to the disease and the second for awareness. The
interaction of these states are embodied in a set of parameters,
aXY

UV , dXY
UV , dII , and aII . While the notation gets complicated

because of the many possible interaction mechanisms, the
logic goes as follows: Greek letters are used for the natural
rates of transmission and recovery of both awareness and

disease (βA, αA, βD, αD) while a and d factors affect either
transmission rates of awareness and disease from state [XY ] to
[UV ] when both superscript and subscript are specified or the
recovery rate of coinfected individuals when only the super-
script is given. For example, a [I1I2] individual will transmit
the disease to a [S1I2] individual at a rate dII

SIβD. Of course,
dXY

UV = 0 whenever U ≡ I and aXY
UV = 0 whenever V ≡ I as

these individuals are already infected with the corresponding
contagion; similarly dXY

UV = 0 whenever X ≡ S and aXY
UV = 0

whenever Y ≡ S as only infected individuals can transmit the
contagion. We also assume that dIS

SS = aSI
SS = 1 to preserve

the natural transmission rate of each contagion, although
we still use this term in the general equations to make the type
of transmission explicit. Finally, dII and aII give the factor
by which the recovery rate of the disease or awareness are
modified if the individual is also aware or sick, respectively,
but we do not use dIS or aSI for clarity as it is always clear that
the terms proportional to α refer to recovery.

C. Mean-field description

A mean-field description of the time evolution of our gen-
eral model can be written in the spirit of previous formalisms.
Leaving out all explicit mention of time dependencies as all
variables and mean-fields vary in time, the population density
within each node state evolves as

d

dt
[SDSD]m = −m

(
βDB(D)

SS + βAB(A)
SS

)
[SDSA]m

+ αD[IDSA]m + αA[SDIA]m, (1)

d

dt
[IDSA]m = m

(
βDB(D)

SS [SDSA]m − βAB(A)
IS [IDSA]m

)
+ aIIαA[IDIA]m − αD[IDSA]m, (2)

d

dt
[SDIA]m = m

(
βAB(A)

SS [SDSA]m − βDB(D)
SI [SDIA]m

)
+ dIIαD[IDIA]m − αA[SDIA]m, (3)

d

dt
[IDID]m = m

(
βDB(D)

SI [SDIA]m + βAB(A)
IS [IDSA]m

)
− (dIIαD + aIIαA)[IDIA]m, (4)

where B(i)
UV is a mean-field value of interactions representing

the expected number of interactions with contagion i, per
membership, for a node in state [UV ] and must therefore
always be paired with a transmission rate βi and a node in
state Si with i ∈ {A, D}. Notice that in each equation, the
first row of terms correspond to infection events and the
second row the recoveries. The challenge in correctly writing
these equations resides mostly in identifying to which state
each event transfers some population density. Conservation of
total population density (i.e., the sum over all state densities
remains equal to one) is easily verified since the sum of
Eqs. (1) to (4) is zero.

Let us assume that we know the density [i jk]n of cliques
that contain n individuals with i nodes contagious with the
disease only, j contagious with awareness only, and k with
both contagions. We could use this information to write the
interaction mean fields for the average level of interaction with
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contagious individuals within a given group by summing over the set of possible group states {[i jk]n}. For the disease, we write

B(D)
SS =

∑
{[i jk]n} (n−i− j−k)

(
idIS

SS + kdII
SS

)
[i jk]n∑

{[i jk]n} (n−i− j−k)[i jk]n
, (5)

B(D)
SI =

∑
{[i jk]n} j

(
idIS

SI + kdII
SI

)
[i jk]n∑

{[i jk]n} j[i jk]n
, (6)

and for awareness,

B(A)
SS =

∑
{[i jk]n} (n−i− j−k)

(
jaSI

SS + kaII
SS

)
[i jk]n∑

{[i jk]n} (n−i− j−k)[i jk]n
, (7)

B(A)
IS =

∑
{[i jk]n} i

(
jaSI

IS + kaII
IS

)
[i jk]n∑

{[i jk]n} i[i jk]n
. (8)

These expressions can be understood with the following logic. For instance, in the case of B(D)
SS , a fully susceptible individual

in [SDSA] is twice as likely to be part of a clique with twice as many susceptible nodes, which is what the (n − i − j − k) factor
takes into account. We then simply calculate the average infection terms within each possible clique, i.e., idIS

SS + kdII
SS , and use a

similar sum over the clique states in the denominator to normalize the biased distribution.
We now need to follow the evolution of clique states using a general, but complicated, equation:

d

dt
[i jk]n = (i + 1)αD[(i + 1) jk]n + ( j + 1)αA[i( j + 1)k]n + (k + 1){dIIαD[i( j − 1)(k + 1)]n + aIIαA[(i − 1) j(k + 1)]n}

− (iαD + jαA + kdIIαD + kaIIαA)[i jk]n + βD(n−i+1− j−k)
{
(i−1)dIS

SS + kdII
SS + B̃(D)

SS

}
[(i−1) jk]n

− βD(n−i− j−k)
{
idIS

SS + kdII
SS + B̃(D)

SS

}
[i jk]n + βA(n−i− j+1−k)

{
( j−1)aSI

SS + kaII
SS + B̃(A)

SS

}
[i( j−1)k]n

− βA(n−i− j−k)
{

jaSI
SS + kaII

SS + B̃(A)
SS

}
[i jk]n + βA(i+1)

{
jaSI

IS + (k − 1)aII
IS + B̃(A)

IS

}
[(i+1) j(k−1)]n

− βAi
{

jaSI
IS + kaII

IS + B̃(A)
IS

}
[i jk]n + βD( j+1)

{
idIS

SI + (k − 1)dII
SI + B̃(D)

SI

}
[i( j+1)(k−1)]n

− βD j
{
idIS

SI + kdII
SI + B̃(D)

SI

}
[i jk]n, (9)

which is defined over all non-negative integers n � 2 and
i + j + k � n. Equation (9) is coupled to the previous system
of ODEs through the mean-field values of excess interactions
B̃(x)

UV , representing interactions with outside groups, given by

B̃(x)
UV =

(∑
m m(m − 1)[UV ]m∑

m m[UV ]m

)
B(x)

UV . (10)

The first four terms of Eq. (9) are those corresponding
to recoveries; positive for those corresponding to cliques
relaxing into [i jk]n and negative for those where [i jk]n relaxes
into a less infected state. The other terms represent each
possible infection event. Notice that creating a k individual
implies either removing a i or j, through their infection with
contagion 2 or 1, respectively; just as recoveries can create i or
j individuals when a k individual recovers from a contagion.

D. Validation

To validate the accuracy of our mean-field description, we
run simulations on highly clustered networks where every
node belongs to two cliques of size 10. We use this network
for two reasons: First, to avoid degree-degree correlations,
such that we know that the effect of clustering will be the
main structural effect. Second, to feature a realistic local
clustering coefficient, C, i.e., the ratio of triangles to pairs
of links around a given node, which is here C = 0.47. In
Fig. 2, we show prevalence for the disease and awareness

over time on a clustered (CS) and an equivalent random graph
(ERN), using both Monte Carlo simulations and our ODE
system. The accuracy of the mean-field approximations were
expected given Refs. [17,18], and for the rest of the paper we
therefore rely on the ODE system rather than slower Monte
Carlo simulations.

Most importantly, while we know that an awareness cam-
paign or network clustering can both hinder the spread of
a disease, it appears that network clustering can actually
help a disease spread further when it is competing against a
second contagion such as an awareness campaign. This result
shows once more that the impacts of different dynamical or
structural features can combine in nontrivial ways in models
of contagion on networks.

E. Two-step branching process

In Ref. [18], we also introduced a simple criterion to
determine whether a clustered structure would spread two
synergistic contagions faster. This criterion can conceptually
be thought of as a generalization of the basic reproductive
number (R0, the number of secondary infections from an
average infectious individual in a completely susceptible pop-
ulation), which is often used to characterize the initial speed
of epidemics, which in our case considers two infection steps
in order to include clustering. Physically, it can be interpreted
as a two-step branching process, as we count the number of
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FIG. 2. Parasitic interaction in a population where nodes all
belong to two groups of ten nodes. Markers represent average results
of Monte Carlo simulations with error bars representing the standard
deviation of over 100 runs on networks of 50 000 nodes. Solid curves
are obtained by integrating our formalism. Results on the clustered
networks are shown in red and those on their equivalent random
network are shown in light blue. The top two curves correspond
to disease prevalence, and bottom two to awareness prevalence.
The dynamics follow βD = 0.02, βA = 0.25, αD = αA = dII = aII =
1.0, dIS

UV = 1, dII
UV = 10, and aXY

UV = 0.05 except dIS
SS = aSI

SS = 1.0.

tertiary infections caused by a coinfected individual (i.e., how
many second neighbors will be infected).

However, the analogy is imperfect: Different generations
of this “branching process” are not independent since we
do not distinguish which contagion(s) caused those tertiary
infections, and therefore the average branching factor can
change from generation to generation. Yet, it proved to be a
useful tool in Ref. [18] to identify the net effect of clustering
across parameter space; i.e., to determine whether clustering
speeds up or slows down disease spread.

We start with a single node infected with both contagions,
and denote the average excess degree of recently infected
nodes as z1 (i.e., we assume this node received the contagions
from a single neighbor and z1 describes the average number
of other neighbors this node is expected to have). For the first
step of our criterion, we need to distinguish the probability
of transmitting only the disease, only the awareness, or both.
Since we ignore the possibility of recovery followed by re-
infection, the latter scenario can occur in two ways: either by
transmitting both while coinfected; or transmitting the first (or
second) while coinfected before recovering from it and then
transmitting the second (or first). Summing the two events
yields the probability TII of a coinfected transmitting both
contagions to a given first neighbor, i.e.,

TII = dII
SSβD

dII
SSβD + aII

SSβA + dIIαD + aIIαA

[
aII

ISβA

aII
ISβA + dIIαD + aIIαA

+ dIIαD

aII
ISβA + dIIαD + aIIαA

(
aSI

ISβA

aSI
ISβA + αA

)]

+ aII
SSβA

dII
SSβD + aII

SSβA + dIIαD + aIIαA

[
dII

SIβD

dII
SIβD + dIIαD + aIIαA

+ aIIαA

dII
SIβD + dIIαD + aIIαA

(
dIS

SI βD

dIS
SI βD + αD

)]
. (11)

Similarly, a coinfected node can transmit only the disease in two ways, either by infecting while coinfected then recovering
before the transmitting awareness or by recovering from awareness before transmitting the disease. Again, summing these events
gives the probability TIS of a coinfected transmitting only the disease. The same logic applies to the probability TSI of transmitting
only the second contagion. We can thus write

TIS = dII
SSβD

dII
SSβD + aII

SSβA + dIIαD + aIIαA

[
1 − aII

ISβA

aII
ISβA + dIIαD + aIIαA

− dIIαD

aII
ISβA + dIIαD + aIIαA

(
aSI

ISβA

aSI
ISβA + αA

)]

+ aIIαA

dII
SSβD + aII

SSβA + dIIαD + aIIαA

(
dIS

SSβD

dIS
SSβD + αD

)
, (12)

TSI = + aII
SSβA

dII
SSβD + aII

SSβA + dIIαD + aIIαA

[
1 − dII

SIβD

dII
SIβD + dIIαD + aIIαA

− aIIαA

dII
SIβD + dIIαD + aIIαA

(
dIS

SI βD

dIS
SI βD + αD

)]

+ dIIαD

dII
SSβD + aII

SSβA + dIIαD + aIIαA

(
aSI

SSβA

aSI
SSβA + αA

)
. (13)

In its first neighborhood, we now know that a single
coinfected individual will on average cause z1TII coinfections,
z1TIS transmissions of the disease only, and z1TSI transmis-
sions of the awareness only. We call those secondary in-
fections. Our two-step branching process then looks at the
number of tertiary infections, i.e., the number of transmission
events of either contagions in the second neighborhood.

In a clustered network, there is an overlap between the
second neighborhood and the first, such that neighbors of the
original coinfection can be infected during the second step

of the process if they were not already. Let us consider one
of the z1TIS first neighbors infected only with the disease
and now trying to infect a susceptible node. We know that
in its own first neighborhood, a number (z1 − 1)C(TII + TIS )
of them are already infected with the same contagion (z1 − 1
is an approximation, equal to its excess degree minus the
targeted susceptible node). The fact that a fraction of its
neighborhood is already infected by the root node is the
negative impact of clustering on the dynamics. However, a
number (z1 − 1)C(TII + TSI ) are now also aware, such that
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they could transmit it to the node of interest and change
its transmissibility. This is a potentially positive impact of
clustering depending on the nature of the coupling between
contagions (e.g., positive for the spread of awareness, negative
for the disease itself).

Still considering the same first neighbor infected with
the disease only, we need to know the rate at which it is

coinfected by one of its (z1 − 1)C(TII + TSI ) aware neighbors.
Assume that we know the value of that rate, denoted xD for a
coinfection to a diseased node, then the probability of recov-
ery before coinfection would simply be αD/(xD + αD). Since
we can also write that probability as every node involved
recovering before coinfection, we can require the following
equality:

αD

xD + αD
=

(
αD + αA

aSI
ISβA + αD + αA

)(z1−1)CTSI
(

αD + aIIαA

aII
ISβA + αD + aIIαA

)(z1−1)CTII

. (14)

Note that this self-consistency condition for the effective rate of coinfection is a corrected version of the equivalent (but
simpler) condition found in Ref. [18] which contained a transcription error. Furthermore, the same logic here also applies
around awareness to describe coinfection events involving nodes that are aware but not sick. We can solve for the effective rates
of coinfection through clustering, i.e., xD and xA (which mean coinfections rates for nodes that currently have the disease or
awareness only, respectively, and obtain

xD = αD

[(
αD + αA

aSI
ISβA + αD + αA

)−(z1−1)CTSI
(

αD + aIIαA

aII
ISβA + αD + aIIαA

)−(z1−1)CTII

− 1

]
, (15)

xA = αA

[(
αD + αA

dIS
SI βD + αD + αA

)−(z1−1)CTIS
(

αA + dIIαD

dII
SIβD + dIIαD + αA

)−(z1−1)CTII

− 1

]
. (16)

With these effective rates, we can write the probabilities of a tertiary transmission of either disease or awareness, respectively,
T (D)

IS , T (A)
IS if coming from a node initially infected only with the disease and T (D)

SI and T (A)
SI if coming from a node initially

infected only with awareness. We write

T (D)
IS = [1 − C(TIS + TII )]

[
dIS

SSβD

dIS
SSβD + αD + xD

+ xD

dIS
SSβD + αD + xD

(TIS + TII )

]
, (17)

T (A)
IS = [1 − C(TSI + TII )]

[
0 + xD

dIS
SSβD + αD + xD

(TSI + TII )

]
, (18)

T (D)
SI = [1 − C(TIS + TII )]

[
0 + xA

aSI
SSβA + αA + xA

(TIS + TII )

]
, (19)

T (A)
SI = [1 − C(TSI + TII )]

[
aSI

SSβA

aSI
SSβA + αA + xA

+ xA

aSI
SSβA + αA + xA

(TSI + TII )

]
, (20)

where the initial factor is the probability that a given neighbor
is currently susceptible and where the two terms in brackets
are, respectively, the probability of directly passing the correct
contagion before coinfection (sometimes zero if not initially
contagious) or of passing it after coinfection. More directly,
we can write the probability of a tertiary infection of either
disease or awareness from an individual who received both
contagion from the original coinfected:

T (D)
II = [1 − C(TIS + TII )](TIS + TII ) , (21)

T (A)
II = [1 − C(TSI + TII )](TSI + TII ) . (22)

From all of these, we write the number of tertiary infections
of disease or awareness caused by an original coinfected
individual as

R(D)
1 = z2

1(TIST ′
IS + TII T

′
II ), (23)

R(A)
1 = z2

1(TSI T
′

SI + TII T
′

II ). (24)

These two R1 quantities are not generative numbers per
se, as the process is not multiplicative for two reasons: (i)
we count all tertiary infections, not only nodes in the same

coinfected state as our original node and (ii) the next step in
the process would imply facing clustering in both the second
and first neighborhood. Nevertheless, in Ref. [18], it was
shown that comparing R1 values obtained using C > 0 to
that of an ERN with C = 0 allows us to determine whether
clustering slows down the dynamics [R1(C > 0) < R1(C =
0)] or speeds it up [R1(C > 0) > R1(C = 0)].

III. RESULTS

In this section, we investigate the final epidemic sizes
and peak prevalence values within the mean-field model, but
also test the usefulness of the branching factor approach in
identifying the epidemic threshold of the model as well as
the net impact of clustering. Indeed, we can use the previous
analysis to (i) identify whether the disease can maintain an
outbreak despite clustering and awareness (i.e., if R(D)

1 > 1)
and (ii) evaluate whether a clustered network structure will
lead to larger epidemic peaks than an equivalent random
network (i.e., if R(D)

1 /R(A)
1 is larger with C > 0). We focus our

results on regimes where awareness is subcritical on its own,
since we assume that awareness of an extinct disease would
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FIG. 3. Using the same clustered network structure and
parametrization as in Fig. 2, we now plot the final prevalence (i.e.,
final steady-state size) of disease and awareness across a range of
parameters. (a) We vary the basic transmission rate of awareness. (b)
We vary the basic transmission rate of the disease. (c) We vary the
factor a affecting awareness transmission around sick individuals. d)
We vary the factor d affecting disease transmission around aware
individuals. The dotted vertical line marks the analytical epidemic
threshold (if any) as approximated by R(D)

1 = 1. All parameters are
fixed to the following values unless we explicitly vary them: βA =
0.02, βD = 0.25, αi = aII = dII = 1, aSI

UV = 1, aII
UV = a = 100, and

dXY
UV = d = 0.005 except dIS

SS = aSI
SS = 1.0.

not propagate through a social network, but is able to spread
to a large fraction of the population because of its interaction
with the disease.

A. Final sizes

We investigate the robustness of the endemic disease state
on clustered networks in Fig. 3. The most interesting case
occurs when increasing the transmission rate βA of awareness
can cause disease eradication by depleting the pool of sus-
ceptible individuals. At very low βA, the awareness contagion
fails to spread and the disease is left unhindered. At intermedi-
ate values of βA, awareness is able to spread mostly due to its
interaction with the disease, meaning it will reach a fraction of
those already reached by the disease and fail to invade the sus-
ceptible population. In this regime, we find a nonmonotonous
relationship between the prevalence and transmission rate of
awareness because increasing βA increases the probability of
awareness reaching sick neighbors, while also decreasing the
global fraction of sick individuals. After a certain threshold in
βA, the prevalence of the disease falls to zero and awareness
then spreads as a regular contagion.

As shown in Fig. 3, the epidemic thresholds predicted
by R(D)

1 = 1 are typically within a factor 2 of the true epi-
demic threshold. This error is most likely due to the fact

that the analysis is seeded with a coinfected individual and
we ignore the fact that awareness and disease are likely to
drift apart, benefiting the disease. Our main approximation
is in focusing our branching factor analysis on the number
of tertiary infections caused by coinfected individuals (both
infectious with the disease and aware). However, because our
results focus on regimes where awareness is subcritical in the
absence of disease, both disease tend to have very similar
epidemic thresholds where disease can easily only spread
through individuals in [IDSA] and not the [IDIA] considered by
the branching process. A next-order, more involved, analysis
would have to consider heterogeneous branching factors for
the three types of infectious individuals: [IDSA], [SDIA], and
[IDIA].

B. Peak values

In Ref. [18], R1 was used to determine whether two syner-
gistic diseases would spread faster on a clustered or random
network. The idea being that while clustering typically slows
down dynamics, there can be an acceleration associated with
the synergistic interactions and the benefit of being together
by clustering. Here, both clustering in network structure and
the interaction with awareness slow down the spread of the
disease. We therefore do not expect to find a regime of accel-
erated disease spread. However, it is possible that clustering
slows down awareness more than it slows down the disease,
in which case a slower dynamics might still lead to a higher
epidemic peak.

In Fig. 4, we vary the transmission rate of the disease
and its interaction with awareness while tracking whether
R(D)

1 /R(A)
1 is larger with C > 0 (larger epidemic peak on a

clustered structure) or with C = 0 (larger peak on the equiv-
alent random network). We find that there can indeed be two
separate regimes and the branching factor analysis provides
a good approximation of where this crossover can occur.
For example, Fig. 4(a) presents a parametrization close to
this crossover where the clustered network leads to a higher
epidemic peak than the equivalent random network, while
Fig. 4(b) and 4(c) shows two cases on the other side of the
crossover where the peaks on random networks are progres-
sively larger than on the clustered version as we move away
from the crossover interface. Finally, Fig. 4(d) shows the ratio
of peak values for a whole range of parametrization as well
as the parameters used in Fig. 4(a)–4(c) showing a good but
approximate agreement between the branching factor analysis
and integration of the mean-field formalism.

IV. CONCLUSION

With disease transmission comes the possibility for aware-
ness of the disease and of the risk factors associated with
its transmission. Awareness of the disease may cause in-
dividuals to respond by reducing their own transmissibility
or adopting preventative behaviors. Here, we explored the
effects of awareness in a model that looks at both disease and
awareness as cocontagions in a parasitic relationship: spread
of the disease leads to transmission of awareness which in turn
leads to decreased disease prevalence as a result of reduced
disease transmission around aware individuals. Our results
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FIG. 4. Differences in peak prevalence values between network structure. We again use the same network structure and parametrization
as in Fig. 2, with a fixed βA = 0.02, αi = aII = dII = 1, and with other interaction factors parametrized using a single interaction parameter
aII

UV = a and setting dXY
UV = 1/(2a) except dIS

SS = aSI
UV = 1.0. (a)–(c) show the time series of disease prevalence for three sets of parameter

values while (d) study a large range of variations in β2 and ρ. The inset of (a) provides a closer look at the epidemic peak of both time series,
showing that the clustered network indeed leads to a slightly higher epidemic peak with an interaction parameter a just below its critical value
shown in (d). The color axis in (d) corresponds to the ratio of peak values obtained by integrating the mean-field system on clustered and
equivalent random networks. The dotted line shows the crossover regime predicted by our analytical branching factor analysis; it defines the
set of parameters for which R(D)

1 /R(A)
1 is the same on both clustered and random networks. Finally, parameter values used in (a)–(c) are shown

with markers on (d).

show that interacting cocontagion models lead to different
dynamics depending on the network structure on which they
unfold. Characteristic measures such as the final outbreak size
and the peak incidence exhibit regimes where they can be
higher in networks exhibiting clustering than on equivalent
but random network structures.

Altogether, our study highlights once again the need for
disease models to go beyond random networks as social clus-
tering can lead to either smaller or larger forecasts depending
on the dynamics at play. We showed how interactions between
contagions can combine with network structure in nontrivial
ways and are therefore especially important to include in
disease models. To this end, we have generalized the tools of
Ref. [18] to account for more complicated interaction mech-
anisms. Other generalizations could be considered in future
work. We previously mentioned the need for heterogeneous
branching factors to account for the fact that individuals
infectious with only the disease, awareness, or both, can
spread the contagions very differently. Tracking this hetero-
geneity through multiple epidemic generations to account
for clustering would be a complicated calculation, but one
should that should lead to much better approximations of the
epidemic thresholds. Finally, we focused on homogeneous but
clustered contact networks to isolate the impact of clustering
on parasitic contagions, but the role of correlations and of the
internal structure of communities could also have nontrivial
consequences [25,26]. Are nodes with higher membership
part of larger or smaller communities than expected? Do they
have larger degree within these communities? New heteroge-
neous mean-field approaches need to be developed to account
for these network structures.

Our current approach lead to useful analytical tools, but
their development becomes so involved and complicated as

to be almost intractable. This raises the important problem of
developing effective models for interacting contagions whose
complexity does not grow exponentially with the number of
contagions or with the number of interaction mechanisms.
Indeed, not only do infectious diseases interact with social
contagions such as vaccination and other preventative behav-
iors, but they also interact, often synergistically, with other
biological infections [27–29]. New tools are therefore needed
to account for all of these interactions in a tractable and
insightful analytical framework [30].

Finally, with these theoretical advances also comes the
need for improved data collection on the dynamics of aware-
ness spreading and methods to measure how this materializes
into effective preventative behaviors. With most of it now
shared on online social media, information and messages
regarding public health crises are increasingly important in
shaping human behavior during epidemics. Unfortunately,
data surrounding that messaging are not readily available to
researchers and public health officials, even if we know it
interacts in critical ways with our models and forecasts. The
parallel development of theoretical frameworks and of data
sharing protocols for social messaging related to public health
crises will be invaluable going forward. Public awareness is an
integral part of public health and advances to address its social
media dimension should be integrated into existing public
health surveillance systems.
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