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Certain physical systems that one might consider for fault-tolerant quantum computing where qubits do not
readily interact, for instance photons, are better suited for measurement-based quantum-computational protocols.
Here we propose a measurement-based model for universal quantum computation that simulates the braiding
and fusion of Majorana modes. To derive our model we develop a general framework that maps any scheme
of fault-tolerant quantum computation with stabilizer codes into the measurement-based picture. As such, our
framework gives an explicit way of producing fault-tolerant models of universal quantum computation with
linear optics using any protocol developed using the stabilizer formalism. Given the remarkable fault-tolerant
properties that Majorana modes promise, the main example we present offers a robust and resource-efficient
proposal for photonic quantum computation.
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I. INTRODUCTION

Considerable experimental effort [1–18] is being dedi-
cated to the realization of linear optical quantum computation
[19,20] due to the extensive coherence times that photonic
qubits promise. To support this endeavor, we must design
robust models of fault-tolerant quantum computation that
minimize the high resource cost that is demanded by their
implementation. Unlike the other approaches to realize fault-
tolerant quantum computation [21–28], qubits encoded with
photons fly through space at the speed of light and do not
readily interact with other photons. As such, we need different
theoretical models to describe fault-tolerant quantum compu-
tation with photons.

Measurement-based quantum computation [29–33] pro-
vides a natural language to describe computational operations
with flying qubits. In this picture we initialize a specific many-
body entangled resource state which is commonly known as
a cluster state. We then make single-qubit measurements on
its qubits to realize computational operations. The performed
operation is determined by the choice of measurements we
make, and the entangled resource we initially produced.

In the present work, we provide a fault-tolerant imple-
mentation of the Clifford operations with an adaptation of
the topological cluster-state model [34]. If supplemented by a
non-Clifford gate [35], which one might implement by magic
state distillation [36,37], then these operations are enough to
recover universal quantum computation [38,39]. Owing to its
high threshold error rates [38–40] and simplicity in its design
[20,41–43], the topological cluster state is the prototypi-
cal model for robust fault-tolerant measurement-based quan-
tum computation [44]. The number of two-qubit entangling
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operations we require per physical qubit to realize our gate
set are no more demanding than those to realize the standard
topological cluster state. We therefore expect that the Clifford
gates we propose will maintain the high threshold of the
topological cluster state. As such, our model is particularly
appealing for experimental realization.

The potential savings available by adopting our robust
model of quantum computation are twofold. Firstly, we
achieve the Clifford operations by simulating the braids and
fusion measurements of Majorana zero modes with the topo-
logical cluster-state model. We find these operations by map-
ping them from analogous operations using stabilizer models
that are known to be resource efficient [45–48] compared with
the original proposal [44]. Furthermore, unlike our model,
the original proposal relied on resource-intensive distillation
methods to complete the set of Clifford operations [49]. We
expect additional reductions in resource demands by circum-
venting the need to perform any distillation operations to
perform Clifford gates.

We derive our results by developing a framework that
allows us to map any protocol for quantum computation with
stabilizer codes [50] onto a measurement-based model. Our
mapping is therefore important in its own right as it enables
us to import all of the developments made for fault-tolerant
quantum computation with static qubits using the stabilizer
formalism in the past decades [37,51,52] into a language that
is better suited for linear-optical setups. Specifically, we show
how to encode an arbitrary stabilizer state with a cluster-state
model. We also show how to choose the cluster state and the
measurement pattern such that we implement logical opera-
tions on the encoded stabilizer code. We accomplish logical
operations using a specially chosen quantum measurements
to perform code deformations [44,47,53–57]. We show that
we can encode code deformations within a resource state
such that after we measure most of its qubits, the remaining
unmeasured qubits of the resource state lie in the state of the
deformed stabilizer code, thereby completing a fault-tolerant
operation. We also show how we can compose many of these
operations, that we will often call channels, to realize longer
computations and more complex code deformations.
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Since the work of Raussendorf et al. it has been shown
[58] how to map a special class of stabilizer codes, known
as Calderbank-Shor Steane(CSS) stabilizer codes [59,60],
onto a measurement-based model. We have extended be-
yond this work by showing how to perform computations
via code deformations on arbitrary stabilizer codes from the
measurement-based perspective. Further, in Ref. [61] it was
proposed that lattice surgery [62,63] can be mapped onto a
measurement-based computational model. As we will discuss,
the specific model proposed in Ref. [61], together with any
other model of code deformation [38,39,44], can be repro-
duced using our framework. We finally remark on recent work
[64,65] on measurement-based quantum computation where
the topological cluster-state model is generalized to find ro-
bust codes, and Refs. [35,66] where a new schemes for univer-
sal fault-tolerant measurement-based quantum computation
are proposed based using three-dimensional codes [67,68].

The remainder of this article is organized as follows. We
begin by reviewing notation we use to describe quantum
error-correcting codes in Sec. II. After introducing some
basic notation and the concept of foliation, we summarize the
results of our paper and give a guide to the reader to parse the
different aspects of our model in Sec. III. Then, in Sec. IV
we develop a microscopic model for the one-dimensional
cluster state as a simple instance of foliation, and we consider
parity measurements between separate foliated qubits. In
Sec. V we use the microscopic framework we build to show
how a channel system can propagate an input stabilizer code
unchanged. We explicitly demonstrate this by foliating the
twisted surface code model in Sec. VI. In Sec. VII we go on
to show that we can manipulate input states with a careful
choice of channel systems. We demonstrate this by showing
we can perform Clifford gates and prepare noisy magic
states with the foliated surface code before offering some
concluding remarks. Appendices describe extensions of our
results and proofs of technical details. Appendix A describes
an alternative type of foliated qubit, Appendix B gives proofs
of technical theorems we state in the main text, Appendix C
discusses foliated subsystem codes, and Appendix D gives a
generalization of the foliated stabilizer codes we propose.

II. QUANTUM ERROR CORRECTION

Here we introduce the notion of a subsystem code [69]
that we use to describe the foliated systems of interest. A
subsystem code is a generalization of a stabilizer code [50,70]
where not all of the logical operators of the code are used to
encode logical information. The logical operators for each of
the disregarded logical qubits are known as gauge operators.
Gauge operators have been shown to be useful for a number
of other purposes [37,51,52,54,71].

A subsystem code is specified by its gauge group, G ⊆ Pn;
a subgroup of the Pauli group acting on n qubits. The Pauli
group is generated by Pauli operators Xj and Zj , together with
the phase i, where the index 1 � j � n denotes the code qubit
the operator acts on. More precisely we have

Pj = 1 ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
j−1

⊗P ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
n− j

, (1)

where 1 is the two-by-two identity matrix and P = X,Y, Z is
a Pauli matrix.

The gauge group describes a code space specified by its
stabilizer group

S ∝ C(G) ∩ G, (2)

where C(G) denotes the centralizer of a group G within Pn

which consists of all elements of Pn that commute with all
elements of G. With the stabilizer group defined we specify
the code space as the subspace spanned by a basis of state
vectors |ψ〉, where

s|ψ〉 = (+1)|ψ〉, (3)

for all stabilizers s ∈ S . By definition, the stabilizer group
must satisfy −1 �∈ S .

We also consider a generating set of logical operators
L = C(G)\G. The group L is generated by the logical Pauli
operators X j , Z j with 1 � j � k, such that X j anti-commutes
with Zl if and only if j = l . Otherwise all generators of the
group of logical Pauli operators commute with one another.

The logical operators generate rotations within the code
space of the stabilizer code. We will frequently make use
of the fact that logical operators L, L′ ∈ L such that L′ = sL
with s ∈ S have an equivalent action on the code space. This
follows from the definitions given above. We thus use the
symbol “· ∼ ·” to denote that two operators are equivalent up
to multiplication by a stabilizer operator. For instance, with
the given example we can write L′ ∼ L.

It is finally worth noting that the special Abelian subclass
of subsystem codes, namely, stabilizer codes [50,70], are such
that S = G up to phases.

A. Transformations and compositions of codes

It will be important to make unitary maps between subsys-
tem codes. Given the generating set of two different stabilizer
codes R and S with elements r ∈ R and s ∈ S , the stabilizer
group T = R ⊗ S is generated by elements r ⊗ 1, 1 ⊗ s ∈
T . We also use the shorthand T = US to define the stabilizer
group

T = {UsU † : s ∈ S}, (4)

where U is a Clifford operator. Of course, the commutation
relations between two Pauli operators are invariant under
conjugation by a unitary operator.

B. Expressing Pauli operators as vectors

For situations where one is willing to neglect the phases
of elements of the stabilizer group, it is common to write
elements of the Pauli group as vectors of a 2n-dimensional
vector space over a binary field with a symplectic form that
captures their commutation relations [70,72]. We express
Pauli operators in vector notation such that p = (pX pZ )T

where pX (pZ ) are vectors from the n-dimensional vector space
over the binary field Z2 and the superscript T denotes the
transpose of the vector such that, up to phases, the Pauli

operator P ∈ Pn is expressed P =∏n
j=1 X

pX
j

j Z
pZ

j

j .
We will frequently move between Pauli operators and

the vector notation. It is thus helpful to define the function
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v : Pn → Z2n
2 such that

v(P) ≡ (pX pZ )T , (5)

where vectors pX , pZ ∈ Zn
2 are such that

P ∝
∏

j∈|pX |
Xj

∏
j∈|pZ |

Zj, (6)

up to a phase factor and we have defined the support of vector
p, denoted |p|, as the set of elements of p that are nonzero.

Using this notation, we additionally have the symplectic
form where, for two vectors p and q specifying two elements
of the Pauli group Pn, we have

ϒ(p, q) ≡ pT λnq, with λn =
(

0 1n

1n 0

)
, (7)

where addition is taken modulo 2 and 1n is the n × n identity
matrix such that ϒ(p, q) = 0 if and only if the Pauli operators
specified by p and q commute. We also define the inner
product

p · q ≡
∑

j

p jq j, (8)

where addition is taken modulo 2.

III. FOLIATION

Quantum computation proceeds by using a series of chan-
nels where each channel maps its input nontrivially onto some
output state [73]. These channels are commonly known as
gates, and with an appropriate composition of said channels
we can realize nontrivial quantum algorithms. In this work
we build a generic model that takes an arbitrary fault-tolerant
channel that is based on stabilizer codes and provides a
measurement-based protocol that performs the same function.

Channels are readily composed by unifying the output of
the last with the input of the next, so here we focus on devel-
oping a model of a single channel with a single designated
function. Most important is that the channel is tolerant to
errors, and as such we show that we can propagate quantum
error-correcting codes through a channel in a fault-tolerant
manner. The process of constructing such channels—which
are composed of a resource state and measurement pattern—is
known as foliation. Here, the term foliation refers to the lay-
ered like structure of the resource state that is constructed for
each channel which arises from an underlying error correcting
code. While a foliated system is relatively straight forward
to understand in comparison to its analogous circuit-based
counterpart, its microscopic details can become quite obtuse
without subdividing the system into constituent parts that
depend on their function.

In what follows is a macroscopic overview for the model
of foliation we consider with some description of the function
of each part. We conclude our overview with a reader’s
guide which outlines which subdivisions of the total system
each section addresses. Nonetheless, the reader should bear
the macroscopic structure presented in this section in mind
throughout our exposition.

A. The model

We look to build a foliated system, denoted F . The channel
consists of two components; a resource state, R, and a mea-
surement pattern, M, that propagates the input state that is
encoded within R onto the output system. The union of both
M and R can be regarded as a generating set of a subsystem
code.

The resource state is a specially prepared many-body
entangled state known as a graph-state that we describe in
more detail shortly. The measurement pattern is a list of
single-qubit measurements that are performed on the physical
qubits not included in the output system. The measurement
pattern is chosen specifically to move the input state through
the resource onto the output system up to the data collected
from the single-qubit measurements. In addition to this, the
measurement data obtained is used to determine the physical
qubits that have experienced errors during the preparation of
the resource state or during the readout process.

Abstractly, we can regard the foliation as a gauge-fixing
procedure [54–57] where the foliated system is described by
the gauge group

F = R ∪ M, (9)

where we use the symbol “· ∪ ·” to denote the group generated
by elements of both R and M. Specifically, the union symbol
is the free product between two groups. Foliation then is the
procedure of preparing the system R and subsequently fixing
the gauge of F by measuring M. The preparation of R and
choice of M determines the action of the channel, and the
data we obtain to identify the locations of errors.

Advantageous to the model we present is that, provided we
have a channel that is consistent with some chosen stabilizer
code in a sense we make precise shortly, we need only know
the input code to determine the logical effect of the channel
on the output system. The microscopic model can be used to
test and compare the tolerance that different foliated systems
have to physical faults.

We next briefly elaborate on the resource state R. The
resource state can be decomposed into an entangled channel
system K and ancilla qubits A together with a unitary operator
U A which couples the ancilla qubits to the channel

R = U A(K ⊗ A). (10)

The unitary U A takes the form of a circuit of controlled-Z
operations. Supposing that R = K, the resource state will
propagate the input system onto the output system provided
no errors have occurred before the measurements have been
performed and interpreted. The channel system accomplishes
this function using a series of one-dimensional cluster states
that propagate the input system onto its output via single-qubit
measurements.

The resource state also includes an ancilla system. Once
coupled to the channel, the ancilla qubits perform two roles
upon measurement. First of all they are included to perform
check measurements on the channel system to identify errors
that may be introduced to the physical qubits. Their sec-
ond role is to modify the input system through the channel
as it progresses to the output system. This modification is
analogous to code deformation in the more familiar circuit-
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Gin

Gout

FIG. 1. Three resource states shown in red, blue and green are
composed to map an input state onto the output state under a mapping
that is determined by the different resource states. A temporal
direction can be assigned such that the input system is input at the
initial time and the output system emerges at the final instance.

based model of quantum computation [40,47,53,74]. Later we
will investigate how different choices of channel affect the
transformation made on the input state.

B. A guide for the reader

The following exposition follows a number of avenues
to describe both the details of a foliated system at the mi-
croscopic level as well as their function at the macroscopic
level, but ultimately all the sections have the model presented
above in common. We thus provide a guide to help explain
the aspects of the fault-tolerant measurement-based model we
build over the course of this article.

The main results are stated most abstractly in Sec. V. Here
we describe the action a foliated system will have on an input
code Gin which is manifest at the output system Gout once
the data from the single-qubit measurement pattern has been
collected and processed. The section also describes the check
operators GR that are collected at the microscopic level of
the foliated system that are used to identify the locations of
errors. The measurements GR generate the stabilizer code
Gch.. These measurements are important for the the error-
correction procedure for the foliated system. The choice of
GR also determines the action the foliated system has on the
input code.

To understand the details of Sec. V we must first exam-
ine closely the one-dimensional cluster state that propagates
qubits through an entangled system of physical qubits. In
Sec. IV we study the one-dimensional system and we build
notation to describe parity measurements between qubits
propagated through a series of one-dimensional cluster-states.
These one-dimensional cluster states, and the parity measure-
ments we conduct between them, make up the measurement-
based channel for a quantum error-correcting code. The de-
tails presented in this section are necessary to understand the
technical aspects of the theorems we give in Sec. V.

Beyond Sec. V we look at specific instances of the general
theory we develop. Indeed, in Sec. VI we examine the mi-
croscopic details of the foliated variant of the twisted surface
code. In Sec. VII we show how we can compose different
channels to realize fault-tolerant measurement-based quantum
computation using the example of surface code quantum
computation.

In Fig. 1 we show a schematic diagram of how fault-
tolerant measurement-based quantum computation will pro-
ceed. The figure shows the composition of three channels,
each of which will perform a different operation. The system
is measured such that the logical data is mapped from the
input system onto the output system, under an operation that
is determined by the choice of different resource states.

IV. FOLIATED QUBITS

Here we look at a one-dimensional cluster state which
propagates a single qubit along a chain, or “wire,” of lo-
cally entangled qubits via single-qubit measurements. We
also show how to perform parity measurements between
several chains using additional ancilla qubits. Both of these
components are essential to the fault-tolerant models we will
propose in later sections.

A. The one-dimensional cluster state

The cluster state is readily described using the stabilizer
formalism introduced above. We will denote Pauli matrices
acting on the physical qubits, indexed μ, with operators
σ X [μ], σY [μ] and σ Z [μ]. This will discriminate the Pauli ma-
trices that act on the physical qubits from those that act on the
code qubits of the input and output quantum error-correcting
code. Similarly, the logical operators of the cluster state are
denoted X , Y, and Z without the bar notation for the same
reason. The logical qubits of the one-dimensional cluster-state
wire will become the code qubits of foliated stabilizer codes
as this discussion progresses. To this end, wherever there is
ambiguity, we will refer to the qubits that lie in a cluster state
as “physical qubits.” These qubits are not to be confused with
the “code qubits” of a quantum error-correcting code.

To describe the cluster state we first consider the initial
product state |ψ〉1|+〉2|+〉3 . . . |+〉N , where |ψ〉 is an arbitrary
single-qubit state, the states |±〉 are eigenstates of the Pauli-
X matrix, i.e., σ X |±〉 = (±1)|±〉. We can express this state
with the stabilizer group I = 〈{σ X [μ]}N

μ=2〉 whose logical
operators are X = σ X [1] and Z = σ Z [1]. The cluster state,
whose stabilizer group we denote as K = UI, with U defined
as

U =
N−1∏
μ=1

U Z [μ,μ + 1], (11)

where U Z [μ, ν] = (1 + σ Z [μ] + σ Z [ν] − σ Z [μ]σ Z [ν])/2 is
the controlled-phase gate. The unitary operator U couples
nearest-neighbor pairs of physical qubits along the open chain.

The following facts about the controlled-phase gate are
helpful throughout our exposition. We firstly note that oper-
ators U Z [μ, ν] and σ Z [ρ] commute for an arbitrary choice of
μ, ν and ρ. Moreover, U Z [μ, ν] and U Z [ρ, λ] commute for
any μ, ν, ρ and λ. Further, they satisfy the relationship

U Z [μ, ν]σ X [μ]U Z [μ, ν] = σ X [μ]σ Z [ν]. (12)

We also have that U Z [μ, ν] = U Z [ν, μ] by definition.
With the above definitions it is readily checked that K is

generated by stabilizer operators

C[μ] = σ Z [μ − 1]σ X [μ]σ Z [μ + 1], (13)
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FIG. 2. The one-dimensional cluster state. Physical qubits are
shown as vertices ordered along a line where the left-most vertex
represents the first qubit of the system and edges indicated pairs
of vertices that are entangled via a controlled-phase gate. (a) A
stabilizer operator denoted C[μ] shown at an arbitrary point along
the lattice. Panels (b) and (c) show, respectively, representatives of
the logical Pauli-X and Pauli-Z operators once the cluster state is
initialized.

for 2 � μ � N − 1, along with

C[N] = σ Z [N − 1]σ X [N]. (14)

The logical operators that act on the encoded qubit are

X = σ X [1]σ Z [2], Z = σ Z [1]. (15)

We show examples of a stabilizer operator, and the logical
Pauli-X and Pauli-Z operators in Fig. 2. As is common
when describing cluster states, we use a graphical notation
to describe the resource state of interest. In particular, pairs
of qubits that are coupled via a controlled-phase gate are con-
nected by an edge of a graph where each qubit is represented
by vertex.

The goal of the one-dimensional cluster state is to transport
the logical information along the chain onto the last qubit,
indexed N . To do so we make single-qubit measurements on
all of the qubits except qubit N . We study two different types
of foliated qubits. The first, which is already well understood
in the literature, transmits information by measuring the phys-
ical qubits in the Pauli-X basis. The second, which does not
appear in the literature to the best of our knowledge, moves
information using Pauli-Y measurements. We refer to these
two foliated qubits as type-I and type-II foliated qubits, re-
spectively. While we find that using type-I qubits is sufficient
to realize any foliated system of interest within the scope we
set here, we believe that there may be practical advantages
to be gleaned using type-II qubits in a foliated scheme. As
such we describe type-II foliated qubits in Appendix A and we
discuss their potential applications throughout our exposition.
For simplicity though we will by and large focus on type-I
foliated qubits in the main text.

B. Measurement-based qubit transmission

We review here a foliated qubit where the physical qubits
of the entangled chain are measured in the Pauli-X basis. The
stabilizer group of the chain K is defined above. We first
look at the action of measuring the first physical qubit of the
system. In particular we are interested in the action of the
measurement on the logical operators. This action is easily
understood by finding logical operators that commute with
the measurement. We find logical operators that commute

σX σZ
σZ

x1 σZ σX σZ

(c)

(a)

(d)

(b)

FIG. 3. The logical operators of the one-dimensional cluster state
after and before the first qubit is measured in the Pauli-X basis.
In panel (a) we show the logical Pauli-X operator and in panel
(b) we show the logical Pauli-Z operator after the first qubit is
measured, and the measurement outcome x1 is returned. Importantly,
after the measurement the logical Pauli-X operator is a single-qubit
Pauli-Z operator on the second qubit, whereas the logical Pauli-Z
operator is supported on two physical qubits. In contrast, before the
measurement the logical Pauli-Z operator is supported on a single
qubit, where as the logical Pauli-X operator is a weight-two operator.
We show the logical Pauli-X and logical Pauli-Z operator before
the measurement in panels (c) and (d), respectively, for comparison.
These are the same operators as those shown in Figs. 2(b) and 2(c),
respectively.

with the measurement operator M1 = σ X [1] by multiplying
the logical operators by stabilizer operators. We find that the
logical operator

Z ∼ σ X [2]σ Z [3] (16)

commutes with σ X [1]. Similarly X , as defined Eq. (15),
commutes with the measurement operator M1. After making
the measurement we project the code such that we have a new
stabilizer C[1] ∈ K where C[1] ≡ x1M1 = x1σ

X [1], where x1

is the measurement outcome of M1. Multiplying X by C1 we
have

X ∼ x1σ
Z [2]. (17)

The stabilizer C[2] is removed from K as it anti-commutes
with M1. Having accounted for the measurement outcome
we can also disregard the first qubit of the chain since the
projective measurement has disentangled it from the rest of
the system.

It is important to note that the logical operator X , up to
the sign determined by the measurement outcome, is now a
single-qubit Pauli-Z operator acting on the second qubit. In
contrast, before the measurement, the logical operator Z that
was a single-qubit Pauli-Z operator acting on the first qubit
has now become a weight-two operator acting on the second
and third physical qubits along the chain. We show the logical
Pauli-X and Pauli-Z operators after the first qubit has been
measured in Figs. 3(a) and 3(b). We compare these logical
operators with the same logical operators before the measure-
ment has taken place in Figs. 3(c) and 3(d), respectively.

The advantage of measurement-based quantum computa-
tion lies in the fact that once the resource state is prepared,
quantum information can be transmitted and processed by per-
forming single-qubit measurements on qubits of the resource
state. Supposing then that we can only make single-qubit mea-
surements, we see that we can measure the logical operator Z
with the single-qubit measurement σ Z [1] on the first qubit.
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Conversely, to infer the value of X , we measure the first qubit
in the Pauli-X basis, and the second qubit in the computational
basis. We thus see that we can learn either the logical Pauli-X
or Pauli-Z information from the cluster state by measuring the
appropriate physical qubit in the Pauli-Z basis, and the qubits
that preceded it in the Pauli-X basis. Alternatively, were we
to measure both qubit 1 and qubit 2 in the Pauli-X basis, we
would have moved the logical information along the chain
without having inferred any logical data.

To find a general expression for the logical operators,
suppose we have measured the first τ − 1 physical qubits
in the Pauli-X basis which returned outcomes xμ = ±1 for
μ < τ . We then have that

X ∼
⎛
⎝ τ/2∏

μ=1

x2μ−1

⎞
⎠σ Z [τ ], (18)

Z ∼
⎛
⎝ τ/2∏

μ=1

x2μ

⎞
⎠σ X [τ ]σ Z [τ + 1], (19)

for even τ and

X ∼
⎛
⎝(τ−1)/2∏

μ=1

x2μ−1

⎞
⎠σ X [τ ]σ Z [τ + 1], (20)

Z ∼
⎛
⎝(τ−1)/2∏

μ=1

x2μ

⎞
⎠σ Z [τ ], (21)

where τ is odd. With this, we see that we can learn the
logical Pauli-X information by making a single-qubit Pauli-Z
measurement on a site where τ is even given that we have
the outcomes of physical Pauli-X measurements made on the
first τ − 1 qubits. Likewise we can learn the logical Pauli-Z
information by making a physical Pauli-Z measurement on a
site where where τ is odd, provided we have measured all of
the qubits with μ < τ in the Pauli-X basis. To this end, we
find that it is particularly convenient to use a new notation to
index the qubits of the chain. We define

X (t ) = 2t, Z (t ) = 2t − 1, (22)

such that now we can rewrite the logical operators of the
system such that

X ∼ 	X (t )σ Z [X (t )], Z ∼ 	Z (t )σ Z [Z (t )], (23)

for any t , where the operators

	X (t ) ≡
t∏

μ=1

σ X [Z (μ)], 	Z (t ) ≡
t−1∏
μ=1

σ X [X (μ)]. (24)

Importantly, the operators 	X (t ) and 	Z (t ) are the tensor
product of the Pauli-X matrix. This means the eigenvalues
of these operators are inferred from the single-qubit measure-
ment pattern if all the qubits along the chain are measured in
the Pauli-X basis as is the case for type-I foliated qubits.

The above redefinition of indices is such that at each “time”
interval, indexed by t , we can recover either the logical Pauli-
X or Pauli-Z information from the chain with a single-qubit
Pauli-Z measurement provided the previous qubits along the

σX

σX

σX

σX
σZ

σX

σX

σX
σZ

t − 1
t

(a)

(b)

FIG. 4. (a) Logical Pauli-X and (b) logical Pauli-Z operators at
time interval t . Each time interval contains one black vertex and one
red vertex. Local to each time interval we can adjust our single-qubit
measurement pattern by measuring the appropriate qubit in the Pauli-
Z operator to measure either the logical Pauli-X or Pauli-Z operator
given that the preceding qubits of the system are measured in the
Pauli-X basis.

chain have been measured in the Pauli-X basis. Specifically,
each interval contains two adjacent qubits of the chain, the
first, which lies at an odd site τ = 2t − 1, gives access to
the Pauli-Z information via a single-qubit measurement, and
at every second site, τ = 2t , we can learn logical Pauli-X
information with a single-qubit Pauli-Z measurement. We
show the logical operators at a given time interval in Fig. 4.

C. Measurements using ancilla

We have thus far imagined replacing the single-qubit Pauli-
X measurement on some appropriately chosen qubit with a
Pauli-Z measurement to perform logical measurements on
the propagated information. To develop foliated codes further
we will require the ability to perform logical measurements
without adapting the measurement pattern of the foliated
qubits. Instead we couple extra ancilla qubits to the system
to learn logical information at a given time interval.

To show how to make a logical measurement of a one-
dimensional cluster state with an ancilla we consider the
resource state R = U A(K ⊗ A), as we have introduced in
Eq. (10), where the channel K is the one-dimensional cluster
state described above and A = 〈σ X [a]〉 describes the stabi-
lizer group of a single ancilla qubit prepared in the |+〉a

state. We couple the ancilla to K with unitary U A which we
specify shortly. We use the elements of A to measure logical
information from K.

We must specify a measurement pattern to carry out the
propagation of information, as well as the single-qubit mea-
surement we make on the ancilla to learn logical information
from the resource state. We write the pattern of measurements

M = MC ∪ MA, (25)

where MC (MA) describes the measurements made on the
qubits of subsystem K(A). For the case of type-I foliated
qubits discussed previously we have MC = 〈{σ X [μ]}N−1

μ=1〉.
After the measurements are performed the resulting quantum
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information is maintained on the output qubit which is the last
qubit of the chain.

Logical operators of the resource state, P ∈ L = C(R)\R,
are measured if P ∼ P′ ∈ M. For now we choose MA =
〈σ X [a]〉 to this end. In this example we couple the ancilla to
the target qubit indexed T = P(t ) with unitary U A = U Z [T, a]
to perform a logical measurement P ∈ L where P = X, Z is a
logical Pauli operator.

We check that P′ ∈ M by studying the stabilizer group of
the resource state R. The state has stabilizers

C[a] = σ X [a]σ Z [T ] (26)

and

C[T ] = σ Z [T − 1]σ X [T ]σ Z [T + 1]σ Z [a]. (27)

Now, using that P ∼ P′ = 	P(t )σ Z [P(t )] we have

P ∼ P′C[a] = 	P(t )σ X [a] ∈ M, (28)

provided MA = 〈σ X [a]〉 as prescribed, thus giving the desired
logical measurement at time interval t once the resource state
is measured with measurement pattern M.

We additionally find that we can measure the logical Pauli-
Y information from a type-I foliated qubit using an ancilla-
assisted measurement. We achieve this by coupling the ancilla
to multiple target qubits. To show this we continue with the
resource state model R given in Eq. (10) where again we
have A = 〈σ X [a]〉 and K is a one-dimensional cluster state.
The chain is measured as a type-I foliated qubit such that
MC = 〈{σ X [μ]}N−1

μ=1〉, and we couple the ancialla to the chain
with the unitary U A = U Z [Z (t ), a] × U Z [X (t ), a]. We find
that Y ∼ Y ′ ∈ M provided MA = 〈σY [a]〉 as we show below.

From the discussion given, we have that the operator
i{	X (t )σ Z [X (t )]}{	Z (t )σ Z [Z (t )]} is a representative of the
logical Pauli-Y operator for K. It is then readily checked then
that

iXZ ∼ Y ′ = i{	X (t )σ Z [X (t )]}{	Z (t )σ Z [Z (t )]}σ Z [a], (29)

is a representative of the logical Pauli-Y operator of R using
the expressions given in Eqs. (12) and (24). Then using the
stabilizer C[a] ∈ R, where

C[a] = σ X [a]σ Z [Z (t )]σ Z [X (t )], (30)

we find that iXZ ∼ Y ′C[a] ∈ M provided MA = 〈σY [a]〉
which is depicted in Fig. 5, thus showing we can infer the
logical Pauli-Y data of a type-I foliated qubit from M by
coupling to multiple targets. We finally remark that one can
show that the resource state with U A = U Z [T1, a] × U Z [T2, a]
where T1 = X (t1) and T2 = Z (t2) such that t1 �= t2, will also
recover encoded Pauli-Y information. We do not require this
degree of generality here so we leave the proof of this fact as
an exercise to the reader.

We conclude this subsection by summarizing the differ-
ences between type-I foliated qubits considered here and the
type-II qubits discussed in Appendix A. Indeed, here we
have shown that we can make a Pauli-Y measurement with
a foliated qubit by coupling an ancilla to two target qubits. In
contrast, following an argument similar to that given above,
by measuring the physical qubits of a foliated chain in the
Pauli-Y basis instead of the Pauli-X basis we find that we

σY

σX σX σX
σX σX

FIG. 5. The logical Pauli-Y operator on a type-I foliated qubit
where the blue ancilla qubit is coupled both to qubits Z (t ) and X (t )
of the chain. The logical operator commutes with the measurement
pattern where all of the qubits along the chain are measured in the
Pauli-X basis, and the ancilla qubit is measured in the Pauli-Y basis,
thus allowing us to recover Pauli-Y data from the foliated qubit.

can measure the Pauli-Y operator by coupling an ancilla to
a single qubit. This comes at the expense of including three
qubits at each time interval instead of two, as is the case with
type-I foliated qubits. As such, the physicist that is looking
to perform a measurement-based experiment that demands a
significant number of Pauli-Y measurements should decide
carefully whether type-I or type-II foliated qubits are the
most appropriate. Ultimately, the decision should depend on
whether preparing physical qubits, or entangling interactions
between pairs of physical qubits, is the most precious com-
modity of a given laboratory.

D. Parity measurements with foliated qubits

In general it will be necessary to make parity measure-
ments between several foliated qubits that are encoded on
different chains. We now specify the channel of a resource
state consisting of several foliated qubits, together with an an-
cilla system that we use to make logical measurements. More
precisely we consider the resource state R = U A(K ⊗ A),
of n foliated qubits. As in the previous section, for now we
consider a single ancilla prepared in a known eigenstate of the
Pauli-X basis. The channel of the resource state is such that

K =
n⊗

j=1

K j, (31)

and K j = UjI j is the stabilizer group of the jth one-
dimensional cluster state of length Nj as defined in Sec. IV A.
It will also become helpful later on to define the unitary
operator that entangles the initial state to give the channel
system, namely,

UC =
n⊗

j=1

Uj, (32)

where Uj =∏N−1
μ=1 U Z

j [μ,μ + 1] and U Z
j [μ,μ + 1] denotes

the controlled-phase gate acting on qubits μ and μ + 1 on the
j-th chain of qubits. This will be helpful when we consider
variations on the initial state I =⊗n

j=1 I j . One could choose
the length of each cluster arbitrarily but for simplicity we
suppose that all the type-I chains have an equal length Nj =
2D + 1 where D is the number of time intervals and we
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include an additional qubit at the end of the chain to support
the output of each foliated qubit.

The logical operators of K j are denoted Xj and Zj , and
its physical qubits are indexed Xj (t ) and Zj (t ) according to
Eq. (22) where indices have been appended. Again, we have
logical operators Pj = Xj, Zj such that

Pj ∼ 	P
j (t )σ Z [Pj (t )], (33)

where the stabilizer equivalence relation is taken with respect
to the stabilizer group K. For now we consider the ancilla
system that includes only a single ancilla qubit, i.e., A =
〈σ X [a]〉.

The measurement pattern for the foliated system M =
MC ⊗ MA is specified

MC =
n⊗

j=1

MC
j , (34)

where MC
j is the set of single-qubit measurements acting for

the cluster K j . We have that MC
j = 〈{σ X [μ]}Nj−1

μ=1 〉 for type-I
foliated qubits. We determine the measurements we make on
the ancilla system, MA, depending on the choice of parity
measurement.

We look to prepare R such that we measure the logical
Pauli operator P ∈ Pn by measuring the ancilla qubit in an
appropriate basis. To achieve this logical measurement, we
couple the ancilla to the channel with the unitary

U A =
∏

j∈|pX |
U Z [Xj (t ), a]

∏
j∈|pZ |

U Z [Zj (t ), a], (35)

where p = (pX pZ )T such that p = v(P) as defined in Eq. (5).
Again, for simplicity, we have coupled the ancilla to the
physical qubits of a common time interval t , but showing
our construction is general beyond this constraint is straight
forward. In fact, as we will observe, we find practical benefits
from coupling an ancilla to physical qubits in different time
intervals later in Sec. VI.

Upon coupling the ancilla to the channel system to form
the resource state, the new stabilizer group for the resource
state will include C[a] = U Aσ X [a]U A† ∈ R such that

C[a] = σ X [a]
∏

j∈|pX |
σ Z
[
Xj (t )

] ∏
j∈|pZ |

σ Z [Zj (t )]. (36)

We additionally have logical operators of the resource
state,

Xj ∼ σ Z [a]pZ
j 	X

j (t )σ Z [Xj (t )] (37)

and

Zj ∼ 	Z
j (t )σ Z [Zj (t )], (38)

which follows from Eq. (12) and the definition of the logical
operators of the channel system K shown in Eq. (33), where
pZ

j is the jth element of the vector pZ . Combining the above
expressions we find P′ ∼ P such that

P′ = σ Z [a]pX ·pZ
∏

j∈|pX |
	X

j (t )σ Z [Xj (t )]

×
∏

j∈|pZ |
	Z

j (t )σ Z [Zj (t )]. (39)

σX

σX

σX

σX σX

σX

σX

t t + 1

FIG. 6. Two type-I foliated qubits where ancillas are coupled to
perform X1X2 parity measurements. To the left of the figure we show
a logical operator ∼X1X2 by coupling an ancilla, shown in blue,
to qubits X1(1) and X2(1). To the right of the figure we show an
element of the measurement pattern that is generated by two parity
measurements that are made at different time intervals. This term is
also a stabilizer of F .

It follows then that P ∼ P′C[a] such that

P′C[a] = σ X [a]σ Z [a]pX ·pZ
∏

j∈|pX |
	X

j (t )
∏

j∈|pZ |
	Z

j (t ). (40)

We therefore have that P ∼ C[a]P′ ∈ M provided we choose
σ X [a]σ Z [a]pX ·pZ ∈ MA, thus showing we can infer the logical
operator P from the measurement data given an appropriate
choice of measurements M. To the left of Fig. 6 we show the
element P′ ∈ M with P′ ∼ P = X1X2 measured from a pair
of type-I foliated qubits. We also show a parity check P′ ∈ M
in Fig. 7 such that we measure P′ ∼ P = Y1Y2. In this case the
ancilla qubit couples with each foliated qubit twice to include
Pauli-Y terms in the check.

E. The compatibility of parity measurements

Having now discussed how to include a single logical
measurement in the foliated system, we next investigate the
conditions under which we can simultaneously measure two
degrees of freedom of the input system, P and Q where
P, Q ∈ Pn.

σX

σX
σX

σX

σX
σX

σX
σX

σX

σX
σX

FIG. 7. Two type-I foliated qubits where we use the ancilla to
measure the parity of the two foliated qubits in the Pauli-Y basis. The
ancilla is coupled to the physical qubits indexed Xj (t ) and Zj (t ) for
each foliated qubit j = 1, 2. We measure the ancilla in the Pauli-X
basis, since there are an even number of Pauli-Y terms in the parity
measurement.
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We now consider a resource state R with two ancillas A =
〈σ X [a], σ X [b]〉 that are coupled to the channel K =⊗ j K j at
time intervals t and t ′ via unitary U A = UaUb, where

Ua =
∏

j∈|pX |
U Z [Xj (t ), a]

∏
j∈|pZ |

U Z [Zj (t ), a] (41)

and

Ub =
∏

j∈|qX |
U Z [Xj (t

′), b]
∏

j∈|qZ |
U Z [Zj (t

′), b], (42)

where p = v(P) and q = v(Q). The measurement pattern is
chosen according to the rules above such that the chosen
parity measurements are made correctly. In any case ancillas
a and b are measured in either the Pauli-X or Pauli-Y basis.
We first suppose that t ′ �= t , and afterwards we look at the
more complicated case where t = t ′. As we will show, we find
that we can can measure both P and Q simultaneously from
the logical space of the channel provided P and Q commute.
While the setup presented above is sufficient if both Ua and
Ub are coupled to the channel at two different time intervals,
we find that in certain situations it is necessary to modify U A

to measure both P and Q with a coupling at a common time
interval.

Without loss of generality we begin with the case where
t < t ′ such that the operator as in Eq. (40) is an element of
R since this operator shares no common support with Ub. The
resource state additionally includes the representative Q′ ∼ Q
of the logical operator, such that

Q′ = Ua

⎡
⎣M[b]

∏
j∈|qX |

	X
j (t ′)

∏
j∈|qZ |

	Z
j (t ′)

⎤
⎦U †

a , (43)

where we take M[b] = σ X [b]σ Z [b]qX ·qZ
, which follows from

the inclusion of the term C[b] = Ubσ
X [b]U †

b ∈ R. To deter-
mine the value of Q′ we are interested in the commutation re-
lations between the operator Ua and the operators 	X

j (t ′) and
	Z

j (t ′), which share mutual support on the physical system.
Using Eqs. (12) and (33) it follows that

Ua	
X
j (t ′)U †

a = 	X
j (t ′)σ Z [a]pZ

j (44)

and

Ua	
Z
j (t ′)U †

a = 	Z
j (t ′)σ Z [a]pX

j . (45)

Given that UaM[b]U †
a = M[b] we thus have that

Q′ = σ Z [a]ϒ(p,q)M[b]
∏

j∈|qX |
	X

j (t ′)
∏

j∈|qZ |
	Z

j (t ′), (46)

where ϒ(p, q) is given in Eq. (7). In this case, for ϒ(p, q) �= 0
we must measure ancilla a in the Pauli-Z basis to infer the
value of Q from the measurement pattern. However, to mea-
sure P we must measure ancilla a in either the Pauli-X basis
or the Pauli-Y basis to infer its value from M. The conclusion
of this discussion is that we cannot infer both measurements
P and Q from M unless ϒ(p, q) = 0 for them to be measured
simultaneously from the logical space of the channel. This is,
of course, consistent with the standard postulates of quantum
mechanics which only permits the simultaneous measurement
of both P and Q provided the operators commute.

We next consider the case that t = t ′. In this case we have
that

Ua	
X
j (t )U †

a = 	X
j (t )σ Z [a]pZ

j (47)

and
Ub	

X
j (t )U †

b = 	X
j (t )σ Z [b]qZ

j . (48)

Unlike the previous case though, Ua and Ub commute with
	Z

j (t ) terms. To this end we find that

P ∼ M[a]σ Z [b]pX ·qZ
∏

j∈|pX |
	X

j (t )
∏

j∈|pZ |
	Z

j (t ) (49)

and
Q ∼ M[b]σ Z [a]pZ ·qX

∏
j∈|qX |

	X
j (t ′)

∏
j∈|qZ |

	Z
j (t ′), (50)

where M[a] and M[b] are either Pauli-X or Pauli-Y measure-
ments. We thus see that with the current choice of U A the
measurements of both P and Q are incompatible unless both
pX · qZ = 0 and pZ · qX = 0; a sufficient condition for P and
Q to commute. Indeed, if PQ = QP, then pX · qZ = pZ · qX .
We note that for CSS stabilizer codes where either pX = 0
or pZ = 0 holds for all stabilizers, we have that pX · qZ =
pZ · qX = 0 necessarily holds between all pairs of stabilizers.
As such, none of the following measures we describe are
necessary to measure the stabilizer checks for foliated CSS
codes as the authors considered in Ref. [58].

From here on we suppose that P and Q commute. Sup-
posing that pX · qZ = pZ · qX = 0 we find that the values of
P and Q are members of M as we have already proposed.
We find that we can also modify the channel to measure two
commuting operators P and Q, even if pX · qZ = pZ · qX = 1.
One approach to deal with this issue, as we have already
discovered, is to measure the two operators at different time
intervals. A smaller modification may simply be to change
only a subset of the target qubits of either Ua or Ub onto a
different time interval. We present an example where we use
this method to good effect in the following section. Alter-
natively, we can append an additional controlled-phase gate,
U Z [a, b], in the entangling circuit U A which also recovers the
compatibility of the two commuting measurements. We adopt
this approach throughout the main text.

V. THE FOLIATED SYSTEM

In this section we define the foliated channel; the fault-
tolerant system that will propagate an input quantum error-
correcting code onto an output state. Further, we will also
see that with a suitable choice of resource state we are able
to measure the input code in such a way that it is deformed
by the foliated system. In what follows we sketch out the
different components we use to make up a foliated system
before presenting two theorems that describe its function.
Specifically, we will require definitions of the initial system,
the channel system, the resource state and the system after the
the prescribed pattern of measurements is made. Theorem 1
then explains the action of the foliated system on the logical
input state, and Theorem 2 describes stabilizer checks we can
use to identify errors that act on the physical qubits of the
foliated system. See Ref. [57] for a related discussion from the
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(a) (b)

(c) (d)

FIG. 8. Sketch of the foliation process and construction of the
system. Time moves from left to right across the page in each figure.
(a) The initial system, I, consists of an input code, Gin, shown with
green qubits to the left of the figure, and other qubits, shown in black
and red in the figure, prepared in the |+〉 state. (b) The channel
system K is produced by applying unitary UC to I. The edges in
the figure represent controlled-phase gates prepared between pairs
of qubits. Effectively, we have concatenated each of the qubits of
Gin into the code space of a one-dimensional cluster state. (c) We
produce R by entangling the qubits of the ancilla system, A, to
the channel system. The coupling is specified by the choice of Gch..
This choice determines the check operators of the foliated system,
and the deformation on the input qubit. (d) The qubits of R are
measured according to M. This propagates the input system onto the
output system, Gout, shown in purple to the right of the figure. The
measurement pattern determines the value of the stabilizer checks,
and in turn the correction that must be applied to the output system.

perspective of code deformations with stabilizer codes. The
construction is summarized in Fig. 8.

As described in Sec. III, the foliated system is defined as

F = R ∪ M, (51)

where R is the resource state, and M is the measurement
pattern. The system F is jointly determined by an input code
Gin and a channel code Gch.. Also to be determined is the length
of the channel D, which, unless otherwise stated, we suppose
is large, i.e., comparable to the distance of the code Gch.. We
assume that both codes Gin and Gch. are stabilizer codes and,
moreover, are supported on the same set of qubits that we
index 1 � j � n.

The resource state is of the form R = U A(K ⊗ A) where K
is the channel system and A is a set of ancilla qubits prepared
in a product state that we couple to the channel with unitary
operator U A. The channel K is specified by Gin. The ancilla
system A and the entangling unitary U A are determined by a
generating set of Gch..

We remind the reader that we index the qubits of each chain
in terms of time intervals, indexed 1 � t � D, such that the
qubit at the 2t − 1th site (2t th site) of the jth chain is indexed
Zj (t ) (Xj (t )) and we have that the last qubit of each chain is
indexed Zj (D + 1) = 2D + 1 in the Pauli coordinate system
which supports the output state.

Previously we have considered the tensor product of n
one-dimensional cluster states,

⊗n
j=1 K j , where K j = UjI j ,

to propagate n individual qubits described by logical operators

Xj and Zj for 1 � j � n. In the following definition of the
channel system we encode the input code Gin onto the logical
qubits of the n foliated qubits.

Definition 1 (Channel system). The channel system K =
UCI is produced by applying unitary operator UC as defined
in Eq. (32) to the initial state I. The stabilizer group I is such
that the stabilizers of Gin are encoded on the qubits indexed
Zj (1), and the other qubits are prepared in a product state.
Explicitly, for each G ∈ Gin we have Gin ∈ I with

Gin ≡
∏

j∈|gX |
σ X [Zj (1)]

∏
j∈|gZ |

σ Z [Zj (1)], (52)

where (gX gZ )T = v(G). The other qubits of I are encoded in
the +1 eigenvalue eigenstate of the Pauli-X matrix, such that
we have

σ X [Xj (t )] ∈ I ∀ j, t � D (53)

and

σ X [Zj (t )] ∈ I ∀ j, 2 � t � D + 1. (54)

The resource state is generated by coupling ancilla qubits
to the channel. Measuring these qubits in the appropriate basis
provides data to identify qubits that have experienced errors.
We couple ancilla to the resource state in a fashion according
to a particular generating set GR of some Abelian stabilizer
group Gch.. The generating set GR may be an over complete
generating set of Gch..

Definition 2 (Resource state). For a choice of input code
Gin that is implicit in the channel system K, see Def. 1, and
channel code Gch. with a specified generating set GR, we
define the stabilizer group of the resource state by

R = U A(K ⊗ A), (55)

where the ancilla system A and entangling unitary U A are
defined as follows. The ancilla system is in the product state

A = {σ X [G(t )] : ∀t, G ∈ GR}, (56)

where the coordinates G(t ) uniquely index all the ancillae in
the ancilla system at a given time interval t . The entangling
unitary U A is given by

U A = V
∏

G∈GR, t

U [G(t )], (57)

where

U [G(t )] =
∏

j∈|gX |
U Z [Xj (t ), G(t )]

∏
j∈|gZ |

U Z [Zj (t ), G(t )], (58)

for (gX gZ )T = v(G) and V =∏t V (t ) with

V (t ) =
∏

〈〈G,H〉〉
U Z [G(t ), H (t )]gX ·hZ

, (59)

where we take the product of all unordered pairs of elements
G, H ∈ GR, with G �= H , and we have that (gX gZ )T = v(G)
and (hX hZ )T = v(H ).

We remark that in the above definition, the unitary U A cou-
ples the ancilla qubits to the channel system along with each
other. The component V enables the simultaneous measure-
ment of all commuting measurements of G ∈ GR at common
time intervals. This is achieved by applying controlled-phase
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gates between ancilla qubits G(t ) and H (t ) where gX · hZ =
gZ · hX = 1. A simple example giving intuition for why this
operator is necessary is discussed in Sec. IV E.

We specify a measurement pattern that propagates infor-
mation through the resource state onto the output system
while additionally acquiring data that enables us to identify
the locations of errors.

Definition 3 (Measurement pattern). The measurement
pattern is such that

M = MC ∪ MA, (60)

where MC and MA denote the measurements on the channel
and ancilla system, respectively, given by

MC = {σ X [Zj (t )], σ X [Xj (t )] ∈ MC : 1 � t � D} (61)

and

MA = {M[G(t )] ∈ MA : G ∈ GR, 1 � t � D}, (62)

where (gX gZ )T = v(G) and we have

M[G(t )] = σ X [G(t )]
(
iσ Z [G(t )]

)gX ·gZ

. (63)

It may be helpful to expand Eq. (63) such that

M[G(t )] =
{
σ X [G(t )] if gX · gZ = 0,

σY [G(t )] if gX · gZ = 1,
(64)

and we remember the inner product is taken modulo 2.

A. Foliation

With the resource state R and measurement pattern M
defined above we now turn our attention to the foliated system
F = R ∪ M. Important properties of the system will be
determined from elements in C(F ). While we have introduced
the foliated model as a subsystem code, we have included
additional structure to capture the process of foliation, namely,
we prepare the system in a fixed gauge of the resource state,
R and we project the system onto a gauge of M. As such,
elements of C(F ) have a different role depending on their
inclusion in R and M.

Elements C(F ) ∩ M are observable degrees of freedom
that are measured under projection by the single-qubit mea-
surement pattern. Among these include stabilizer operators
and logical operators of the input state that are measured by
the resource. However, elements C(F )\M give rise to the
stabilizers and logical operators of the output state which are
propagated or inferred at a later point by taking the output
as the input of another channel. Further, we can also look
at elements of C(F ) with respect to their membership of
R. Indeed, elements C(F ) ∩ R are stabilizers, whereas ele-
ments C(F )\R are logical degrees of freedom that are either
propagated through the resource state or measured under the
projection.

Remarkably, due to the decomposition of the foliated sys-
tem we have presented here we can separate error correction,
determined by stabilizer group S , and the logical function
of a given channel, Gout, into two separate parts. Let us
now characterize the output state of the foliated system after
measurements have been performed, as well as the stabilizers
of the channel responsible for detecting errors.

The output of the channel consists of an encoding, de-
termined by Gout, and a set of logical operators Lout. The
logical function of the channel can be summarized by how it
maps input logical operators to output logical operators. The
following theorem describes the output encoding and logical
degrees of freedom.

Theorem 1. For any foliated channel F determined by
input code Gin and channel code Gch., the output state is a
codeword of the output code Gout, with

Gout = Gch. ∪ [Gin ∩ C(Gch. )]. (65)

The logical operators of Gout are given by

Lout = [C(Gin) ∩ C(Gch. )]\(Gin ∪ Gch. ). (66)

Further, elements of [C(Gin)\Gin] ∩ Gch. are measured.
The two equations given above specify precisely the func-

tion of a channel at a macroscopic level, independent of the
foliated system that performs the manipulation of the input
state.

For the channel to be fault-tolerant, we need the channel
to contain stabilizers that can check for errors, and these
stabilizers need to be able to be inferred from measurements.
Recall the stabilizer of the foliated sytem is given by

S = C(F ) ∩ R ∩ M. (67)

The following theorem identifies two types of important oper-
ators that we call bulk stabilizers and boundary stabilizers.

Theorem 2. For any foliated channel F specified by input
code Gin and GR which generates Gch., we have

(1) Sbulk[G(t )] ∈ S ∀G ∈ Gch., 2 � t � D,

(2) Sbdry.[G(t )] ∈ S ∀G ∈ Gch. ∩ Gin, t � D,

where for v(G) = (gX gZ )T we have

Sbulk[G(t )] = M[G(t )]M[G(t − 1)]
∏

j∈|gX |
	X

j (t )	X
j (t − 1)

×
∏

j∈|gZ |
	Z

j (t )	Z
j (t − 1), (68)

and

Sbdry.[G(t )] =
∏

G̃∈ξ (G)

M[G̃(t )]
∏

j∈|gX |
	X

j (t )
∏

j∈|gZ |
	Z

j (t ), (69)

where ξ (G) ⊆ GR is defined such that the product of all the
terms of ξ (G) give G ∈ Gch..

We remark that the set ξ (G) necessarily exists by defini-
tion, since we construct the resource state with terms G ∈ GR
which generate Gch.. The set ξ (G) is not necessarily unique, in
which case any choice will suffice. We defer the proofs of the
above Theorems to Appendix B.

It is also worth pointing out that Theorem 2 may not neces-
sarily describe the stabilizer group of F exhaustively. Indeed,
with certain choices of GR we can obtain additional elements
of C(F ) ∩ F . For instance, we may choose to foliate a self-
correcting stabilizer model [52] such as the four-dimensional
toric code [75]. In which case we have additional checks that
are local to a given time interval due to constraints among the
stabilizer group. It is precisely the constraints that these mod-
els present that give rise to single-shot error correction [55,76–
79] which enable us to identify errors on the ancillary qubits
we use to make checks, see also Appendix C for a discussion
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on single-shot error correction by foliation of the gauge color
code. The stabilizers we have described in Theorem 2 are
generic to all foliated models using the construction we have
presented.

Given some foliated system, it is then important to find
an efficient decoding algorithm. In recent work [80] it was
proposed that a decoder based on minimum-weight perfect
matching can be found if the symmetries of a stabilizer code
are known. This has been demonstrated for several examples
of topological codes, see, e.g., Ref. [81], and it is suggested
that this idea can be extended to more general classes of
stabilizer codes. Given such a decoder, Ref. [80] also outlines
how to extend these symmetries along a timelike direction
to find a minimum-weight perfect-matching decoder for the
situation where stabilizer measurements are unreliable; see
Appendix D, Example 8 of Ref. [80]. This decoder will map
directly onto the stabilizers of a foliated system where errors
on ancilla qubits correspond to measurement errors. As such,
we expect that this approach to designing decoding algorithms
is readily applicable to the foliated models we have proposed
here. We also remark on Ref. [82] where they propose a
decoder for foliated CSS codes where a decoder for Gch. is
already known and belief propagation between time intervals
is used.

Given a decoder, we can then compare the tolerance of dif-
ferent foliated systems to noise. Introducing an independent
and identically distributed noise model to the foliated systems
we have proposed will be equivalent to a phenomenological
noise model [81] for the channel code. With some thought,
one could also consider introducing correlated errors between
the qubits of the foliated systems to simulate circuit level
errors on some system of interest. This was first studied with
the surface code in Ref. [44].

In the following section we apply our procedures for fo-
liation to the twisted surface code as an illustrative example
that we later use in our model of fault-tolerant quantum
computation. We note that the above construction and the-
orems are readily generalized to include other methods of
foliation including foliation using type-II qubits as we will
see in the next section. Our scheme for foliation and related
results also generalize to subsystem codes provided they are
generated by a group with particular properties. For instance,
our results apply directly to all CSS subsystem codes. We give
a discussion of this extension in Appendix C.

We finally remark that our model for foliation shares
some parallels with the work in Ref. [83]. In this work,
the authors find subsystem codes by unifying the wires of
a circuit of Clifford elements with the qubits of a quantum
error-correcting code. They then determine gauge generators
from the Clifford operations of the circuit. In our work the
cluster-state model naturally separates the wire segments of
a quantum computation and specifies them by qubits over
time intervals. We then include an additional qubit for each
measurement we make over the duration of the computation.
The difference between these schemes is that the former con-
struction focuses on the unitary gates of an encoding circuit
whereas here we focus on the measurements we use to detect
errors. While the two constructions are apparently distinct,
it may be valuable to find a way of unifying them in future
work.

X X

X X

(b)

Z

Z

Z

Z

Z Z

Y X

(a)

X X

Z Z

1 2 L

FIG. 9. The twisted surface code model. Examples of star and
plaquette operators are shown explicitly on thick outlined plaquttes
on blue and yellow faces, respectively. Logical operators are sup-
ported on the qubits covered by the yellow and blue dotted lines. A
defect line runs from the right-hand side of the lattice to its center.
An example of a modified stabilizer that is supported on the defect
line is shown at (a). The green line terminates at the center of the
lattice. We write the stabilizer where the defect line terminates below
the lattice at (b). We focus on foliating the stabilizers that lie on the
defect line, as such we number them explicitly with indices shown in
black circles on the figure.

VI. THE TWISTED SURFACE CODE

The twisted surface code [48] provides an interesting
example of a stabilizer code that cannot be foliated using
existing constructions [58]. Moreover this example will be
helpful later on when we consider different schemes for fault-
tolerant measurement-based quantum computation. We will
briefly review its stabilizer group before showing resource
states for the foliated model.

The stabilizer group for the twisted surface code is closely
related to that of the surface code. However the model has an
improved encoding rate due to a twist defect [45] lying in the
center of the lattice [47,48]. Nonetheless, due to the central
twist defect we cannot find a CSS representation of the model,
and as such, we use the generalized construction for foliation
given above. We will mostly focus on these stabilizers.

The stabilizer group for twisted surface code Gtwisted is
represented on the lattice in Fig. 9 where qubits lie on the ver-
tices of the lattice and stabilizers are associated to the faces,
indexed f . On blue (yellow) faces we have the well-known
star (plaquette) operators which are the product of Pauli-X
(Pauli-Z) operators lying on the vertices on the corners of
their respective face. The twisted surface code additionally
has a defect line running from the right-hand side of the
lattice to the center, along which, stabilizers are modified.
The stabilizers lying along the defect line, which is marked
green in the figure, are weight-four terms that are the product
of Pauli-X (Pauli-Z) stabilizers on the blue (yellow) part of
the face. An example of a modified stabilizer is shown in
Fig. 9(a). The stabilizer where the defect line terminates also
includes a Pauli-Y term as shown in Fig. 9(b). Representations
of logical operators X (Z) that act on the one encoded qubit
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FIG. 10. A foliation pattern for the defect line of the twisted
surface code. The code is initialized at the bottom of the figure where
the lattice that describes the stabilizers of the code are shown. Qubits
that are coupled with a controlled-phase gate are connected by an
edge. Qubits indexed Zj (t ) (Xj (t )) are colored black (red), and ancilla
qubits are colored in blue (green), if they are measured in the Pauli-X
(Pauli-Y) basis. Example elements Sbulk (as in Theorem 2) which
belong to S = C(F ) ∩ R ∩ M are also shown.

are the product of Pauli-X (Pauli-Z) operators supported on
the dotted blue (yellow) lines on the lattice.

We now consider foliating the twisted surface code with
the prescription given in the previous section where Gch. =
Gtwisted. Stabilizers of the form of a CSS code, i.e., stabilizers
G ∈ Gtwisted where either gX or gZ are the null vector where
(gX gZ )T = v(G), are foliated using the methods of Ref. [58]
and take the form of those in the original works [38,39,44],
as such we focus on the terms that lie along the defect line.
In Fig. 10 we show the resulting graph where physical qubits
indexed Zj (t ) (Xj (t )) are colored black (red) in the figure and
time runs vertically up the page.

We denote the stabilizers lying along the defect line G f ∈
Gtwisted where we index face terms 1 � f � L as shown in
Fig. 9. We consider vectors v(G f ) = (gX

f gZ
f )T . Notably, the

stabilizers that lie along the defect line all have gX
f · gZ

f +1 = 1.
As such, the operator

V =
∏
f ,t

U Z [S f (t ), S f +1(t )] (70)

couples adjacent ancilla qubits. These bonds are shown as
horizontal edges connecting adjacent blue ancilla qubits in
Fig. 10. Further, the stabilizer G1 is such that gX

1 · gZ
1 = 1,

we therefore measure these ancillas in the Pauli-Y basis, i.e.,
σY [G1(t )] ∈ M. We color these ancilla qubits in green in
Fig. 10.

The figure also shows two stabilizers, i.e., elements of S =
C(F ) ∩ R ∩ M of the form shown in Eq. (68). The stabilizers
are weight six, except the stabilizer at the center of the lattice
which includes a Pauli-Y term. This operator is weight seven.

We finally remark that the resource state we have thus far
considered to carry out its designated function is by no means
unique, and using other foliation techniques considered in the
previous section we can devise different, arguably favorable,

σX
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σY

σX

σX

σX

σX

σX

σXσX

σXσX

FIG. 11. Resource state where we change the time interval of
some of the targets of certain ancilla qubits as is described in the
main text. Qubits indexed Xj (t ), Yj (t ), and Zj (t ) are colored red,
green, and black, respectively, and ancilla qubits are shown in blue.
We also show the edges of the type-II foliated qubit in blue. No
physical qubit has more than four incident edges. Two elements of
S = C(F ) ∩ R ∩ M are shown.

resource states. In Fig. 11 we show one such alternative. In
this figure, for even values of f we replace the coupling
operators as follows:

U [G f (t )] →
∏

j∈|gX
f |

U Z [Xj (t ), G f (t )]

×
∏
j∈|sZ

f |
U Z [Zj (t + 1), G f (t )], (71)

where now the check couples to targets Zj (t + 1) instead of
Zj (t ). With this modification all the check measurements are
compatible where we set V = 1, thus reducing the valency
of the ancilla qubits. We additionally replace the foliated
qubit where the defect terminates with a type-II foliated qubit,
which is colored by blue edges. This further reduces the
valency of ancillas used to measure operators S1(t ) as we
need only couple to a single target to measure the Pauli-Y
component of this check. This also reduces the valency of
the physical qubits of the type-II foliated chain. However,
this comes at the expense of including an additional physical
qubit per time interval to include a type-II foliated qubit in the
system.

To summarize the present discussion we have seen that we
can introduce Pauli-Y terms in stabilizer measurements either
by using type-II foliated qubits or by coupling an ancilla to
multiple targets of the same foliated qubit, and we have seen
that in general we can periodically measure a full set of check
measurements by either lifting the targets of selected check
measurements to higher time intervals or by coupling pairs
of ancillas where it is appropriate. The examples of resource
states we have considered here are by no means exhaustive
and other variations can be made following the general prin-
ciples of foliation given in the previous section, but given
the multitude of variations one could come up with we leave
further experimentation to the reader. One variation that is
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FIG. 12. The foliated planar code. The code is extended through
spacetime where the rough and smooth boundaries are shown in
yellow and blue, and the output is shown by the light red face. At
the interface between the rough and smooth boundaries we see the
world lines of Majorana modes, depicted by thick red lines. The four
modes that encode the qubit move directly along the temporal axis,
and as such do not nontrivially manipulate the encoded state over the
channel.

worth mentioning [84] is where additional checks are made
at intermediate time intervals where we couple extra ancilla
to physical qubits at layers indexed Xj (t ) and Zj (t + 1). Of
course, V must also be modified to account for this change.
The new foliated system requires more ancilla qubits along
the defect line, and the valency of the physical qubits along
each foliated wire is also increased, but in return we reduce
the weight of the check operators and increase the number
of available check operators. We discuss this compressed
construction in Appendix D.

VII. QUANTUM COMPUTATION WITH THE FOLIATED
SURFACE CODE

In what follows we explore the general theory we have es-
tablished here by following the example of the foliated surface
code. This model is a CSS stabilizer code and is thus foliated
using the methods in Ref. [58] and has been studied from
the perspective of computation in Refs. [38,39,61]. Beyond
the work in the literature, using the generalized framework
for foliation we have presented, we can additionally realize
a phase gate deterministically in the foliated picture using
ideas from Refs. [47,48]. In particular, in Ref. [47] it was
shown that the corners of the planar code where two distinct
types of boundary meet can be regarded as a Majorana mode.
Throughout the discussion we give here we extend this anal-
ogy [45,85–88] further.

We see that, in the spacetime picture provided by a fo-
liation, that the corners of the planar code extend to world
lines of Majorana modes. We find that the worldlines of
the Majorana modes that live at the interface of different
boundaries follow the trajectories we would expect if we were
to realize fault-tolerant topological quantum computation by
braiding Ising anyons [85,89–94]. We show this analogy in
a macroscopic picture in Fig. 12 where we show the foliated

planar code [58,75]. The planar code has rough boundaries
and smooth boundaries, that appear as faces of the foliated
system as they are extended along the time axis. The figure
shows the different boundaries in blue and yellow. At the
interface of the different boundary types we see the world line
of a Majorana mode. In this picture the modes move vertically
upwards with no horizontal motion. This is because with this
channel we execute an identity gate. In what follows we show
that generalizing the picture of foliation allows us to braid
and fuse Majorana modes in the spacetime model. We see this
by explicitly considering the initialization of arbitrary states,
by showing lattice surgery by foliation, and by performing a
fault-tolerant phase gate.

A. Initialization

To realize fault-tolerant universal quantum computation
with the surface code we require the ability to generate
eigenstates of non-Pauli matrices for magic state distillation
[36]. This is similarly true for computation with the fault-
tolerant cluster state model [38,39]. State initialization by
measurements with the surface code has been considered in
Refs. [63,95,96]. The work on initialization is readily adapted
for the input-output model of fault-tolerant measurement-
based quantum computation we have developed above.

Common to all of the references on initialization, the
qubits that go on to form the surface code begin in some
easily prepared state, such as a product state, which are then
measured with the stabilizers of the desired code. In Fig. 13(a)
we show the initial state we prepare to initialize the surface
code in an arbitrary state as given in Ref. [95]. Qubits in the
green (blue) boxes are initialized in known eigenstates of the
Pauli-X (Pauli-Z) basis, and the central red qubit is prepared
in an arbitrary state.

By including this state as the stabilizer group Gin of the
initial state I, and the stabilizers of the surface code as the
stabilizers measured through the channel, Gch., we recover
the graph state shown in Fig. 13(b). The figure shows the
input state on the layer closest to the reader and the time axis
of the foliated model extends into the page. The qubits are
colored using the convention in earlier sections where black
(red) vertices mark qubits with indices Zj (t ) (Xj (t )) and the
blue vertices show ancilla qubits. The central green qubit is
prepared in an arbitrary state. All of the qubits are measured
in the Pauli-X basis.1 To help the qubits of the input system
stand out we color the edges that connect them in light blue.

All of the qubits support check operators except the central
qubit that is prepared in an initial state. We show examples
of elements of C(G) in the figure. We do not draw qubits
that were initialized in an eigenstate of the Pauli-Z operator.
Indeed, these states respond trivially to the action of the
operator U which is diagonal in the computational basis, and
as such these qubits do not entangle nontrivially with the
resource state. We are therefore free to neglect them.

1One could alternatively prepare the green qubit in a known eigen-
state of Pauli-X and measure the green qubit in an arbitrary basis, the
output will be the same.

033305-14



UNIVERSAL FAULT-TOLERANT MEASUREMENT-BASED … PHYSICAL REVIEW RESEARCH 2, 033305 (2020)

(a) (b)

(c)

σX σX

σX

σX

σX

σX

σX

σX

σX σX
σX

σX

σX

σXσX

σX σX
σX

σX

FIG. 13. The input to encode an arbitrary state. (a) The initial
product state used to initialize the surface code from Ref. [95]. Qubits
lie on the vertices of the graph, and star(plaquette) operators lie
on the blue(yellow) faces of the lattice. The system is initialized
in a product state where all the qubits within the dark green(blue)
boxes begin in the +1 eigenvalue eigenstate of the Pauli-X (Pauli-
Z) operator, and the central red qubit is prepared in an arbitrary
state. Measuring the stabilizers shown on the lattice initialize the
code in the state of the central qubit. (b) The graph state showing
initialization where the initial state shown in (a) lies at the front
of the figure, and the time axis of the foliated system extends into
the page. Qubits initialized in an eigenstate of the Pauli-Z operator
are not drawn, as these qubits do not entangle with the other qubits
of the resource state. Examples of check operators [elements of
C(F ) ∩ R ∩ M] are shown on the graph. (c) Initialization with
the fault-tolerant cluster state shown macroscopically. Two pairs of
Majorana modes are created at the site where the encoded state is
initialized and their worldlines extend to the outer edges of the lattice
in between the different boundaries which are determined by how the
qubits of the initial system are prepared.

It is interesting to examine initialization from the macro-
scopic viewpoint. It is well understood [75] that the surface
code has two distinct boundaries, called rough and smooth
boundaries, where the string-like logical Pauli-Z and Pauli-X
operators, respectively, terminate. The initial state shown in
Fig. 13(a) is chosen such that both a logical Pauli-X and a
logical Pauli-Z operator are supported on the physical qubits
initialized in the Pauli-X (Pauli-Z) basis, where both operators
intersect at the central qubit. Both of these logical operators
extend along the surface where the input state is initialized
onto the distinct boundaries where the logical operators ter-
minate.

The respective boundaries of the foliated surface code
extend along the temporal axis. Moreover, in the foliated
system, the one-dimensional logical operators of the surface
code are extended along two-dimensional surfaces through
the time axis onto the output system. The two-dimensional
logical operators propagated along the time axis in this way
are commonly known as correlation surfaces [44]. In the same
way that the different logical operators of the surface code
terminate at their distinct respective boundaries, so too do
the correlation surfaces of the foliated surface code terminate
exclusively at their respective boundary. The different bound-
aries of the foliated surface code, which is equivalent to the

topological cluster state model [44], are commonly known as
primal or dual boundaries.

The boundary theory for the foliated surface code also
extends to the side of the lattice where the system is initial-
ized, see Fig. 13(c). The primal and dual boundaries of the
foliated surface code are distinct in the sense that they will
only terminate the corresponding correlation surfaces of either
the Pauli-X or Pauli-Z logical operator of the surface code.
Likewise, when we initialize the surface code, the physical
qubits are prepared in either the Pauli-X or Pauli-Z state
depending on whether that area of the lattice should support
either a logical Pauli-X or Pauli-Z operator upon initialization.
In the foliated system, this choice of input state determines the
type of correlation surface that terminates at this boundary.
As such, we can consider an extension of the primal and
dual boundaries on the side of the lattice where the system
is initialized, that depends on how we initialized the qubits of
the input surface code system. In Fig. 13(c) we color code the
boundaries of the foliated lattice according to the correlation
surfaces that can terminate at them. In particular, correlation
surfaces corresponding to the propagation of logical Pauli-X
(Pauli-Z) operators of the surface code terminate at the blue
(yellow) boundaries of the figure, respectively.

As discussed, we can regard the interface between the
two different boundary types as worldlines of the Majorana
modes. As Fig. 13(c) shows, the four red lines meet at the
single point where the nontrivial state is initialized. We thus
see that the analogy between the boundaries of the foliated
system and Majorana-based fault-tolerant quantum computa-
tion holds, as in such a system, to prepare an arbitrary state,
two pairs of Majorana modes would need to be prepared
simultaneously at a common location and noisily rotated into
a desired state before the modes are separated such that the
encoded information is topologically protected [97,98].

We can similarly explore this analogy by preparing logical
qubits in eigenstates of Pauli operators. With the surface code,
we can fault-tolerantly prepare a logical qubit in an eigenstate
of the Pauli-X (Pauli-Z) by initializing all of the physical
qubits in the Pauli-X (Pauli-Z) basis. Using these product
states as the input states, we can show the boundaries of the
system macroscopically in Fig. 14 where the input state is
shown by the boundary on the input face shown closest to the
reader. In this instance, the figure shows two pairs of Majorana
modes prepared a macroscopic distance from one another.
This is similarly true with fault-tolerant quantum computation
with Ising anyons, where these logical states are also prepared
robustly in this way.

B. Fault-tolerant parity measurements

We next investigate how lattice surgery [47,62,63,99] maps
into the measurement-based picture. Lattice surgery offers a
route to performing entangling gates between qubits encoded
with topological codes via fault-tolerant parity measurements.
Foliated lattice surgery with the surface code has already
been considered in Ref. [61] but here we revisit this example
within the more general framework we have developed for
fault-tolerant measurement-based quantum computation. We
will also witness nontrivial dynamics between the world lines
of the Majorana modes that are present in the foliated surface
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FIG. 14. Macroscopic picture showing the fault-tolerant initial-
ization of eigenstates of the logical Pauli operators. The time direc-
tion runs into the page. Initialization of the logical Pauli-Z (Pauli-X)
operator is shown on the left-hand side (right-hand side) of the figure.
The input state is prepared with the physical qubits initialized in
known eigenstates of the Pauli-Z (Pauli-X) operator. The world lines
of the Majorana modes that move between the distinct boundaries
emerge in two well-separated pair creation operations. This is true
to the analogy with fault-tolerant quantum computation with Ising
anyons.

code. We also remark that our discussion is readily extended
to generalized lattice surgery where high-weight logical Pauli
measurements are considered [100].

We briefly review lattice surgery with the surface code
before examining it at the macroscopic level of foliation. To
the left and right of Fig. 15 we see two surface code lattices
in bold colors. Each of these encodes a single logical qubit.
The goal is to make the logical parity measurement Z1Z2 of
these two encoded qubits. The support of the operator we
aim to measure is shown in the figure. It is important that
the logical measurement is tolerant to local faults. To achieve
this, we begin measuring the stabilizers of a single extended
rectangular surface code, which includes the pale-colored
stabilizers in between the two codes. Importantly, the logical
operator of the two codes is a member of the stabilizer group
of the extended code. As such, by measuring the stabilizers
of the code we additionally recover the value of the parity
measurement.

To initialize the extended surface code, each of the physical
qubits that lie in between the two encoded qubits are prepared
in a known eigenstate of the Pauli-X operator and we then

ZZ
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ZZ

ZZ

ZZ

ZZ

FIG. 15. Lattice surgery between two surface codes. Two surface
code lattices are shown in bold colors to the left and the right of
the figure. To measure the parity of these two logical qubits, we
initialize the qubits that separate the two lattices in known eigenstates
of the Pauli-X operator and then begin measuring the stabilizers
of the extended rectangular surface code including the pale-colored
stabilizers in between the two lattices.

FIG. 16. Lattice surgery for the parity measurement Z1Z2 with
the foliated surface code. The time axis runs from the bottom of the
page to the top. We show two distinct surface codes at the bottom
of the page. At the point where we begin the parity measurement
the two foliated qubits are connected through an extended piece
of foliated surface code. We show the trajectories of the foliated
Majorana modes in red. We see that at the connection point two pairs
of Majorana modes are fused, where one mode from each pair are
taken from the two different foliated codes. Once the parity data is
collected the connection is broken by inputing the rectangular lattice
into a new channel to separate the two encoded qubits. This is shown
at the top of the figure.

measure the stabilizers of the rectangular code. To the best
of our knowledge, the literature thus far has only considered
a very narrow separation between the two encoded lattices
such that the number of qubits involved in the procedure is
minimal. We know of no practical advantage of widening this
gap but for the purposes of our exposition we find that the
wider gap helps elucidate some of the topological features of
lattice surgery.

We now consider lattice surgery within a measurement-
based framework. We consider an input state Gin included in
I with two surface code lattices together with some ancillary
physical qubits prepared in the +1 eigenvalue eigenstate of the
Pauli-X matrix as shown in bold in Fig. 15, where we might
imagine that the two surface code lattices have emerged as the
output of two foliated surface codes. We then append to the re-
source state the check measurements of the larger rectangular
surface code such that the logical parity measurement is read
from the resource state once the single-qubit measurement
outcomes have been collected.

We show this foliated picture macroscopically in Fig. 16.
The figure shows two foliated surface codes entering the
surgery channel where the two lattices are connected to make
the parity check. Once the parity check is completed, we
take as an input the output of the channel of the rectangular
code and input it back into the original channel where the
two lattices are separated and the qubits that connect the
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two lattices are measured transversally in the Pauli-X basis,
completing the operation.

We next study the trajectories of the Majorana modes while
the parity measurement takes place. Given that the qubits that
form the connection between the two codes are initialized
in the Pauli-X basis, the boundary where the connection
is formed terminates the correlation surface that propagates
the logical Pauli-X data of the channel. As such, we regard
this boundary as an extension of the blue boundaries in the
figure where the correlation surfaces for the logical Pauli-X
operators can terminate. An equivalent argument holds at the
moment the connection is broken. From this we can infer the
trajectories of the Majorana modes.

At the point the two codes are connected, two pairs of
Majorana modes fuse where each pair takes a single mode
from each of the two input codes. The product of these
two fusion operations gives the parity of the two encoded
qubits which is consistent with the topological interpretation
of lattice surgery given in Ref. [47]. We further remark that
neither of the individual fusion measurements between pairs
of Majorana modes reveal any of the logical information of
the system.

More precisely, if we consider a system where two qubits
are encoded over eight Majorana modes, γ j with 1 � j � 8,
and X 1 = iγ1γ3, Z1 = iγ3γ4, X 2 = iγ6γ8, and Z2 = iγ5γ6, and
we make measurements M1 = iγ3γ5 and M2 = iγ4γ6, then
we have that Z1Z2 = M1M2. One may worry that the logical
measurement of M1 and M2 may affect encoded informa-
tion, but in fact this measurement only disturbs the global
charge conservation of the two encoded qubits, γ1γ2γ3γ4 and
γ5γ6γ7γ8. These operators could be regarded as gauge degrees
of freedom. It is clear from Fig. 16 that lattice surgery is
performing an analogous operation with the foliated Majorana
modes.

C. A phase gate

We finally show how to perform a phase gate with a
surface code that is propagated through a resource state. This
presents an interesting example as we require the composition
of several channels to complete this operation. Moreover, we
will observe a braid in the trajectories of the foliated Majorana
modes which is true to the analogy we have painted alongside
fault-tolerant quantum computation with anyons. The gate we
use is based on a method presented with stabilizer codes in
Ref. [48], but we point out that the general theory of foliated
quantum computation is readily adapted to other proposals
to realize Clifford gates [46,47] including other schemes
presented in Ref. [48]. See also recent work in Ref. [63,101].
As in the previous Subsection we will present the scheme
at the level of stabilizer codes before discussing the foliated
variant of the logical gate.

We first summarize the execution of a phase gate abstractly
at the logical level. A phase gate maps logical operators X →
Y , Y → X , and leaves Z invariant where phases are neglected,
and the logical Pauli-Z operator is invariant under a phase
rotation. Using an additional ancillary qubit we can achieve
this operation by code deformation. If we encode the logical
information on the first logical qubit, and we prepare the
second qubit in an eigenstate of the logical Pauli-Z operator,

X

Z

X

Z

X

Z

X

Z

X

Z

X

Z

X

Z

X

Z

Y X Z Z

X X

FIG. 17. Two surface codes where Pauli-X type stabilizers lie on
blue faces and Pauli-Z stabilizers on yellow faces. A dislocation is
shown in green running through the middle of the right surface code
which are the product of two Pauli-X terms and two Pauli-Z terms.
An example of such a stabilizer is shown. The left qubit, qubit 1, is
initially encoded in an arbitrary state, and the right qubit, qubit 2, is
prepared in an eigenstate of the logical Pauli-Z operator. The logical
operator whose measurement outcome is inferred from the stabilizer
measurements during lattice surgery is shown explicitly.

then one can check that performing the following sequence
of measurements; Y 1X 2, Z1, X 1X 2, Z2 will complete a phase
gate up to phases which are determined by the outcomes of the
measurements. In what follows we show how to make these
fault-tolerant logical measurements using two surface codes.

We must first measure Y 1X 2 where the ancilla qubit is
prepared in an eigenstate of the Pauli-Z operator. We consider
the initial system shown in Fig. 17 where logical information
is encoded on the lattice shown to the left and the surface
code to the right is initialized in an eigenstate of the logical
Pauli-Z operator. An important feature of the surface code at
the right of the figure is that it has a continuous defect line
running through the middle of the lattice, but we remark that
the model is locally equivalent to the well-known CSS variant
of the surface code on a rectangular lattice. Once the system
is prepared in this state, by measuring this system with the
stabilizers of the twisted surface code as shown in Fig. 9, we
recover the value of the desired logical parity measurement.
This is because the operator of the initial system, Y 1X 2, is an
element of the stabilizer group of the twisted surface code.
To make this clear we show the operator Y 1X 2 explicitly on
Fig. 17.

It is worth pointing out that, similar to the standard sur-
face code which, as explained above, can be fault-tolerantly
initialized in an eigenstate of the Pauli-Z basis, the lattice to
the right is readily initialized in an eigenstate of the Pauli-Z
operator by initializing the physical qubits above(below) the
defect line in a known eigenstate of the Pauli-Z(Pauli-X) basis
before measuring the stabilizers of the model to complete the
preparation.

Once we have performed the first parity measurement the
remaining steps to complete the phase gate have already
been well described in the literature, we thus only briefly
summarize the remaining technical steps. We must first mea-
sure the first system in the logical Pauli-Z basis. This is
achieved by measuring all of the physical qubits of the first
system transversally in the either the Pauli-Y or Pauli-Z basis,
where the bulk of the first system is measured in the Pauli-Z
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FIG. 18. After transversally measuring the qubits below the de-
fect line of the lattice to the right transversally in the computational
basis the right qubit is reduced to a smaller square lattice. The system
to the left is initialized in a logical eigenstate of the Pauli-Z operator.
The support of the logical parity measurement that is made under the
surgery is shown.

basis, with the exception of a single line of qubits that are
measured in the Pauli-Y basis. The Pauli-Y measurements
move the central twist shown in Fig. 9 to the bottom left-hand
corner of second rectangular surface code as is explained in
Ref. [47]. The outcome of the measurement can be inferred
from the single-qubit measurement outcomes. This leaves the
logical information encoded on the second logical qubit on the
rectangular lattice.

To make the final parity measurement, we additionally
require that we reduce the length of the rectangular lattice.
This is also achieved by transversally measuring the qubits
below the defect line on the rectangular lattice transversally
in the Pauli-Z basis. After we have completed all of the
transversal measurements we reinitialize the first system in an
eigenstate of the logical Pauli-Z operator which is carried out
by preparing all of the physical qubits in the Pauli-Z basis and
subsequently measuring standard surface code stabilizers.

Upon completing these three operations, the first two of
which could be carried out simultaneously, we end with the
system shown in Fig. 18. Finally, to transfer the rotated logical
information back to the first lattice, we perform another
logical parity measurement, X 1X 2 which is carried out using
standard lattice surgery that we discussed in the previous
subsection before finally measuring the remaining qubits of
the second ancillary system transversally in the Pauli-Z basis
which completes the final logical measurement Z2.

As in the case of lattice surgery, the steps of the code
deformation procedure outlined above are readily mapped
onto a foliated system by using each new deformation as
the stabilizers of the channel system of a resource state such
that the output is the deformed variant of the input state.
The phase gate we have presented provides a particularly
interesting example as it shows that certain gates are achieved
using several different channels. We also remark that several
of these channels require the general methods of code foliation
that we have developed in the earlier sections of this work.
The channel where we measure the stabilizers of the twisted
surface code for instance can be foliated using the graph states
proposed in Sec. VI.

We show the series of channels in Fig. 19 where the tem-
poral axis increases up the page. Interestingly, we observe that

FIG. 19. The sequence of foliated channels that execute a phase
gate on a qubit transmitted with a foliated surface code. Time
increases up the page. The worldlines of the Majorana modes are
shown in red (green) if they run through the exterior boundary (bulk)
of the foliated system and the boundary of the dislocation of the
foliated surface code is shown in pink. One can track the world lines
of the modes from the bottom to the top of the page to see the two
right most world lines exchange.

the two right-most Majorana modes at the bottom of the figure
are exchanged over time, where the right-most mode moves
through the interior of the resource state through the channel
that measures the stabilizers of the twisted surface code. The
point where the world line of this mode moves through the
interior is highlighted in green. To the best of our knowledge,
this presents the first example of a foliated system where a
defect is moved through the interior of a resource state. While
this defect is in the interior of the system, the other mode
involved in the exchange is braided around the exterior of
the system before the exchange is completed thus executing
a phase gate. Once again, the analogy with Majorana modes
holds in the model we consider here as, indeed, exchanging a
pair of Majorana modes executes phase gate. This can be seen
by considering a qubit encoded with four Majorana modes
such that X = iγ1γ3, Y = iγ2γ3 and Z = iγ1γ2. One can see
that up to phases X and Y differ by the exchange of indices
1 and 2 whereas Z is invariant under the exchange modulo a
negative phase. This operation is equivalent to the exchange
of the modes in the foliated channel.

VIII. CONCLUDING REMARKS

We have presented a framework that allows us to map
quantum computational schemes that use code deformations
on stabilizer codes to schemes of fault-tolerant measurement-
based quantum computation. As an example, we have used
this framework to show we can initialize, fuse, and braid
foliated Majorana defects in a three-dimensional fault-tolerant
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cluster-state model to carry out universal quantum computa-
tion with Clifford operations and magic state distillation.

It remains an important problem to find the most resource-
efficient models of fault-tolerant quantum computation. As
such it will be fruitful to study the robustness of other foliated
stabilizer codes to experimentally relevant sources of noise. In
particular, it will be valuable to study the tolerance of different
models to loss, as foliated models are most applicable to
photonic architectures where this is a dominant source of error
[20]. One may also be able to adapt known results using the
circuit-based model to find fault-tolerance thresholds for the
measurement-based methods of fault-tolerant quantum com-
putation presented here [102]. Recent work in Refs. [80,82]
may offer a way to find decoding algorithms for generic fo-
liated codes that will be necessary to determine fault-tolerant
threshold error rates.

From a condensed matter perspective, the models we have
constructed can be viewed as symmetry-protected topological
phases [103–109]. Further study of these models may there-
fore lead to new phases of matter that are robust resources
for quantum information processing tasks. Finally, one can
readily check that we can foliate the canonical examples of
subsystem codes [55,71,110,111] within our framework. We
check this by replacing the channel stabilizer group by a gen-
erating set of the gauge group, such that the foliated system
inherits many of the desirable features of the subsystem code.
We give a discussion on this in Appendix C. While the general
theory of subsystem code foliation remains to be described
explicitly, we find it exciting to map the advantageous char-
acteristics of these models such as gauge fixing [54,55,112]
and single-shot error-correction [76,78,79,113] into foliated
systems in the future.
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APPENDIX A: TYPE-II FOLIATED QUBITS

In this Appendix we consider a variation of the foliated
qubit where we perform single-qubit Pauli-Y measurements
instead of Pauli-X measurements to move information along
a one-dimensional cluster state. We refer to these as type-II
foliated qubits. Qubit foliation by this method offers a natural
way to measure the encoded Pauli-Y information by coupling
an ancilla to just one qubit of the chain. This may be of
practical benefit as it can reduce the valency of the graph of a

resource state at the expense of including three qubits in each
time interval of the foliated qubit instead of two in the case of
a type-I folated qubit.

One can produce a foliated system F based on type-II
qubits by following the prescription in Sec. V where some
or all of the foliated qubits in the channel K are replaced by
type-II foliated qubits, and then producing a new resource R
and measurement pattern M to perform the required parity
measurements. Theorems 1 and 2 are readily modified to
accommodate this change.

We begin with the cluster state of length N = 3D + 1 with
stabilizer group defined in Eqs. (13) and (14) and logical oper-
ators defined in Eq. (15) such that we can measure the logical
Pauli-Z information with a single-qubit Pauli-Z measurement
on the first qubit.

We notice the difference between type-I and type-II foli-
ated qubits by first looking at what happens if we make a
Pauli-Y measurement instead of a Pauli-X measurement on
the first qubit. We first multiply both logical operators by
the stabilizer C[2] = σ Z [1]σ X [2]σ Z [3] such that both logical
operators commute with M1 = σY [1]. We have

X ∼ σY [1]σY [2]σ Z [3], Z ∼ σ X [2]σ Z [3]. (A1)

With these logical operators it is easily checked that mea-
suring M1 = σY [1], which becomes the stabilizer C[1] =
y1σ

Y [1], where y1 = ±1 is the random measurement out-
come, that after the measurement we have the logical oper-
ators

X ∼ y1σ
Y [2]σ Z [3], Z ∼ σ X [2]σ Z [3]. (A2)

Notably, we also have that

Y = iXZ ∼ y1σ
Z [2], (A3)

using the logical operator expressions given in Eq. (A2). From
this equation it is easily seen that logical Pauli-Y information
can be accessed by making a single-qubit Pauli-Z measure-
ment on the second qubit provided the first qubit is measured
in the Pauli-Y basis.

One can then check that measuring the second qubit in the
Pauli-Y basis, whose measurement outcome is y2 = ±1, we
obtain

X ∼ y1y2σ
Z [3], Z ∼ y2σ

Y [3]σ Z [4], (A4)

and in turn Y ∼ y1σ
X [3]σ Z [4]. With the example of measur-

ing the first two qubits along the cluster state in the Pauli-Y
basis, we see that we cyclicly permute the logical operator
that can be accessed with a single-qubit Pauli-Z measure-
ment as we progress along the chain. In contrast, the type-I
foliated qubit exchanges the information that is accessible
by single-qubit measurements between logical Pauli-X and
Pauli-Z data.

As in the case of the type-I foliated qubit, it is convenient
to redefine the indices of the system in terms of intervals,
indexed by t . For type-II foliated qubits we define

X (t ) = 3t, Y (t ) = 3t − 1, Z (t ) = 3t − 2. (A5)

In this case we have intervals of three adjacent qubits where
the logical Pauli-X, Pauli-Y, or Pauli-Z measurement informa-
tion can be accessed via single-qubit measurements. Specifi-
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FIG. 20. We show the logical Pauli-X, Pauli-Y, and Pauli-Z op-
erators in panels (a), (b), and (c), respectively. From these diagrams
we see that by measuring the appropriate qubit within the time
interval in the Pauli-Z basis, and otherwise measuring the preceeding
qubits of the system in the Pauli-Y basis, we can measure the logical
information of the chain in an arbitrary Pauli basis.

cally, we have that

X ∼ 	X (t )σ Z [X (t )], Y ∼ 	Y (t )σ Z [Y (t )] (A6)

and

Z ∼ 	Z (t )σ Z [Z (t )], (A7)

where we have defined

	X (t ) =
t∏

μ=1

σY [Y (μ)]σY [Z (μ)], (A8)

	Y (t ) = σY [Z (t )]
t−1∏
μ=1

σY [X (μ)]σY [Z (μ)], (A9)

and

	Z (t ) =
t−1∏
μ=1

σY [X (μ)]σY [Y (μ)], (A10)

which commute with the measurement pattern of type-II
foliated qubits. We show a time interval for a type-II foliated
qubit in Fig. 20.

1. Ancilla-assisted measurement

We can also perform measurements on the logical qubit
propagated along a type-II foliated qubit. In Fig. 21 we show
the operator 	Y (t )σ X [a] ∈ M where we have the measure-
ment pattern of a type-II foliated qubit, namely,

MC = 〈{σY [μ]
}N−1

μ=1

〉
, (A11)

and the blue ancilla qubit which is measured in the Pauli-X
basis is coupled to target T = Y (t ).

Of course, type-II foliated qubits can support parity mea-
surements in a foliated system of multiple foliated qubits
using the methods specified above by means of an ancilla.

σY σY σY σY σY

σX

t

FIG. 21. The graph for a type-II foliated qubit where we make a
nondestructive logical Pauli-Y measurement at time interval t . The
blue ancilla qubit is coupled to the chain element indexed T = Y (t )
via a controlled-phase gate. We show the logical Pauli-Y operator
that commutes with the single-qubit measurement pattern where the
ancilla is measured in the Pauli-X basis and, otherwise, the qubits in
the chain are measured in the Pauli-Y basis, as prescribed.

One caveat of which is that we must also modify the measure-
ment basis of the ancilla accordingly. Indeed, we previously
considered measuring M[a] ∈ MA where we have thus far
considered the case where M[a] = σ X [a]σ Z [a]pX ·pZ

to mea-
sure P such that p = v(P). We adapt this measurement from
σ X [a] to σY [a] or vice versa for each type-II qubit where we
replace the coupling from ancilla a to both Xj (t ) and Zj (t )
with a single Yj (t ) coupling.

APPENDIX B: STABILIZERS AND LOGICAL
OPERATIONS OF THE FOLIATED SYSTEM

In this Appendix we prove Theorems 1 and 2 of Sec. V.
We first define two Pauli operators that we use throughout this
Appendix and we prove two lemmas before moving onto the
proofs of the theorems in the main text.

We will frequently consider the action of operators RP and
R′

P(t ) on the resource state. We will be specifically interested
in the commutation relations of these operators with the
degrees of freedom introduced to R by the input code Gin.
We remember that these degrees of freedom were initialized
on qubits indexed Zj (1) on the initial state I. They are defined
as follows:

RP =
∏

G∈GR

∏
t�D

σ Z [G(t )]ϒ(p,g)
∏

j∈|pX |
	X

j (D)σ X [Zj (D + 1)]

×
∏

j∈|pZ |
	Z

j (D + 1)σ Z [Zj (D + 1)], (B1)

and

R′
P(t ) =

∏
G∈GR

(
σ Z [G(t )]pX ·gZ

∏
t ′<t

σ Z [G(t ′)]ϒ(p,g)

)

×
∏

j∈|pX |
	X

j (t )σ Z [Xj (t )]
∏

j∈|pZ |
	Z

j (t )σ Z [Zj (t )],

(B2)

where P is a Pauli operator with corresponding vector repre-
sentation (pX pZ )T = v(P) and (gX gZ ) = v(G) for each G ∈
GR.

The relationship between operators RP and R′
P(t ) and de-

grees of freedom specified by the input code Gin is described
by the following lemma.
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Lemma 1. Operators RP and R′
P(t ) act on code states of the

resource state, R, denoted |ψ〉, such that

RP|ψ〉 = R′
P(t )|ψ〉 = U AUCIP|φ〉 (B3)

for code states |φ〉 = (U AUC )†|ψ〉 of the initial stabilizer code
I ⊗ A, where

IP =
∏

j∈|pX |
σ X [Zj (1)]

∏
j∈|pZ |

σ Z [Zj (1)]. (B4)

Proof. The action of unitary operator UC on IP|φ〉 gives
(UCIPUC†)UC |φ〉 = UCIP|φ〉, where, written explicitly, we
have

UCIPUC† =
∏

j∈|pX |
σ X [Zj (1)]σ Z [Xj (1)]

∏
j∈|pZ |

σ Z [Zj (1)], (B5)

and UC |φ〉 is a codestate of K. Multiplying by elements of the
stabilizer group K we have KP, K ′

P(t ) ∼ UCIPUC† such that

KP =
∏

j∈|pX |
	X

j (D)σ X [Zj (D + 1)]

×
∏

j∈|pZ |
	Z

j (D + 1)σ Z [Zj (D + 1)] (B6)

and

K ′
P(t ) =

∏
j∈|pX |

	X
j (t )σ Z [Xj (t )]

∏
j∈|pZ |

	Z
j (t )σ Z [Zj (t )]. (B7)

By the definition of stabilizer operators, both KP and K ′
P(t ) of

Eqs. (B6) and (B7) acts equivalently on the codespace of K to
UCIPUC† Eq. (B5).

We obtain Eqs. (B1) and (B2) by conjugating KP and K ′
P(t )

with U A such that RP = U AKPU A† and R′
P(t ) = U AK ′

P(t )U A†.
Lemma 1 holds by the unitarity of U A. �

Broadly speaking, Lemma 1 shows how operators P sup-
ported on qubits Zj (1) of the initial system are supported on
R under conjugation by unitary UCU A. It is particularly useful
for operators P ∈ C(Gch. ) whereby ϒ(p, g) = 0. Nevertheless,
it will also be important to determine if IP ∈ I is measured by
the resource state, i.e., if there are operators ∼R′

P(t ) that are
members of M. As such, we must also consider elements of
R that are obtained by conjugation of elements of the ancilla
system A with entangling unitary U A. This is characterized by
Lemma 2 as follows.

Lemma 2. The stabilizer group of the resource state in-
cludes terms C[G(t )] ∈ R for G ∈ GR such that

C[G(t )] = σ X [G(t )]
∏

G̃ ∈ GR,

G̃ �= G

σ Z [G̃(t )]gX ·g̃Z

×
∏

j∈|gX |
σ Z [Xj (t )]

∏
j∈|gZ |

σ Z [Zj (t )], (B8)

where (gX gZ )T = v(G) and (g̃X g̃Z )T = v(G̃).
Proof. By Def. 2 we have R = U A(K ⊗ A) and

σ X [G(t )] ∈ K ⊗ A since σ X [G(t )] ∈ A. We obtain Eq. (B8)
using that C[G(t )] = U Aσ X [G(t )]U A†, which follows from
U A given explicitly in Eq. (57) of Def. 2. �

We are also interested in the measurement outcomes of
terms P ∈ Gch. of the input data that are not necessarily
included GR. It will be helpful to define the subset ξ (P) ⊆ GR
such that P =∏G∈ξ (P) G. The subset ξ (P) must exist for any
P ∈ Gch. by the definition of GR, i.e., GR is a generating set of
Gch..

Corollary. The term C[ξ (P)(t )] ≡∏G∈ξ (P) C[G(t )] ∈ R
is such that

C[ξ (P)(t )] =
∏

G̃∈GR

σ Z
[
G̃(t )

]pX ·g̃Z ∏
G∈ξ (P)

σ X [G(t )]σ Z [G(t )]gX ·gZ

×
∏

j∈|pX |
σ Z
[
Xj (t )

] ∏
j∈|pZ |

σ Z
[
Zj (t )

]
, (B9)

where we write (pX pZ )T = v(P).
The above corollary is obtained as follows. We have

C[ξ (P)(t )] =
∏

G∈ξ (P)

σ X [G(t )]
∏

G∈ξ (P)

⎛
⎜⎜⎜⎝
∏

G̃ ∈ GR,

G̃ �= G

σ Z
[
G̃(t )

]gX ·g̃Z

⎞
⎟⎟⎟⎠

×
∏

j∈|pX |
σ Z [Xj (t )]

∏
j∈|pZ |

σ Z [Zj (t )], (B10)

using that C[ξ (P)(t )] =∏G∈ξ (P) C[G(t )] and the expression
for C[G(t )] given in Eq. (B8) in Lemma 2. We obtain the
above expression for C[ξ (P)(t )] in Eq. (B9) then using the
following identity together with Eq. (B10)

∏
G∈ξ (P)

⎛
⎜⎜⎜⎝
∏

G̃ ∈ GR,

G̃ �= G

σ Z [G̃(t )]gX ·g̃Z

⎞
⎟⎟⎟⎠

=
∏

G∈ξ (P)

⎛
⎝σ Z [G(t )]gX ·gZ

∏
G̃∈GR

σ Z [G̃(t )]gX ·g̃Z

⎞
⎠

=
∏

G̃∈GR

σ Z [G̃(t )]g̃Z ·∑G∈ξ (P) gX
∏

G∈ξ (P)

σ Z [G(t )]gX ·gZ

=
∏

G̃∈GR

σ Z [G̃(t )]pX ·g̃Z
∏

G∈ξ (P)

σ Z [G(t )]gX ·gZ
.

We are now in a position to prove Theorems 1 and 2.
Proof of Theorem 1. We deal with Eqs. (65) and (66) sep-

arately before finally examining elements of C(Gin)\Gin that
are measured by the foliated system. We begin by determining
Gout.

Proof of Eq. (65). For any element of P ∈ Gin with
(pX pZ )T = v(P) we have a stabilizer of the initial state
IP ∈ I ⊗ A of the form Eq. (B4) such that we have RP ∈ R
defined according to Eq. (B1) by Lemma 1. Then, provided
P ∈ C(Gch. ) we have that ϒ(p, g) = 0 for all g = v(G) with
G ∈ GR. Therefore, we have

RP =
∏

j∈|pX |
	X

j (D)σ X [Zj (D + 1)]

×
∏

j∈|pZ |
	Z

j (D + 1)σ Z [Zj (D + 1)], (B11)
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for P ∈ Gin ∩ C(Gch. ). Given that 	X
j (D), 	Z

j (D + 1) ∈ M
we have that∏

j∈|pX |
σ X [Zj (D + 1)]

∏
j∈|pZ |

σ Z [Zj (D + 1)] ∈ Gout, (B12)

up to the measurement outcomes inferred from M.
We next show elements P ∈ Gch. are elements of Gout. We

note that P2 = 1 ∈ Gin. Likewise, I2
P ∈ I ⊗ A by unitarity of

UC . Therefore, by Lemma 1 we have R′
P(t )RP ∈ R. We write

this explicitly

R′
P(t )RP =

∏
G∈GR

σ Z [G(t )]pX ·gZ
∏

j∈|pX |
σ Z
[
Xj (t )

] ∏
j∈|pZ |

σ Z [Zj (t )]

×
∏

j∈|pX |
	X

j (t )	X
j (D)σ X [Zj (D + 1)]

×
∏

j∈|pZ |
	Z

j (t )	Z
j (D + 1)σ Z [Zj (D + 1)], (B13)

where ϒ(p, g) = 0 since Gch. is Abelian. Now, given that P ∈
Gch. there exists some ξ (P) such that we have C[ξ (P)(t )] ∈ R
as shown in Eq. (B9).

The product of Eqs. (B9) and (B13) then gives

C[ξ (P)(t )]R′
P(t )RP =

∏
G∈ξ (P)

σ X [G(t )]σ Z [G(t )]gX ·gZ

×
∏

j∈|pX |
	X

j (t )	X
j (D)

×
∏

j∈|pZ |
	Z

j (t )	Z
j (D + 1)

×
∏

j∈|pX |
σ X [Zj (D + 1)]

×
∏

j∈|pZ |
σ Z [Zj (D + 1)]. (B14)

Since M[G(t )] = σ X [G(t )]σ Z [G(t )]gX ·gZ ∈ MA and
	X

j (t ), 	Z
j (t ) ∈ MC we find that their values are inferred

from M. We therefore find the term∏
j∈|pX |

σ X [Zj (D + 1)]
∏

j∈|pZ |
σ Z [Zj (D + 1)] ∈ Gout, (B15)

for P ∈ Gch. up to the measurement outcomes of M. The
results of Eqs. (B12) and (B15) thus show that Gch. ∪ [Gin ∩
C(Gch)] ⊆ Gout. A similar argument can be made to show
Gout ⊆ Gch. ∪ [Gin ∩ C(Gch. )], thus verifying Eq. (65). �

Proof of Eq. (66). We now turn to the logical operators as
determined by Lout = C(Gout)\Gout. We require that

P ∈ C(Gin)\Gin, (B16)

such that RP ∈ C(R)\R by Lemma 1.
We also require that operator RP in Eq. (B1) is such that

P ∈ C(Gch. ) such that ϒ(p, g) = 0. Otherwise, RP �∈ C(M)
and is therefore not a logical operator of F by the definition
of a subsystem code.

Finally, elements R ∈ Gch. are elements of Gout as we
showed above, and are thus not logical operators. We therefore

see that

P ∈ C(Gch. )\Gch.. (B17)

Combining Eqs. (B16) and (B17) verifies Eq. (66). �
We also have that P ∈ (C(Gin)\Gin ) ∩ Gch. are elements

of M, and are therefore measured under the foliation pro-
cess. We see this by considering R′

P(t ) as in Eq. (B2).
For elements P ∈ Gch. there exists a ξ (P) such that
R′

P(t )C[ξ (P)(t )] ∈ M. �
We require a representative operator RQ ∈ [C(R)\R] ∩

C(M) of the form of Eq. (B1) to propagate the logical
information to the output state. It is worthwhile writing this
explicitly as its value needs to be inferred from M at the point
of readout. In some cases, it may be possible to choose

RQ =
∏

j∈|qX |
	X

j (D)σ X [Zj (D + 1)]

×
∏

j∈|qZ |
	Z

j (D + 1)σ Z [Zj (D + 1)], (B18)

where, by definition, ϒ(q, g) = 0 for all G ∈ GR with
(gX gZ )T = v(G). Since 	X

j (D), 	Z
j (D + 1) ∈ M we have

RQ ∼
∏

j∈|qX |
σ X [Zj (D + 1)]

∏
j∈|qZ |

σ Z [Zj (D + 1)], (B19)

supported on the output system. Sometimes, however, this
operator is not suitable because, perhaps, some of the qubits
that support RQ are not available due to loss, or because we
require the evaluation of an alternative representative at the
output system for later information processing. In which case,
we are free to multiply RQ by stabilizer operators to change
the support of the operator of Eq. (B14), C[ξ (P)(t )]R′

P(t )RP ∈
[C(R) ∩ R] ∩ C(M), for an arbitrary choice of t . We are
also, of course, free to multiply the logical operators by any
stabilizers of the foliated system, such as those described in
Theorem 2.

Proof of Theorem 2. We next verify the elements of the
stabilizer group. We consider the term R′

P(t ) and R′
P(t − 1)

in Eq. (B2) where P ∈ GR such that ϒ(p, g) = 0. We take the
product of the two terms to give

R′
p(t )R′

P(t − 1) =
∏

G∈GR

(σ Z [G(t − 1)]σ Z [G(t )])pX ·gZ

×
∏

j∈|pX |
	X

j (t − 1)	X
j (t )

×
∏

j∈|pZ |
	Z

j (t − 1)	Z
j (t )

×
∏

j∈|pX |
σ Z [Xj (t − 1)]σ Z [Xj (t )]

×
∏

j∈|pZ |
σ Z [Zj (t − 1)]σ Z [Zj (t )], (B20)

where R′
P(t )R′

P(t − 1) ∈ R. The product of this term with
C[P(t )]C[P(t − 1)] ∈ R where C[P(t )] is defined in Eq. (B8)
gives Sbulk[G(t )] ∈ R ∩ M of Eq. (68).

We finally show that Sbdry.[G(t )] of Eq. (69) belongs to S .
This is shown by considering again Eq. (B1) where P ∈ Gin
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such that R′
P(t ) ∈ R. Then, taking the product of R′

P(t ) and
C[ξ (P)(t )] ∈ R, as defined in Eq. (B9), gives the desired
operator which is included in M. �

APPENDIX C: FOLIATING SUBSYSTEM CODES

In the main text we focused on the foliation of stabilizer
codes. In fact, we find that our method for foliation extends
to certain classes of subsystem codes as well with minor
modifications to the scheme we have given above.

We consider a foliated channel where GR is a non-Abelian
generating set for subsystem code Gch.. The input code Gin may
also be a subsystem code. However, we will not be interested
in its gauge degrees of freedom, only its logical operators
and its stabilizers. As such, without loss of generality, we
will continue to denote the stabilizers of this system as Gin

as before to maintain consistency with the theorems given
above. The gauge and logical degrees of freedom can both be
regarded as logical operators. This simplification allows us to
keep our definition of the channel system, Def. 1, unchanged
in our generalization to subsystem codes.

Further, we keep the ancilla system and the measurement
pattern the same following the prescription set by GR. We
index elements of the ancilla system with labels G(t ) where
G denotes an element of the non-Abelian generating set
GR and t denotes a time interval. We then define elements
of the stabilizer group of the ancilla system such that we
have σ X [G(t )] ∈ A for all t and gauge generators G ∈ GR.
Likewise, we keep our definition of the measurement pattern,
Def. 3, where we use only type-I foliated qubits in the channel
system.2 Explicitly, we measure all the qubits of the channel
system in the Pauli-X basis. Ancilla qubits are measured
in the basis σ X [G(t )]σ Z [G(t )]gX ·gZ ∈ M, where (gX gZ )T =
v(G) for all G ∈ GR.

We modify the definition of the resource state. We modify
Def. 2 such that V = 1. We give our motivation for this
choice shortly. We find that this modification is suitable for a
large class of subsystem codes which, among others, includes
CSS subsystem codes such as the Bacon-Shor code [71], the
subsystem surface code [111], the gauge color code [55] and
variations of these models [114–118]. Written explicitly, for a
given GR we have

R = U A(K ⊗ A), (C1)

where the ancilla system is in the product state

A = {σ X [G(t )] : ∀t, G ∈ GR}, (C2)

and the entangling unitary U A is given by

U A = V
∏

G∈GR, t

U [G(t )], (C3)

where now V = 1 and

U [G(t )] =
∏

j∈|gX |
U Z [Xj (t ), G(t )]

∏
j∈|gZ |

U Z [Zj (t ), G(t )],

(C4)
with (gX gZ )T = v(G) for each G ∈ GR.

2Though we remark that generalizing to make use of type-II
foliated qubits is straight forward.

Using the definitions given above, we state some facts
about elements of F and their inclusion in R and M without
proof. Instead, we only remark that the following statements
are proven using the methodology given above, where Gch. is
replaced with a non-Abelian group. To approach this discus-
sion, we consider the following operators for arbitrary Pauli
operators P ∈ C(Gch. ) with (pX pZ )T = v(P). We consider

R′
P(t ) =

∏
j∈|pX |

	X
j (t )σ Z [Xj (t )]

∏
j∈|pZ |

	Z
j (t )σ Z [Zj (t )]

×
∏

G∈GR

σ Z [G(t )]pX ·gZ
∏
t ′<t

σ Z [G(t ′)]ϒ(p,g) (C5)

and

RP =
∏

j∈|pX |
	X

j (D)σ X [Zj (D + 1)]

×
∏

j∈|pZ |
	Z

j (D + 1)σ Z [Zj (D + 1)]
∏

G ∈ GR,

t �= D + 1

σ Z [G(t )]ϒ(p,g).

(C6)

While we have written the term explicitly here, for P ∈ C(Gch. )
we have ϒ(p, g) = 0 for all g = v(G) and G ∈ GR by the
definition of a subsystem code. We therefore neglect terms
with exponents of ϒ(p, q) from the above two equations
hereon. We also consider the operator

C[ξ (P)(t )] =
∏

G∈ξ (P)

C[G(t )]

=
∏

G∈ξ (P)

σ X [G(t )]σ Z [G(t )]gX ·gZ

×
∏

j∈|pX |
σ Z [Xj (t )]

∏
j∈|pZ |

σ Z [Zj (t )], (C7)

where we remember that ξ (P) denotes a subset of elements of
GR whose product gives P as defined in the main text. A set
ξ (P) must exist for elements P ∈ Gch. by definition.

For P ∈ C(Gch. ) ∩ Gch. ∩ Gin the product of these two terms
gives us a stabilizer element of R

C[ξ (P)(t )]R′
P(t ) =

∏
G̃∈ξ (P)

σ X
[
G̃(t )

]
σ Z [G̃(t )]g̃X ·g̃Z

×
∏

j∈|pX |
	X

j (t )
∏

j∈|pZ |
	Z

j (t )

×
∏

G∈GR

σ Z [G(t )]pX ·gZ
. (C8)

Likewise, for P ∈ C(Gch. ) ∩ Gch.\Gin we have stabilizer gener-
ators

C[ξ (P)(t − 1)]R′
P(t − 1)C[ξ (P)(t )]R′

P(t ) ∈ R. (C9)

In Eq. (C8) lies the issue with the foliation of general
subsystem codes. In particular, it is not clear, in general, if
C[ξ (P)(t )]R′

P(t ) lies in M due to the term on the third line of
Eq. (C8),∏

G∈GR

σ Z [G(t )]pX ·gZ = σ Z [G(t )]pX ·∑G∈GR
gZ

. (C10)
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Since σ Z [G(t )] �∈ M for any G or t , we rely on pX ·∑
G∈GR

gZ = 0 for all P ∈ C(GR) ∩ GR and G ∈ GR.
This issue was easily dealt with in the case of stabilizer

codes with inclusion of the V operator. Indeed, in the case
where GR is Abelian we had that ξ (P) = {P} for all stabilizers
P ∈ GR, and P and Q ∈ GR commuted such that pX · qZ =
qX · pZ . We were therefore able to eliminate all the residual
Pauli-Z terms in the stabilizer group elements analogous to
those in Eq. (C8) by simply coupling the ancillas with the
controlled-phase gate U Z [P(t ), Q(t )] for all P, Q ∈ GR such
that pX · qZ = 1. However, in the case of subsystem codes,
where we use multiple ancilla qubits to infer the value of
a stabilizer, it is not clear which ancilla qubits we should
couple to nullify the extra Pauli-Z terms. We leave the general
solution to this problem to future work.

Provided the Pauli-Z terms of the resource state can be
canceled out we can use the operators in Eqs. (C6) and (C8)
to infer the stabilizers of the foliated system, as in Theorem
2, and we can determine the output stabilizer group as in
Theorem 1. We finally remark that the logical degrees of free-
dom, P ∈ [C(Gin) ∩ C(Gch. )]\(Gin ∪ Gch. ), propagate through
the foliated channel, and elements P ∈ [C(Gin)\Gin] ∩ Gch. can
be measured by the channel using the operator shown in
Eq. (C8), again, provided pX ·∑G∈GR

gZ = 0. This allows
us to generalize Theorem 1 for subsystem codes where pX ·∑

G∈GR
gZ = 0 for all P.

There are many subsystem codes that can be foliated
without choosing a nontrivial V operator. The CSS codes are
natural candidates since

σ Z [G(t )]pX ·∑G∈GR
gZ = σ Z [G(t )]p·∑G∈GR

g = 1, (C11)

by the definition of a CSS code. We therefore find that V = 1
is suitable to learn stabilizer data. We also find that the sub-
system color code [110] can be foliated with our prescription.

It is interesting to study foliated subsystem codes as they
give us another perspective on fault-tolerant quantum error
correction. As an example, we consider single-shot error
correction with the gauge color code [55,76,113]. We give an
alternative representation of the lattice of the gauge color code
in Fig. 22 where the qubits lie on the vertices of a cubic lattice.

The gauge group of the gauge color code has elements
BX

f =∏ j∈∂ f Xj and BZ
f =∏ j∈∂ f Z j for all the faces of the

lattice f , where ∂ f are the set of qubits that touch the face, and
the product of a subset of the faces living on the boundary of a
cell give a cell stabilizer. Specifically, the faces surrounding
the cube are three-colored; see Fig. 22(b). The product of
the face terms of all of the faces of one particular color of
a cell gives the value of a stabilizer for the corresponding
cell. However, as we measure all of the faces, we redundantly
learn the value of cell stabilizers three times. This redundancy
enables us to predict the locations of measurement errors more
reliably as each stabilizer is constrained to give the same
value.

We now briefly look at these constraints from the perspec-
tive of foliation. In Fig. 23 we show a single cubic cell of
the gauge color code on the red qubits indexed X (t ). It is
readily checked that the operators shown in the figure that
are the product of the face operators on two of the different
colors of each cell are stabilizers of the foliated system F =

(d)

(b)

(c)

(a)

FIG. 22. The gauge color code lattice arranged with the qubits
lying on the vertices of a cubic lattice with four-colorable cells.
(a) The stabilizers are 8 and 32 body terms supported on the cuboidal
cells of the lattice. (b) The faces of a yellow cell whose faces are
colored with a pair of colors opposite to the colors of the two cells
that share the face. (c) The cells are separated to reveal the structure
of the lattice more clearly. The gauge terms lie on faces where pairs
of cells share common support. (d) A two-dimensional representation
of how cells lying on the layer above, marked with bold outlines, lie
atop the layer below, where the cells are filled with pale colors.

R ∪ M. These stabilizers are unlike the stabilizers discussed
in the main text where, if we exclude boundary stabilizers, we
require measurements from qubits in different time intervals
to learn the value of a stabilizer. We therefore find we have
additional stabilizer data for error correction with foliated
single-shot codes within each time interval. Indeed, a natural
extension of our model of quantum computation is to perform
gauge fixing between the three-dimensional color code and
the gauge color code [54,55] via foliated channels. Moreover,
unlike many of the examples we have considered where
we have assumed a large number of time intervals, due to
its single-shot nature [113] a fault-tolerant channel can be
achieved with a small constant number of time intervals.

σX

σX

σX

σX

σX

σX
σX

σX

σX
σX

σX
σX

FIG. 23. The stabilizers of a single cell of the resource state for
the gauge color code on red qubits indexed X (t ). Measuring the face
terms of the gauge color code infers the value of the stabilizer three
times. Taking the product of pairs of these cell measurements gives
additional stabilizer data for the foliated system.
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APPENDIX D: COMPRESSED FOLIATION

In this Appendix we discuss compressed foliation. This
method includes additional check measurements of elements
of GR in addition to those defined in F in the main text. The
construction is similar to that described in Sec. V, but where
additional ancillae and entangling unitaries are added, as we
now describe.

In the construction of the new resource state, R, one
begins with a channel system K according to Def. 1. The
ancilla system A is constructed by using two ancillae for each
element of GR and t , giving

A = {σ X [G(t )], σ X [GC (t )] : ∀t, G ∈ GR}, (D1)

where G(t ) and GC (t ) label the coordinates of ancillae and the
superscript C denotes the additional ancilla for each G and t
for the compressed system.

One entangles the ancillae to the channel using the unitary

U A = V
∏

G∈GR, t

U [G(t )]U [GC (t )], (D2)

where U [G(t )] is defined in the main text and

U [GC (t )] =
∏

j∈|gX |
U Z [Xj (t ), GC (t )]

×
∏

j∈|gZ |
U Z [Zj (t + 1), GC (t )], (D3)

for (gX gZ )T = v(G). Moreover, we update the operator V
with V =∏t V (t )V C (t ) such that

V C (t ) =
∏

〈〈G,H〉〉
U Z [GC (t, a), HC (t, a)]gX ·hZ

, (D4)

where again, the product is over all unordered pairs from
G �= H ∈ GR, with (gX gZ )T = v(G) and (hX hZ )T = v(H ),
and V (t ) is also defined in the main text.

In the case of CSS codes, compressing the foliation does
not lead to any novel channels. In essence, each G ∈ GR
is measured twice per time interval. In the non-CSS codes
compressed foliation leads to qualitatively different channels.
In particular, compressed foliation results in resource states
with higher degree, but can result in lower weight stabilizers.
With a local basis change, one can always take a CSS code to a
non-CSS code [119–121], and foliation of the two can lead to
drastically different resource states. One needs to assess which
channel is more suitable for a given purpose.
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