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Initial states for quantum field simulations in phase space
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Bosonic quantum fields and quantum devices can be simulated in phase space, to overcomes exponential
complexity issues as the Hilbert space dimensionality grows. Algorithms for sampling initial quantum states are
analyzed here as a fundamental issue in these simulations. The generalized P, Wigner, and Q-function phase-
space methods are treated, with applications ranging from Bose-Einstein condensates to quantum computers and
photonic networks. Quantum initial conditions treated include multimode Gaussian states and general number
state expansions. These are sampled probabilistically, in complex-P-distribution cases with additional complex
weights. For high-order correlations of the type found in many quantum technology experiments, different
representations and sampling techniques have a sampling error that changes exponentially as the mode number
increases. Purely probabilistic techniques may scale exponentially worse than experimental shot-noise error
scaling. Yet, combining random samples with complex weighting techniques gives error scaling that is equal or
even exponentially better than experimental shot-noise scaling. We show that complex weighted P-distribution
sampling can also be used to initialize simulations with the Wigner distribution, which is difficult to sample
owing to its nonpositive character. As a result, complex weighted sampling can require exponentially less
samples than either experiment or unweighted probabilistic sampling, leading to efficient simulation techniques
for quantum networks and BECs.
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I. INTRODUCTION

For simulations of large dynamical quantum systems, one
must have scalability as the mode number increases [1], since
the number of dimensions in the Hilbert space is exponentially
complex in the number of modes. Scalability is an issue
even when there are exact solutions, because representing an
arbitrary initial quantum state may require a superposition of
exponentially many eigenstates. This is a severe limitation on
dynamical calculations even in exactly soluble models [2].
Therefore probabilistic sampling is often essential for scalable
computation.

To solve this problem, phase-space methods are widely
used in large dynamical quantum simulations. Wigner [3]
developed the first quantum phase-space method. Husimi [4]
invented the first probabilistic representation, and Moyal [5]
derived a dynamical theory. Glauber adapted these approaches
to normally ordered operators in laser physics [6,7]. Such
techniques were later extended [8] and used to simulate quan-
tum fields in superfluorescence, pulsed quantum squeezing
[9–11], and many other quantum processes [12].
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These methods have already been used to treat very large
Hilbert spaces, up to millions of qubit equivalents in BEC
dynamics [13–15], and thousands of qubit equivalents [16–18]
in the simulation of optical quantum computers, including the
coherent Ising machine used to solve NP-hard optimization
problems [19–21]. Both types of system can now be exper-
imentally scaled to large sizes, with measured higher-order
correlations [22–24].

Here we describe novel algorithmic approaches to sim-
ulating the initial quantum states of such dynamical sim-
ulations, using probabilistic sampling methods. In order to
utilize phase-space representations, one must generate initial
quantum states. For general initial states, complex weights
are shown to be effective. These can greatly improve the
efficiency of quantum simulations, with exponentially large
improvements possible.

The methods described here can be used for different types
of operator ordering. This includes normal ordered P rep-
resentations, symmetrically ordered Wigner representations
and antinormally ordered Q functions. These require differ-
ent strategies for sampling, but also lead to quite different
sampling errors, especially when higher-order moments and
correlations are calculated.

Random sampling techniques in phase space for Gaussian
initial quantum states are relatively simple to implement. The
important case of initial number states is also treated here.
Such cases are common in quantum information applications.
There are existence theorems and random sampling methods
for phase-space representations, which are explained.
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We show that complex weighting techniques are directly
applicable, and give evidence for exponential reductions in
sampling errors with mode number M for high-order cor-
relations, compared both to direct probabilistic simulation
and to the estimated sampling errors in experiments due to
shot noise. The results are directly applicable to photonic
networks. The sampling error eS is directly proportional to
1/

√
S for S computed or experimentally measured random

samples. As a result, both the computational and experimental
time scales as 1/e2

S.

This exponential reduction in sampling errors we find in
these complex weighted approaches therefore leads to expo-
nentially faster simulation times for high-order correlations at
large mode numbers.

II. PHASE-SPACE REPRESENTATIONS

We start by summarizing the properties of phase-space
representations. The positive-P and truncated Wigner-Moyal
phase-space methods have been employed to simulate one-
dimensional (1D) quantum field dynamics in photonics [25]
and in Bose-Einstein condensate (BEC) quantum dynamics
in higher dimensions [26]. Both methods were also applied
to full simulations of optical fibers, including Raman effects
[27], with experimental verification of the quantum squeezing
predictions [28–30].

Later applications included large-scale truncated Wigner
simulations of BEC collisions [31], simulated quantum trans-
port in a BEC in an optical lattice [32], detailed comparison
of experiment and theory for optical fiber quantum correla-
tions, to below the quantum noise level [33], comparisons
of 3D positive-P and Wigner simulations of BEC collisions
with 150 000 atoms from first principles [15], proposals for
atomic Hong-Ou-Mandel correlations from BEC collisions
[34], violations of Bell inequalities [35,36], and many other
applications [12] including Boson sampling quantum com-
puters [17,18]. Other applications include representations of
parity operators, with existence and boundedness theorems
summarized in recent literature [37].

A. Quantum and stochastic fields

We consider operator quantum fields ψ̂ and ψ̂†, which are
non-Hermitian fields with bosonic commutation relations:

[ψ̂ (x), ψ̂†(x′)] = δ(x − x′). (1)

The number density operator is n̂(x) = ψ̂†(x)ψ̂ (x), and the
total number operator in a volume V is

N̂ =
∫

V
n̂(x)dV. (2)

The fields are expanded in annihilation and creation opera-
tors as

ψ̂ (x) =
M∑

n=1

un(x)ân,

ψ̂†(x) =
M∑

n=1

u∗
n(x)â†

n. (3)

This is an M-mode Hilbert space with a number-state
basis of |n〉, where n = (n1, . . . nM ). The Bose operators are
â, where â = (â1, . . . ˆ, aM ). Extended vectors are defined as−→a = [â, â†], so that â†

j = â j+M . In the equivalent phase-space
representations, there is a progression of representations from
normally ordered, to symmetrically ordered, then antinor-
mally ordered approaches. The corresponding distributions
have an increasing variance going from normal to antinormal
ordering. These representations are called s-ordered, where
s = 0 for normal ordering or P functions, s = 1/2 for sym-
metric ordering or W functions, and s = 1 for antinormal
ordering or Q functions.

The quantum fields correspond to stochastic fields
−→
ψ =

[ψ,ψ+] in phase space [10,25]. In generalized P representa-
tions, ψ,ψ+ are independent but conjugate in the mean, while
ψ+ ≡ ψ∗ in the classical-like Wigner and Q representations.
Given an expansion of the quantum field with mode functions
un(x), one obtains

ψ (x) =
M∑

k=1

uk (x)αk,

ψ+(x) =
M∑

k=1

u∗
k (x)βk . (4)

For an s-ordered representation, ns(x) = ψ (x)ψ+(x) is the
s-ordered stochastic number density of the fields. Similarly,
nk = αkβk is the s-ordered stochastic mode occupation, where
βk = α∗

k in the Wigner and Q distributions. The relationship
between quantum and stochastic number densities depends on
the momentum cutoff, which defines a lattice cell volume �V .

We use 〈. . .〉 to denote a quantum operator expectation, and
〈. . .〉s an s-ordered stochastic average. If we define {O(â, â†)}s
to be an s-ordered quantum moment, which in general could
be normally ordered, symmetrically ordered or antinormally
ordered, then this corresponds to an s-ordered phase-space
average:

〈O(	α)〉s ≡ 〈{O(	a)}s〉. (5)

This change in ordering means that one must include a correc-
tion factor when calculating either the number density n̂(x) or
the mode occupation n̂k , so that

〈n̂(x)〉 =
〈
ns(x) − s

�V

〉
s

,

〈n̂k〉 = 〈nk (x) − s〉s. (6)

On sampling an initial quantum state, the time-evolution
depends on a quantum Hamiltonian. This gives rise to a
functional Fokker-Planck equation for the stochastic fields

−→
ψ ,

which can be transformed into stochastic partial differential
equations (SPDE).

More general representations exist in which Gaussian op-
erators are used as a basis for expanding fermionic or bosonic
states [38–43]. These are outside the scope of this paper, but
can also give efficient sampling. This can be seen from the
graph of sampling errors, in Fig. 1, showing that Gaussian
sampling requires a comparable number of samples to the best
complex weighted P-function methods, although it has larger
computational overheads.
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FIG. 1. Scaling of relative sampling error eS versus total boson number N for N th-order Boson sampling correlations using different
phase-space distributions. The upper two lines correspond to generating samples with the Q function and positive-P distributions. The middle
two dotted and dashed lines correspond to different complex weighted sampling methods, namely circular and von Mises sampling. The bottom
two lines are obtained using the QCP method and a Gaussian kernel representation. These show exponentially lower sampling errors than the
other techniques, as the mode number M = 2N and the total boson number N are increased. They also have a lower growth rate than even
the experimental sampling errors for these high-order correlations. Sampling errors are averaged over five random unitaries with S = 4 × 106

random samples for each unitary. The grey line shows estimated experimental sampling errors due to shot noise, eS = 1/
√

S〈PN |M〉U , for the
same number of samples. Details given in Sec. V.

B. P representations

The normally ordered Glauber P representation [6] uses
a diagonal coherent-state projector to expand the density
matrix, but is singular for nonclassical fields. The generalized
P representation [8] extends this by using an off-diagonal
coherent projector to treat all quantum states without singu-
larities. It is defined as a real or complex phase-space function
P(	α), such that

ρ̂ =
∫

P(	α)�̂(	α)dμ(	α) . (7)

Here, 	α = (α,β) is a complex vector in a nonclassical phase
space of 4M real phase-space dimensions, and dμ(	α) is an
integration measure. This can either be a volume or surface
measure in the enlarged phase space 	α. The result is an exact
expansion of the quantum density matrix in terms of the
coherent state projection operator

�̂(	α) =
M∏

j=1

|α j〉〈β∗
j |

〈β∗
j |α j〉 =

M∏
j=1

�̂ j (α j, β j ) . (8)

This projector is defined in terms of M-mode Bargmann-
Glauber coherent states |α j〉 in each mode j = 1, . . . , M:

|α〉 ≡ e−|α|2/2
∞∑

n=0

αn

√
n!

|n〉 . (9)

The normalization factor for each mode projector is the inner
product,

〈β∗|α〉 = eβα−|α|2/2−|β|2/2. (10)

A consequence of the definition is that the P function is
normalized, which follows since Tr(ρ̂) = Tr(�̂) = 1, so that∫

P(	α)dμ(	α) = 1. There are existence theorems and explicit
constructions for all quantum states, which exist for both
complex and positive-P representations [8,44].

C. Complex-P representation

The most general case is a complex P(	α). This is some-
times called the gauge P representation [45,46], as the com-
plex weight term acts a stochastic gauge, allowing multi-
ple equivalent representations and dynamical equations. The
complex distribution can be expanded as P(	α) = 	(	α)P+(	α) ,
where P+(	α) is real, positive and normalized, so P+(	α) can be
sampled with probabilistic techniques:∫

P+(	α)dμ(	α) = 1. (11)

Here, 	(	α) is a complex weight, which is typically chosen
so that it has a nearly uniform modulus, |	(	α)| ∼ 1, to give
efficient sampling. From these definitions, it has a mean value
of unity:

〈	(	α)〉+ ≡
∫

	(	α)P+(	α)dμ(	α) = 1 . (12)
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It is convenient to define a weighted mean, which includes
the complex weights, so that the s-ordered average for s = 0
is given by

〈O(	α)〉0 ≡
∫∫

O(	α)P(	α)dμ(	α). (13)

Averages in all P distributions correspond quantum-
mechanically to normal-ordered quantum averages, denoted
: . . . :. These have creation operators like â† ordered to the
left, and if O(	α) is a power series in 	α, then the following
equivalence holds:

〈O(	α)〉0 = 〈: O(â, â†) :〉 . (14)

The average 〈Ô〉 ≡ Tr(Ôρ̂) is a standard quantum ensem-
ble average with density matrix ρ̂, and 〈O〉0 indicates the P-
function average with s = 0. When sampling the distribution
with S samples, averages are obtained from samples of 	α(n)

distributed with probability P+(	α(n) ), so that

〈O(	α)〉0 = lim
S→∞

1

S

S∑
n=1

	(	α(n) )O(	α(n) ) . (15)

Although formally exact, when using this approach for
quantum dynamical calculations the sampling error grows in
time due to the enlarged phase space. In some cases, there are
additional boundary term errors in phase space. This requires
the use of additional stabilizing gauges which extend the time
duration that can be usefully simulated [46–49].

D. Wigner representation

Other representations include the Wigner and Q repre-
sentations. These correspond to symmetrically ordered and
antinormally ordered operators, respectively. They can be
written formally as convolutions of the generalized P func-
tion, extending a result of Cahill and Glauber [7]:

Ps(	α) =
(

1

πs

)M ∫
P(	α0)e−(α−α0 )·(α∗−β0 )/sdμ(	α0)

=
(

1

πs

)M

〈e−(α−α0 )·(α∗−β0 )/s〉0. (16)

Here, Ps(	α) is an s-ordered operator representation, while
	α0 = (α,β), corresponding to the s = 0 case with normal
ordering. The phase space 	α is classical, with 	α ≡ [α,α∗]. As
defined above, s = 1/2 corresponds to symmetric ordering,
and s = 1 to antinormal ordering. This is related to the Cahill-
Glauber sCG ordering parameter [7] by sCG = 1 − 2s. One
can define the original Glauber-Sudarshan P representation as
the singular limit of the convolution in the limit of s → 0.
This may exist only as a generalized function, depending
on the quantum state. Therefore we use the generalized P
distribution P(	α) on a nonclassical phase space for s = 0, so
that all relevant cases can be treated without singularities.

There are multiple ways to define the Wigner represen-
tation. One way is as a convolution, given above. Thus a
delta-function P representation representing a coherent state
corresponds to a Gaussian Wigner function. For the case of
the Wigner function one has s = 1/2, so that P1/2(	α) ≡ W (	α).
The Wigner function is always nonsingular and real. This rep-
resentation is also generally nonpositive [50], making direct

probabilistic sampling impossible except for special cases,
or by using weighted sampling methods with nonpositive
weights.

Typically, the Wigner dynamical equations are truncated
using an 1/N expansion for N bosons, in order to obtain
tractable stochastic equations. This approach is approximately
valid in a large particle number limit [26,51]. Averages are
defined as integrals over the Wigner function, so if d 	α is the
complex phase-space volume integral, corresponding to 2M
real dimensions, then

〈O(	α)〉1/2 ≡
∫∫

O(	α)W (	α)d 	α. (17)

Just as with the P function, one can also define a weighted
version, so that, if W+(	α) is defined as a positive probability,
then W (	α) = 	(	α)W+(	α).

Other methods for direct sampling are available in the
cases where W (α) is positive, but for pure states these
are always Gaussian, unless approximations are used. The
double-dimension formalism of the positive-P method is also
applicable here, if we define a positive Wigner function on an
extended phase space 	α = [α,β] [52].

E. Q function

The Q function, originally proposed by Husimi [4], is
defined either using the convolution method, or directly using
the fundamental definition that

Q(	α) = 1

πM
〈α|ρ̂|α〉 . (18)

As with the Wigner case, the extended vector 	α is ap-
plicable if one defines 	α = [α,α∗]. For the case of the Q
function one has s = 1, so that P1(	α) ≡ Q(	α). The Q function
is always nonsingular, real and positive. Direct probabilistic
sampling is therefore possible. This method is also applicable,
with some modifications, to qubits and fermions [43,53], and
has been used for simulating large-order correlations and Bell
violations [54,55].

Averages are defined as integrals over the Q function, so if
d 	α is the complex phase-space volume integral, correspond-
ing to 2M real dimensions, then

〈O(	α)〉1 ≡
∫∫

O(	α)Q(	α)d 	α. (19)

While the Q function is positive, it does not generally
have a normal stochastic process because the corresponding
diffusion equation is not positive-definite. Instead, it is a
stochastic process that propagates both forward and back-
wards in time [56–58], requiring specialized techniques to
solve it. However, with relatively strong damping, conven-
tional stochastic methods may still be approximately useful,
as the corresponding diffusion matrix is then almost always
positive definite [59].

III. INITIAL STATE REPRESENTATIONS

Quantum simulations require an efficient strategy for sam-
pling a range of suitable initial conditions. In this section, we
review some of the standard methods of initial quantum state
representations, together with more efficient approaches using
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complex weights and contour integrals. The combined choice
of both representation and sampling method can make a large
difference in simulation results, as it changes the sampling
errors.

This is demonstrated in Fig. 1, which plots the sampling
error for six different types of boson sampling simulations.
In the graph, an N th-order output correlation is computed
for N single photon inputs to an M-mode photonic network
which implements a unitary transformation on the inputs. The
relative sampling errors of different algorithms are compared
to the experimental sampling error due to shot noise, with the
same number of samples.

This is a very important point. A simulation technique
with sampling errors that grow faster than experimental er-
rors cannot be usefully scaled to a large size. To a first
approximation, either a computation or an experiment takes
a time proportional to the number of samples needed to obtain
useful statistics. Predicting experimental results requires that
the computational error is no larger than experimental errors.
Hence, if the simulation technique takes exponentially longer
than experiment to achieve the required sampling error, it will
take too long to be useful at large scales. For high-order corre-
lations, +P and Q function methods using pure probabilities
have sampling errors exponentially larger than experiment,
circular and von Mises weighted methods have similar errors,
and the QCP and Gaussian algorithms have errors that are
exponentially lower than experiment. The representations and
sampling methods used are explained below.

A. Gaussian states

It is straightforward to represent the phase-space distribu-
tions described above if the initial conditions are Gaussian
states. Examples of these include coherent states [6], squeezed
states [60], Bogoliubov states [32,61,62], and thermal states.

In all of these cases, sampling can be obtained in an s-
ordered representation by generating Ng real Gaussian noises
defined so that

〈wiw j〉 = δi j, (20)

together with corresponding random phase-space samples
where 	α = [α1, . . . , α2M ], such that

αi = α0
i + Bi jw j . (21)

Here the quantum mean value is given by 〈âi〉Q = α0
i .

In order to randomly sample a Gaussian state with an s-
ordered cross-correlation of {âiâ j}s, where i, j = 1, . . . , 2M
to include the entire extended vector of 2M annihilation and
creation operators, one must obtain

〈{âiâ j}s〉 = α0
i α

0
j + σi j . (22)

To obtain this, simply choose the 2M × Ng complex square
root B, such that

σi j =
N∑

k=1

BikB jk . (23)

There are restrictions on B for the Wigner and Q functions.
The condition that α∗

j = αM+ j implies that

B∗
ik = Bi+M,k . (24)

In some “quasi-Gaussian” states, like a laser or a BEC, the
true quantum states have no well-defined phase [63]. In such
cases, one can generate a Gaussian state relative to some
phase-reference amplitude, then randomize the phase.

If the dynamics and the final measurements are phase-
independent, as is often the case, the last step of phase-
averaging is not required: it does not change the results. In
these cases, a coherent state is equivalent to a Poissonian
average over number states, and either type of input can
be used [62] with identical results for phase-independent
measurements.

B. P distributions for number state expansions

In many cases, one wishes to sample the phase space for
a number state, or a superposition of number states. This is
particularly important in quantum information applications,
where number states often occur as part of a quantum informa-
tion or quantum computing protocol such as Boson sampling,
which will be used as a benchmark for comparisons.

These are often more difficult to sample than Gaussian
states. Quantum states can be characterized by their matrix
elements in a number state basis such that Cnm = 〈n|ρ̂|m〉:

ρ̂ =
∑
nm

Cnm|n〉〈m|. (25)

For a number state mixture, all the off-diagonal terms vanish,
and

ρ̂ =
∑

n

Cn|n〉〈n|. (26)

This general approach has been used in simulations of
boson sampling equivalent to permanents as large as 100 ×
100 [17,18,64], with sampling errors that scale exponentially
better than experimental sampling errors. It has also been
applied to simulations of BEC quantum dynamics of solitons
in one dimension, with initial quantum number states [65].
This technique was described previously, and is reviewed in
greater detail here.

There are techniques explicitly developed to treat qudit
Hilbert spaces, in which numbers of particles are bounded
[66–68]. However, due to the effects of beam-splitters, pho-
tonic networks do not maintain a bounded number per mode.
This is because even if each mode has at most a single particle
initially, this bound is not maintained throughout the network.
Many-particle states can be created in a single mode through
beam-splitting [69]. Therefore it is simpler to use infinite
dimensional Hilbert-space representations. As a result, we
focus here on treating number state inputs to photonic or
other bosonic networks, using methods that allow the particle
number per mode to change dynamically.

For general states, the Glauber P distribution is typically
singular. However, the generalized P distribution P(	α) always
exists as a probability distribution with a volume measure. It is
not unique, but at least one positive distribution always exists
[8] as

P(	α) =
[

1

4π

]M

e−|α−β∗|2
/4Q

(
α + β∗

2

)
. (27)
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This is not the most numerically efficient choice for sampling,
since it is less compact than the Q function when obtained
from this construction. Sampling is rather straightforward,
based on an initial Q-function sample, and is described in the
next section where the Q function case is treated.

While one can obtain a sample of any quantum state using
the positive-P representation [70], we will show that other
techniques using complex weight factors have greatly reduced
sampling errors for computation of high-order correlations
with states of low photon number. Since these states are
often found in quantum technology applications, this is a very
important consideration for practical quantum simulations.

C. Complex-P distribution expansions

Choosing the complex-P representation instead of the
positive distribution in Eq. (27) adds a complex weight to
the initial condition, which permits a more compact phase-
space distribution, while still allowing the usual propagation
equations for subsequent time evolution.

We therefore focus on the complex-P distribution, which
is more compact than the positive-P distribution [8], but less
well-known. The relevant existence theorem states that, for
an expansion of an arbitrary density matrix in number states
such that Cnm = 〈n|ρ̂|m〉, and for circular contours enclosing
the origin in each amplitude, then by Cauchy’s theorem,

P(	α) =
( −1

4π2

)M

eα·β ∑
n,m

Cnm

M∏
k=1

√
nk!mk!

α
mk+1
k β

nk+1
k

. (28)

Here, n and m are summed over all combinations of integer
occupation numbers, and the expansion of the density matrix
is defined in the complex-P representation as

ρ̂ =
∫∫
©dαdβP(	α)�̂(	α). (29)

For vacuum states, the simplest complex or positive-P
function sample is simply one of a single point, αk = βk =
0. For nonvacuum inputs one can use a circular contour of
radius rk and make a transition to polar coordinates, so that
αk = rk exp (iφ(α)

k ), βk = rk exp (iφ(β )
k ), and similarly dαk =

iαkdφ
(α)
k and dβk = iβkdφ

(β )
k .

As a result, the expansion becomes

ρ̂ =
∫

· · ·
∫ 2π

0
d 	φPφ ( 	φ)�̂(	rei 	φ ), (30)

where 	φ ≡ (φ(α),φ(β ) ), and the phase distribution quasiprob-
ability is given by

Pφ ( 	φ) =
(

1

2π

)2M

eα·β ∑
n,m

Cnm

∏
k

√
nk!ml !

α
mk
k β

nk
k

. (31)

The radius rk is chosen to minimize the sampling error.
Typically this requires choosing r2

k � n̄k , where n̄k is the mean
boson number. Samples are then generated along the contour,
to give a Monte Carlo sampled contour integral, as explained
in the next subsection. During time evolution, the generated
samples of 	α are needed together with weight factors, so the
radius only needs to be specified initially.

This choice of rk is based on empirical evidence, but
there is a good physical reason for doing this that one can
understand intuitively. By using r2

k � n̄k , one includes just the
coherent states whose mean particle number is equal to the ac-
tual mean particle number. This greatly reduces the sampling
of states whose contribution will cancel, thus improving the
sampling error; reducing the radius further is beneficial for
high-order correlations.

While this expansion is always applicable, we now assume
for simplicity that we can choose the mode basis that defines
the mode operators such that the initial density matrix factor-
izes with ρ̂ = ∏

ρ̂k . For such multiple independent modes, a
complex-P representation is defined as

Pφ ( 	φ) =
M∏

k=1

Pφ

k ( 	φk ) . (32)

D. Classical and nonclassical phase

The complex-P representation phase variables can be un-
derstood intuitively on defining

φk = (
φ

(α)
k − φ

(β )
k

)
/2,

θk = φ
(α)
k + φ

(β )
k , (33)

where φk is the classical phase and θk is a nonclassical
phase. This is only required to be nonzero when the quantum
state has nonclassical features. Otherwise, one can choose a
Glauber P function in which αk = β∗

k and θk = 0.
Expressing the phase-space variables in terms of the two

types of phase, one has the result that

α
nk
k = eink (θk/2+φk )rnk

k ,

β
mk
k = eimk (θk/2−φk )rnk

k . (34)

For the kth mode, the exponential term in Eq. (28) be-
comes exp (αkβk ) = exp (r2(cos θk + i sin θk )). As a result,
from Eq. (29), the phase quasiprobability can be expanded as

Pφ

k =
∑
nm

Cnm(φ)Inm
k (θ ). (35)

We define Cnm(φk ) = e−i(nk−mk )φkCnm/2π and n̄k =
(nk + mk )/2, with Inm

k = 0 for nk = mk = 0. For other
cases, the expansion coefficient Inm

k is given by

Inm
k (θ ) =

√
n!m!

2πrn+m
k

e(r2
k cos θ+i(r2

k sin θ−n̄kθ )). (36)

More general cases with coherences between the modes can
be treated, and lead to additional phase-coherence terms in
the contour integral sampling.

E. One-photon example

As an example, consider a one-mode, one-photon state
where C(1)

nm (φ) = δn1δm1/2π . Choosing rk = 1,the only rele-
vant term in Eq. (36) is

I11(θ ) = 1

2π
e(cos θ+i(sin θ−θ )). (37)
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It then follows that the full expansion of the density matrix
is given by

ρ̂ (1) =
∫ π

−π

dφ

2π

∫ π

−π

dθ

2π
e(cos θ+i(sin θ−θ ))�̂(α, β ). (38)

It is instructive to verify that this is the correct expansion,
noting that because of the normalization factors in (10),
one finds that only diagonal terms with n = m remain after
integrating over φ, and the expansion can be rewritten as

ρ̂ (1) =
∑

n

∫ π

−π

dθ

2πn!
ei(n−1)θ |n〉〈n|.

= |1〉〈1|. (39)

This is as expected for a single-photon density matrix.

IV. CONTOUR SAMPLING TECHNIQUES

The expansions above are analytic, and random sampling
techniques for contour integrals are treated in this section. We
consider four possible sampling methods, each with their own
domains of applicability.

A. QCP and circular sampling

In order to keep the simulation as compact as possible,
we first consider the special case of taking r → 0. This is
very efficient for computing N th-order correlations of number
states with N input particles, as found in boson sampling
experiments, together with the restriction that nk = 0, 1. We
refer to this as QCP sampling. In this case,

Pφ ( 	φ) =
(

1

2π

)2M

	( 	φ). (40)

In this limit, the averaging becomes a pure, unweighted
phase average, so that the probability is uniform with P ( 	φ) =
(2π )−2M . The weight function, on the other hand, for each
single photon input, is

	k ( 	φ) = r−2
k e−i(φ(α)

k +φ
(β )
k ). (41)

Each nonvacuum input generates a random phase variable
	α = r exp (i 	φ), with an arbitrarily small radius r. For a linear
network, the output only depends on the phases, as the radius
term is the same for all nonvanishing amplitudes. The radius
term in the weight function cancels when calculating N th-
order correlations, and so the calculation is independent of r
for r → 0. This is the most efficient way to sample N th-order
correlations, but it is less useful for more general applications.

In the circular sampling method, the probability is again
uniform with P ( 	φ) = (2π )−2M . As in the QCP approach, one
simply chooses two uniform random vectors, φα ∈ [−π, π )M

and φβ ∈ [−π, π )M . However, with this method, the radius is
chosen such that rk = √

nk . From Eq. (28), the corresponding
complex weight factor is

	( 	φ) = eα·β ∑
n,m

Cnm

∏
kl

√
nk!ml !

α
nk
k β

mk
k

. (42)

With this algorithm, the modulus of the weight factor varies
substantially with the phase for n � 1. As a result, this is not
an efficient technique for a large particle number.

B. von Mises sampling

To obtain greater sampling efficiency over a range of input
states, after transforming to classical and nonclassical phase
variables φ and θ as described above, one can separate the real
and imaginary parts of the exponential terms in (35), and use
random probabilistic sampling from the real part, so that for
modes with nk > 0:

Pk (α, β )dαdβ = Pk (φ, θ )	k (φ, θ )dφdθ. (43)

This is a general expression for the case of factorized mode
distributions treated above. Here 	k (φ, θ ) is a complex
weight factor, while Pk (φ, θ ) ∝ |αβPk (α, β )|. The normaliza-
tion of the resulting real and positive probability Pk (φ, θ ) is
defined such that ∫

dθdφPk (φ, θ ) = 1. (44)

To illustrate this general sampling procedure, we now
suppose that each mode has an input number state. As a
result, if Pk is the single-mode distribution for mode k with
nk bosons:

Pk (α, β ) =
{(

1
2π i

)2 nk !eαβ

(αβ )nk +1 for nk > 0,

δ(α)δ(β ) for nk = 0.
(45)

Here, φ and θ are defined as in the previous subsection. For
the number state case, the functions Pk (φ, θ ) and 	k (φ, θ )
are independent of φ, although this is not the case in general.
Once the phase angles are randomly chosen according to this
probability function, the imaginary part in the exponential of
Eq. (36) generates an additional complex weight, 	k . Starting
from the main result obtained above, Eq. (35), we find that the
normalized probability distribution Pk and complex weight
	k for the subset of modes with nonvacuum inputs are:

Pk = 1

4π2I0(r2)
exp(r2 cos θk ),

	k = nk!I0(r2)

r2nk
exp(i(r2 sin θk − nkθk )). (46)

The θ distribution, 2πPk (θk ), is the well-known circular
von Mises distribution (V) [71], defined as V (θ |0, r2) ≡
exp (r2 cos θ )/(2π I0(r2)). The normalization of this distribu-
tion is provided by a modified Bessel function of the first kind
of order zero, I0(x), while θk ∈ [−π, π ) and φk ∈ [−π, π ).
This corresponds to sampling the phase variables indepen-
dently as φk ∼ U (−π, π ), and θk ∼ V (0, r2), where U is the
uniform distribution.

From each sample, we calculate the phase-space vari-
ables as αk = r exp (i(φk + θk/2)), βk = r exp (i(φk − θk/2)),
where the von Mises sampling of θ can be obtained using
well-known and efficient algorithms [72], which are available
in the public domain [73].

For either circular or von Mises sampling, we use the
delta-function distribution Pk (αk, βk ) = δ(αk )δ(βk ) for vac-
uum modes where nk = 0, that is, one takes αk = βk = 0.

033304-7



PETER D. DRUMMOND AND BOGDAN OPANCHUK PHYSICAL REVIEW RESEARCH 2, 033304 (2020)

The samples are then used to calculate any moment f (α,β)
in conjunction with the S drawn samples of α and β as

〈 f (α,β)〉P = 1

S

S∑
j=1

	(α( j),β( j) ) f (α( j),β( j) ). (47)

where 	 = ∏
	k is the total weight of the trajectory.

C. Large particle number sampling

It is generally optimal in terms of sampling efficiency to
choose r2

k � nk . For larger particle numbers, these expressions
simplify, because one can use a large radius for the integration
contour. The von Mises phase distribution asymptotically
becomes a standard Gaussian of width 1/r in the limit of large
r, and one can use the asymptotic Bessel function result that

I0(z) = ez

√
2πz

+ O

(
1

z

)
. (48)

The sampled probability distribution for modes with nonzero
inputs is then a uniform circular distribution in φk of 1/(2π ),
multiplied by a normalized Gaussian, so that

Pk (φk, θk ) ≈ rk

(2π )3/2 exp
(−r2

k θ
2
k /2

)
. (49)

In the same large radius limit, the complex weight 	k

can be calculated using Stirling’s approximation. Introducing
n! = nn

√
2πne−n(1 + O(1/n)) and taking r2

k = nk , one then
obtains for the kth complex weighting term:

	k ≈ nk!I0
(
r2

k

)
r2n

exp
(
i
(
r2

k sin θk − nkθk
))

,

≈ exp(ink (sin θk − θk )). (50)

Therefore it follows that 	k ≈ exp (−inkθ
3
k /6) to leading

order. Noting that 〈θ2
k 〉 = 1/nk in this approximation, and

hence: nkθ
3
k ∼ 1/

√
nk , these are relatively small phase factors.

The mean value of the complex weight term is given by

〈	k〉 ≈ 〈
1 − inkθ

3
k /6 − n2

kθ
6
k /72

〉
, (51)

where one can show that 〈θ6
k 〉 = 15/n3

k .

As a result, in this approximation the overall mean weight
factor is 〈	k〉 ≈ 1 − 15/(72nk ), while it should be 〈	〉 = 1, if
the exact von Mises distribution was used. This approximation
error of order 1/nk can be removed by including higher-order
corrections of O(1/nk ), if greater accuracy is required.

V. S-ORDERED DISTRIBUTIONS AND APPLICATIONS

There are several ways to sample the Wigner and Q
functions, and we will describe two possibilities here. The
first method is a direct sampling based on known analytic
forms of the function, while the second method is convolution
sampling based on the generalized P distribution as a starting
point. Positive-P distribution sampling is also explained, and
a comparison of several methods is made for a test case of a
Boson sampling quantum computer.

A. Wigner and Q distributions

One can obtain an analytic form of the Wigner function in
terms of associated Laguerre functions [7,74]. In the case of a
factorized ρ̂, which is diagonal in the number basis, this gives

W (	α) = e−2|α|2 ∑
n

Cn

∏
k

2(−1)nk

π
Lnk (4|αk|2). (52)

From this result, we can see that while the Wigner function
always exists for any quantum state, it has no generally
positive form, and in fact the negative-going part is often used
to signify a quantum Schrodinger cat state [74,75]. High-order
Laguerre functions are difficult to calculate numerically, ow-
ing to underflow, overflow, and round-off problems. Sampling
them is also nontrivial, as they are extremely oscillatory. As
a result, this approach is not usually employed for carrying
out simulations, and convolution methods can provide better
results for sampling Wigner functions [76].

Q function sampling is simpler, as this is always positive.
For a number state n, one obtains that [7]

Q(	α) =
∏

m

|αm|2nm

πnm!
e−|αm|2 . (53)

This is essentially a product of gamma distributions, for which
efficient sampling methods are known [77].

B. Positive-P distribution sampling

Given a random sample αQ of the Q function, one can
always obtain a random sample 	α of the positive-P distribu-
tion by making use of the existence theorem, Eq. (27). A Q-
function sample is used for the mean, αQ = ᾱ = (α + β∗)/2,
which is combined with a Gaussian sample for the difference,
δ = (α − β∗)/2.

This shows that one can obtain an unweighted sample by
taking a random complex sample δ with a Gaussian distribu-
tion such that 〈|δ j |2〉 = 1 and defining

α = αQ + δ,

β = α∗
Q − δ∗. (54)

However, this seldom the most compact and efficient pos-
sible algorithm. For example, in a vacuum state, 〈ââ†〉 =
〈|αQ|2〉 = 1 and the corresponding normally ordered positive-
P moment is

〈â†â〉 = 〈αβ〉P = 0. (55)

In vacuum state it is therefore always more efficient to take
α = β = 0, which reduces the sampling error to zero, since
the samples then have a zero variance.

C. Convolution sampling

We will now show, by using a different technique, that
sampling the full Wigner distribution is possible, even for rela-
tively complex quantum states. These techniques have proved
useful in establishing the properties of the Wigner func-
tion when a full-scale simulation of a quantum Schrodinger
cat transfer in optomechanics [76] was carried out using a
complex-P distribution, which is an exact method.
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The results given in Eq. (16) for convolutions of the P
function imply that this is a general sampling theorem. Both
Q(	α) and W (	α) can always be obtained using sampling meth-
ods provided that an algorithm for sampling the generalized P
function is known, since a convolution is equivalent to adding
a random gaussian variable. In the present case, one must also
take into account that the convolution includes a dimensional
reduction from a nonclassical phase space.

For s-ordered sampling, the fundamental convolution in-
volves a complex weight of form:(

1

πs

)M

e−(α−α0 )·(α∗−β0 )/s. (56)

One can use this weight directly [76]. Alternatively, to sample
either the Wigner or Q function, we first define the following
linear combinations:

α± = 1
2 (α0 ± β∗

0 ). (57)

The variable α+ is equivalent to a ‘classical’ coordinate, while
α− indicates the degree of nonclassicality. To construct a real
Gaussian convolution, if we define � = α − α+ and iδ = � ·
α∗

− − �∗ · α−, then

(α − α0) · (α∗ − β0) = |�|2 − |α−|2 + iδ. (58)

The distribution is therefore a Gaussian convolution with a
shift of �, and a complex weight, so that

W (	α) =
(

1

πs

)M ∫∫
P(	α0)	c(	α, 	α0)e−|�|2/sdμ(	α0), (59)

where the complex weight function is 	c(	α, 	α0) =
exp [(|α−|2 − iδ)/s]. Thus, one can sample the P function
to obtain 	α, then sample the convolution variable,
�k = �x

k + i�y
k as 2M real Gaussian variables each with

variance s/2, where k = 1, . . . , M. For fixed 	α0, the variances
in each quadrature are〈(

�x
k

)2〉
s = 〈(

�
y
k

)2〉
s = s

2
, (60)

and the resulting phase-space coordinate of α = α+ + � is
a Wigner or Q function sample. However, when calculating
ensemble averages with a generalized P distribution having a
weight 	P as the starting point, an additional complex weight
must be included with 	W = 	P exp [(|α−|2 − iδ)/s]. While
	W is a complex weight, its average is real, and it is easily
proved that 〈	W 〉 = 〈	P〉 = 1. This exponential weight factor
becomes increasingly large for nonclassical states 	α0 with
large |α−|2. As a result, one must use a compact represen-
tation for the generalized P function. These compact contour
representations are treated in previous sections.

D. Application to quantum networks

After obtaining a representation of the initial quantum
state, quantum dynamical evolution in phase space can take
place via a number of methods based on the Hamiltonian.
Free-field evolution is the simplest case, although even this
is essentially equivalent to calculating a matrix permanent,
which is an exponentially hard problem.

For all types of linear evolution, with a Hamiltonian of

Ĥ0 = h̄
∑
i. j

ωi j â
†
i â j, (61)

one finds that this simply involves a unitary matrix trans-
formation U acting on α and β, leading to outputs α′ = Uα

and β′ = U∗β. Correlations are obtained from moments of
transformed samples α′,β′. An N channel correlation, with
a normally ordered representation, is

PN |M =
〈

N∏
k=1

(â′
k )†â′

k

〉
=

〈
N∏

k=1

α′
kβ

′
k

〉
P

. (62)

In some guided wave experiments, there is no need to consider
free-field evolution, provided waveguide dispersion and pulse
shaping effects are negligible. In such cases the calculation of
evolution is simply a question of multiplying by the relevant
unitary matrix.

Nevertheless, the calculation of high-order correlations
given number state inputs is highly nontrivial. It is in the
#P class of computational complexity, as it is equivalent to
computing a matrix permanent. It is also of substantial exper-
imental interest as a diagnostic for a Boson sampling quantum
computer [20,23,78]. Simulating this provides a useful testbed
for comparisons of methods given above [17,18].

It is not surprising that sampling errors of high-order cor-
relations increase with correlation order. Fortunately, complex
weighting leads to an exponentially large relative decrease
in sampling errors compared to other methods, as shown
in Fig. 1. This graphs the relative sampling error for a
computational simulation of the probability of a correlated
output, given five random unitary transformations of N single
boson inputs for M = 2N possible input channels. The graph
dives the relative sampling error in calculating an N th-order
correlation function for a single count in each of N differ-
ent predetermined output channels, using 4 × 106 random
samples.

Here, six different phase-space representations are com-
pared, with both complex weights and pure probabilities.
Even with N = 7 bosons, the improvement in sampling error
provided by complex weighting methods compared to pure
probabilities is a factor of 105. For the same errors, the best
complex weighting method, QCP, requires 1010 times fewer
samples, and is therefore 1010 times faster than purely proba-
bilistic methods. This ratio increases rapidly with particle and
mode number.

The graph also compares this performance with an ex-
perimental measurement, with the comparison based on the
number of measurements required for the same relative error.
This is estimated from the expected number of counts, which
is S〈PN |M〉U , where S is the number of samples and 〈PN |M〉U

is the average coincidence probability for having a count in N
specific channels out of M. Here the probability is averaged
over all possible random unitaries U . Due to Poissonian
statistics, the mean relative sampling error due to shot noise
is eS = 1/

√
S〈PN |M〉U .

From the theory of random unitary matrices there is a
known scaling law [64] for the Haar average output cor-
relation of N singly excited modes amongst M channels,
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which is

〈PN |M〉U = (M − 1)!N!

(M + N − 1)!
. (63)

Figure 1 shows that the best computational algorithms have
102 times lower sampling errors than experimental shot-noise
errors at N ∼ 14. This indicates a speedup of up to ∼104

for the same error performance as an experiment. However,
the QCP approach is rather specialized, and the Gaussian
expansion method, although giving an excellent error perfor-
mance requires large computational resources. The von Mises
sampling method is the most widely useful, as it scales no
worse than experiment and has a general applicability.

Using these initialization algorithms, up to 100 modes each
with single photon input states, together with 100th-order
correlations in the output after unitary transformations and
random phase noise, have also been simulated [18]. This
is larger than the best current photonic technologies [79],
indicating that these numerical techniques are suitable for
simulating the performance of many quantum devices.

VI. CONCLUSIONS

This paper analyses initial conditions for simulating quan-
tum field propagation with s-ordered phase-space methods.
Probabilistic sampling leads to stochastic partial differential
equations which can be solved numerically even in large
Hilbert spaces. There is another, more subtle issue: the

generation of arbitrary initial quantum states, which has a
strong influence on sampling error.

For initial Gaussian states, the initial sampling is straight-
forward. Complex weighting techniques using circular con-
tours and the complex P representation are more efficient
when the initial states are number states. This provides a
route for sampling distributions for any quantum states with
arbitrary ordering, using convolution sampling. Depending on
the algorithm, the resulting sampling errors for high-order
correlations can vary by many orders of magnitude, ranging
from exponentially smaller than the shot-noise sampling error,
to exponentially larger than experimental sampling errors.

In summary, we have treated initial conditions for quantum
field simulations. A comparison is given between different
approaches, showing that exponentially large improvements
are possible in the sampling error of high-order correlation
functions using complex weighted random trajectories. Such
techniques can be used to simulate quantum field dynamics
with a finite digital computer, and may be useful in analyzing
future quantum computers and other quantum technologies.
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