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Effect of interorbital scattering on superconductivity in doped Dirac semimetals
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Unconventional superconductivity has been discovered in a variety of doped quantum materials, including
topological insulators and semimetals. A unifying property of these systems is strong orbital hybridization, which
leads to pairing of states with nontrivial Bloch wave functions. In contrast to naive expectation, however, many
of these superconductors are relatively resilient to disorder. Here we study the interplay of superconductivity
and disorder in doped three-dimensional Dirac systems, which serve as a paradigmatic dispersion in quantum
materials, using Abrikosov-Gor’kov theory. In this way, the role of disorder is captured by a single parameter �,
the pair scattering rate. In contrast to previous studies, we argue that interorbital scattering cannot be neglected
due to the strong orbital hybridization in Dirac systems. We find that the robustness of different pairing states
highly depends on the relative strength of the different interorbital scattering channels. In particular, we find that
the “nematic” superconducting state, which is argued to be the ground state in many Bi2Se3-related compounds,
is not protected from disorder in any way. The pair scattering rate in this case is at best smaller by a factor
of 3 compared to systems without spin-orbit coupling. We also find that the odd-parity pairing state with total
angular momentum zero (the B phase of superfluid 3He) is protected against certain types of disorder, which
include a family of time-reversal odd (magnetic) impurities. Namely, this odd-parity state is a singlet of partners
under CT symmetry (rather than T symmetry in the standard Anderson’s theory), where C and T are chiral and
time-reversal symmetries, respectively. As a result, it is protected against any disorder potential that respects CT
symmetry. Our procedure is very general and can be readily applied to different band structures and disorder
configurations.

DOI: 10.1103/PhysRevResearch.2.033302

I. INTRODUCTION

Anderson’s theory explains why conventional s-wave su-
perconductors are weakly affected by nonmagnetic disorder
[1–3]. It is based on two essential conditions. The first one
is that the Cooper pairs in these superconductors form singlet
states of time-reversed partners. The second one is that the
phase of the pair wave function is featureless over the entire
Fermi surface. These two ensure that the pairing interaction,
written in the basis that diagonalizes the disorder potential,
remains the same as in the clean limit. Consequently, one
can always pair time-reversed partners with the same inter-
action and the same transition temperature [4]. In contrast, the
Cooper pairs in unconventional superconductors violate one
of these conditions and, as a result, are not protected [5–22].

From the theoretical perspective, the conditions to prefer
pairing in non-s-wave channels are quite stringent, even with-
out the destructive effect of disorder. Nonetheless, a large
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body of recent experimental measurements, performed in
doped topological materials, is consistent with an unconven-
tional superconducting state [23–36], which was predicted
theoretically [37–42]. Surprisingly, these superconductors are
extremely robust to disorder [43–47].

Mechanisms based on the huge spin-orbit coupling char-
acterizing the topological materials have been suggested to
explain this robustness. The authors of Ref. [48] studied the
effect of disorder on an odd-parity paring state with zero total
angular momentum (equivalent to the B phase in superfluid
3He). They found that an additional chiral symmetry can
protect this state from certain types of disorder when it is
present. It was later suggested that the pair wave function in
doped Bi2Se3 is a multicomponent nematic state which breaks
the rotational symmetry of the crystal [39,49]. References
[46,50] studied the effect of disorder on the nodal nematic
state, also arguing for some robustness; however, their results
were based on less generic grounds. Studies of the effects
of scalar disorder on unconventional paring in topological
materials were recently discussed for materials other than
Bi2Se3 [47,51] and also in the context of the surface of
topological materials [52–55].

The studies mentioned above, however, focus only on the
effects of intraorbital scattering, which has equal weight on all
orbitals (i.e., density disorder). Because topological materials
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FIG. 1. Different types of nontrivial time-reversal-symmetric
intra- and interorbital disorder potentials in Bi2Se3 (as a prototypical
Dirac system). The solid and dashed lines represent the Se and Bi
layers in the quintuple unit cell, respectively. The purple pz orbitals
represent the itinerant states on the top and bottom Se layers, which
disperse as Dirac fermions close to the � point. (a) Disorder that
breaks the symmetry between top and bottom layers induces γ5

and γ3 potentials [our convention for the γ matrices is given below
Eq. (1)]. This can be caused by a polar impurity or a charged impurity
closer to one layer than the other (e.g., due to the intercalation of
Cu). (b) Disorder that modifies the tunneling between top and bottom
(either by causing a barrier or by stretching and/or squeezing the z
axis) induces disorder in the mass term of the form γ0. (c) An in-plane
polar impurity induces γ1 and γ2 potentials. We note that in all cases
we also anticipate an intraorbital density potential (proportional to
the identity matrix).

are multiorbital systems with huge orbital hybridization, in-
terorbital scattering is not expected to be particularly weaker
than density disorder. In Fig. 1, we schematically depict three
types of time-reversal-symmetric disorder potentials, which
are expected to be present in Bi2Se3 and lead to interorbital
scattering. Thus, it is important to understand the effects
of interorbital scattering in the superconducting topological
materials.

The influence of interorbital scattering on pairing was first
emphasized by Golubov and Mazin [56] and was later studied
in the context of systems with multiple Fermi surfaces (see,
for example, Refs. [57–61]). We emphasize that in topological
materials the multiorbital nature is embedded in the Bloch
wave functions rather than the presence of multiple Fermi
surfaces, making them somewhat different.

In this paper, we study the effect of short-ranged intra-
and interorbital scattering on superconductivity in three-
dimensional materials with Dirac dispersion. The Dirac dis-
persion is a paradigmatic example of dispersion relations in
topological materials, which also naturally have large spin-
orbit coupling [62].

We provide an extensive picture of how the transition
temperature Tc in different pairing channels is affected by
all possible types of short-ranged scattering potentials. Our
results are expressed in terms of the pair-breaking rate �,
which also enters the Abrikosov-Gor’kov theory of supercon-
ductors with magnetic impurities [2]. We first discuss the case
of a massless Dirac dispersion where the pair-breaking rates
are proportional to the single-particle scattering rates through
universal rational numbers (see Table III). We then compute
how these scattering rates vary with mass, which allows us to
interpolate to the well-known results for the systems with no
spin-orbit coupling [2,5].

We find that the only state robust to time-reversal sym-
metric (TRS) disorder is the s wave, in agreement with the

Anderson’s theorem [1]. Another fully gapped isotropic state
is the odd-parity state with zero total angular momentum
(analogous to the B phase in superfluid 3He), which does not
exhibit such robustness, in contrast to previous expectations
[47,48]. Despite being protected against certain types of dis-
order, it turns out to be very sensitive to some other types of
defects, such as mass and polar impurities, which we expect
to be generally present in topological materials.

On the other hand, we find that this fully isotropic odd-
parity state is protected from any disorder that respects CT
(assuming this symmetry is also present in the clean system),
where C and T are chiral and time-reversal symmetries,
respectively. The reason for such robustness is that this state
corresponds to a singlet pairing state of CT partners, in
perfect analogy to pairing of T partners in Anderson’s original
argument [1]. Interestingly, this result implies that the fully
gapped odd-parity state is protected against certain disorder
potentials that are odd under time reversal T .

We also study the multicomponent states, which are the
O(3)-symmetry group related to the nematic pairing states in
doped Bi2Se3. The relation between these states is obtained
when the symmetry group is reduced from the fully isotropic
O(3) to trigonal D3d group of Bi2Se3. We find that the
pair breaking rate for these states can be smaller than the
corresponding rate in systems without spin-orbit coupling.
However, they are still significantly influenced by disorder
in contrast to previous studies [46,50]. We also consider
the effect of magnetic impurities, where the O(3)-symmetry
pairing state can also be slightly more protected than in
systems without spin-orbit coupling [5] (depending on the
microscopic nature of the magnetic impurities). It should be
added that when time reversal is broken, the chiral state might
be preferred over the nematic one [63–67].

The rest of this paper is organized as follows. In Sec. II, we
present the basic ingredients of our model, namely, an action
for a Dirac fermion subjected to a generic disorder potential
and an attractive pairing interaction. We project the disorder
onto the Bloch basis of the conduction electrons near Fermi
surface, which we will use throughout this paper. In Sec. III,
we calculate the pair-breaking rate � in topological materials,
which is the main parameter that affects Tc and the whole
thermodynamics. Our results are presented in Sec. IV, where
we discuss the effect of different types of disorder on the
various pairing channels. Finally, Sec. V provides a summary
of our main results and a discussion of the application of our
method for other systems. Multiple technical details of our
calculation are delegated to the Appendices.

II. THE MODEL

We start by describing the normal-state action of the model.
We consider massless Dirac fermions

S0 =
∑
ω,k

ψ
†
ω,k[−iω + ivk · γ0γ + δ · γ0 − εF ]ψω,k, (1)

where ψ
†
ω,k = (ψ†

ω,k,+ ψ
†
ω,k,−) and ψω,k,± correspond to

two orbitals, each consisting of a Kramers pair. The orbitals
are related to each other through inversion. v is an isotropic
velocity and εF is the Fermi energy. In addition, the γ

matrices are taken to be Hermitian, γ = τ2s, γ0 = τ1s0, and
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TABLE I. Table of the impurity scattering matrices in the orbital and band (MCBB) bases appearing in Eqs. (2) and (3). The table
also lists the discrete symmetry properties of each scattering process under I = γ0 = τ1s0, T = Kγ1γ3 = Kτ0(−is2), and C = γ5 = −τ3s0,
corresponding to inversion, time-reversal, and chiral symmetries, respectively. ζ = +1 (−1) corresponds to Fermi level residing in conduction
(valence) band, accordingly.

m I T C Orbital matrix Mm Band matrix 〈 p̂ζ |Mm|k̂ζ 〉
0 + + + 1 = τ0s0 Q0( p̂, k̂) = 1

2 (1 + p̂ · k̂ + i[ p̂ × k̂] · σ)

1 + + − γ0 = τ1s0 Q1( p̂, k̂) = 1
2 (1 − p̂ · k̂ − i[ p̂ × k̂] · σ)

2 − + + γ5 = −τ3s0 Q2( p̂, k̂) = ζ

2 ( p̂ + k̂) · σ

3 − + − γ1 = τ2s1 Q3( p̂, k̂) = ζ

2 {i( p̂ − k̂)x + [( p̂ + k̂) × σ]x}
4 − + − γ2 = τ2s2 Q4( p̂, k̂) = ζ

2 {i( p̂ − k̂)y + [( p̂ + k̂) × σ]y}
5 − + − γ3 = τ2s3 Q5( p̂, k̂) = ζ

2 {i( p̂ − k̂)z + [( p̂ + k̂) × σ]z}
6 + − + iγ3γ2= τ0s1 Q6( p̂, k̂) = 1

2 {−i[ p̂ × k̂]x + [1 − p̂ · k̂]σx + [ p̂x k̂ + p̂k̂x] · σ}
7 + − + iγ1γ3= τ0s2 Q7( p̂, k̂) = 1

2 {−i[ p̂ × k̂]y + [1 − p̂ · k̂]σy + [ p̂yk̂ + p̂k̂y] · σ}
8 + − + iγ2γ1= τ0s3 Q8( p̂, k̂) = 1

2 {−i[ p̂ × k̂]z + [1 − p̂ · k̂]σz + [ p̂zk̂ + p̂k̂z] · σ}
9 − − + iγ0γ1 = −τ3s1 Q9( p̂, k̂) = ζ

2 {( p̂ + k̂)x − i[( p̂ − k̂) × σ]x}
10 − − + iγ0γ2 = −τ3s2 Q10( p̂, k̂) = ζ

2 {( p̂ + k̂)y − i[( p̂ − k̂) × σ]y}
11 − − + iγ0γ3 = −τ3s3 Q11( p̂, k̂) = ζ

2 {( p̂ + k̂)z − i[( p̂ − k̂) × σ]z}
12 − − − iγ0γ5 = −τ2s0 Q12( p̂, k̂) = −i ζ

2 ( p̂ − k̂) · σ

13 + − − iγ1γ5 = τ1s1 Q13( p̂, k̂) = 1
2 {i( p̂ × k̂)x − ( p̂x k̂ + k̂x p̂) · σ + (1 + p̂ · k̂)σx}

14 + − − iγ2γ5 = τ1s2 Q14( p̂, k̂) = 1
2 {i( p̂ × k̂)y − ( p̂yk̂ + k̂y p̂) · σ + (1 + p̂ · k̂)σy}

15 + − − iγ3γ5 = τ1s3 Q15( p̂, k̂) = 1
2 {i( p̂ × k̂)z − ( p̂zk̂ + k̂z p̂) · σ + (1 + p̂ · k̂)σz}

γ5 = γ0γ1γ2γ3 = −τ3s0, where τ and s are Pauli matrices in
the orbital and spin basis, correspondingly. δ is the mass of
the Dirac point. In the following, we set δ = 0 for simplicity
unless specified explicitly otherwise. Note that we have ne-
glected higher order corrections in momentum.

The action in Eq. (1) can be conveniently diagonalized
in the manifestly covariant Bloch basis (MCBB), in which
the electron spinor transforms as an ordinary SU(2) spin-
1/2 [40,49,68,69]: |k̂, 1, ζ 〉 = 1

2 (ζ − k̂z, −k̂+, ζ + k̂z, k̂+)T

and |k̂, 2, ζ 〉 = 1
2 (−k̂−, ζ + k̂z, k̂−, ζ − k̂z )T , where ζ =

±1 corresponds to conduction-valence band, respectively,
k̂ j = k j/k, and k̂± = k̂x ± ik̂y. Without loss of generality, we
assume electron doping (ζ = 1), and therefore omit index ζ

henceforth. The field operators are then approximated by their
weight on the band operators ψk ≈ |k̂, 1〉ck,1 + |k̂, 2〉ck,2.

Finally, the action in Eq. (1) possesses inversion, chiral,
and time-reversal symmetries. The representation of these
symmetry operations in orbital basis is given by I = γ0,
C = γ5, and T = Kγ1γ3, respectively, where K is complex
conjugation.

Next, we consider the disorder potential. The crucial ele-
ment in our theory is the inclusion of interorbital scattering.
Within the Dirac notations, such (momentum-independent)
scatterings can be represented using the Dirac matrices in-
troduced above and their products. For elastic short-ranged
scattering (compared to kF ), we have

Sd =
15∑

m=0

Nm∑
l=1

∑
ω,k,p

Vl,m ei(k−p)·rl ψ†
ω,pMmψω,k, (2)

where Nm is the number of impurities in channel m and rl

is the position of these short-ranged impurities. There are

16 different Hermitian matrices Mm representing different
types of disorder. The representation of these matrices in the
orbital-spin τ ⊗ s basis and their discrete symmetry properties
are given in Table I. We further clarify that m = 0 corre-
sponds to simple density disorder 1, which was considered in
Refs. [46,48,50,51]. m = 1 corresponds to mass disorder γ0,
m = 2 is odd-parity scalar disorder γ5, m = 3, 4, 5 correspond
to odd-parity dipolar disorder, and the magnetic disorder
m = 6, 7, 8 correspond to a fully symmetric local moment
with spin oriented along the axis Sα = −iεαβγ γβγγ . Some
examples of nontrivial scattering matrices of this type, which
naturally appear in disordered Bi2Se3, are shown schemati-
cally in Fig. 1. When projecting the disorder potential onto
the MCBB, we obtain a set of scattering matrices Qm( p̂, k̂)
with nontrivial momentum dependence:

Sd =
15∑

m=0

Nm∑
l=1

∑
ω,k,p

Vl,m ei(k−p)·rl c†
ω,pQm( p̂, k̂)cω,k, (3)

where c†
ω,p = (c†

ω,p,1, c†
ω,p,2), and we defined the matrices

Qαβ
m ( p̂, k̂) ≡ 〈p̂α|Mm|k̂β〉, which are listed in Table I.
Before proceeding, we make a few important remarks

regarding the choice of disorder potential in Eq. (2). First,
we assume that the disorder is Gaussian correlated with
zero mean, 〈Vl,m〉 = 0. Next, we assume that there are no
spatial correlations and that different types of disorder do
not correlate. The latter assumption implies that disorder
potential does not break any symmetry on average, leading
to 〈Vl,mVl ′,m′ 〉 = V 2

mδmm′δll ′ . There is one exception, however,
which requires clarification. In the absence of chiral sym-
metry, the density disorder (m = 0) and the mass disorder
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(m = 1) can, in principle, mix, since they belong to the same
trivial representation. We note that this is the reason why
mass disorder is always present in Bi2Se3, even if it respects
time-reversal and inversion symmetries (as opposed to the
claim made in Ref. [46]). As we show in Sec. III, however,
the correlations between m = 0 and m = 1 disorder channels
do not affect the scattering rate or superconductivity.

Second, a central assumption of our theory is that disorder
naturally appears in the orbital basis. Indeed, the set of
matrices Qm( p̂, k̂) introduced in Eq. (3) and listed in Table I
is the result of starting from the orbital basis and projecting
disorder potential onto the MCBB on the Fermi surface. The
additional momentum-dependent form factors in the scatter-
ing matrices could have been easily overlooked if we started
directly from the band basis, constructing a phenomenological
picture of disorder [70]. To emphasize this fact, we point out
that even the density channel obtains nontrivial momentum
dependence, which, as we show below, plays a crucial role
in protecting some unconventional pairing states from density
disorder.

The last ingredient required to estimate the superconduct-
ing transition temperature is the attractive interaction which
leads to the instability. We study the superconducting insta-
bility in the band basis, in the spirit of the Bardeen-Cooper-
Schrieffer (BCS) theory.

We then decompose the interaction into the irreducible
representations in the Cooper channel:

SI = −1

2

∑
k,p,J

gJ [c†
pF †

J ( p̂)c†
−p][c−kFJ (k̂)ck], (4)

where FJ (k̂) are form factors in the MCBB corresponding to
different representations J of the relevant symmetry group,
which are specified in Table II. A superconducting instability
can occur in any one of the channels depending on the
attractive strength of coefficients gJ . We are mainly interested
in systems with large spin-orbit coupling, characteristic for
topological materials, which do not have spin-rotational sym-
metry. That is why in this paper we focus on the fully isotropic
O(3) group of joint rotations of spin and momentum. Different
representations are labeled by the total angular momentum
J . (Note that within our notations J labels both different
representations and different components within the same
representation.)

III. COMPUTATION OF THE SCATTERING RATE

We now turn to the computation of the pair scattering rate
�, which enters the Abrikosov-Gor’kov theory and dictates
the thermodynamics of superconductors. The procedure we
employ consists of three main steps, which are described
diagrammatically in Fig. 2.

A. Single-particle lifetime

We start with computing the single-particle lifetime. The
bare electronic Green’s function in the band basis is given by
(ζ = 1)

G0(iω, k) = 1

iω − vk + εF
. (5)

TABLE II. Different representations of the time-reversal-
invariant order parameters FJ . The labels L, S, and J correspond to
orbital, spin, and total angular momentum, respectively. Note that
for every total angular momentum J there are 2J + 1 states |J, Jz〉,
where Jz gets integer values between −J and J . Thus, the two
different states with J = 0 both have Jz = 0 and are distinguished
by their transformation properties under inversion, either even (g)
or odd (u).

L S J I Basis function

0 0 0 + F0g =
√

1
2 (−iσ y )

1 1 0 − F0u =
√

1
2 (−iσ y[k̂ · σ])

F11 =
√

3
4 (−iσ y[−k̂zσ

y + k̂yσ
z])

1 1 1 − F12 =
√

3
4 (−iσ y[k̂zσ

x − k̂xσ
z])

F13 =
√

3
4 (−iσ y[−k̂yσ

x + k̂xσ
y])

F21 =
√

3
4 (−iσ y[k̂xσ

y + k̂yσ
x])

F22 =
√

3
4 (−iσ y[k̂yσ

z + k̂zσ
y])

1 1 2 − F23 =
√

3
4 (−iσ y[k̂xσ

z + k̂zσ
x])

F24 =
√

3
4 (−iσ y[k̂xσ

x − k̂yσ
y])

F25 =
√

1
4 (−iσ y[−k̂xσ

x − k̂yσ
y + 2k̂zσ

z])

Summation of the diagrams in Fig. 2(a) leads to a self-
energy correction to the Green’s function, G−1(iω, k) =
G−1

0 (iω, k) − �(iω). Using Eqs. (3) and (5), we find that the
self-energy is given by �(iω) = ∑

m �m(iω), with

�m(iω) = nmV 2
m

8π3

∫
d3 p Qm(k̂, p̂)G0(iω, p)Qm( p̂, k̂)

= nmV 2
mk2

F

4π2

∫ ∞

−∞

d p

iω − vp
= − i sgn (ω)

2τm
, (6)

(a)

(b)

(c)

FIG. 2. A diagrammatic representation of the summation of the
Gor’kov ladder. (a) The summation over the scattering processes
from all types of impurities within the first Born approximation,
which leads to the self-energy correction to the full Green’s function,
Eq. (6). (b) The Cooperon vertex correction BJ (iω), Eq. (12), which
results from the summation over the bare pairing propagators A(iω),
Eq. (9). (c) The summation of the Gor’kov ladder. The building block
of the ladder, PJ , is given by the sum of BJ (iω) over Matsubara
frequencies; see Eq. (14).
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where

τm ≡ 1

πν0nmV 2
m

. (7)

Here nm = Nm/L3 is the density of impurities in channel
m, which arises after averaging over the positions of the
impurities, and ν0 = k2

F /2π2v is the density of states at the
Fermi level per pseudospin. We note a factor of 2 difference
in the definition of the scattering time compared to a parabolic
band (see Appendix A), which is a feature of topological
touching points of two bands. Thus, we have obtained that
the single-particle scattering rate decomposes into a sum over
the different scattering channels:

1

τ
≡

∑
m

1

τm
. (8)

We recall that disorder is uncorrelated among different
channels, which results from the assumption that disorder
does not break any symmetry on average. Mass and density
disorder are an exception, since they both belong to the
trivial representation. However, we note that even if cross
correlations between mass and density are present, for δ = 0
the cross term in Eq. (6) vanishes. To see this, we write the
product∫

d�pQαβ

0 (k̂, p̂)Qβγ

1 ( p̂, k̂) =
∫

d�p〈k̂α|1| p̂β〉〈p̂β|γ0|k̂γ 〉

= 2π〈k̂α|γ0|k̂γ 〉 = 0,

where we have used the identities d�k = d (cos θk)dφk,
〈k̂α|γ0|k̂γ 〉 = 0, and

∫
d�p| p̂β〉〈p̂β| = 2π1, and the summa-

tion over repeated index β is implied.

B. Vertex correction

In addition to the single-particle processes, it is also im-
portant to take into account the effect of pair scattering.
Namely, now we calculate the correction to the BCS vertex
due to intermediate scattering on disorder. In the limit of
weak disorder, εF τ 	 1, the most important correction to the
Gor’kov ladder comes from the diagrams with nonintersecting
impurity lines (so-called Cooperon), as shown in Fig. 2(b) [3].

To compute the disorder contribution to the vertex, we need
two ingredients. First, we calculate the bare propagator of a
Cooper pair:

A(iω) =
∑

p

Tr[G(iω, p)F †
J ( p̂)GT(−iω,−p)FJ ( p̂)]

= k2
F

2π2

∫ ∞

−∞

d p

(ω + sgn (ω)/2τ )2 + v2 p2

= 2πτν0

1 + 2τ |ω| . (9)

This propagator links between the scattering events on the
Gor’kov ladder and corresponds diagrammatically to the first
term on the right-hand side of Fig. 2(b) [i.e., it forms the
legs of the ladder]. When decomposing a generic pairing
interaction into the irreducible representations [as in Eq. (4)],
the Gor’kov ladder decomposes into scattering channels of
the orthogonal basis functions FJ (k̂), which are labeled by

FIG. 3. A diagrammatic representation of the decomposition
from particle-hole to particle-particle channels; see Eq. (10). Matri-
ces M, Q, F, and b are defined in Eqs. (2)–(4) and (11) [see also
Tables I and II and Eq. (E1)].

J . Thus, when writing Eq. (9), we assume that the Cooper
pair propagator is contracted on both sides with the interaction
lines in the corresponding channel J .

The next important ingredient for calculating the Gor’kov
ladder is the scattering amplitude from a single impurity in
the particle-particle basis, which is the building element of a
Cooperon and shown diagrammatically as the second term on
the right-hand side of Fig. 2(b). Thus, we need the scattering
amplitude of a Cooper pair with any momenta k and −k into a
pair with any other momenta p and −p due to an impurity of
type m. This amplitude is given by the product of two single-
particle events:

nmV 2
m Qαβ

m ( p̂, k̂)Qγ δ
m (−p̂,−k̂)c†

pαckβc†
−pγ c−kδ

= 1

πν0

∑
J

bJm

τm
c†

pF †
J ( p̂)c†

−p c−kFJ (k̂)ck, (10)

where

bJm =
∫

d�kd�p

(4π )2
Tr

[
Qm( p̂, k̂)F †

J (k̂)QT
m(−p̂,−k̂)FJ ( p̂)

]
(11)

is a matrix of weights corresponding to the conversion from
the particle-hole to particle-particle basis (similar to the
Fierz identity [42]) and d�k = d (cos θk)dφk is the solid
angle element. The matrix in Eq. (11) is given explicitly in
Appendix E. Here we only note that |bJm| � 1/2. The proce-
dure of decomposition from particle-hole to particle-particle
basis is shown schematically in Fig. 3.

Contracting the two ingredients, Eqs. (9) and (10), and
using the orthogonality of the superconducting form factors
FJ (k̂), we obtain for the disorder corrected block of the
Gor’kov ladder, shown schematically in Fig. 2(b):

BJ (iω) = A(iω)

1 − A(iω)
∑

m bJm/πν0τm
= πν0

�J/2 + |ω| , (12)

where

�J =
∑

m

�Jm; �Jm ≡ 1 − 2bJm

τm
(13)

is the pair scattering rate, which is a sum of independent
scattering rates �Jm originating from the different intra- and
interorbital disorder channels m. The values for the partial pair
scattering rates from Eq. (13) are the main result of this paper
and are listed in Table III.

As mentioned below Eq. (1), up to this point we have
focused on the case of zero mass, δ = 0. In this case, the
product of τm�Jm takes the universal rational values presented
in Table III. To discuss how these numbers vary with a finite
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TABLE III. Top: Indicates different types of intra- and interorbital scattering matrices and their properties under the discrete symmetries.
The scattering matrices are labeled by m = 0, . . . , 15 and appear as γ matrices and their products. T = Kγ1γ3, I = γ0, and C = γ5 correspond
to time-reversal, inversion, and chiral symmetries, respectively. Bottom: The values of the dimensionless pair scattering rate τm�Jm = 1 − 2bJm

[where the matrix bJm is defined in Eq. (11)] for different superconducting pairing states. The labels L, S, and J correspond to orbital, spin,
and total angular momentum, respectively (we use same convention as in Ref. [68]). It is clear that the F0g state is protected from disorder
that respects T symmetry (Anderson’s theorem), while the F0u state is protected from disorder that respects CT symmetry. In the last line, F2

implies all the pairing states with J = 2, i.e., F21 − F25. The result for all of these states is the same.

γ0 γ5 γ1 γ2 γ3 iγ3γ2 iγ1γ3 iγ2γ1 iγ0γ1 iγ0γ2 iγ0γ3 iγ0γ5 iγ1γ5 iγ2γ5 iγ3γ5

m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T + + + + + + - - - - - - - - - -
I + + - - - - + + + - - - - + + +
C + - + - - - + + + + + + - - - -

L S J
0 0 0g F0g 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2
1 1 0u F0u 0 2 0 2 2 2 2 2 2 2 2 2 0 0 0 0
1 1 11 F11 1/3 5/3 5/3 1/3 5/3 5/3 5/3 1/3 1/3 1/3 5/3 5/3 5/3 1/3 5/3 5/3
1 1 12 F12 1/3 5/3 5/3 5/3 1/3 5/3 1/3 5/3 1/3 5/3 1/3 5/3 5/3 5/3 1/3 5/3
1 1 13 F13 1/3 5/3 5/3 5/3 5/3 1/3 1/3 1/3 5/3 5/3 5/3 1/3 5/3 5/3 5/3 1/3
1 1 2 F2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

mass δ, we introduce a parameter α = δ/εF , which ranges
between 0 (no mass) and 1 (infinite mass). As a consequence,
the single-particle rates in Eq. (7) and the pair-breaking rates
in Eq. (13) are modified to Eqs. (A5) and (A11), respectively
(for details, see Appendix A). We can distinguish three cases.
The first one is the case of s-wave pairing (F0g), in which
the mass does not affect the results in Table III. The second
case is J 
= 0g (non-s-wave) and the disorder matrices are
inversion symmetric (i.e., I−1MmI = Mm). In this case, the
values of �Jmτm continuously interpolate between those in
Table III and the asymptotic value without spin-orbit coupling
�Jmτm = 1 which was computed by Larkin [5]. The functional
form of this interpolation is given by Eq. (A11) and plotted
in Fig. 4. Finally, the third case is J 
= 0g and disorder
matrices are odd under inversion (i.e., I−1MmI = −Mm). In
this case, the matrices Mm act as purely interband operators
within the Bloch wave functions when taking the limit α → 1.
Consequently, �Jm and 1/τm go to zero as the conduction
and valence bands become infinitely separated, i.e., when α

increases. It is interesting, however, that their ratio remains
the same for all α and is given in Table III.

C. Computation of Tc

The final step of the calculation is to use the disorder-
modified interaction in the superconducting channel J to com-
pute the renormalized pairing vertex. To do that, we insert a
Cooperon in each block of the Gor’kov ladder [this step gives
us factor BJ (iω)], perform the summation over intermediate
Matsubara frequencies ωn = πT (2n + 1), and sum up all the
blocks [as shown in Fig. 2(c)]. The result reads as

g̃J = gJ/(1 + gJPJ ), (14)

where PJ = −T
∑

ωn
BJ (iωn) and T is temperature. The tran-

sition temperature Tc,J in the channel J is determined as a
singularity (vanishing denominator) in Eq. (14), leading to the
result that has the Abrikosov-Gor’kov form

log

(
Tc,J

Tc,J,0

)
= �(1/2) − �(1/2 + �J/4πTc,J ), (15)

where �(x) is the digamma function and Tc,J,0 is the transition
temperature in the absence of any disorder. For the detailed
calculation of the transition temperature, see Appendix B. An
alternative derivation of this result via the method of Gor’kov
Green’s functions (which also gives a solution below Tc) is
presented in Appendix C.

The solution of Eq. (15) predicts that superconductivity is
completely suppressed at

�Jcr. = πe−γe Tc,J,0 ≈ 1.76 Tc,J,0 (16)

(γe ≈ 0.577... is the Euler’s constant), as shown in Fig. 5.

FIG. 4. The dependence of the pair scattering rate τm�Jm on
Dirac mass α = δ/εF (where εF =

√
(vkF )2 + δ2), for odd-parity

pairings F0u (blue) and F11 (red). The upper half is the effect of
mass disorder γ0, whereas the lower half shows magnetic disorder
iγ1γ5. While the former has the most severe effect on F0u, this pairing
channel is protected against the latter due to the CT symmetry.
Nevertheless, they all approach the Larkin’s result τm�Jm = 1 (black)
as the mass goes to infinity (α = 1).
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FIG. 5. Tc/Tc,0 as a function of �/Tc,0 obtained from the solution
of Eq. (15).

IV. RESULTS

In Sec. III, we described how the pair scattering rates in
Eq. (13) affect the transition temperature. As we show in
Appendix C, the effect of these rates is actually much more
general as they dictate the entire low-temperature thermo-
dynamics of these superconductors (up to phase fluctuation
effects) [2,3]. For example, we recall that the gap may close in
the superconducting state when disorder is sufficiently strong.

Having established the importance of the pair scattering
rates in Eq. (13) for superconductivity in doped Dirac systems,
we now turn to discuss their value for different pairing states
and different interorbital disorder potentials. The results are
summarized in Table III, which includes both nonmagnetic
(m = 0, . . . , 5) and magnetic (m = 6, . . . , 15) impurities.

As mentioned above, the elements of the matrix bJm in
Eq. (11) range between 1/2 and −1/2 (see Appendix E).
Consequently, the rates �Jm appearing in Table III, which
shows the values of 1 − 2bJm, range between 0 and twice
the single-particle scattering rate 1/τm. The former implies
that disorder in channel m does not affect superconductivity
in channel J , while the latter corresponds to the most severe
effect possible.

Indeed, for the s-wave channel (J = 0g), we find that the
pair scattering rate vanishes, �0g = 0, for all the T -even
disorder matrices m = 0, . . . , 5, which is manifestly the An-
derson’s theorem for nonmagnetic impurities.

Additionally, we recover the well-known Abrikosov-
Gor’kov result for magnetic impurities, that the pair scattering
rate is twice that of single particles [2], such that overall the
pair-breaking rate is given by

�0g =
15∑

m=6

2

τm
. (17)

Another limit of interest is the odd-parity state with total
angular momentum zero (J = 0u), which is equivalent to the
B phase of superfluid 3He [71]. We notice that, similar to the s-
wave state F0g, this pairing state is completely protected from

certain types of disorder, namely m = 0, 2 and 12, . . . , 15.
Inspecting Table III, we identify that the common symmetry
of these disorder potentials is that they are all even under the
product of chiral and time reversal CT . What makes this result
even more interesting is that some of the CT -even matrices
are T odd. Thus, the F0u is protected from certain types of
magnetic impurities. We identify this protection with similar
results for superconductors with multiple Fermi surfaces [56].

To understand this protection, we now show that the F0u is
essentially a singlet pairing state between partners related to
each other by CT symmetry. Thus, in complete equivalence to
the Anderson’s original argument [1], it follows that as long
as the disorder potential does not violate CT symmetry, we
can always pair CT partners in the basis that diagonalizes the
disorder potential (see Appendix D).

Let us show that the F0u pairing state is indeed a singlet
state of CT partners. This is most easily seen in the orbital
basis. We find it convenient to rotate the orbital basis by
π/2 about the τ2 axis first. This transforms from the basis of
chirality to the basis of parity (i.e., the orbitals are labeled by
their parity τ = ±). Note that this does not affect the operation
of time-reversal T . Then the action of chiral symmetry is
implemented by C = γ̃5 = τ1s0 and the corresponding pairing
state F0u is

�0u(k) = 1
2ψk τ1(−is2) ψ−k

= 1
2 [ψ↓+(k)ψ↑−(−k) − ψ↑−(k)ψ↓+(−k)

+ ψ↓−(k)ψ↑+(−k) − ψ↑+(k)ψ↓−(−k)], (18)

where ψsτ (k) is a field operator in the rotated basis. Inspecting
this pairing state, it is evident that it is fully antisymmetric and
that each term consists of a pair of operators related to each
other by CT symmetry.

However, the F0u state becomes vulnerable to disorder
when CT symmetry is not present, such as in doped Bi2Se3. In
that case, mass belongs to the same representation as density
and is always present. Moreover, we argue that Dirac mate-
rials are often polar ionic crystals (e.g., Bi2Se3, SnTe, PdTe,
etc.), and therefore it is likely that the disorder potential also
induces dipolar moments of type m = 3, 4, 5. This argument
should be contrasted with the claim made in Ref. [72], where
it was stated that only density disorder should be present.
Overall, we find that the pair-breaking rate in the F0u channel
equals

�0u = 2

τ1
+

11∑
m=3

2

τm
. (19)

It should also be noted that the authors of Ref. [48] were the
first ones to identify that the F0u state can be protected from
disorder in the massless limit. However, they concluded that it
is protected by C symmetry. As we show here, it is actually
protected by CT symmetry. To emphasize this distinction
between the two, we point out that the F0u state is immune
to some disorder potentials that are odd under C, such as
m = 12, . . . , 15.

Next, we consider the odd-parity pairing states with total
angular momentum J = 1. These states (more accurately, the
nematic Eu states of the D3d symmetry group of Bi2Se3,
which derive from the J = 1 representation by breaking the
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rotational symmetry from spherical to trigonal) are of special
interest experimentally, since they are considered to be the
pairing state in doped Bi2Se3 [28–35,39,49]. We find that all
disorder channels affect superconductivity with this pairing
symmetry, and the dimensionless rate τm�m takes two possible
values, 5/3 and 1/3. Thus, depending on the relative weight
in these channels, the scattering rate can vary significantly.
In particular, for density disorder, the rate �1 j,0 = 1/3τ0 ( j =
1 − 3 here; see Tables II and III) is much smaller than in
systems without spin-orbit coupling, where it is expected to
be 1/τ0 [5,11]. However, our results are not consistent with
experiments that find this state to be protected [45,46] and also
not consistent with previous theoretical work where density
disorder was considered [46,50], and even more so when
considering the m > 0 channels, which are more harmful. For
example, if polar disorder is present, then an average over all
possible directions gives �1 j,3−5 = 11/9τ3, where we assume
τ3 = τ4 = τ5 by symmetry and, again, j = 1 − 3.

V. DISCUSSION

In this paper, we construct a rigorous method to eval-
uate the effect of both intra- and interorbital disorder on
superconductivity in doped Dirac materials. We argue that
generic disorder potential always induces interorbital scat-
tering processes given by Eq. (2) and listed in Table I. We
compute the contribution of each type of intra- and interor-
bital scattering channels to the pair-breaking rate for a given
pairing potential, which dictates the entire thermodynamics of
a superconductor. This result is summarized in Table III. Our
main conclusions from this analysis are as follows:

(1) We have found a version of the Anderson’s theorem
which is based on the pairing of CT partners rather than T
partners (C is chiral and T is time-reversal symmetry). The
odd-parity state with total angular momentum zero (J = 0u)
is such a pairing state. Consequently, it is protected from
disorder that respects CT symmetry, which includes certain
types of T -odd impurities. This also generalizes the results of
Ref. [48]. It is interesting to understand in the future if such a
symmetry can exist (or nearly exist) in a solid-state material.

(2) As expected from the Anderson’s theorem, the s-wave
(J = 0g) pairing state is protected from all nonmagnetic scat-
tering processes, including interorbital ones.

(3) The J = 1 states, which can be considered as the O(3)
analog of the multicomponent nematic candidate state for
doped Bi2Se3 [28–35,39,49], are not protected. We find that
at most their pair-breaking rate is suppressed by a factor
of 3 compared to systems without spin-orbit coupling [5].
This raises a question regarding the protection of this state
observed in experiment [45,46].

We emphasize that the results presented in Table III are
based on a model where the mass term in the single-particle
Hamiltonian, Eq. (1), was assumed to be zero. It should be
noted, however, that in the majority of doped topological
materials which become superconducting such a mass term
exists. The dependence of these numbers on the mass is
discussed in Appendix A and plotted in Fig. 4. For inversion-
symmetric disorder potentials, the inclusion of this term
modifies these numbers toward their known values without

spin-orbit coupling [2,5]. In particular, it removes the protec-
tion of the F0u state. For inversion-odd disorder, on the other
hand, the values in Table III remain unchanged. For more
details, we refer the reader to Appendix A.

The analysis performed in this work assumes a short-
ranged disorder potential. However, in doped materials, one
may also anticipate a correlated potential emerging from
charged impurities [73]. Therefore, it is important to also un-
derstand the influence of a soft potential on superconductivity.

Another question which was not addressed in this paper
is the microscopic origin of pairing and how it is affected by
disorder [74]. In particular, doped topological materials are
characterized by small electronic density and small density
of states. As a result, the pairing interaction must be more
singular [69]. Such an interaction is expected to be sensitive
to the presence of disorder [75].

Finally, our results hold only for the case of a finite Fermi
energy and weak disorder, implying εF 	 � and εF τ 	 1.
It would be interesting to consider the limit of low density,
where both conduction and valence bands are important. In
this limit, however, a number of issues arise. First, the as-
sumption kF l 	 1 breaks down and therefore the self-energy
and Born approximations are invalid and other approaches
(e.g., the replica approach) must be used [76–78]. Second,
the omission of one of the bands is invalid and all four bands
must be taken into account. Finally, we note that this scenario
is, however, very exotic and, as discussed above, requires
long-ranged interactions [69].

Looking forward, we argue that our theory is useful
to many other systems with strong orbital hybridization.
In particular, Eq. (11) is easily generalizable to different
Hamiltonians and reduced dimensions. Of special interest are
semimetallic systems, including a quadratic band touching
point relevant to the half-Heusler compounds [79], line-node
semimetals, Weyl semimetals that emerge when inversion
is broken in a Dirac material [69], and higher-order band
touching points [80].

We also note that the results in Table III suggest that the
effects of disorder on unconventional pairing states depend
strongly on the microscopic nature of disorder (we note that a
similar disorder dependent pair-breaking rate has been argued
to exist in superfluid 3He in a nematic aerogel [81]). This
opens an interesting avenue to manipulate the superconduct-
ing ground state by selectively inducing specific types of
disorder potentials.

Before concluding this paper, we note that arguments for
robustness of unconventional superconductivity to disorder
were recently cast in terms of the so-called superconducting
fitness [46,47,51], which was first discussed in Ref. [82] in
the context of clean systems. An intuitive understanding of
the fitness can actually be obtained based on Ref. [83], where
the affects of disorder on superconductivity were assessed by
looking at the minimal excitation of a system and comparing
it with the clean limit. As shown in Ref. [47], this translates
to the condition that the Hamiltonian including disorder com-
mutes with the gap function, [Ĥ + V̂ , �̂]± = 0, where the ±
stands for commutation-anticommutation for TR even and TR
odd disorder, respectively. Our results are consistent with this
picture.
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APPENDIX A: THE EFFECT OF A FINITE MASS

In the main text, we considered the case of massless
particles (i.e., δ = 0). As shown in Fig. 4, in the case of a finite
mass the results in Table III will be continuously modified
toward the well-known results for systems without spin-orbit
coupling (with the exception of inversion-odd disorder poten-
tials). For the sake of completeness, we now compute the pair
scattering rate � for massive particles. The eigenstates in the
conduction band in the MCBB now have the form [69]

|k̂, 1, α〉 = 1
2 (β+ − β−k̂z, −β−k̂+, β+ + β−k̂z, β−k̂+)T ,

|k̂, 2, α〉 = 1
2 (−β−k̂−, β+ + β−k̂z, β−k̂−, β+ − β−k̂z )T ,

(A1)

where β± = √
1 ± α and we defined α ≡ δ/εF with εF =√

δ2 + (vkF )2. The bare Green’s function is given by

G0(iω, k) = 1

iω − ξk
, (A2)

with ξk =
√

(vk)2 + δ2 − εF . The self-energy then equals

�m(iω) = nmV 2
m

8π3

∫
d3 p Qm(k̂, p̂, α)G0(iω, p)Qm( p̂, k̂, α)

= nmV 2
mk2

F

4π2vF
ηm

∫ ∞

−∞

dξp

iω − ξp
, (A3)

where vF = v2kF /εF and Qi j
m (k̂, p̂, α) = 〈k̂, i, α|Mm| p̂, j, α〉.

Consequently, we obtain

�m(iω) = − i sgn (ω)

2τ �
m

, (A4)

where

τ ∗
m ≡ 1

ηmπν∗
0 nmV 2

m

, (A5)

and ν∗
0 = k2

F /2π2vF . The factor ηm is given by

ηm = 1

4π
Tr

[∫
d�pQm(k̂, p̂, α)Qm( p̂, k̂, α)

]

= 1 + Imα2, (A6)

where Im = ±1 is the inversion eigenvalue of the correspond-
ing disorder matrix listed in Tables I and III (i.e., I−1MmI =
ImMm). Note that trace adds an extra factor of 2 in the above
expression, and we used the fact that the expression under the
trace is proportional to the unity matrix.

The pairing form factors FJ from Table II are not changed
by a finite mass and the whole procedure for calculating the

effect of disorder is analogous to that for the massless case. In
particular, instead of Eq. (12) we find

BJ (iω) = A(iω)

1 − A(iω)
∑

m b∗
Jm/πν∗

0τ ∗
mηm

= πν∗
0

�∗
J /2 + |ω| ,

(A7)
with

�∗
J =

∑
m

�∗
Jm; �∗

Jm ≡ 1 − 2η−1
m b∗

Jm

τ �
m

, (A8)

and

b∗
Jm =

∫
d�kd�p

(4π )2
Tr[Qm( p̂, k̂, α)F †

J (k̂)

× QT
m(−p̂,−k̂, α)FJ ( p̂)]. (A9)

Interestingly, coefficients b∗
Jm can be obtained from the corre-

sponding zero-mass values bJm from Table III (or matrix (E1))
as

b∗
0gm = (1 + Imα2)b0gm, s-wave,

b∗
Jm = (1 − α2)bJm, non-s-wave (J 
= 0g). (A10)

Consequently, we find for the pair-breaking rates �∗
Jm:

�∗
0gm = 1 − 2b0gm

τ ∗
m

= (1 − 2b0gm)(1 + Imα2)

τm
,

�∗
Jm = 1 − 2(1 − α2)η−1

m bJm

τ ∗
m

(A11)

= 1 + Imα2 − 2(1 − α2)bJm

τm
, J 
= 0g,

where τm = τ ∗
mηm is given by Eq. (7) with ν0 replaced with the

density of states ν∗
0 for the massive Dirac spectrum.

Equation (A11) immediately allows us to reproduce a
number of well-known results. First, we see that Anderson’s
theorem holds [1]: Time-reversal-invariant disorder (m = 0 −
5) does not affect the s-wave channel (J = 0g). Indeed, in this
case all b0gm = 1/2 leading to �∗

0gm = 0. We emphasize that
this result holds for any mass δ. Second, we can easily obtain
the original result by Abrikosov and Gor’kov for s-wave
superconductors with magnetic impurities [2]. In this case,
one has b0gm = −1/2 for m = 6–15, leading to �∗

0gmτ ∗
m =

2. Finally, in the limit of a single parabolic band without
spin-orbit coupling, which formally corresponds to the case
of an infinite mass α → 1, we recover the result by Larkin
for p-wave pairing [5]. In fact, if we consider any non-s-
wave pairing (J 
= 0g) and any inversion-even type of disorder
(Im = 1 for m = 0–1, 6–8, 13–15), which includes density
disorder, in the limit α → 1, we find that �∗

Jmτ ∗
m = 1, in

agreement with Larkin. However, for inversion-odd disorder
(Im = −1 for m = 2–5, 9–12), the result for any nonzero mass
is not changed compared to the massless case, i.e., �∗

Jmτ ∗
m =

1 − 2bJm. Also, the result �∗
2mτ ∗

m = 1 holds trivially for any
mass in the channel J = 2, since b2m = 0 for all m. Note,
however, that τ ∗

m itself strongly depends on mass and, as we
discuss below, even diverges for inversion-odd disorder in the
limit of an infinite mass, α → 1.

Another interesting observation that follows from
Eq. (A11) is that any type of inversion-odd disorder (Im = −1
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for m = 2–5, 9–12) does not affect superconductivity in the
case of an infinite mass, α → 1. Indeed, all matrices Qm are
independent of momentum in the limit α = 1, implying that
inversion-odd disorder only scatters between the conduction
and valence bands. Such transitions are obviously suppressed
in the limit of large band gap, leading to the divergent
single-particle scattering time τ ∗

m → ∞ and, consequently,
vanishing pair-breaking rate �∗

Jm → 0.
Finally, we comment on how finite mass affects the ro-

bustness of J = 0u channel. While finite mass breaks CT
symmetry and the channel becomes susceptible to most of the
types of disorder, it is still unaffected by γ5 (m = 2) and iγ0γ5

(m = 12), which not only respect CT symmetry, but also odd
under inversion.

APPENDIX B: CALCULATION OF Tc

Using the condition for the superconducting instabil-
ity, Eq. (14) of the main text, we obtain that P ≡
−Tc

∑
ω B(iω) = − 1

g . Note that the derivation in this Ap-

pendix is independent of the pairing channel, so we omit the
subscript J for brevity. We now plug in the result for B(iω) as
obtained in Eq. (12) and find

1

g
= Tc

∑
n

πν0

�/2 + |ωn| . (B1)

Using the definition of Matsubara frequencies ωn = 2πT (n +
1/2), this equation can be rewritten as

2

gν0
=

∑
n

1

�/4πTc + |n + 1/2| . (B2)

Following Abrikosov and Gor’kov [2], we make use of the
fact that in the clean limit one has

∑
n�0

1

n + 1/2
= log

(
4eγe

π

ωD

2Tc

)
, (B3)

where γe is the Euler’s constant. Thus, we can rewrite Eq. (B2)
as

1

gν0
=

∑
n�0

1

�/4πTc + (n + 1/2)
=

∑
n�0

[
1

�/4πTc + (n + 1/2)
− 1

n + 1/2

]
+ log

(
4eγe

π

ωD

2Tc

)

=
∑
n�0

[
1

(n + 1/2 + �/4πTc)
− 1

(n + 1)
+ 1

(n + 1)
− 1

(n + 1/2)

]
+ log

(
4eγe

π

ωD

2Tc

)
. (B4)

We can identify the two terms inside the square brackets as
digamma functions

�(z) = −γe +
∑
n�0

[
1

(n + 1)
− 1

(n + z)

]
, (B5)

and we know from Eq. (B3) that 1
gν0

= log ( 4eγe

π
ωD

2Tc,0
), where

Tc,0 is the critical temperature for a clean system. Conse-
quently, we obtain

log

(
4eγe

π

ωD

2Tc,0

)
= �(1/2) − �(1/2 + �/4πTc)

+ log

(
4eγe

π

ωD

2Tc

)
, (B6)

or

log

(
Tc

Tc,0

)
= �(1/2) − �(1/2 + �/4πTc), (B7)

which coincides with Eq. (15) of the main text.

APPENDIX C: ABRIKOSOV-GOR’KOV EQUATIONS AT
ARBITRARY TEMPERATURE: GAPLESS

SUPERCONDUCTIVITY

Now we present the complementary approach to derive the
effect of disorder on superconductivity, which exploits the for-
malism of Gor’kov Green’s functions [84]. The advantage of
this method is that it allows us to treat the problem at arbitrary
temperature and study thermodynamic and electromagnetic
properties of a disordered superconductor at temperatures
down to T = 0.

To start with, we introduce the Nambu space (N) for the
MCBB electron operators according to

�k =

⎛
⎜⎜⎝

ck,1

ck,2

c†
−k,1

c†
−k,2

⎞
⎟⎟⎠

N

. (C1)

In this basis, the bare (without disorder) Gor’kov Green’s
function takes form [70,85]

Ĝ0(iωn, k) = − iωnτ̂0 + ξkτ̂3 + �̂k

ω2
n + ξ 2

k + �2
k

, (C2)

where

�̂k =
√

2�

(
0 F †(k̂)

F (k̂) 0

)
N

, (C3)

and

�2
k ≡ �2Tr F †(k̂)F (k̂). (C4)

Matrices τ̂0 and τ̂3 here are the corresponding Pauli matrices
in the Nambu space (not to be confused with the Pauli
matrices in the orbital basis). The factor

√
2 in Eq. (C3)

is introduced for convenience only, and simply reflects the
normalization condition for functions F (k̂). The form of
the Gor’kov Green’s function (C2) holds for the states with
unitary pairing, i.e., satisfying the relation �̂

†
k�̂k ∝ 1. The

nonunitary states [85], which do not satisfy this relation and
can be realized in multicomponent superconductors, will be
considered in future works.
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The matrices Qαβ
m (p, k) ≡ 〈p̂α|Mm|k̂β〉, describing the

scattering of electrons on the impurities of type m in the
MCBB basis, in the Nambu space become

Qm( p̂, k̂) → Q̂m( p̂, k̂) =
(

Qm( p̂, k̂) 0
0 −QT

m(−k̂,−p̂)

)
N

.

(C5)
The self-energy due to disorder is then given by

�̂m(iωn, p̂) = nmV 2
m

∫
d3k

(2π )3
Q̂m( p̂, k̂)Ĝ(iωn, k)Q̂m(k̂, p̂).

(C6)
We notice that the self-consistency requires us to use full
Green’s function Ĝ, instead of the bare one Ĝ0. Following
Ref. [2], we look for a solution of the form

Ĝ(iωn, k) = − iω̃nτ̂0 + ξkτ̂3 + �̃n,k

ω̃2
n + ξ 2

k + �̃2
n,k

, (C7)

with

�̃n,k =
√

2�̃n

(
0 F †(k̂)

F (k̂) 0

)
N

, (C8)

and

�̃2
n,k ≡ �̃2

nTr F †(k̂)F (k̂). (C9)

Performing integration over ξk first, we obtain the very
general expression which applies to any superconducting state
with unitary pairing:

�̂m(iωn, p̂) = −nmV 2
mπν0

∫
d�k

4π
Q̂m( p̂, k̂)

× iω̃nτ̂0 + �̃n,k√
ω̃2

n + �̃2
n,k

Q̂m(k̂, p̂). (C10)

The above expression can be easily used to reproduce the
result for the transition temperature Tc,J , Eq. (15). Neglecting
�̃2

n,k in the denominator and performing integration over �k

and summation over m, we find for the channel J

�̂(iωn, p̂) ≡
∑

m

�̂m(iωn, p̂)

= − iτ̂0sgn(ω̃n)

2τ
+ �̃n,p(1 − τ�J )

2τ |ω̃n| , (C11)

where �J is given by Eq. (13). In deriving the last equation, we
also used Eqs. (10) and (11). Utilizing further Dyson equation
Ĝ−1 = Ĝ−1

0 − �̂, we easily obtain

ω̃n = ωn + sgn(ω̃n)

2τ
,

�̃n = � + �̃n(1 − τ�J )

2τ |ω̃n| , (C12)

which can be readily resolved yielding

ω̃n = ωn + sgn(ωn)

2τ
,

�̃n = �

(
1 − 1 − τ�J

2τ |ω̃n|
)−1

. (C13)

Finally, using the gap equation in the channel J

�̂k,αβ = gJTc

∑
n,p

F †
Jαβ (k̂)FJγ δ ( p̂)

�̃n,p,δγ

ω̃2
n + ξ 2

p
, (C14)

we obtain after summation over p

1 = πgJTcν0

∑
n

1

�J/2 + |ω̃n| − 1
2τ

= πgJTcν0

∑
n

1

�J/2 + |ωn| , (C15)

which is identical to Eq. (B1) and leads eventually to Eq. (15).
We emphasize that Eq. (C10) is very general and can

be used to study thermodynamic properties of any (unitary)
superconducting state. As an example, we focus on the fully
isotropic pairing functions F0g and F0u. Performing integration
over �k in Eq. (C10), we find a set of coupled equations for
ω̃n and �̃n:

ω̃n = ωn + ω̃n

2τ

√
ω̃2

n + �̃2
n

,

�̃n = � + �̃n(1 − τ�J )

2τ

√
ω̃2

n + �̃2
n

, (C16)

accompanied with the gap equation

� = πgJT ν0

∑
n

�̃n√
ω̃2

n + �̃2
n

. (C17)

These equations, in principle, can be solved numerically to
find the value of the pairing gap � at arbitrary temperature
and study the thermodynamic properties of a superconductor.
For instance, in the case of nonmagnetic (T -even) disorder
for the s-wave F0g pairing or CT -even disorder for the p-
wave F0u pairing, we have �J = 0, and Eq. (C16) admits
simple solution ω̃n/�̃n = ωn/�. In these cases, the latter
result implies that the gap equation (C17) is not modified by
disorder at all, consequently, the transition temperature and
all the thermodynamic properties below Tc remain unchanged
compared to the clean case.

Abrikosov and Gor’kov have analyzed Eqs. (C16) and
(C17) in detail (with �J 
= 0) for the most interesting limiting
cases in Ref. [2]. In particular, they found that there is a range
of the impurity concentration where superconductivity is not
entirely suppressed, while becoming gapless. In our language,
this corresponds to the threshold value of the pair-breaking
rate �′

J , above which the gap in the spectrum of elementary
excitations vanishes:

�′
J = 2e−π/4�Jcr. ≈ 0.91 �Jcr., (C18)

where the critical value �Jcr. is given by Eq. (16). As a result,
the low-temperature behavior of the specific heat changes
from exponential to T linear in the range �′

J < �J < �Jcr..
The analysis of this Appendix can be straightforwardly

generalized to study the effect of different types of disorder
on the anisotropic nematic pairing states in doped Bi2Se3

compounds [39,49] or nonunitary chiral pairing in Majorana
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superconductors [49,86]. We leave these and related interest-
ing questions to a future publication.

APPENDIX D: GENERALIZATION OF ANDERSON’S
ARGUMENT TO A GENERIC ANTIUNITARY SYMMETRY

In the main text, we have seen that the F0u state is protected
from any disorder respecting the product of time-reversal
and chiral symmetries. In this Appendix, we will show how
to (trivially) generalize Anderson’s original argument [1] to
any antiunitary discrete symmetry that squares to −1 and
acts within a two-orbital basis. To this end, we consider a
discrete unitary symmetry C, which acts within the space of
the two orbitals, and construct the antiunitary symmetry by
multiplying it by TRS, T . We assume a basis of operators
ψτσ , where τ = ± is the orbital and σ = ± is spin (“+” and
“−” correspond to spin up and spin down, respectively), such
that the symmetries act as follows:

T ψτσ (k) = σψτ−σ (−k), (D1)

Cψτσ (k) = ψ−τσ (k), (D2)

and thus

CT ψστ (k) = σψ−τ−σ (−k). (D3)

For the sake of brevity, we will denote orbit and spin under
the same index α = (σ, τ ), such that

CT ψkα = αψ−k−α, (D4)

where the convention is that −α has both spin and orbit flipped
compared to α and that the sign of α is given only by the spin
component, such that α = 1 for (+, τ ) and α = −1 for (−, τ ).

We will now show that the transition temperature of the
pairing state

� = 1

2
ψk CT ψk =

∑
α

α

2
ψkαψ−k−α (D5)

is not affected by disorder that respects the product CT .
Notice that when C anticommutes with inversion, this state
is an odd-parity pairing state. The pairing state (D5) is driven

by the interaction Hamiltonian

HI = −g
∑
kp

ψ†
p (CT )−1 ψ†

p ψk CT ψk

= −g
∑
αβ

∑
kp

αβ ψ
†
−p−αψ†

pα ψkβψ−k−β. (D6)

To show that the pairing state is not affected by disorder,
we follow Anderson’s original argument [1]. We consider a
generic dispersion Hamiltonian

H0 =
∑

k

ψ
†
k ĥkψk (D7)

and a disorder Hamiltonian

Hd =
∑
kp

ψ†
p d̂pkψk, (D8)

where d̂pk = ∑
lm ei(k−p)·rl Mm. It is assumed that both Hamil-

tonians (D7) and (D8) respect CT . Notice that the disorder
potential or dispersion Hamiltonian need not respect T or C
individually, but only the product of the two.

Following the Anderson argument, we now diagonalize the
sum of dispersion and disorder Hamiltonians

∑
pkαβ

[
U aα

np

]∗(
ĥαβ

p δkp + d̂αβ

pk

)
U bβ

n′k = εn,aδnn′δab (D9)

and the corresponding field operators

cna = [
U aα

np

]∗
ψpα , (D10)

where n denotes the spatial states that diagonalize the above
Hamiltonian. Because the sum H0 + Hd possesses CT sym-
metry, we may assume that the new operators cna come in
pairs related to each other under CT . Thus, we can denote
the CT partner of cna by c−n−a (given the symmetry, we can
always label states in this manner). It then follows that

(CT )−1U aα
nk CT = aα

[
U −a−α

−n,−k

]∗ = U aα
nk , (D11)

where, as before, the sign of the orbital indices a and α is given
by the spin component alone. The first equality in Eq. (D11)
stems from the definition of CT symmetry, while the second
one is true because the Hamiltonian preserves this symmetry.

We are now ready for the final step. We transform the
operators in Eq. (D6) to the basis that diagonalizes the sum
of H0 + Hd according to Eq. (D10):

HI = −g
∑
kp

∑
n1n2n3n4

∑
αβabel

αβ
{
c†

n1e

[
U e−α

n1−p

]∗[
U lα

n2 p

]∗
c†

n2l

}{
cn3bU

bβ
n3kU a−β

n4−kcn4a
}

= −g
∑
kp

∑
n1n2n3n4

∑
αβabel

ae
{
c†

n1eU
−eα
−n1 p

[
U lα

n2 p

]∗
c†

n2l

}{
cn3bU

bβ
n3k

[
U −aβ

−n4k

]∗
cn4a

}

= −g
∑
nn′

∑
ae

ae c†
−n−ec†

ne cn′ac−n′−a, (D12)

where in the second line we used Eq. (D11). The final result is that this Hamiltonian has exactly same form as Eq. (D6) and the
interaction weight g remains unchanged in the new basis. Consequently, Tc is not modified as long as the density of the energy
states εna is the same as in the clean Hamiltonian.
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APPENDIX E: THE CONVERSION MATRIX bJm

The matrix elements bJm from Eq. (11), where m = 0–15 numerates different types of disorder, equal to

bJm =

⎛
⎜⎜⎜⎜⎜⎜⎝

1/2 1/2 1/2 1/2 1/2 1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2
1/2 −1/2 1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2 −1/2 1/2 1/2 1/2 1/2
1/3 −1/3 −1/3 1/3 −1/3 −1/3 −1/3 1/3 1/3 1/3 −1/3 −1/3 −1/3 1/3 −1/3 −1/3
1/3 −1/3 −1/3 −1/3 1/3 −1/3 1/3 −1/3 1/3 −1/3 1/3 −1/3 −1/3 −1/3 1/3 −1/3
1/3 −1/3 −1/3 −1/3 −1/3 1/3 1/3 1/3 −1/3 −1/3 −1/3 1/3 −1/3 −1/3 −1/3 1/3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(E1)

The last line of this matrix describes all channels with J = 2 [i.e., F21(k̂) − F25(k̂)].
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