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Josephson junction dynamics in a two-dimensional ultracold Bose gas

Vijay Pal Singh ,1,2,3 Niclas Luick ,2,3 Lennart Sobirey ,2,3 and Ludwig Mathey1,2,3

1Zentrum für Optische Quantentechnologien, Universität Hamburg, 22761 Hamburg, Germany
2Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany

3The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761, Germany

(Received 19 February 2020; accepted 5 August 2020; published 25 August 2020)

We investigate the Berezinskii-Kosterlitz-Thouless (BKT) scaling of the critical current of Josephson junction
dynamics across a barrier potential in a two-dimensional Bose gas, motivated by recent experiments by Luick
et al. [Science 369, 89 (2020)]. Using classical-field dynamics, we determine the dynamical regimes of this
system as a function of temperature and barrier height. As a central observable we determine the current-phase
relation as a defining property of these regimes. In addition to the ideal junction regime, we find a multimode
regime, a second-harmonic regime, and an overdamped regime. For the ideal junction regime, we derive an
analytical estimate for the critical current, which predicts the BKT scaling. We demonstrate this scaling behavior
numerically for varying system sizes. The estimates of the critical current show excellent agreement with the
numerical simulations and the experiments. Furthermore, we show that the damping of the supercurrent is
associated with the phonon excitations in the bulk, and the nucleation of vortex-antivortex pairs in the junction.
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I. INTRODUCTION

For a Josephson junction created by a superconductor-
insulator-superconductor interface, the Josephson relation
Is = Ic sin φ relates the supercurrent Is to the phase difference
φ of the order parameter across the junction [1]. Ic is the criti-
cal current of the junction, which is the maximal supercurrent
across the junction. This connection is the defining function-
ality of quantum mechanical devices, such as superconducting
quantum interference devices (SQUIDs).

The ongoing study of Josephson junctions (JJs) was broad-
ened in scope with the design of Josephson junctions in
ultracold atom systems. This led to atomic JJs [2–10], su-
percurrent dynamics in ring condensates [11–14], dc SQUIDs
[15,16], and quantum transport [17,18]. Josephson tunneling
between two condensates was studied in Ref. [19] and their
theoretical investigation reported in Refs. [20–31]. Current-
phase relations of atomic JJs were measured in Refs. [32,33].
The decay of a supercurrent due to phase slip dynamics was
discussed in Refs. [34–36]. Temperature dependence of the
phase coherence was measured in Ref. [37].

Josephson junctions are utilized in phenomenological
models of high-temperature superconductors, which describe
these materials as stacks of two-dimensional (2D) systems
coupled by JJs. Josephson junction arrays also serve as a
model to describe transport phenomena in optically driven
high-temperature superconductors [38]. 2D systems such as
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thin-film superconductors [39] or Josephson junction arrays
[40] undergo a Berezinskii-Kosterlitz-Thouless (BKT) transi-
tion within the XY universality class [41–43]. The superfluid
phase has quasi-long-range order and is characterized by
a scale-invariant exponent τ of the single-particle correla-
tion function g1 that decays algebraically at large distances,
g1(r) ∼ |r|−τ/4. At the transition the exponent assumes the
critical value τc = 1 which is accompanied by a universal
jump of the superfluid density.

Recently, Ref. [32] reported on a study on Josephson junc-
tion dynamics of an ultracold 2D gas of 6Li atoms, which is
realized by separating two uniform 2D clouds with a tunneling
barrier. Using a strong barrier higher than the mean-field
energy, the experiments measure the current-phase relation
of an ideal junction, and the critical currents in the crossover
from tightly bound molecules to weakly bound Cooper pairs.

In this paper, we establish a connection between the qua-
siorder scaling of 2D superfluids and the critical current
of the Josephson junction. Specifically, we demonstrate the
BKT scaling of the critical current of a Josephson junction
coupling two 2D Bose gases using classical-field simulations.
The Josephson junction is created by a tunneling barrier
between two 2D clouds of 6Li2 molecules, motivated by the
experiments of Ref. [32]. We find an interplay of the bulk
and junction dynamics that is influenced by the barrier height
and the temperature. Depending on these parameters, we find
multimode (MM) and second-harmonic (SH) contributions to
the current-phase relation. For large barrier heights we find
that the junction dynamics displays ideal Josephson junction
(IJJ) behavior; i.e., it obeys the nonlinear current-phase rela-
tion I (φ) = Ic sin(φ). We map out the MM, the SH, the IJJ,
and an overdamped regime as a function of barrier height and
temperature. We determine the critical current numerically
based on the current and phase dynamics at the barrier.
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The numerically obtained critical current and an analytical
estimate that we derive show excellent agreement with the
experimental values of Ref. [32]. We confirm the BKT scaling
of the critical current by performing simulations for varying
system sizes. The exponent of the critical current across the
transition demonstrates agreement with the exponent of the
corresponding equilibrium system, if the system is in the IJJ
regime. Finally, we address the damping of the current and
identify the damping mechanism which is due to phonon
excitations in the bulk, and the nucleation of vortex-antivortex
pairs in the junction.

This paper is organized as follows. In Sec. II we describe
our simulation method. In Sec. III we show the condensate
dynamics and its dependence on the barrier height and the
temperature. In Sec. IV we determine the critical current for
an ideal junction and compare it to the simulation and the
experiment. In Sec. V we show the power-law scaling of the
critical current for varying system sizes. In Sec. VI we discuss
the dissipation mechanism of the current, and in Sec. VII we
conclude.

II. SIMULATION METHOD

Motivated by the experiments [32], we study 2D clouds of
6Li2 molecules confined in a box of dimensions Lx × Ly. We
simulate the dynamics using the c-field method of Ref. [44].
The system is described by the Hamiltonian

Ĥ0 =
∫

dr
[

h̄2

2m
∇ψ̂†(r) · ∇ψ̂ (r) + g

2
ψ̂†(r)ψ̂†(r)ψ̂ (r)ψ̂ (r)

]
,

(1)

where ψ̂ (ψ̂†) is the bosonic annihilation (creation) oper-
ator. The interaction g is given by g = g̃h̄2/m, where g̃ is
the dimensionless interaction, and m the molecular mass.
g̃ is determined by g̃ = g̃0/(1 − g̃0

2π
ln(2.09kF�z )), with g̃0 =√

8πas/�z [45]. as is the molecular s-wave scattering length,
�z = √

h̄/(mωz ) the harmonic oscillator length in the trans-
verse direction, and kF the Fermi wave vector. We discretize
space on a lattice of size Nx × Ny and a discretization length
l = 0.5 μm (see also Appendix A). Note that l is chosen to
be smaller than or comparable to the healing length and the
de Broglie wavelength [46]. Within the c-field representation
we replace the operators ψ̂ in Eq. (1) and in the equations of
motion by complex numbers ψ . We sample the initial states
in a grand-canonical ensemble having chemical potential μ

and temperature T via a classical Metropolis algorithm. We
choose the system parameters, such as the density n, g̃, and T
to be close to the experiments. In particular, we choose n ≈
1.24 μm−2, T/T0 = 0.3, and Lx × Ly = 20 × 40 μm2, which
are the same as in Ref. [32]. The critical temperature T0 is
estimated by T0 = 2πnh̄2/(mkBDc), where Dc = ln(380/g̃) is
the critical phase-space density [47]. We vary g̃ in the range
1–4 to cover the Bose-Einstein condensate (BEC) regime
of the experiments. For additional simulations, we use n ≈
2.25 μm−2 and g̃ = 1.8, while we vary T/T0 and the box size.

To create the Josephson junction we add a barrier term
Hb(t ) = ∫

dr V (r, t )n(r, t ), where n(r, t ) = |ψ (r, t )|2 is the
density at the location r = (x, y) and time t . The barrier

potential V (r, t ) is given by

V (r, t ) = V0(t ) exp(−2(x − x0)2/w2), (2)

where V0(t ) is the time-dependent strength and w the width.
The potential is centered at x0 = Lx/2. We choose w in
the range 0.85–2 μm and V0 in the range V0/μ ≡ Ṽ0 = 0–
6, where μ = gn is the mean-field energy. We ramp up V0

linearly over 150 ms and then wait for 50 ms. This splits the
system in the x direction into two uniform 2D clouds, which
we refer to as the left and right reservoirs. To create a phase
difference across the junction, we imprint a phase φ0 on the
left reservoir, resulting in the phase difference φ0 = φL − φR,
where φL (φR) is the mean phase of the left (right) reservoir.
The sudden imprint of the phase and the barrier lead to the
dynamics displayed in Fig. 1. We calculate the x component
of the current density defined as

j(x) = h̄

2imlNy

∑
y

(ψ∗
r ψr+l êx − ψrψ

∗
r+l êx

). (3)

We calculate j1 with r = (x0 − l êx, y), and j2 with r =
(x0, y). j = 〈 j1 + j2〉/2 gives the averaged current density at
the barrier center. This current fulfills the continuity equation
of the density imbalance between the two reservoirs. The time
evolution of the current is determined by I (t ) = j(t )Ly [see
Fig. 6(a)]. We fit I (t ) with the function f (t ) = I0e−�t sin(ωt +
θ ) to determine the magnitude I0 ≡ |I0|, the damping rate �,
the frequency ω, and the phase shift θ .

III. BULK VERSUS JUNCTION DYNAMICS

To characterize the junction dynamics we analyze the time
evolution of the density and the phase of the system. As an
illustration, we choose n = 2.25 μm−2, T/T0 = 0.3, and g̃ =
1.8. We imprint a phase of π/4 on the left reservoir at t = 0,
for Ṽ0 = 0, 0.8, and 2. We use w = 0.85 μm, which in terms
of the healing length ξ is w/ξ = 2.4, where ξ = h̄/

√
2 μm =

0.35 μm. In Fig. 1(a) we show the time evolution of the
density δn(x, t ) = n(x, t ) − n(x), which is averaged over the
y direction and the thermal ensemble. n(x) is the averaged
equilibrium density profile at t = 0. For no barrier, Ṽ0 = 0,
the phase imprint creates two density pulses that are visible as
density increase and decrease in the left and right reservoirs,
respectively. The density pulses propagate in opposite direc-
tion with the sound velocity and are reflected by the box edges.
For Ṽ0 = 0.8, the barrier confines the density wave partially in
each of the reservoirs. For Ṽ0 = 2, the density waves are well
confined within the reservoirs as flow between the reservoirs
is obstructed by the barrier. Instead, the density waves tunnel
across the barrier, resulting in coherent Josephson oscillations
between the reservoirs.

In Fig. 1(b) we show the time evolution of the phase
δφ(x, t ) = φ(x, t ) − φm(t ) of a single trajectory, for the same
Ṽ0 as in Fig. 1(a). φm is the mean global phase. The sudden
imprint of phase adds the mean phase difference φ0 = φL −
φR between the left and right reservoirs at t = 0. During the
time evolution a phase gradient develops within the reservoirs,
which results in φL/R being different from the phases close to
the junction. For Ṽ0 = 0, the phase evolves linearly with the
distance. As the barrier height is increased, the phase gradient
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FIG. 1. Dynamical regimes. (a) Time evolution of the density δn(x, t ) = n(x, t ) − n(x), which is averaged over the y direction and the
ensemble, for Ṽ0 = 0.0, 0.8, and 2.0. n(x) is the equilibrium density. (b) The corresponding phase evolution δφ(x, t ) = φ(x, t ) − φm(t ) of a
single trajectory of the ensemble. φm is the mean phase. We imprint a phase of φ0 = π/4 on the left reservoir at t = 0 for n = 2.25 μm−2

and T/T0 = 0.3. The barrier width w is denoted by the two vertical dotted lines. (c, d) The current I0 as a function of φ0 for various Ṽ0 at
T/T0 = 0.1 and 0.3, respectively. The continuous lines are fits with the fitting function I (φ0) = I1 sin(φ0) + I2 sin(2φ0). (e) The dynamical
regimes are multimode (MM), second-harmonic (SH), ideal Josephson junction (IJJ), and overdamped (OD); see text.

within the reservoirs decreases. For Ṽ0 = 2, the phase gradient
within the reservoir almost vanishes, resulting in φL/R being
the same as the phases in direct vicinity of the junction. This
corresponds to IJJ dynamics.

We now examine the current-phase relation (CPR) of the
junction. We determine the current I0 by fitting the time
evolution of the current I (t ) to a damped sinusoidal function
as described in Sec. II. To obtain the CPR we calculate I0 as a
function of φ0. In Fig. 1(c) we show I0(φ0) for various values
of Ṽ0 at T/T0 = 0.1, and in Fig. 1(d) at T/T0 = 0.3. We an-
alyze these CPR curves by fitting them with a multiharmonic
fitting function I (φ0) = ∑nmax

n=1 In sin(nφ0), where we choose
nmax = 5. We find that the result of these fits can be grouped
into three regimes, as a function of the barrier height Ṽ0 and
the temperature. If the coefficient I1 is dominant, the CPR re-
duces to the form of an IJJ, I (φ0) = I1 sin(φ0). If both I1 and I2

are non-negligible and I2/I1 < −0.05, we refer to the regime
as a SH regime. In Fig. 1(e) we indicate the crossover from IJJ
to SH by depicting the ratio I2/I1. For lower temperatures and
barriers, higher harmonic contributions become important. We
indicate the MM regime if

∑
n>2(In/I1)2 > 0.02 (see also

Appendix B). We note that CPR deviations were pointed out
for Ṽ0 � 1 by Refs. [21,48,49]. Furthermore, we indicate the
overdamped (OD) regime based on the analysis shown in
Sec. VI.

The results depicted in Fig. 1(e) demonstrate that the IJJ
regime is strongly sensitive to the temperature and the barrier
height. This derives from the properties of the dynamical
evolution shown in Figs. 1(a) and 1(b). The initial phase
imprint creates phonon pulses in the two reservoirs. For
low temperatures and small barrier heights these pulses are
weakly damped, which leads to the multimode regime. For
increasing temperature and barrier height, fewer and fewer of

the phonon modes of the system contribute. The increasing
barrier height leads to a long tunneling time, which exceeds
the damping time of more and more phonon modes, until the
phase dynamics reduces to the dynamics of two global phases
for each reservoir, as visible in Figs. 1(a) and 1(b). However,
if the barrier is increased further, eventually the dynamics
become overdamped. Here, the two reservoirs dephase on the
timescale of the tunneling rate. We note that the temperature
dependence of the current-phase relation was measured in
Nb/InAs/Nb junctions by Ref. [50] and in a weak link of
4He superfluids by Ref. [51]. Furthermore, we point out that
the dynamical regimes observed here can also be expected
for a three-dimensional (3D) condensate. In both two and
three dimensions, the critical current is proportional to the
condensate density in the IJJ regime (see also Ref. [29] for the
3D case). For a 2D condensate, this dependence gives access
to the algebraic scaling behavior of a quasicondensate below
the BKT transition, as we demonstrate below.

IV. CRITICAL CURRENT

To determine the Josephson critical current, we calcu-
late the junction phase φ j ≡ 〈φ j〉 = 〈φ2,m − φ1,m〉, where
φ1/2,m = φx0∓2l êx are the mean phases calculated by taking an
average of the fields over the y direction. We use the same
density n as above, and T/T0 = 0.2. We calculate the time
evolution of the current I (t ) and the phase φ j (t ). In Fig. 2(a)
we show the time evolution of I (φ j ) for Ṽ0 = 1, 2, and 3.
In this small-φ j regime a linear behavior is observed. The
width of the distribution increases with increasing Ṽ0 due to
increased phase fluctuations across the barrier. We determine
the critical current Ic by the slope I/ sin φ j . Within the IJJ
regime, this coincides with I1. Ic decreases with increasing
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FIG. 2. Critical current. (a) Time evolution of the junction cur-
rent I (t ) versus phase φ j (t ) for Ṽ0 = 1, 2, and 3, depicted as dots
in the I-φ j plane. The critical current Ic is determined by the linear
slope (dashed lines) of I/ sin φ j . The dashed lines are the fits to
the function I (φ j ) = Ic sin φ j . (b–d) Ic(Ṽ0 ) for T/T0 = 0.1, 0.2, and
0.3, respectively, for w/ξ = 2.9 (squares) and 4.3 (circles). The
continuous lines are the estimates of Eq. (5).

Ṽ0, with Ic = 83.8, 15, and 2.9 ms−1 for Ṽ0 = 1, 2, and 3,
respectively. In Figs. 2(b)–2(d) we show Ic(Ṽ0) for T/T0 =
0.1, 0.2, and 0.3, and the barrier widths w/ξ = 2.9 and 4.3.
As expected, Ic is smaller for wider barriers. Ic also decreases
with the temperature as we show below.

We derive an analytical estimate of the critical current by
solving the mean-field equation and by considering single-
particle tunneling across a rectangular barrier of height V > μ

and width d (see Appendix C). We obtain the current density

j = jc sin φ j, (4)

with

jc = 2n0
μ

V +
√

V 2 − μ2/2

h̄κ

m
exp(−κd ) (5)

and

κ2 = m

h̄2 (3V − 2μ −
√

V 2 − μ2/2), (6)

where n0 is the condensate density. κ is the damping pa-
rameter of the exponential wave function inside the barrier,
which is determined variationally, and includes the mean-field
repulsion under the barrier. We interpret this result for jc
as the product of the density n0μ/(V +

√
V 2 − μ2/2) at the

barrier boundary and the velocity h̄κ/m at the barrier center.
Alternatively, it is instructive to rewrite Eq. (5) in terms of the
bulk current density cn0 and the tunneling amplitude t0(Ṽ , d )
across the barrier as

jc = cn0t0(Ṽ , d ), (7)

with

t0(Ṽ , d ) = 2
√

2

√
6Ṽ − 4 −

√
4Ṽ 2 − 2

2Ṽ +
√

4Ṽ 2 − 2

× exp

(
− d

2ξ

√
6Ṽ − 4 −

√
4Ṽ 2 − 2

)
, (8)

where c = √
μ/m is the sound velocity, ξ the healing length,

and Ṽ = V/μ the scaled barrier height. We note that jc is
described in terms of the bulk current and the tunneling
amplitude for a 3D condensate in Refs. [29,30]. We determine
the estimate Ic = jcLy by using V = V0 and d ≈ 1.2w, and
by determining c(T ) and n0 numerically. c(T ) is defined
as c(T ) = ω(T )Lx/π , where ω(T ) is the current oscillation
frequency without the barrier. V0 and w are of the Gaussian
barrier used in the simulation. This value for d is set by fitting
the simulated critical currents in the IJJ regime, which is close
to our assumption d ≈ w used in Ref. [32]. In Figs. 2(b)–2(d)
we show the estimates as a function of Ṽ0 for T/T0 = 0.1, 0.2,
and 0.3. The estimates agree with simulated critical currents
at all Ṽ0 > 1, for all T/T0. The agreement is particularly good
for the IJJ regime. This suggests that the barrier reduction of
Ic is due to the tunneling amplitude t0(Ṽ0,w) that decreases
with increasing Ṽ0 and w. We note that Ic in Eq. (5) has an
exponential dependence on the barrier width.

In Fig. 3(a) we show Ic as a function of Ṽ0 for w/ξ = 2.9
and various T/T0. As T/T0 increases, Ic(Ṽ0) decreases with
a rather sudden jump to very low values for T/T0 > 0.6. Ic

and the bulk current are connected according to Eq. (7) via
IB = Ic(Ṽ0)/t0(Ṽ0,w). We thus divide Ic(Ṽ0) by t0(Ṽ0,w) [see
inset of Fig. 3(b)]. The results are almost independent of Ṽ0

as expected. By taking an average over the range Ṽ0 = 1–2,
we obtain the mean value of IB which is shown in Fig. 3(b).
The mean IB decreases with increasing T/T0 and becomes
small due to increased thermal fluctuations for T/T0 � 0.6.
We compare this result to the actual bulk value IB = c(T )n0Ly

by determining n0 and c(T ) numerically for various T/T0.
This bulk result agrees at intermediate temperatures, where
the system is near the IJJ regime. At low temperatures, the
system is in the MM regime, where the above estimate is not
valid. The bulk current is linked to the BKT scaling exponent
that we determine in Sec. V.

Finally, we compare the simulations to the measurements
that are performed at several interaction strengths in the
BEC regime [32]. We use the range g̃ = 1–4, and deter-
mine the critical current Ic as described above. In Fig. 4
we show the simulated Ic as a function of the interac-
tion parameter ln(kFa2D). kF is the Fermi wave vector and
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FIG. 3. Temperature dependence. (a) Ic(Ṽ0 ) for w/ξ = 2.9 and
various T/T0. (b) Mean bulk current IB (circles) determined from the
normalized critical currents shown in the inset (see text). The error
bar denotes the standard deviation. The bulk values of the current
determined using the condensate density and phonon velocity are
shown by the diamonds.

a2D = 2.96�z exp(−�z
√

π/a3D) is the 2D scattering length,
where a3D = as is the 3D scattering length. The simulation
results are consistent with the experimental results within
the error bars of the measurement. For ln(kFa2D) = −1, the
simulation results start to deviate from the experimental result,
because the system enters the strongly interacting regime,
where the c-field approach starts to deviate systematically.
The shaded areas reflect the error bars of theory when assum-
ing a 15% uncertainty of Ṽ0 as in experiment. We calculate
the estimate of Eq. (5) by determining the condensate density
numerically for all interactions. The condensate fraction n0/n
has weak interaction dependence and is about 62%. We show
the analytical estimates in Fig. 4. The estimates, including the
15% uncertainty of Ṽ0, are consistent with both simulation
results and the experimental results.

V. BEREZINSKII-KOSTERLITZ-THOULESS SCALING

We have shown above that the critical current depends on
the condensate density. We use that dependence to extract
the scaling exponent of the quasicondensate. The condensate

FIG. 4. Comparison to the experiments. The measurements of
the critical current (crosses) are compared to the simulations
(squares) and the analytical estimate (continuous line) for various
ln(kFa2D) in the BEC regime. kF is the Fermi wave vector and a2D is
the 2D scattering length. We use n ≈ 1.24 μm−2, T/T0 ≈ 0.3, w =
0.81 μm, and Ṽ0 = 1.4, which are the same as the experiments. The
shaded areas include a 15% uncertainty of Ṽ0 as in experiment. The
deviation between the experiment and the simulation due to strong
interactions is expected for ln(kFa2D) � −1. The measurement data
are from Ref. [32].

density scales algebraically with the system size as

n0 ≈ n
( L

r0

)−τ/4
, (9)

where τ (T ) is the temperature-dependent exponent, L the
system length, and r0 the short-range cutoff of the order of ξ .
Employing this scaling, we first determine τ (T ) for a square-
shaped system in equilibrium. We choose n ≈ 2.25 μm−2,
g̃ = 1.8, and L in the range 2–128 μm. We calculate n0 as
a function of L for various T/T0 for a system with periodic
boundary conditions. In Fig. 5(a) we show the condensate
fraction n0/n as a function of L for various T/T0. At low
and intermediate T/T0, n0 shows a power-law behavior as it
decreases linearly with L on a log-log scale. At high T/T0,
n0 deviates from this power-law scaling and instead shows
an exponential behavior which is characteristic of the thermal
phase [52]. To confirm the power-law scaling, we fit n0/n to
Eq. (9), with τ and r0 as fitting parameters. The determined
value of r0 increases with increasing T/T0 and is in the
range 0.17–0.52 μm for T/T0 between 0.1 and 0.6, which
is comparable to the healing length ξ = 0.35 μm. We show
the fits in Fig. 5(a). The algebraic fits describe the behavior
very well for T/T0 � 0.6, whereas they fail to capture the
dependence for T/T0 > 0.6. For T/T0 = 0.9 the dependence
is captured by the exponential fit, while for T/T0 = 0.7 the
algebraic fit is better than the exponential fit.

Next, we determine the scaling exponent of the critical
current density. We choose n and g̃ as above, and L in the
range 40–128 μm. For the barrier, we use w/ξ = 2.9 and
Ṽ0 in the range Ṽ0 = 1.2–2. We calculate the critical current
density jc as a function of L for various T/T0, where jc is
determined by the critical current described in Sec. IV. We
obtain the condensate density n0 by normalizing jc with the
sound velocity c(T ) and the tunneling amplitude t0(Ṽ0,w)
[see Eq. (7)]. We then average n0 over the barrier heights
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FIG. 5. Determining the scaling exponent. (a) Condensate frac-
tion n0/n of the equilibrium system as a function of system length L
on a log-log scale for various T/T0. (b) Averaged n0/n determined
from the critical current density jc via Eq. (7). The continuous lines
are the algebraic fits. The exponential fit (dashed line) is a good fit
for T/T0 = 0.9 in (a). (c) Extracted exponents of the equilibrium
system (squares) and jc (circles). The black cross corresponds to the
measurements of jc in Ref. [32].

employed. We expand on this normalization in Appendix D.
In Fig. 5(b) we show the condensate fraction n0/n that is
determined from the critical current density as a function of
L for various T/T0. n0/n shows a power-law behavior for
T/T0 � 0.6, which is confirmed by the algebraic fits shown
in Fig. 5(b). In Fig. 5(c) we show the temperature dependence
of τ for the equilibrium system and τ determined from the
critical current density. The equilibrium value of τ increases
linearly at low and intermediate T/T0, while it deviates from
linear behavior at high T/T0 in the crossover regime. We
estimate the transition temperature with the BKT critical value
τc = 1, which gives Tc/T0 ≈ 0.6. We note that this value of Tc

is renormalized to a lower value in the thermodynamic limit
[53]. We also note that our estimate of Tc is below T0 of a
weakly interacting 2D Bose gas [47]. Above the transition,
τ increases rapidly with the temperature. Here, the system
is in the crossover regime of a condensate of finite size.
The algebraic scaling extends to values above 1, as visible
in Fig. 5(a). With increasing system size, the temperature
range of this crossover regime shrinks to zero, and the system
approaches the BKT transition at τc = 1. This temperature
dependence of τ across the transition can be captured by
the renormalization group equations [54]. Studies of BKT

FIG. 6. Current damping. (a) Oscillations of the current I (t ) for
T/T0 = 0.1, 0.3, and 0.5. We use Ṽ0 = 2 and w = 1 μm. (b) Normal-
ized oscillation frequency ω/ω0 and (c) scaled damping rate �/ω,
as a function of Ṽ0, for the temperatures as in (a). ω0 is the sound
frequency. The red shaded area denotes the overdamped regime.

scaling in ultracold gases were reported in Refs. [55–58]. In
addition to the equilibrium value of τ we show the value
of τ based on the critical current scaling. The results show
excellent agreement with the exponents of the equilibrium
system for the temperatures 0.2 < T/T0 < 0.55 and follow
the qualitative behavior outside of this temperature range. The
deviations below T/T0 = 0.2 are due to multimode dynamics
that influence the results of the critical current density, while
the deviations for T/T0 � 0.55 are due to thermal excitations
at the barrier, and the onset of overdamped dynamics. With
increasing system size, the crossover regime above τc = 1
shrinks to zero. The comparison of the quantities is consistent
in the sense that the dynamical behavior is overdamped, and
the condensate density is zero.

Furthermore, we determine the exponent τ from the mea-
surements of the critical currents shown in Fig. 4. Making use
of Eq. (7), these measurements yield the condensate fraction
n0/n = 0.72(8). For the system size L in the experiment
and r0 = ξ , the scaling of Eq. (9) results in an exponent of
τ = 0.32(12). We show this value of τ for T/T0 = 0.3 in
Fig. 5(c), which agrees with the exponents of the simulated
critical current density and the equilibrium system.

VI. CURRENT DAMPING AND
DISSIPATION MECHANISM

Here we analyze the damping of the supercurrent and
identify the associated dissipation mechanism. As an illus-
tration, we choose w/ξ = 2.9 and Ṽ0 = 2.0, and calculate
the time evolution of the current I (t ) as described above. In
Fig. 6(a) we show I (t ) for T/T0 = 0.1, 0.3, and 0.5. The
current oscillations are underdamped at T/T0 = 0.1 and 0.3.
The damping increases with increasing T/T0. For T/T0 = 0.5,
the current undergoes an overdamped motion. To quantify this
observation we determine the oscillation frequency ω and the
damping rate � as described in Sec. II. In Fig. 6(b) we show
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FIG. 7. Damping mechanism. (a) Phase distribution φ(x, y) = φ(x, y) − φm of a single trajectory at t = 3.6 ms, after the phase imprint,
for T/T0 = 0.1, 0.3, and 0.5. φm is the mean global phase. The corresponding bulk condensate fractions are n0/n = 0.88, 0.64, and 0.40,
respectively. The barrier parameters are the same as in Fig. 6(a). The barrier width is indicated by the two vertical dotted lines. The circles
and the triangles denote vortices and antivortices, respectively. The box dimensions are 20 × 40 μm2. For the time evolution dynamics see
Ref. [59]. (b) Average vortex number Nv and (c) differential vortex number Nv − Nv,0, depicted as a function of Ṽ0, where Nv,0 is Nv (Ṽ0 = 0).
The vertical dashed lines in (c) mark the onset of barrier-induced vortices for T/T0 = 0.1, 0.3, and 0.5 at Ṽc = 1.47, 0.58, and 0.29, respectively.

ω/ω0 determined as a function of Ṽ0 for T/T0 = 0.1, 0.3, and
0.5. ω0 is the oscillation frequency for Ṽ0 = 0, which we refer
to as the sound frequency. As Ṽ0 increases, ω/ω0 decreases.
This decrease is more pronounced for higher temperatures.
We note that the dependence of ω/ω0 on the barrier height
differs qualitatively between the low (Ṽ0 < 1) and high (Ṽ0 >

1) barrier regimes. In Fig. 6(c) we show the results of �/ω

as a function of Ṽ0. For T/T0 = 0.1, �/ω is small at all
Ṽ0, confirming underdamped motion. For T/T0 = 0.3, �/ω

increases at high Ṽ0 and is generally below 0.5 that we use as
the definition of the temperature-induced overdamped limit.
For T/T0 = 0.5, �/ω increases rapidly with Ṽ0 and reaches
the overdamped limit at Ṽ0 � 1.5.

To identify the origin of the damping we examine the
phase dynamics of a single trajectory of the ensemble. We
calculate the phase φ(x, y) = φ(x, y) − φm for the same pa-
rameters as in Fig. 6(a), where φm is the mean global phase.
In Fig. 7(a) we show φ(x, y) at t = 3.6 ms, after the phase
imprint, for T/T0 = 0.1, 0.3, and 0.5. The phase imprint
develops a phase difference between the two reservoirs and
a corresponding phase gradient across the barrier. At low
temperature the reservoir phase is weakly fluctuating as
demonstrated by φ(x, y) at T/T0 = 0.1. The fluctuations of
the phase increase with increasing T/T0. The reservoir phase
is moderately and strongly fluctuating for T/T0 = 0.3 and
0.5, respectively. This results in the creation of vortices,
which is confirmed by the calculation of the phase winding
around the plaquettes of the numerically introduced lattice.
We calculate the phase winding around the lattice plaquette of
size l × l using

∑
� δφ(x, y) = δxφ(x, y) + δyφ(x + l, y) +

δxφ(x + l, y + l ) + δyφ(x, y + l ), where the phase differences
between sites are taken to be δx/yφ(x, y) ∈ (−π, π ]. We
show the calculated phase windings in Fig. 7(a). We identify
a vortex and an antivortex by phase windings of 2π and
−2π , respectively. For T/T0 = 0.1, we observe only one

vortex-antivortex pair inside the barrier and no vortices in
the bulk. This scenario changes due to increased thermal
fluctuations at high temperatures. For T/T0 = 0.3, there is
nucleation of multiple vortex pairs inside the barrier, and a few
vortex pairs near the box edges. For T/T0 = 0.5, we observe
proliferating vortices in the regions of low densities around
the barrier, and in the bulk.

To understand the role of vortex fluctuations, we calculate
the total number of vortices, Nv , and average it over the time
evolution calculated up to 40 ms and the thermal ensemble. In
Fig. 7(b) we plot Nv as a function of Ṽ0 for the same values of
T/T0 as in Fig. 7(a). At T/T0 = 0.1, Nv remains close to zero
for barrier heights below a threshold value and beyond this Nv

increases with increasing Ṽ0. At high temperatures the system
features thermal vortices even in the absence of the barrier
and the onset of barrier-induced vortices occurs at a Ṽ0 lower
than that at low temperature. To determine this threshold Ṽc we
calculate the differential vortex number Nv (Ṽ0) = Nv − Nv,0,
where Nv,0 = Nv (Ṽ0 = 0). We show Nv (Ṽ0) in Fig. 7(c). We
define Ṽc for which Nv (Ṽ0) approaches 1. This gives Ṽc =
1.47, 0.58, and 0.29 for T/T0 = 0.1, 0.3, and 0.5, respectively.
This onset of the vortex number with increasing barrier height
might contribute to the smoothly increasing damping of the
oscillations, to be explored in more detail elsewhere.

VII. CONCLUSIONS

In this paper, we have established a direct connection
between the Josephson critical current and BKT scaling in
an ultracold 2D Bose gas using classical field simulations.
For this, we have examined the dynamics across a Josephson
junction created by a tunnel barrier between two uniform
2D clouds of 6Li2 molecules, which is motivated by the
experiments of Ref. [32]. Based on the current-phase relation,
we have mapped out the multimode, the second-harmonic, the
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ideal junction, and the overdamped regime as a function of the
barrier height and the temperature. For the IJJ regime, we have
derived an analytical estimate of the critical current, which is
in good agreement with the simulations and the experiments
[32]. We have demonstrated the BKT scaling of the critical
current numerically by varying the system size. The scaling
exponents of the critical current are in agreement with the
exponents of the corresponding equilibrium system. Finally,
we have addressed the damping of the current, which is due to
phononic excitations in the bulk, and the nucleation of vortex
pairs in the junction.

In conclusion, we have discussed the dynamics of atomic
clouds in two dimensions, coupled via a Josephson junction,
which results in the hybridization of the bulk and tunneling
dynamics. As such, it combines and relates two foundational
effects of quantum physics, in particular condensation and
Josephson oscillations. Our results demonstrate a method to
measure a static property of many-body order, in particular
the condensate density, via a dynamical oscillatory process,
in particular Josephson oscillations. Both the principle of this
method, as well as the presented discussion of dynamical
regimes of this system, can be applied to a wide range of
quantum gas systems, to gain insight into their dynamical and
static properties.
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APPENDIX A: NUMERICAL DISCRETIZATION

For numerical simulations we discretize space on a lattice
of Nx × Ny sites and a discretization length l . The continuum
Hamiltonian in Eq. (1) results in the discrete Bose-Hubbard
Hamiltonian on a 2D square lattice,

H0 = −J
∑
〈i j〉

(ψ∗
i ψ j + ψ∗

j ψi ) + U

2

∑
i

n2
i , (A1)

where ψi and ni = |ψi|2 are the complex-valued field and the
particle number at site i, respectively. 〈i j〉 denotes nearest-
neighbor bonds. J and U are related to the continuum pa-
rameters by J = h̄2/(2ml2) and U = g/l2. m is the mass and
g = √

8π h̄2as/(m�z ) is the interaction, with as being the scat-
tering length and �z the harmonic oscillator length described
in the main text. For two dimensions, U/J = √

32πas/�z is
independent of the discretization length. The approximation
of discrete space leads to the free-particle dispersion εk =
2J

∑d
j=1(1 − cos k jl ), where d = 2 is the dimension and k

the wave vector, which approaches the continuum result εk =

FIG. 8. Numerical discretization. (a) Current I0 as a function of
Ṽ0 for various values of the discretization length ldis/l and T/T0 =
0.1. (b) Same as in panel (a) but for a higher temperature T/T0 =
0.3. I0 is determined from the time evolution of the current following
Sec. II.

h̄2k2/(2m) for kl � 1. An upper bound for the momentum
and its associated energy is set by the discretization length.
Another length scale that is relevant to this upper bound
is the thermal de Broglie wavelength λ =

√
2π h̄2/(mkBT ).

By choosing both λ and the healing length ξ = h̄/
√

2mgn
larger than or comparable to the discretization length, we
include all relevant states in the initial ensemble and in the
dynamics. This is enforced for all simulations in the paper.
Here we demonstrate that the simulation results are not in-
fluenced by our choice of the discretization length. We vary
the discretization length ldis/l in the range 0.8–1.5, where
l = 0.5 μm is the discretization length that is used for the
simulations in this paper. We calculate the time evolution of
the current I (t ) for the barrier height Ṽ0 ≡ V0/μ in the range
0.5–4 and the barrier width w/ξ = 2.9, following Sec. II. The
system parameters n = 2.25 μm−2 and g̃ = 1.6 and the box
size Lx × Ly = 20 × 40 μm2 are the same as in the main text.
Having the fixed box size requires us to change the lattice
size for different ldis. This is crucial for suppressing finite-size
effects when working with different discretization lengths. In
Figs. 8(a) and 8(b) we show the current I0 as a function of
Ṽ0 for T/T0 = 0.1 and 0.3. We used the initial phase imprint
φ0/π = 0.1. The different ldis/l results agree well for all Ṽ0

and all T/T0, where minor deviations occur due to systematic
and numerical noise. This ensures that our results presented in
the paper are not affected by our choice of used discretization
length.
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FIG. 9. Transition between multimode and Josephson regime.
I0(φ0) for various Ṽ0 at (a) T/T0 = 0.1 and (b) T/T0 = 0.3. The con-
tinuous and dashed lines are the second-harmonic and multiharmonic
fits, respectively. The dotted lines are the linear fits.

APPENDIX B: MULTIMODE VERSUS
JOSEPHSON REGIME

In this Appendix, we expand on the multimode regime of
the current-phase relation (CPR). We use the same parameters
as in Sec. III, and calculate I0 as a function of φ0 for various
Ṽ0. In Fig. 9 we show these results at T/T0 = 0.1 and 0.3.
As described in Sec. III, we analyze these CPR curves by
fitting them with a multiharmonic fitting function I (φ0) =∑nmax

n=1 In sin(nφ0), where we choose nmax = 5. At T/T0 = 0.1,
the CPR curves are described by the multiharmonic fits with
nmax = 5 for Ṽ0 � 1.5, which we refer to as the multimode
(MM) regime. For higher Ṽ0 we find the second-harmonic
(SH) regime where I1 and I2 are non-negligible. In contrast
to the SH regime, the MM regime features a linear behavior
up to a maximum value of the current for φ0 > π/2. This is
confirmed by the linear fits shown in Fig. 9(a). In Fig. 9(b)
we show the CPR relations at T/T0 = 0.3. For Ṽ0 � 1.0, the
CPR curves display the MM regime which is also captured by
the linear dependence up to a maximum value of the current
for φ0 > π/2. For Ṽ0 � 2.0, the CPR reduces to the form of
an ideal Josephson junction (IJJ), I (φ0) = I1 sin φ0, which we
refer to as the IJJ regime.

APPENDIX C: ESTIMATE OF THE CRITICAL CURRENT

We derive an expression of the critical current by consider-
ing a rectangular barrier of width d and height V that is higher
than the mean-field energy μ. We use the barrier ansatz

ψl (x) =
{−√

n0 tanh((x + δ)/(
√

2ξ )), x < −d/2
A exp(−κ (x + d/2)), 0 > x > −d/2

(C1)
and

ψr (x) =
{

A exp(κ (x − d/2)), d/2 > x > 0√
n0 tanh((x − δ)/(

√
2ξ )), x > d/2.

(C2)

FIG. 10. Condensate fraction n0/n determined from the critical
current density via Eq. (D3) for various values of the system length
L and Ṽ0. We show n0/n for (a) T/T0 = 0.2, (b) T/T0 = 0.3, and
(c) T/T0 = 0.4.

ψl/r are the fields of the left and right reservoir. n0 is the
density of the k = 0 mode. δ and κ are determined by the
continuity of the field and its derivative at x = ±d/2. We
include the mean-field repulsion in the barrier by determining
κ variationally. The energy is

E = A2

2κ

(
h̄2κ2

2m
+ V − μ

)
+ g

2

A4

4κ
, (C3)

which we minimize using

κ =
√

k2
0 + k2

A (C4)

with

k2
0 = 2m(V − μ)

h̄2 and k2
A = mgA2

2h̄2 . (C5)

The continuity of the wave function and its derivative, along
with Eq. (C4), results in

δ = d/2 +
√

2ξ arctanh(−A/
√

n0), (C6)

A2 = n0
μ

V +
√

V 2 − μ2/2
. (C7)

We introduce a phase difference φ j between the left and
right reservoirs as ψ (x) = ψl + ψr exp(iφ j ), and calculate the
current density jx = h̄/(2im)(ψ∗∂xψ − ψ∂xψ

∗) at x = 0. We
find

j = 2A2 h̄κ

m
exp(−κd ) sin φ j . (C8)
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FIG. 11. Scaling exponent τ of the critical current density shown
over the barrier height range Ṽ0 = 1.2–2, for T/T0 = 0.2, 0.3, and
0.4. τ is determined from the condensate fraction shown in Fig. 10.
The horizontal lines depict the exponents determined from the con-
densate fraction that is averaged over the barrier heights employed.

This is the current-phase relation of a bosonic Josephson
junction, with the critical current density

jc = 2A2 h̄κ

m
exp(−κd ). (C9)

κ and A2 are given by Eqs. (C4) and (C7), respectively. This
result of jc is described in terms of the density A2 at the barrier
boundary and the velocity h̄κ/m at the barrier center.

APPENDIX D: DETERMINING THE SCALING EXPONENT

We rewrite Eq. (C9) as

jc = cn0t0(Ṽ , d ), (D1)

with

t0(Ṽ , d ) = 2
√

2

√
6Ṽ − 4 −

√
4Ṽ 2 − 2

2Ṽ +
√

4Ṽ 2 − 2

× exp

(
− d

2ξ

√
6Ṽ − 4 −

√
4Ṽ 2 − 2

)
. (D2)

c = √
μ/m is the sound velocity, ξ = h̄/

√
2μm is the healing

length, and Ṽ = V/μ is the scaled strength. From Eq. (D1),
the condensate density n0 is

n0 = jc
ct0(Ṽ , d )

. (D3)

To determine the algebraic scaling exponent of the quasi-
condensate, we calculate jc as a function of Ṽ0 for varying
system sizes with simulations of the square-shaped box. We
use w/ξ = 2.9, and Ṽ0 in the range 1.2–2. The parameters n, g̃,
and L are the same as in the main text in Sec. V. We determine
jc as described in the main text. To obtain n0 we divide jc by
the sound velocity c(T ) and the tunneling amplitude t0(Ṽ0,w)
[see Eq. (D3)]. In Fig. 10 we show the condensate fraction
n0/n as a function of L for T/T0 = 0.2, 0.3, and 0.4. As
expected, the results of n0/n are almost independent of Ṽ0

and demonstrate a decreasing behavior with increasing L and
T/T0. To determine the scaling exponent τ , we fit n0/n to the
function n0/n = (L/r0)−τ/4, with τ and r0 as fitting parame-
ters. We show the determined values of τ for T/T0 = 0.2, 0.3,
and 0.4 in Fig. 11. The results are in agreement within the
error bars for the barrier heights employed. For comparison,
we average n0/n over the barrier heights employed and then
determine τ from this averaged condensate fraction as we do
in the main text in Sec. V. This result is also shown in Fig. 11,
where it agrees with the determined exponents for Ṽ0 in the
range 1.2–2.

[1] B. D. Josephson, Phys. Lett. 1, 251 (1962).
[2] R. Gati and M. K. Oberthaler, J. Phys. B: At. Mol. Opt. Phys.

40, R61 (2007).
[3] F. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A.

Trombettoni, A. Smerzi, and M. Inguscio, Science 293, 843
(2001).

[4] M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and
M. K. Oberthaler, Phys. Rev. Lett. 95, 010402 (2005).

[5] S. Levy, E. Lahoud, I. Shomroni, and J. Steinhauer, Nature
(London) 449, 579 (2007).

[6] L. J. LeBlanc, A. B. Bardon, J. McKeever, M. H. T. Extavour,
D. Jervis, J. H. Thywissen, F. Piazza, and A. Smerzi, Phys. Rev.
Lett. 106, 025302 (2011).

[7] T. Betz, S. Manz, R. Bücker, T. Berrada, C. Koller, G. Kazakov,
I. E. Mazets, H.-P. Stimming, A. Perrin, T. Schumm, and J.
Schmiedmayer, Phys. Rev. Lett. 106, 020407 (2011).

[8] G. Spagnolli, G. Semeghini, L. Masi, G. Ferioli, A.
Trenkwalder, S. Coop, M. Landini, L. Pezzè, G. Modugno,
M. Inguscio, A. Smerzi, and M. Fattori, Phys. Rev. Lett. 118,
230403 (2017).

[9] G. Valtolina, A. Burchianti, A. Amico, E. Neri, K. Xhani, J. A.
Seman, A. Trombettoni, A. Smerzi, M. Zaccanti, M. Inguscio,
and G. Roati, Science 350, 1505 (2015).

[10] M. Pigneur, T. Berrada, M. Bonneau, T. Schumm, E. Demler,
and J. Schmiedmayer, Phys. Rev. Lett. 120, 173601 (2018).

[11] A. Ramanathan, K. C. Wright, S. R. Muniz, M. Zelan, W. T.
Hill, C. J. Lobb, K. Helmerson, W. D. Phillips, and G. K.
Campbell, Phys. Rev. Lett. 106, 130401 (2011).

[12] A. C. Mathey, C. W. Clark, and L. Mathey, Phys. Rev. A 90,
023604 (2014).

[13] S. Eckel, F. Jendrzejewski, A. Kumar, C. J. Lobb, and G. K.
Campbell, Phys. Rev. X 4, 031052 (2014).

033298-10

https://doi.org/10.1016/0031-9163(62)91369-0
https://doi.org/10.1088/0953-4075/40/10/R01
https://doi.org/10.1126/science.1062612
https://doi.org/10.1103/PhysRevLett.95.010402
https://doi.org/10.1038/nature06186
https://doi.org/10.1103/PhysRevLett.106.025302
https://doi.org/10.1103/PhysRevLett.106.020407
https://doi.org/10.1103/PhysRevLett.118.230403
https://doi.org/10.1126/science.aac9725
https://doi.org/10.1103/PhysRevLett.120.173601
https://doi.org/10.1103/PhysRevLett.106.130401
https://doi.org/10.1103/PhysRevA.90.023604
https://doi.org/10.1103/PhysRevX.4.031052


JOSEPHSON JUNCTION DYNAMICS IN A … PHYSICAL REVIEW RESEARCH 2, 033298 (2020)

[14] S. Eckel, J. G. Lee, F. Jendrzejewski, N. Murray, C. W. Clark,
C. J. Lobb, W. D. Phillips, M. Edwards, and G. K. Campbell,
Nature (London) 506, 200 (2014).

[15] C. Ryu, P. W. Blackburn, A. A. Blinova, and M. G. Boshier,
Phys. Rev. Lett. 111, 205301 (2013).

[16] F. Jendrzejewski, S. Eckel, N. Murray, C. Lanier, M. Edwards,
C. J. Lobb, and G. K. Campbell, Phys. Rev. Lett. 113, 045305
(2014).

[17] C.-C. Chien, S. Peotta, and M. Di Ventra, Nat. Phys. 11, 998
(2015).

[18] S. Krinner, T. Esslinger, and J.-P. Brantut, J. Phys.: Condens.
Matter 29, 343003 (2017).

[19] A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Phys.
Rev. Lett. 79, 4950 (1997).

[20] S. Giovanazzi, A. Smerzi, and S. Fantoni, Phys. Rev. Lett. 84,
4521 (2000).

[21] A. Spuntarelli, P. Pieri, and G. C. Strinati, Phys. Rev. Lett. 99,
040401 (2007).

[22] P. Zou and F. Dalfovo, J. Low Temp. Phys. 177, 240 (2014).
[23] F. Ancilotto, L. Salasnich, and F. Toigo, Phys. Rev. A 79,

033627 (2009).
[24] I. Zapata, F. Sols, and A. J. Leggett, Phys. Rev. A 57, R28(R)

(1998).
[25] I. Danshita, K. Egawa, N. Yokoshi, and S. Kurihara, J. Phys.

Soc. Jpn. 74, 3179 (2005).
[26] Y. Japha and Y. B. Band, Phys. Rev. A 84, 033630 (2011).
[27] G.-S. Paraoanu, S. Kohler, F. Sols, and A. J. Leggett, J. Phys.

B: At. Mol. Opt. Phys. 34, 4689 (2001).
[28] A. Burchianti, C. Fort, and M. Modugno, Phys. Rev. A 95,

023627 (2017).
[29] F. Meier and W. Zwerger, Phys. Rev. A 64, 033610 (2001).
[30] M. Zaccanti and W. Zwerger, Phys. Rev. A 100, 063601

(2019).
[31] M. R. Momme, Y. M. Bidasyuk, and M. Weyrauch, Phys. Rev.

A 100, 033601 (2019).
[32] N. Luick, L. Sobirey, M. Bohlen, V. P. Singh, L. Mathey, T.

Lompe, and H. Moritz, Science 369, 89 (2020).
[33] W. J. Kwon, G. Del Pace, R. Panza, M. Inguscio, W. Zwerger,

M. Zaccanti, F. Scazza, and G. Roati, Science 369, 84
(2020).

[34] A. Burchianti, F. Scazza, A. Amico, G. Valtolina, J. A. Seman,
C. Fort, M. Zaccanti, M. Inguscio, and G. Roati, Phys. Rev. Lett.
120, 025302 (2018).

[35] K. Xhani, E. Neri, L. Galantucci, F. Scazza, A. Burchianti, K.-L.
Lee, C. F. Barenghi, A. Trombettoni, M. Inguscio, M. Zaccanti,
G. Roati, and N. P. Proukakis, Phys. Rev. Lett. 124, 045301
(2020).

[36] E. Neri, F. Scazza, and G. Roati, AIP Conf. Proc. 1950, 020003
(2018).

[37] R. Gati, B. Hemmerling, J. Fölling, M. Albiez, and M. K.
Oberthaler, Phys. Rev. Lett. 96, 130404 (2006).

[38] J.-i. Okamoto, A. Cavalleri, and L. Mathey, Phys. Rev. Lett.
117, 227001 (2016).

[39] W. Zhao et al., Solid State Commun. 165, 59 (2013).
[40] A. Cuccoli, A. Fubini, V. Tognetti, and R. Vaia, Phys. Rev. B

61, 11289 (2000).
[41] V. L. Berezinskii, Zh. Eksp. Teor. Fiz. 61, 1144 (1972) [Sov.

Phys. JETP 34, 610 (1972)].
[42] J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).
[43] J. M. Kosterlitz, J. Phys. C 7, 1046 (1974).
[44] V. P. Singh, C. Weitenberg, J. Dalibard, and L. Mathey, Phys.

Rev. A 95, 043631 (2017); V. P. Singh and L. Mathey, Phys.
Rev. Research 2, 023336 (2020).

[45] A. V. Turlapov and M. Yu. Kagan, J. Phys.: Condens. Matter
29, 383004 (2017).

[46] C. Mora and Y. Castin, Phys. Rev. A 67, 053615 (2003)
[47] N. Prokof’ev, O. Ruebenacker, and B. Svistunov, Phys. Rev.

Lett. 87, 270402 (2001); N. Prokof’ev and B. Svistunov, Phys.
Rev. A 66, 043608 (2002).

[48] F. Piazza, L. A. Collins, and A. Smerzi, Phys. Rev. A 81, 033613
(2010).

[49] G. Watanabe, F. Dalfovo, F. Piazza, L. P. Pitaevskii, and S.
Stringari, Phys. Rev. A 80, 053602 (2009).

[50] M. Grajcar, M. Ebel, E. Il’ichev, R. Kürsten, T. Matsuyama, and
U. Merkt, Physica C 372, 27 (2002).

[51] E. Hoskinson, Y. Sato, I. Hahn, and R. E. Packard, Nat. Phys. 2,
23 (2006).

[52] V. P. Singh and L. Mathey, Phys. Rev. A 89, 053612 (2014).
[53] S. Pilati, S. Giorgini, and N. Prokof’ev, Phys. Rev. Lett. 100,

140405 (2008).
[54] L. Mathey, K. J. Günter, J. Dalibard, and A. Polkovnikov, Phys.

Rev. A 95, 053630 (2017).
[55] Z. Hadzibabic, P. Krüger, M. Cheneau, B. Battelier, and J.

Dalibard, Nature (London) 441, 1118 (2006).
[56] P. A. Murthy, I. Boettcher, L. Bayha, M. Holzmann, D. Kedar,

M. Neidig, M. G. Ries, A. N. Wenz, G. Zürn, and S. Jochim,
Phys. Rev. Lett. 115, 010401 (2015).

[57] I. Boettcher and M. Holzmann, Phys. Rev. A 94, 011602(R)
(2016).

[58] K. Gawryluk and M. Brewczyk, Phys. Rev. A 99, 033615
(2019).

[59] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.2.033298 for the time evolution of
the phase and vortex dynamics of Fig. 7(a).

033298-11

https://doi.org/10.1038/nature12958
https://doi.org/10.1103/PhysRevLett.111.205301
https://doi.org/10.1103/PhysRevLett.113.045305
https://doi.org/10.1038/nphys3531
https://doi.org/10.1088/1361-648X/aa74a1
https://doi.org/10.1103/PhysRevLett.79.4950
https://doi.org/10.1103/PhysRevLett.84.4521
https://doi.org/10.1103/PhysRevLett.99.040401
https://doi.org/10.1007/s10909-014-1209-2
https://doi.org/10.1103/PhysRevA.79.033627
https://doi.org/10.1103/PhysRevA.57.R28
https://doi.org/10.1143/JPSJ.74.3179
https://doi.org/10.1103/PhysRevA.84.033630
https://doi.org/10.1088/0953-4075/34/23/313
https://doi.org/10.1103/PhysRevA.95.023627
https://doi.org/10.1103/PhysRevA.64.033610
https://doi.org/10.1103/PhysRevA.100.063601
https://doi.org/10.1103/PhysRevA.100.033601
https://doi.org/10.1126/science.aaz2342
https://doi.org/10.1126/science.aaz2463
https://doi.org/10.1103/PhysRevLett.120.025302
https://doi.org/10.1103/PhysRevLett.124.045301
https://doi.org/10.1063/1.5031692
https://doi.org/10.1103/PhysRevLett.96.130404
https://doi.org/10.1103/PhysRevLett.117.227001
https://doi.org/10.1016/j.ssc.2013.04.025
https://doi.org/10.1103/PhysRevB.61.11289
http://www.jetp.ac.ru/cgi-bin/e/index/e/34/3/p610?a=list
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/7/6/005
https://doi.org/10.1103/PhysRevA.95.043631
https://doi.org/10.1103/PhysRevResearch.2.023336
https://doi.org/10.1088/1361-648X/aa7ad9
https://doi.org/10.1103/PhysRevA.67.053615
https://doi.org/10.1103/PhysRevLett.87.270402
https://doi.org/10.1103/PhysRevA.66.043608
https://doi.org/10.1103/PhysRevA.81.033613
https://doi.org/10.1103/PhysRevA.80.053602
https://doi.org/10.1016/S0921-4534(02)00695-0
https://doi.org/10.1038/nphys190
https://doi.org/10.1103/PhysRevA.89.053612
https://doi.org/10.1103/PhysRevLett.100.140405
https://doi.org/10.1103/PhysRevA.95.053630
https://doi.org/10.1038/nature04851
https://doi.org/10.1103/PhysRevLett.115.010401
https://doi.org/10.1103/PhysRevA.94.011602
https://doi.org/10.1103/PhysRevA.99.033615
http://link.aps.org/supplemental/10.1103/PhysRevResearch.2.033298

