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Real-time calibration of coherent-state receivers: Learning by trial and error
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The optimal discrimination of coherent states of light with current technology is a key problem in classical
and quantum communication, whose solution would enable the realization of efficient receivers for long-distance
communications in free-space and optical fiber channels. In this paper, we show that reinforcement learning
(RL) protocols allow an agent to learn near-optimal coherent-state receivers made of passive linear optics,
photodetectors, and classical adaptive control. Each agent is trained and tested in real time over several runs
of independent discrimination experiments and has no knowledge about the energy of the states nor the
receiver setup nor the quantum-mechanical laws governing the experiments. Based exclusively on the observed
photodetector outcomes, the agent adaptively chooses among a set of ∼3 × 103 possible receiver setups and
obtains a reward at the end of each experiment if its guess is correct. At variance with previous applications
of RL in quantum physics, the information gathered at each run is intrinsically stochastic and thus insufficient
to evaluate exactly the performance of the chosen receiver. Nevertheless, we present families of agents that: (i)
discover a receiver beating the best Gaussian receiver after ∼3 × 102 experiments; (ii) surpass the cumulative
reward of the best Gaussian receiver after ∼103 experiments; (iii) simultaneously discover a near-optimal
receiver and attain its cumulative reward after ∼105 experiments. Our results show that RL techniques are
suitable for online control of quantum receivers and can be employed for long-distance communications over
potentially unknown channels.
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I. INTRODUCTION

Quantum state discrimination (QSD) is the problem of
determining the state of a quantum system among a set of
possible candidates. It constitutes a fundamental primitive
in quantum information processing, with applications rang-
ing from long-distance communication [1–9], cryptography
[10–17], and, recently, quantum machine learning [18–26].

In the past few years, the use of machine learning meth-
ods to deepen the understanding of fundamental physics
has become a standard technique [27–36]. Machine learn-
ing approaches have been traditionally classified into three
categories: supervised learning, unsupervised learning, and
reinforcement learning (RL). In particular, RL studies the
behavior of an agent interacting with an environment via
observations, actions, and rewards. The goal is to optimize
such interactions in order to maximize a suitable figure of
merit, e.g., the expected reward over time. Combinations
of these three machine-learning classes have recently led to
outperforming the best human GO player, discovering strate-
gies never played before [37]. Recently, RL techniques have
also been proved successful in quantum information, e.g.,
in the design of novel quantum experiments [32], quantum
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error-correction codes [33], quantum communication proto-
cols [34], and optimal control of quantum systems [35,36].

In the present work we consider the discrimination of
two coherent states with passive linear optics, photodetectors,
and discrete-time classical adaptive control. This is a pro-
totypical problem in quantum information theory [1,38,39],
of great technological significance for long-distance commu-
nication [4–8,40]: The optimal measurement to discriminate
two coherent states is known [1,38] but its implementation
is demanding at the state of the art, i.e., via the so-called
Dolinar receiver [40–50] that requires asymptotically many
control rounds. Moreover, its extension to multiple states is
not fully understood [48,51,52], although it may bring us a
step closer to achieving the Holevo communication capacity
of real-world channels.

We propose an innovative and experimentally appealing
approach to the problem: The search for optimal discrimina-
tion strategies is cast as a testbed for RL by studying how
well an agent can perform in calibrating a receiver by means
of model-free methods. The nature of our approach is partic-
ularly appealing for scenarios where an accurate description
of the system is not possible, e.g., due to intrinsic complexity,
experimental constraints or imperfections, untrusted devices,
or simply lack of knowledge. This is precisely the case for
applications of coherent-state discrimination in communica-
tion scenarios, where discriminating multiple hypotheses may
require tuning long sequences of gate parameters [53–56], the
detectors may be affected by losses and dark counts [43,52],
the actual communication channel may add different kinds of
noise depending on the physical implementation [4,5,57,58],
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and device-independent security may be additionally required
[13,17].

In this paper we show that a RL agent can achieve near-
optimal control of a coherent-state receiver when it has zero
prior knowledge of: (i) the energy of the coherent states them-
selves; (ii) the actual operations that the detector performs;
(iii) the underlying quantum-mechanical laws governing the
system. By trial and error, the RL agent has to sequentially
press buttons and select actions according to previous mea-
surement outcomes and at a final stage guess for one of
the possible hypotheses. A nonzero reward is given only if
the guess is correct. By repeating the procedure over several
episodes (or runs), the agent earns experience and learns a
near-optimal discrimination protocol and guessing rule with
the resources at its disposal.

Our approach differs from previous applications of RL in
quantum information [32–36] at least in three crucial aspects:
(i) our agents can simultaneously learn and be tested in a com-
pletely model-free setting; (ii) each reward is obtained directly
from a single-shot experiment and not indirectly inferred
from a known model or from several runs of the experiment
as in the case were the reward is, say, a target fidelity or
a success probability; (iii) we will not only be concerned
about finding near-optimal detectors but also, importantly,
on the actual online success rate of the agents as measured
by the cumulative reward, i.e., on the whole learning curve of
the agent.

We tackle the problem in three stages of increasing com-
plexity: First, in the model-aware setting, where the outcome
probability function of the receiver is known, we find the
optimal action sequence by solving the Bellman equation
via dynamic programming [43,59]; second, in the model-free
setting, where the receiver is completely unknown, we apply
Watkins’ Q learning [60,61], a standard RL method whose
update rule approximates the optimal Bellman equation; third,
in the model-free setting we study the tradeoff between ex-
ploiting potential optimal strategies and exploring new ones,
by applying two state-of-the-art methods adapted from bandit
theory [62–65], thus enhancing the learning speed or accuracy
of our agents. In the model-aware setting we are able to
compute numerically the optimal success probability and set
of actions for several control rounds. In the model-free setting
we are able to construct agents that surpass the performance
of the best Gaussian receiver [40] after ∼3 × 102 episodes
and its cumulative reward after ∼103 episodes and then at-
tain near-optimal performance (>97% optimal) after ∼105

episodes, searching on a parameter space of size ∼3 × 103.
Our results provide a flexible and comprehensive ensemble
of methods both in the model-aware and model-free settings
that enable the online optimization of small quantum devices
and the benchmarking of their performance. Furthermore, the
methods we propose can be enhanced by the use of deep-
learning techniques [37], which would allow their application
to more complex problems and devices, e.g., multistate QSD
and the study of generalization performance.

The paper is organized as follows. In Sec. II we introduce
our QSD problem, the receiver architecture, and the target
function for a RL agent controlling the receiver. In Sec. III
we present the theoretical framework of standard RL meth-
ods, introducing the state-action value function, the Bellman

equation, and Q learning. In Sec. IV we describe the imple-
mentation of these methods and analyze their performance
in terms of the cumulative reward. The bandit problem is
introduced here as a basic framework to study, quantify, and
optimize the real-time performance of agents over sequential
learning strategies. We analyze and compare the performance
of standard and bandit-inspired learning strategies in a variety
of experimentally relevant settings. We conclude in Sec. V by
mentioning possible extensions of our work.

II. PRELIMINARIES

We consider the discrimination of two electromagnetic
signals with opposite phases, described by two coherent states
of the field, | ± α〉, whose energy is proportional to |α|2. When
the energy of the signals approaches zero, i.e., |α|2 � 1,
quantum effects become evident and it becomes impossible
to discriminate between them perfectly.

Any binary discrimination protocol is described com-
pactly by a quantum positive-operator-valued measurement
(POVM), M = {M0, M1} with M1,2 � 0 and M1 + M2 = I.
Defining the kth hypothesis as α(k) = (−1)kα, with prior
probability pk , the probability of obtaining outcome k̂ given
that hypothesis k was true is p(k̂|α(k) ) = 〈α(k)|Mk̂|α(k)〉 and
the best guess is given by the most likely hypothesis given
that outcome. Thus, the average success probability over all
outcomes is given by

Ps(α,M) =
∑

k̂=0,1

max
k=0,1

p(α(k), k̂)

=
∑

k̂=0,1

max
k=0,1

p(k̂|α(k) )pk .
(1)

For nonorthogonal quantum states, this quantity is bounded
below 1 by the so-called Helstrom bound [1], which in our
case reads

P(hel)
s (α) = max

M
Ps(α,M) = 1

2 (1 +
√

1 − e−4|α|2 ), (2)

where the optimization is carried out over all two-outcome
POVMs; note that the Helstrom probability tends to 1/2 for
|α| → 0, i.e., the states become indistinguishable at very
low energies. The optimal Helstrom measurement that at-
tains Eq. (2) is a difficult projection on a superposition of
| ± α〉, i.e., a Schrödinger-cat-like state, which cannot be
realized with simple linear-optical operations [44]. Quite sur-
prisingly, Dolinar [41] showed that Eq. (2) can be asymptot-
ically attained by continuous-time control of a displacement
operator—his receiver has since then been extended to the
discrete-time scenario by Takeoka et al. [44]. Nevertheless,
the practical implementation of these receivers still proves
demanding at present [46,51], due to various experimental
limitations. Moreover, in a general communication scenario,
the states will be transferred through a noisy channel and
could be subject to various kinds of noise, e.g., loss, thermal
noise, and phase diffusion [52,58].

Based on these premises, we aim to construct a model-free
RL agent that, without any knowledge of the problem at
hand nor of the receiver setup, learns to tune the receiver’s
parameters in order to maximize its success probability. In this
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FIG. 1. We depict the experimental setup of the receiver consid-
ered. For L → ∞ one gets Dolinar receiver.

way, when placed in a real-life situation, the agent will be able
to train and optimize the receiver for the specific experimental
conditions it encounters in real time. The receiver we consider
comprises passive linear optics, photodetectors, and classical
feed-forward, structured into successive processing layers � =
0, . . . , L, as depicted in Fig. 1; this receiver is known to attain
the Helstrom probability in the limit L → ∞ [44]. For each
layer � < L, the following operations are applied:

(1) The input signal |α〉 is split on a beamsplitter (BS) of
transmissivity θ , effectively extracting a fraction 1 − θ of the
energy for detection. The BS transforms the input signal and
vacuum states as

|α〉|0〉 �→ |α
√

θ〉tr|α
√

1 − θ〉ref , (3)

where the added phase of the second mode has been corrected
via a proper phase shift, not shown in the figure.

(2) The reflected part of the signal undergoes a displace-
ment operation D(β ), realizable via interference with a strong
coherent signal on a small-reflectivity BS, not shown in the
figure. The resulting state is |α̃(β, θ )〉 = |α√

1 − θ + β〉.
(3) The displaced signal is measured via an on/off pho-

todetector, which detects no photon, i.e., outcome o�+1 = 0,
with conditional probability

p(o�+1 = 0|α, (β, θ )) = |〈0|α̃(β, θ )〉|2 = e−|α̃(β,θ )|2 , (4)

and detects one or more photons, i.e., o�+1 = 1, with proba-
bility 1 − p(o�+1 = 0|α, (β, θ )).

(4) The transmitted part of the signal enters layer � + 1.
Finally, the last processing layer � = L consists in elabo-

rating a guess k̂ of the true hypothesis k, based on previous
measurement outcomes and parameter choices.

For an initial coherent state |α〉, the input state at the
�th layer is |α�〉 = |α√

θ0 . . . θ�−1〉. Since the experimenter
can use all the past history h� = (a0, o1, . . . , a�−1, o�), with
h0 = ∅, to decide the next value of (β, θ ) and the final
guess, the total set of parameters over all possible histories
is of exponential size in L. We label them compactly as
a�(h�) = (βh�

, θh�
) and aL(hL ) = k̂, omitting the label � or the

dependence on h� when it is clear from the context. Hence, the
average success probability of this strategy over all possible
outcomes’ sequences o1:L = (o1, . . . , oL ) can be written as

Ps(α, {a�}) =
∑
o1:L

L∏
�=1

p(o�|α(k), a(h�−1)) pk|k=a(hL ), (5)

where {a�} is the total set of actions over all histories and we
have written the conditional probability of the sequence of
outcomes o1:L factors as a product of single-layer conditional
probabilities (4).

In the model-aware setting, this expression can be opti-
mized using dynamic programming, as we show in Sec. IV A,
finding the set of optimal parameters {a∗

�} for any given α

and L:

{a∗
�} = arg max

{a�}
Ps(α, {a�}). (6)

As a shorthand we denote the optimal success probability
(over the available actions) as

P(L)
∗ (α) = max

{a�}
Ps(α, {a�}) (7)

and omit the label L when it is clear from the context. In
the model-free setting instead, the agent has no knowledge
of Eqs. (4) and (5), so it must resort to exploring the set of
possible parameters and sample from the probability of (5)
during several runs of the experiment to discover an optimal
choice of parameters and guessing rule by trial and error.

III. SEQUENTIAL DECISION MAKING

The framework of RL is based on the interaction between
an agent and an environment during several episodes [61]. At
each time step � = 0, . . . , L of each episode t = 1, . . . , T , the
agent observes the environment in a state s(t )

� ∈ S and chooses
an action a(t )

� ∈ A; as a consequence, the agent enjoys a
reward r (t )

�+1 ∈ R and observes a new state of the environment,

s(t )
�+1 ∈ S , where S , A, and R stand for the sets of states,

actions, and rewards the agent may experience.
The environment is usually modeled to be Markovian:

Its dynamics is completely determined by the last time step
via the transition function τ (s′, r|s, a), i.e., the conditional
probability of ending up in a state s′ and receiving a reward
r, given that the previous state was s and the agent took an
action a; the next future states accessible from s are thus
restricted to S (s) = {s′ : τ (s′|s) �= 0} ⊆ S . The agent does not
have control of nor access to the transition function, but it
will influence the dynamics of the environment by choosing
actions according to an interaction policy π (a|s), i.e., the
conditional probability of performing an action a when the
observed environment’s state is s; hence the available actions
at a given state may be restricted to a subset A(s) ⊆ A. This
setting is usually known as a Markov decision process (MDP).

Informally, the agent’s objective is to interact with the
environment through an optimal policy π∗, such that the total
reward acquired during an episode is as high as possible. To
achieve this goal, a value function is assigned to each state
and optimized over all possible policies, as further explained
below in Sec. III A.

The Markov assumption is justified whenever the agent’s
observations provide a complete description of the state of
the environment s�. However, in general this is not the case,
and the agent has only access to partial observations o� ∈ O
at each time step. Such observations would not allow us to
determine the dynamics even if τ was known, and they are
generated from the current state and the previous action. In RL
literature this is called a partially-observable MDP (POMDP)
and developing methods to solve it efficiently constitutes
an active area of research [66–70]; usually, the problem is
tackled by first reducing it to an effective MDP. The most
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straightforward approach is to define an effective state that
contains all the past history of observations and actions
up to a given time step, i.e., h� = (a0, o1, . . . , a�−1, o�). In
this way, the dynamics observed by the agent can always
be described by an effective MDP with transition function
τ (h′, r|h, a), which is unknown to the agent and determined
by the underlying environmental transition function. Clearly,
this approach makes the problem intractable for large time
steps, since the number of states increases exponentially in
L. In the model-aware setting, one can condense the history
in a belief distribution over the states, bo′ (s′) = p(s′|o′, a, bo),
i.e., the probability that the environment is in state s′ given
the current observation o′, the previous action a and the belief
at the previous time step bo. The belief has an initial value
b(s) equal to the prior distribution over the initial states and
at each time step it is updated using Bayes’ rule. In the
following parts of this section we will introduce several tools
for MDPs, which can be immediately adapted to POMDPs by
exchanging the unknown state with the history h or the belief
bo(s).

A. Value functions and the Bellman equation

The agent’s objective is to acquire as much reward as
possible during an episode. As a matter of fact, this strongly
depends on the agent’s policy. At the end of episode t , in
which a sequence of L tuples {(s�, a�, r�+1)}L

�=0 has been ex-
perienced (with sL+1 a terminal state and L generally varying
among different episodes), the agent’s performance after each
time step � can be evaluated using the so-called return,

G(t )
� =

L−�∑
i=0

γ ir (t )
i+�+1, (8)

i.e., the weighted sum of rewards obtained at all future time
steps, with a discount factor γ ∈ (0, 1], which weighs more
the rewards that are closer in the future. Note that for infinite-
horizon MDPs, i.e., L → ∞, it must hold γ < 1 to ensure that
G� remains finite.

By introducing the return, it is straightforward to assign
a value to a state s for a given interaction policy π , via the
so-called value function:

vπ (s) = Eπ [G�|s� = s], (9)

which is the expected return over all possible trajectories
that start from state s, take actions according to policy π ,
and whose dynamics is governed by τ . In other words, the
value function measures how convenient it is to visit state s
when policy π is being followed. Note that this quantity is
completely determined by the future trajectories accessible
from s and hence its dependence on the time step � can have at
most the effect of restricting the set of states on which vπ (s)
is supported at that time. We keep this dependence implicit
unless otherwise stated. By writing explicitly the expected
value for the first future time step in Eq. (9) and then applying
the definition of v recursively, it is easy to show that the
state-value function satisfies, for any policy, the following
Bellman equation [59]:

vπ (s) =
∑

a∈A,s′∈S,r∈R
τ (s′, r|s, a)π (a|s)(r + γ vπ (s′)). (10)

This equation relates the value of a state s with that of its
nearest neighbors s′, which can be reached with a single
action from s and with the corresponding reward obtained by
performing such action.

The problem can then be solved by finding an optimal pol-
icy π∗, namely one that maximizes the state-value function for
each s (also called optimal value function) and thus satisfies
the optimal Bellman equation:

v∗(s) := vπ∗ (s) = max
π

vπ (s)

= max
a∈A

∑
s′∈S,r∈R

τ (s′, r|s, a)(r + γ v∗(s′)). (11)

Similarly, one can define the state-action value function (or Q
function) as the expected return when starting from state s and
performing action a:

Qπ (s, a) = Eπ [G�|s� = s, a� = a], (12)

which is related to the state-value function by vπ (s) =∑
a∈A π (a|s)Qπ (s, a). Thus, the optimal policy π∗ can also be

obtained by maximizing the Q function, with a corresponding
optimal Bellman equation

Q∗(s, a) := Qπ∗ (s, a) = max
π

Qπ (s, a)

=
∑

s′∈S,r∈R
τ (s′, r|s, a)(r + γ max

a′∈A
Q∗(s′, a′)).

(13)

B. Model-aware learning

In the model-aware setting, where the transition function is
known, an optimal policy can be efficiently found offline by
optimizing the corresponding state-value function. This prob-
lem, known as planning [61], can be solved for finite-horizon
MDPs via dynamic programming methods. We follow the
method introduced by Bellman [59], which makes use of the
recursive relation of Eq. (11) to find the optimal policy step by
step; for this we assume that every episode deterministically
ends at a fixed time step L and denote by v∗

� (s) the optimal
value function of state s at time step � (problems in which L is
not fixed can be solved, for instance, via value iteration [61]).

Since the optimal policy consists in taking the best possible
action from any given state, it can be constructed by concate-
nation of the optimal policies at each time step: We start by
solving Eq. (11) at the last time step,

v∗
L(s) = max

a∈A(sL )

∑
r∈R

τ (r|s, a)r, (14)

where we have omitted the terminal state sL+1 and used
the fact that vL+1(s) = 0. The solution to Eq. (14) provides
the optimal action at step L − 1 for each s and the optimal
value function v∗

L(s). Then we plug the latter into the optimal
Bellman equation for the previous time step, which in turn
can be solved to obtain the optimal action and value function
v∗

L−1(s). By repeating this procedure iteratively for each time
step � = L, . . . , 0, we can obtain the optimal sequence of
actions and value functions for any state at any time step.
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C. Q learning

In the model-free setting, the agent not only has to find an
optimal policy by exploiting valuable actions but also needs
to characterize the environment in the first place by exploring
possibly advantageous configurations. This is known as the
exploration-exploitation tradeoff and lies at the core of RL
problems [61]. In this setting, the Q function is quite helpful
since it associates a value to the transitions determined by
taking action a from state s and following policy π thereafter.

Q learning was first proposed by Watkins [60], and it
is often used as a basis for more advanced RL algorithms
[67,71]. It is based on the observation that any Bellman
operator, i.e., the operator describing the evolution of a value
function as in Eqs. (10), (11), and (13), is contractive [72].
This implies that, under repeated applications of a Bellman
operator, any value function converges to a fixed point, which
by construction satisfies the corresponding Bellman equation.
Thus, in order to find Q∗(s, a), Q learning turns the optimal
Bellman equation for Q, Eq. (13), into an update rule for
Q̂(s�, a�), i.e., the Q-function’s estimate available to the agent
at a given time step � of any episode t = 1, . . . , T .

After an interaction step s� → a� → r�+1 → s�+1 is expe-
rienced, the update rule for the Q estimate is

Q̂(s�, a�) ← (1 − λt (s�, a�))Q̂(s�, a�)

+ λt (s�, a�)(r�+1 + γ max
a′∈A(s�+1 )

Q̂(s�+1, a′)),

(15)

where λt (s, a) is the learning rate, which depends on the
number of times the state-action pair (s�, a�) has been visited.
Note that in order to do the update at each time step �, it is
only necessary to enjoy the next immediate reward r�+1 and
observe the next state s�+1; this method thereby allows an
online learning of the MDP. A pseudocode of the algorithm
is given in Algorithm 1.

Algorithm 1. Q-learning pseudocode.

input: Q̂(s, a) arbitrarily initialized

∀s ∈ S, ∀a ∈ A(s);
ε > 0 and learning rates λt (s�, a�) ∈ (0, 1],

output: Q̂(s, a) ∼ Q∗(s, a)

for t in 1... T do
initialize s0

for step � in episode t do
take action a� according to π (e.g. εgreedy)
observe reward r�+1and next state s�+1

update Q̂(s�, a�) according to:

Q̂(s�, a�) ← Q̂(s�, a�) + λ(s�, a�)[r�+1+
γ maxa′ Q̂(s�+1, a′) − Q̂(s�, a�)]

if s�+1 is terminal state then
break

else
s� ← s�+1

After a large number n of iterations of the update rule
Eq. (15) for all state-action couples, the convergence of the Q

estimate to the optimal Q function is guaranteed by two gen-
eral conditions on the learning rate (also known as Robinson
conditions) [60,61]:

Q̂(s, a) →
k→∞

Q∗(s, a) ∀s ∈ S, a ∈ A(s)

iff
∑
t (s,a)

λt (s, a) = ∞,
∑
t (s,a)

λt (s, a)2 < ∞, (16)

where the sums are taken over all interactions at which a
given state-action couple is visited. Once the optimal Q func-
tion is obtained, an optimal deterministic policy can be con-
structed by “going greedy” with respect to it, i.e., π∗(a|s) =
δ(a, arg maxa∈A Q∗(s, a)) for all s ∈ S , where δ(x, y) is a
Kronecker delta.

In RL literature, Q learning is classified as an off-policy
method [61], meaning that it learns the state—action values
of a target policy—in this case the optimal policy—by taking
actions according to an interaction policy, generally differing
from the first one. The standard Q-learning method commits
to an ε-greedy interaction policy, where with probability ε

the agent chooses a random action and otherwise it chooses
the greedy action that maximizes the current Q estimate.
However, as we will see below, more general strategies can
be considered.

IV. MODEL-FREE REINFORCEMENT LEARNING OF
DISCRIMINATION STRATEGIES

In the following we frame the optimization of the receiver
described in Sec. II into a RL context, in which an agent
has to attain optimal reward-per-episode rate (success rate)
by departing from a situation of complete ignorance of the
experiment. For simplicity, we assume that the sender and
receiver have a shared reference frame, so that we can take
the states and displacements to be real, α, β ∈ R, without loss
of generality.

We can establish a correspondence between the notions
introduced in Sec. II related to our discrimination setup to RL
concepts of Sec. III:

(i) Each episode t corresponds to an independent discrimi-
nation experiment, with a new default state s0 = α(k) sampled
from pk , k ∈ {0, 1}; we set γ = 1 (the return (8) is well
defined since the process has finite horizon).

(ii) Each episode consists of L + 1 time step � = 0, . . . , L,
corresponding to the L detection layers followed by the final
guessing stage.

(iii) The possible states of the environment at time steps �

are s� = α
(k)
� , i.e., the transmitted part of s0 at that layer.

(iv) The agent is not aware of the state s�, in particular it
does not know which hypothesis is true, but it can observe the
measurement outcome o�, 0 < � � L.

(v) The actions a� available at time-step 0 � � < L are the
displacements β� and BS parameters θ� available at that layer,
conditioned on the history of observations h�, while at the last
step they constitute the guess, a(hL ) = k̂ ∈ {0, 1}.

(vi) The reward r ∈ {0, 1} is nonzero only at the end of
the episode and provided that the guess is correct, hence the
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transition function for the environment is

τ
(
α

(k′ )
�+1

∣∣α(k)
� , a�

) = δ(k′, k) ∀� � L, (17)

τ
(
rL+1

∣∣α(k)
L , aL

) = δ(rL+1, 1)δ(aL, k), (18)

where we omitted the trivial reward for � � L.

A. Benchmarking the success probability
via dynamic programming

In order to benchmark the performance of our RL agent,
we start by considering a model-aware POMDP where the
agent knows the amplitude |α| of the optical signals and
the transition probabilities and its task is to optimize the
success probability of Eq. (5). In this case, we define b�(k) =
p(α(k)

� |o�, a�−1, b�−1) to be the belief distribution over the
states α(k), after performing action a�−1 and observing o�, with
prior belief b�−1(k). The initial value of the prior is b0(k) = pk

and its update rule follows Bayes’ theorem:

b�(k) = p
(
α

(k)
�

∣∣o�, a�−1
)

b�−1(k)∑
k p

(
α

(k)
�

∣∣o�, a�−1
)

b�−1(k)
. (19)

The optimal Bellman equation, Eq. (14), for the state-value
function of this POMDP at step L reads

v∗
L(bL ) = max

k
bL(k), (20)

which means that at the last step, if the final belief distribution
over the states is known, the best guess is the hypothesis with
maximum likelihood. The optimal Bellman equation at step
� < L instead reads

v∗
� (b�) = max

a∈A(s� )

∑
o�+1∈O

∑
k

p
(
o�+1

∣∣α(k)
� , a�

)
b�(k)v∗

�+1(b�+1).

(21)
These equations can be solved iteratively by inserting the

solution v∗
�+1(b�+1) into the equation for v∗

� (b�), starting with
� = L − 1 and v∗

L(bL ) found in Eq. (20). Note that, since
v∗

�+1(b�+1) is computed for a discrete set of values of the belief
distribution, these cannot always coincide with the values,
determined by Eq. (19), needed to solve Eq. (21) and hence
we use interpolation methods to obtain them. The maximum
success probability attainable with the receiver is equal to
the optimal value function at step � = 0, since the latter
corresponds to the expected reward starting from the initial
belief distribution:

v∗
0 (b) = Eπ∗ [rL+1|b0(k)] = P(L)

∗ (α) (22)

as can be seen by repeated applications of Eqs. (19) and (21)
and detailed in Appendix A.

In Fig. 2 we show the optimal success probability obtained
with this method as a function of |α|2 and for up to L = 8
layers. We also show the results at fixed θ� such that the input
state of each layer has equal amplitude α

(k)
� = α(k)√

L−1
for all �

(dashed lines). We observe that for all L � 2 there is an energy
threshold above which allowing adaptive optimization of the
attenuations gives a better success probability than adding one
layer with fixed attenuations.

FIG. 2. We show the difference between the best probability
of success attainable for a fix L and the optimal probability of
success in discriminating two coherent states. The results were
obtained by dynamic programming, explained in Sec. III B. Solid
lines correspond to fixed attenuations θ� such that the input state
of each layer has equal amplitude α

(k)
� = α(k)√

L−1
for all �, whereas

dashed lines correspond to the probability of success optimized also
on conditional attenuations.

B. Learning a near-optimal receiver via Q learning

In this section we present the results obtained by a RL
agent based on Q learning with ε-greedy interaction policy.
The experiment is modelled as a POMDP, which can be
reduced to an effective MDP for the history of observations
and actions h�, as explained in Sec. III. The update rule for
the Q function is given by Eq. (15) with s → h and learning
rates λt (h, a) = Nt (h, a)−1, the inverse of the number of times
a state-action pair has been visited. This choice guarantees
convergence as per Eq. (16). As for dynamic programming,
the optimal value of the success probability of Eq. (5) is
obtained by maximizing the optimal Q function at time step
� = 0:

max
a0

Q∗(a0) = max
a0

Eπ∗ [rL+1|a0] = P(L)
∗ (α), (23)

where we have omitted the default history state h0 = ∅; this
is detailed in Appendix A. At variance with the model-aware
case, where the guessing rule was obtained straightforwardly
from the Bellman equation at the last time step, the optimiza-
tion of Eq. (23) includes a nontrivial search for the optimal
guessing rule, determined by the optimal Q function.

We evaluate the performance of the agent by using two
figures of merit as a function of the number of episodes
elapsed so far, t : (i) the cumulative return per episode (also
called average reward per episode)

Rt = 1

t

t∑
i=1

G(i)
0 = 1

t

t∑
i=1

r (i)
L+1, (24)
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where r (i)
L+1 = {1, 0} stands for the correctness of the guess

made at episode i and (ii) the success probability of the best
actions according to the agent, at the current episode,

Pt = Ps
(
α,

{
a(t )∗

�

})
, (25)

where the best actions {a(t )∗
� } at episode t are obtained by

going greedy with respect to the current Q estimate, i.e.,

a(t )∗
0 (h0) = arg max

a∈A(h0 )
Q̂(h0, a) → h∗

1 = (
o1, a(t )∗

0

)
a(t )∗

1 (h∗
1 ) = arg max

a∈A(h∗
1 )

Q̂(h∗
1, a) → h∗

2 = (
a(t )∗

0 , o1, a(t )∗
1 (h∗

1 ), o2
)

...

a(t )∗
L (h∗

L ) = arg max
a∈A(h∗

L )
Q̂(h∗

L, a). (26)

The first figure of merit, Rt , is usually employed to describe
the learning process in RL and it evaluates the success rate
obtained by the agent so far. On the other hand, the second
figure of merit, Pt , is standard in QSD and in our context it
evaluates the best strategy discovered by the agent so far.

As t → ∞, for a good learner it is expected that Rt → Pt ,
i.e., with enough learning time the average reward should
tend to the success probability for the best actions found
by the agent, which in turn should converge to the optimal
success probability P(L)

∗ . Therefore, the learner is not only
expected to find a good discrimination strategy but to also
follow it: The interaction policy should tend to the optimal
policy. This feature is captured by the evolution of Rt over
different episodes: A good learner is asked to obtain as much
reward as possible during the learning process.

Here and in the rest of the paper, we restrict to L = 2
interaction layers and fix the attenuation coefficients to give
equal amplitude at each layer, since the difference in success
probability is small compared as shown in Sec. IV A. We
choose a resolution of 21 points for each displacement, each
one ranging from −1 to 1 with step 0.1, leading to a fairly
large state-action space: The agent has 3528 possible Q values
to learn from (including the last guess). We note that each dis-
cretized displacement is an independent action or “button” in
the eyes of the agent—the agent is dispossessed of any notion
of closeness between buttons corresponding to similar values
of β. As the behavior of the RL agent strongly depends on
the actions chosen at early episodes, we averaged the learning
curves over 24 agents. Our results are compared with: (i) the
maximum success probability attainable with this number of
layers and discretization of displacements, Eq. (7), and (ii)
the success probability attainable via a standard homodyne
measurement, which is optimal among Gaussian receivers
[40].

In Fig. 3 we plot these two figures of merit for Q-learning
agents with three different ε-greedy interaction policies: (i)
a completely random one, i.e., ε = 1, (ii) a 0.3-greedy one,
i.e., ε = 0.3, and (iii) a dynamic one (exp-greedy) that be-
comes exponentially greedier as time passes, i.e., ε(t ) =
max{e− t

τ , ε0}; this standard choice assures that at initial
episodes the agent favors exploration, whereas at t = τ log 1

ε0
the agent’s behavior collapses to an ε0-greedy policy.

In the first place we note in Fig. 3 that a fully random search
over the action space (1-greedy policy) leads to the extremely

FIG. 3. We benchmark traditional Q learning with different
schedules on ε as the episode number increases. The figures of
merit are averaged over A = 24 agents and show the corresponding
uncertainty region.

poor cumulative reward per episode of Rt ≈ 1/2, even for
long times, which is expected because a random guess (last
action) leads to Ps(α, {a�}) = 1/2. Instead, since all the ac-
tions will be sampled enough times for the agent to learn
the optimal policy, Pt will converge to optimal value at large
enough episode number. Nevertheless, if the action space is
large, the fully random strategy will require a large number of
episodes to explore each action a significant number of times,
and for moderate times a ε-greedy strategy might reach a
better strategy. Indeed, Fig. 3 shows that the 0.3-greedy policy
has at all episodes a higher Pt than the 1-greedy one, being
99% the optimal success probability P(L=2)

∗ at episode t =
105. Of course, for 0.3-greedy policy the agent collects many
more rewards (actual correct guesses) than for the 1-greedy
but it is still limited to Rt ≈ 0.7P(L=2)

∗ . In order to reach
a better exploration-exploitation tradeoff, it is customary to
consider an episode-dependent ε, e.g., ε(t ) = max{e− t

τ , ε0}.
Figure 3 shows the results for this tunable interaction policy
with τ = 2 × 102 and ε0 = 0.01. This allows the agent’s Rt to
surpass the homodyne limit at about episode ∼5 × 103 (which
is comparable with the size of the action space), while at later
times the performance converges to that of the 0.01-greedy
policy. Finally, notice that 0.3-greedy discovers a strategy
whose Pt surpasses the homodyne limit at episode ∼3 × 102.

In Fig. 4 we study the guessing rule discovered by the 0.3-
greedy agent at episode t = 5 × 105. For each sequence of
outcomes o1, o2, we plot the difference between the Q values
of guessing for | − α〉, i.e., aL = 1, and | + α〉, i.e., aL = 0, as
a function of the past actions:

Q̂((a0, o1, a1(h1), o2), 1) − Q̂((a0, o1, a1(h1), o2), 0). (27)

Note that the sign of Eq. (27) corresponds to the agent’s best
guess for the true hypothesis, since the latter is obtained by
going greedy towards Q̂(hL, aL ), as explained in Appendix A.
We compare these results with the optimal guessing rule in
the model-aware setting, plotting a shaded region when the
maximum-likelihood guess is | ± α〉. The plot shows that the
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FIG. 4. Density plot of the difference between the estimated Q
values for guessing “plus” and “minus” as a function of the displace-
ments at the first and second layer, for each possible sequence of
outcomes, with α = 0.4. The shaded areas correspond to the regions
where the optimal guess, taken according to maximum likelihood,
is “plus.” The white dots corresponds to the optimal values of the
displacements for the proper discretization).

agent perfectly learn the guessing rule at the given resolution.
Moreover, the difference between the two Q values is more
pronounced in the surroundings of the optimal β values,
meaning that the agents are more confident about their guess
in these regions.

Our numerical results show that standard Q learning suc-
cessfully trains agents that surpass the homodyne limit of
optical detection and discover strategies whose error rate is
comparable with that of the optimal receiver. This is remark-
able, especially taking into consideration that the agents are
not initially trained for this task and run in a model-free setting
entirely based on the feedback they get (correct/incorrect) on
their guess. As mentioned above, although many RL schemes
focus on extracting the optimal policy from the agent (as
measured, e.g., by Pt ), our central figure of merit, Rt , captures
the real performance of the agent and can actually be assessed
by the agent itself. It is hence important to design strategies
that not only aim at finding the optimal policy within an
episode but also maximize the cumulative reward per episode,
reaching Rt → P(L)

∗ as fast as possible. We have seen above
an example of such strategy (the exponential greedy) and in
the next sections we will study more advanced ones. For this
purpose we will first study a simplified setting, called the
multiarmed bandit problem, where the intraepisode dynamics
is trivial, and the main focus is drawn on how to optimize the

interepisode learning strategy. In passing, we introduce some
theoretical tools in order to study the bandits’ learning curves,
which are a cornerstone to tackle more challenging situations
such as learning optimal policies over a MDP.

C. The multiarmed bandit problem

Multiarmed bandit problems are MDPs with a single de-
fault state at which the agent faces a fixed set of actions
a ∈ A, each one leading to a reward r ∈ R with an unknown
probability τ (r|a). After action a is performed, the reward r is
enjoyed and the episode finishes: The return defined in Eq. (8)
becomes r. The situation models a gambler at a row of slot
machines that has to decide which arms to pull, how many
times to pull each one and in which order, with the aim of
maximizing the earned rewards.

The bandit problem is an ideal framework to highlight the
aforementioned crucial difference between learning strategies
that accomplish the main goal of identifying the optimal
policy after a given number of episodes and more refined
strategies that also procure high de facto cumulative returns
during the learning process. This is why bandit problems are
very relevant in real-life applications where the final success
probability is not the only figure of merit, as for example in
clinical trials [73] where one needs to find the right compro-
mise between advancing in the search of the best treatment
while effectively treating current patients.

The general traits of the cumulative return per episode Rt

in Fig. 3 could inspire several ways of quantifying the per-
formance of the learning agent, e.g., (a) the onset episode at
which Rt starts exceeding the random policy; (b) the transient
episode at which Rt reaches a given fraction of the optimal
success probability; (c) the learning speed as quantified by
the slope of Rt after the onset episode; (d) the learning speed
at which Rt converges to the optimal success probability.
Unfortunately, very little is known about these or alternative
ways to characterize the learning curves. Nonetheless, bandit
theory provides us with a framework were some of these
notions can be defined and rigorously studied. In particular,
bandit theory defines the so-called cumulative regret:

Lt = E
t∑

k=1

(Q(a∗) − Q(a(k) )) = t (Q(a∗) − ERt ), (28)

where E indicates the expected value with respect to different
agents following the same strategy, and a(t ) is the action
actually taken by an agent at episode t . The cumulative
regret is closely related to the (expected) cumulative return
per episode Rt and quantifies the price to pay, or loss, for
taking actions different from the optimal one (a∗). In other
words, it quantifies the difference in earnings of the agent with
respect to those of a model-aware superagent. One of the most
fundamental results in bandit theory is the Lai-Robbins bound
[74] for the asymptotic expected cumulative regret:

Lt �
t�1

log t

⎛
⎝ ∑

a∈A\{a∗}

�a

KL(a||∗)
+ o(1)

⎞
⎠ := CLR log t (29)

with �a = Q(a∗) − Q(a) and KL(a||∗) the Kullback-Leibler
divergence between the reward distributions τ (r|a) and

033295-8



REAL-TIME CALIBRATION OF COHERENT-STATE … PHYSICAL REVIEW RESEARCH 2, 033295 (2020)

τ (r|a∗). Recalling the definition in Eq. (28) we note that the
Lai-Robbins bound characterizes the learning curve in the
asymptotic regime, indeed the average return over agents,
ERt can approach the optimal value not faster than ERt �
Q(a∗) − CLR

log t
t . Let us now briefly present some possible

bandit strategies in light of this ultimate performance bound.
The most straightforward policy to use is the ε

greedy (already introduced in Sec. III C), as described in
Algorithm 2.

Algorithm 2. ε greedy for bandit problems.

input : Q̂(a) arbitrarily initialized and learning
rates λt (a) ∈ (0, 1] ∀a ∈ A, ε ∈ (0, 1]

for t in 1... T do
generate a random number j

if j � ε then
choose a at random

else
choose a = arg maxa∈A Q̂(a)

observe r
update Q̂:

Q̂(a) ← Q̂(a) + λt (a)[r − Q̂(a)]

Note that by choosing the learning rates λt (a) to be the
inverse of the number of times action a was visited up to time
t , then

Q̂(a) →
t→∞

∑
r∈R

r τ (r|a) = Q(a) ∀a ∈ A. (30)

As stressed in Sec. IV B, the ε-greedy policy never attains the
optimal success rate, ERt < Q(a∗) for all t , since at every
episode there is a finite probability ε that the agent performs
a suboptimal action. For this reason, the expected cumulative
regret grows linearly with t . It is then clear that there is room
for improvement before reaching the logarithmic scaling of
the ultimate limit of Eq. (29). We will present two strategies,
one based on upper confidence bounds (UCB) [63,74,75]
and the other called Thompson sampling (TS) [64,73,76,77],
which substantially improve the performance of ε greedy and
may even attain the Lai-Robbins ultimate bound [63,78].

In UCB, the agent keeps a record of the number of times
each action a was selected up to episode t , which we denote
as Nt (a). Hoeffding’s inequality bounds the probability that
the Q̂(a) underestimates the true value of Q(a) by more than
ε(t ) > 0, as

Pr[Q̂(a) < Q(a) − ε(t )] � e−2Nt (a)ε(t )2 =: P (t ), (31)

where here and in the rest of this section we assume that
r ∈ [0, 1]. Then, for a given Nt (a) > 0, the upper confidence
bound, defined as

ucbt (a) := Q̂(a) + ε(t ) = Q̂(a) +
√

− logP (t )

2Nt (a)
, (32)

represents an upper bound to the true value Q(a)
with (high) probability 1 − P (t ). This value is used to
compare and choose among the different actions, i.e.,

a = arg maxa∈A ucbt (a), and responds to the motto “optimism
under the face of uncertainty:” actions that have not been
visited enough are assigned an “optimistic” value of the return
and hence more chances of being picked; in addition, actions
whose Q estimate is accurate but suboptimal will have little
chances to be picked again. The functional form of P (t ) can
be tuned to balance exploration and exploitation. In particular,
for the standard choice P (t ) = t−4 (here called UCB-1) it can
be easily seen that the expected cumulative regret follows the
logarithmic scaling [62,63]. In Appendix B we also discuss a
different choice, which is known to saturate the Lai-Robbins
bound, but performs worse than UCB-1 for our setting and the
moderately small number of episodes that we consider.

Algorithm 3. UCB for bandit problems.

input : P (t ), initialize Q̂(a), N (a) to zero ∀a ∈ A.
for t in 1, ..., T do

if t � |A| then
(choose each action once) a = t

else
choose a = arg maxa∈A ucbt (a), (Eq. (32))

observe reward r
record visit:

Nt (a)) ← Nt (a) + 1
update Q-value:

Q̂(a) ← Q̂(a) + [r−Q̂(a)]
Nt (a)

Thompson sampling (TS) departs from the standard Q-
learning paradigm, which is based on keeping track and
updating the Q table. Instead, TS follows a Bayesian approach
and at every episode assigns a full prior distribution (not
just an expectation value) to the expected reward r̄ of every
arm a, ft (r̄|a) ∀a ∈ A. This distribution characterizes the
knowledge the agent has about the expected earnings of each
arm, Q(a), and at the first episode can be taken to be flat
over the whole interval [0,1]. The policy then consists in
sampling an expected reward r̄ ∼ ft−1(r̄|a) for each possible
action a and choosing the action with the largest sample
r̄: a = arg maxa∈A{r̄ ∼ ft (r̄|a)}). Finally, the distribution for
the chosen action is updated according to the true reward r
obtained, using Bayes’ theorem.

In order to avoid computationally expensive Bayesian
updates, families of distributions that are closed under the
update rule are used. In the case of Bernoulli bandits, beta-
distributions are employed since those are precisely their
conjugate priors. That is, given

ft (r̄|a) = Beta(μt (a), νt (a)) ∝ r̄μt (a)−1(1 − r̄)1−νt (a), (33)

upon obtaining a reward r the prior is updated to another beta
distribution with parameters μt+1(a) = μt (a) + r, νt+1(a) =
νt (a) + 1 − r, where at the first episode it is μ1(a) = ν1(a) =
1 ∀a ∈ A (flat prior). By mimicking the underlying distri-
butions, TS gauges exploration according to the information
acquired so far: If a certain action has not been sampled
enough at episode t , its reward distribution will still be broad
and, when sampled, can easily return a higher value of r̄
than that obtained from other (more peaked) distributions;
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FIG. 5. We show the evolution of the cumulative regret for three
different strategies. In this case, bandit problem 1, the displacements
considered are β ∈ {0,−α, β∗}, for α = 0.4 and β∗ = −0.74. All
curves are averaged over 103 agents. Furthermore, we compare the
asymptotic behavior of TS, studying bandit problem 2, with β ∈
{−α, β∗,−1.5α}.

thereby TS will favor to explore such action. At the same time,
if a suboptimal action has been sampled enough episodes,
it will be very unlikely that it is sampled again, since the
corresponding prior will be highly peaked at low values.
The pseudocode of TS for Bernoulli bandits is described in
Algorithm 4.

Algorithm 4. TS for Bernoulli bandit problems.

input : μ1(a), ν1(a) initialized to one ∀a ∈ A
for t in 1, ..., T do

for a in A do
draw r̄a according to Beta(μt (a), νt (a))

choose a = arg max
a

r̄a

observe reward r
update Beta distribution:

μt+1(a) = μt (a) + r
νt+1(a) = νt (a) + 1 − r

Figure 5 shows the performance of different strategies in
a three-armed bandit problem. For this purpose, we have
considered a simple optical receiver as described in Sec. II
with a single layer L = 1. Since there is only a single detector
with binary outcome, we have assumed a fixed decision rule.
With this, each possible displacement β constitutes an action
a0 (recalling the notation used in last section) of a bandit
problem. The figure shows that the cumulative regret scales
linearly with time for the ε-greedy strategy, while it has a
logarithmic scaling for the UCB and TS strategies. The inset

shows the cumulative regret as a function of log t together
with the ultimate bound given by Lai-Robbins bound. The
achievability of this bound is hard to observe in simulations
because the convergence to the asymptotic results is very slow
[79], i.e., subleading constants and terms of order log(log t )
might be important. Nevertheless, in the setting of Fig. 5 we
see that the leading term captured by the slope of the curve is
consistent with the ultimate bound.

Let us conclude this overview of bandit theory by intro-
ducing the simple regret, another widely used figure of merit
that, as Pt , quantifies how well has the agent learned so far,
regardless of his actual performance:

�t = E(Q(a∗) − Q(a(t )∗)), (34)

where a(t )∗ is the agent’s recommendation of which the
optimal action is at episode t , which, e.g., in Q learning
would be given by a(t )∗ = arg maxa Q̂(a). Strategies designed
to minimize �t will prioritize to learn what the optimal arm to
pull is, and the probability that the agent confuses the optimal
arm by a suboptimal one will be exponentially small, hence
�t will converge to zero exponentially fast. Recent results
[80] show that the exploitation-exploration tradeoff manifests
itself in the asymptotic scaling of the simple and cumulative
regret in the sense that one imposes lower and upper bounds
on the other, and therefore optimizing one usually affects the
performance of the other.

D. Enhancing the agent via UCB and TS

In this section we consider two enhanced RL strate-
gies, inspired by the advanced bandit methods introduced in
Sec. IV C and adapted to our MDP problem. The first strategy
employs the standard Q-learning update rule for the estimate
Q̂, as described in Eq. (15), but it employs UCB to determine
the interaction policy at each time step of each episode, as
described in Sec. IV C, with P (t ) = t−4 [see Appendix B for a
comparison of different choices on P (t )]. This is implemented
by keeping a count of the number of visits of each history-
action couple up to the current episode t , i.e., Nt (h�, a�),
which is then used to compute an upper confidence bound,
ucbt (h�, a�) as in Eq. (32), for each action a� and history h�.
Finally, at time step � the agent chooses the greedy action w.r.t.
the UCB, i.e., a(t )

� = arg maxa ucbt (h�, a).
The second strategy is instead based entirely on TS, con-

sidering each action conditioned on the past history as a
bandit problem and rewarding each sequence of actions that
led to a successful experiment. In detail, the agent keeps a
beta-distribution, Eq. (33), of the mean reward obtainable at
each time step � from each action a� given each possible
history h�, i.e., ft (r̄|h�, a�). In order to choose a new action
at time step � given history h�, the agent samples an expected
reward r̄ ∼ ft (r̄|h�, a�) for each a� and selects the action with
the largest sample r̄. At the end of the episode a reward is
obtained as usual, and ft (r̄|h�, a�) is updated in a Bayesian
way for all the history-action couples visited at the episode. In
this case, when computing Pt , the best actions are chosen by
going greedy w.r.t. their mean reward distribution ft (r̄|h�, a�)
[64].

In Fig. 6 we plot the two figures of merit Rt , Pt for
agents trained using these two enhanced strategies, as well as
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FIG. 6. We show the learning curves for the enhanced Q-learning
agents via bandit methods. On the upper plot we depict Rt , the
agent’s success rate per episode, whereas on the bottom plot we
depict Pt , the success probability of the agent’s recommended actions
at episode t , {a(t )∗

� }. Each of the learning curves is averaged over 24
agents; the amplitude was fixed to α = 0.4.

for those based on the exp-greedy and 0.3-greedy strategies,
considered in Sec. IV B, which had, respectively, the largest
final Rt and Pt out of all the analyzed strategies. We observe
that UCB performs a thorough exploration of the action space
and indeed it is able to attain a value of Pt close to that of
0.3-greedy. This result comes at the price of a small Rt value,
which nevertheless shows that UCB has better exploitation
properties than 0.3-greedy; in particular it has a strikingly
larger slope than the latter at long times. As for TS, we
observe that this strategy attains the best Rt values, surpassing
exp-greedy at intermediate times. Moreover, TS also radically
improves the values of Pt w.r.t. exp-greedy and it is even
able to attain the performance of the other two strategies that
favor exploration. Overall, it appears that for our problem
TS provides the most profitable balance of exploration and
exploitation; we expect this strategy to perform worse in
scenarios in which the underlying distribution probability
does not belong to the family of distributions used by TS.

Finally, we show that RL agent’s performance is inde-
pendent of the coherent states’ energy. For this we evaluate,
for a range of different amplitudes |α|, the values of Rt and
Pt attained by different the agents at episode t = 5 × 105,
comparing them with the optimal success probability P(L=2)

∗ ,
as can be seen in Fig. 7. In the following we turn to test
model-free methods in realistic experimental scenarios, where
the ultimate success probability is affected by the presence of
noise.

E. Noise robustness

In the previous subsections we have shown that our RL
agents are able to learn near-optimal discrimination strategies
and—most importantly—exploit them in real time, employing
exclusively the detectors’ outcomes and the rewards at the
end of each episode. Here we show that these results do not
sensibly change in the presence of noise, i.e., that the same

FIG. 7. The performance at episode t = 5 × 105 of three dif-
ferent RL agents is evaluated as the energy of the coherent states
increase. All data points are averaged over 24 agents.

agents are able to attain near-optimal performance even when
unknown errors affect the experiment and hence the learning
process.

First, we consider a common experimental imperfection
known as dark counts: Due to the presence of background
noise, each photodetector in the receiver has a nonzero proba-
bility pdc of detecting a photon even when it receives a vacuum
signal. Accordingly, the conditional probability of obtaining
an outcome 0 given an input state |α〉, Eq. (4), is modified by
a multiplicative factor (1 − pdc).

In Fig. 8 we plot Rt and Pt at time t = 5 × 105 for several
RL strategies as a function of pdc ∈ [0, 1], along with the
maximum success probability attainable by the corresponding
receiver. We see that the final values of Pt are near optimal
for all values of pdc, while Rt seems to be slightly affected
in an intermediate region of values of pdc. We notice that the
agents are be able to learn optimal strategies in the long term,
as shown by the high values of Pt attained. However, since a
dark count effectively increases the chance of (not) obtaining a
reward for a (correct) wrong action, the time it takes to learn a
near-optimal strategy and to start exploiting is also increased,
as reflected by the behavior of Rt . Note that for pdc ∼ 1 the
best guess is the random one and thus easier to learn.
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FIG. 8. The performance at episode t = 5 × 105 of three differ-
ent RL agents (the same considered in 6) is evaluated as a function
of photodetection noise. The amplitude of the coherent states is fixed
to α = 0.4; all data points are averaged over 24 agents.
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FIG. 9. The performance at episode t = 5 × 105 of three differ-
ent RL agents (the same considered in 6) is evaluated as a function
of phase flipping probability before the signal arrives to the receiver.
The amplitude of the coherent states is fixed to α = 0.4; all data
points are averaged over 24 agents.

Next, we consider the case where the phase of the incoming
signal is flipped before arriving to the receiver, with probabil-
ity p f . In this scenario, if the agent guesses for the correct
received phase, the corresponding reward will be zero since
the phase initially sent was opposite than the received one. In
particular, the probability of observing a string of outcomes
p(o1:L|α, {a(hL−1)}) in Eq. (4) is modified such that

p(o1:L|α, {a(hL−1)}) → (1 − p f )p(o1:L|α, {a(hL−1)})

+ p f p(o1:L| − α, {a(hL−1)}). (35)

In Fig. 9 we depict the values of Rt and Pt attained
by several agents at episode t = 5 × 105, as a function of
p f ∈ [0.5, 1], along with the maximum success probability
attainable by the corresponding receiver. As in the case of dark
counts, we see that for all values of p f , the agents are able to
converge to near-optimal Pt values and they exhibit very small
variations in Rt as p f increases.

V. DISCUSSION AND CONCLUSIONS

In this paper we provided an in-depth study of RL methods
for the online optimization of coherent-state receivers based
on current technology. Such receivers are crucial for the
deployment of high-data-rate long-distance communications
in free space or optical fiber and they are based on the
interplay of several simple quantum gates and measurements,
combined to create a complex structure. The RL methods that
we analyzed enable to optimize such structure based on the
actual experimental conditions and limitations of the commu-
nication channel and of the receiver. Thus, they possess a high
potential for increasing the flexibility and effectiveness of
current receivers and provide a useful addition to the current
experimental toolbox. This is even more so the case if we
consider that the methods we studied are relatively simple
and rely only on “shallow” RL techniques, i.e., they are not
based on the use of neural networks, which would allow
to consider larger state-action spaces, possibly at the cost
of a longer training time and computational overheads. We
expect that the use of such “deep” RL methods could allow

to control receivers of multiple and/or multimode coherent
states, whose best performance is still to be determined at
present. On the other hand, the characterization of the cu-
mulative or simple regret for intermediate episodes through
general nonasymptotic upper and lower bounds, as well as
its extension from bandits to more general MDPs is still an
open and active field of research. Quantum technologies can
benefit from this progress, and nontrivial quantum features
might appear in more general quantum learning scenarios.

Let us now briefly comment on the time needed to perform
the search. The proposed scheme is an adaptive learning
protocol in two distinct ways, and thereby we may distinguish
between two different timescales. During a single experi-
ment, the architecture performs a weak measurement of the
(displaced) signal and feeds this result forward to perform
the next control operation; this defines what we may call
an “internal timescale.” The “external timescale” concerns
instead the adaptation of the agent’s strategy from one ex-
periment to another, based solely on the correctness of the
guess. The technical requirements for the internal timescales
are within reach of current technology [46,50]. Regarding the
external timescales instead, the computations done between
experiments are not particularly demanding for the problem
at hand (in particular because of the “shallow” RL methods
employed, as discussed above).

Finally, we would like to stress that the RL problem
induced by real-time state discrimination is characterized by
intrinsically noisy and stochastic rewards. As such, it stands
out from other instances where RL has been applied to quan-
tum physics. Indeed, even when performing a good set of
actions and guessing rule, an agent might still not be rewarded.
This is due to two crucial factors: (i) quantum states are
intrinsically indistinguishable, i.e., even the best receiver has
a nonzero probability of discrimination error; (ii) our methods
can be applied in real time to the experiment, hence the binary
reward received for a given set of actions is stochastic and
thereby not sufficient to estimate the success probability of
the corresponding receiver. Still, the best among our agents is
able to reach good configurations and start exploiting them
in a number of experiments which is roughly sufficient to
try each set of actions only once. This is a key signature of
the agents’ intelligent behavior, showing that they make the
most out of each reward rather than blindly trying actions at
random. Hence, we believe that the discrimination problem
provides an interesting, rich, and flexible sandbox for testing
RL in quantum-physics-inspired scenarios and will constitute
an interesting line of work at the intersection between these
two fields.

The code developed to obtain the numerical results of this
research can be found at [81]. Any suggestions, comments,
and even collaborations are welcome.
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APPENDIX A: OPTIMAL STATE-ACTION VALUES

In this section we verify that—by construction—the opti-
mal policy leads to the maximum success probability P(L)

∗ (α).
It is assumed that Q is always associated with the optimal
policy π∗; we simplify notation by Q = Qπ∗ .

At step L, given any history hL, the actions available to the
agent are k̂ = aL, i.e., guessing for one of the possible phases
of the coherent state. The Q values at this time step read as

Q(hL, aL ) = E[GL|hL, aL] =
∑
rL+1

rL+1 p(rL+1|hL, aL )

= p(α(aL )|o1:L; a0:(L−1)), (A1)

with o1:� = {o1, o2, ..., o�} the observations obtained up to
the (�)th photodetector, and a0:� = {a0, a1, ..., a�} the actions
done up to step �. Recalling that the optimal action, given
h�, is obtained from Q as π∗(h�) = arg maxa�

Q(h�, a�), the
optimal guess a∗

L is the one of maximum likelihood:

a∗
L = arg max

aL

p(α(k)|o1:L; a0:(L−1))|k=aL .

By definition of the optimal policy and because optimal
Bellman equation Eq. (13) holds, the optimal action to take
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FIG. 10. We plot different values of the Q estimates, after 108

episodes of random exploration (ε = 1), updating the Q estimates
according to Q learning (see Algorithm 1). The random exploration
is used in order to ensure that, at finite number of episodes, all
state-action pairs were equally visited on average. The lower plot
corresponds to the estimates Q̂(a0 ), and it is compared with the
optimal success probability as a function of a0, i.e., P(L=2)

∗ (α, a0) =∑
o1 p(o1; a0) max

a1

∑
o2

p(o2|h1, a1) max
a2=±

p(±α|h2)pr(±α).

given history hL−1 at step L − 1 is

a∗
L−1 = arg max

aL−1

Q(hL−1, aL−1)

= arg max
aL−1

∑
oL

p(oL|o1:(L−1); a0:(L−1)) max
aL

Q(hL, aL )

= arg max
aL−1

∑
oL

p(oL|o1:(L−1); a0:(L−1)) max
k

× p(α(k)|o1:L; a0:(L−1))

= arg max
aL−1

∑
oL

maxk p(o1:L|α(k); a0:(L−1))pk

p(o1:(L−1); a0:(L−1))
, (A2)

where in the last line we have used Bayes theorem. Following
this line of reasoning, we can obtain the optimal actions a∗

� at
any time step. In particular, for � = 0, by recursively applying
the optimal Bellman equation [Eq. (13)] we have

Q(h0, a0)

=
∑

o1

p(o1; a0) max
a1

Q(h1, a1)

=
∑

o1

p(o1; a0) max
a1

∑
o2

p(o2|o1; a1) max
a2

Q(h2, a2)

=
∑

o1

p(o1; a0) max
a1

∑
o2

p(o2|o1; a1) max
a2

∑
o3

(...)

×
(

(...)
∑

oL

p(oL|o1:(L−1); a1:(L−1)) max
aL

Q(hL, aL )

)

=
∑

o1

max
a1

∑
o2

max
a2

∑
o3

(...)

×
(

(...)
∑

oL

max
k

p(o1:L|α(k); a0:(L−1)) pk

)
. (A3)

Therefore, by taking the optimal action a∗
0 =

arg maxa0
Q(h0, a0), we obtain

max
a0

Q(h0, a0) = p(L)
∗ . (A4)

As pointed out in the main text, the value and action-value
functions are related via vπ (s) = ∑

a π (a|s)Qπ (s, a). There-
fore, the optimal value function for the initial state is the
optimal success probability:

v∗(h0) =
∑

a

δ(a, arg max
a

Q(h0, a)) = Q(h0, a∗
0 ) = PL

∗ (α).

(A5)
In Fig. 10 we show several sections of the estimates Q̂, using
1-greedy as the interaction policy and each update made
according to Algorithm 1, at episode t = 108.

APPENDIX B: COMPARISON OF DIFFERENT
UCB STRATEGIES

In this section we show numerical results on how the
choice of P (t ) for the UCB strategy leads to different learn-
ing curves behavior, for L = 2. As explained in Sec. IV C,
the probability to overestimate the state-action value can be

033295-13



BILKIS, ROSATI, YEPES, AND CALSAMIGLIA PHYSICAL REVIEW RESEARCH 2, 033295 (2020)

FIG. 11. We compare two different variants of UCB showing
that the exploration-exploitation tradeoff is an intrinsic feature of our
problem.

bounded by Hoeffding’s inequality. This probability can be
forced to depend on the episode. In Fig. 11 we show the

Algorithm’s name: UCB-1 UCB-2 UCB-3

P (t ) t−4 1
1+t log2 t

t
1

Nt [s,a]

performance of three different choices of P (t ) for the same
receiver considered in Sec. IV B. First we consider UCB-1,
which is the standard choice of P (t ) = t−4, which for a bandit
problem with K = |A| arms can be easily proven to have an
asymptotic cumulative regret upper bounded by [62]

Lt � 8
∑

a∈A\{a∗}

log t

�k
+ Kπ2

3
(B1)

which together with the Lai-Robbins bound of Eq. (29) im-
plies that Lt = O(log(t )). Secondly, we consider UCB-2, with
a choice of P (t ) proved to be asymptotically optimal in bandit
problems [62]. Lastly, an heuristic and instance dependent
variation of P (t ), UCB-3, leads to better Rt only in the short
term, as exploration is damped too fast (which is also reflected
in suboptimal Pt even in the long term).
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