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We propose the tensor-network compressed sensing (TNCS) by incorporating the ideas of compressed sensing,
tensor network (TN), and machine learning. The primary idea is to compress and communicate the real-life
information through the generative TN state and by making projective measurements in a designed way. First,
the state |�〉 is obtained by the unsupervised learning of TN, and then the data to be communicated are encoded
in the separable state with the minimal distance to the projected state |�〉, where |�〉 can be acquired by partially
projecting |�〉. A protocol analogous to the compressed sensing assisted by neural-network machine learning is
thus suggested, where the projections are designed to rapidly minimize the uncertainty of information in |�〉.
To characterize the efficiency of TNCS, we propose a quantity named as q sparsity to describe the sparsity of
quantum states, which is analogous to the sparsity of the signals required in the standard compressed sensing.
The need of the q sparsity in TNCS is essentially due to the fact that the TN states obey the area law of
entanglement entropy. The tests on the real-life data (handwritten digits and fashion images) show that the TNCS
has competitive efficiency and accuracy.
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I. INTRODUCTION

Hybridizing the ideas and techniques in information theo-
ries and quantum physics has given birth to significant and
fruitful achievements. On one hand, quantum physics may
enhance the communications of classical information. Taking
dense/superdense coding protocols [1–7] as examples, the
idea is to use previously shared entangled state between a
sender and the receiver(s) to send more classical informa-
tion than is possible without the resource of entanglement.
On the other hand, classical techniques can assist quantum
approaches. One example is to use compressed sensing [8]
(see also the book in Ref. [9]) to improve quantum state
tomography [10–13].

We here consider to combine the ideas of compressed
sensing [8], quantum communication [14], and unsupervised
tensor network (TN) machine learning [15]. Compressed
sensing is a powerful scheme for classical data compression
by sampling, which is particularly useful when the samplings
of the data are difficult or expensive. For instance in the
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magnetic resonance imaging, compressed sensing can largely
compress the required samplings, thus significantly improve
the efficiency [16].

In quantum communication, measurements are also ex-
pensive, since quantum states are difficult to prepare and
each measurement will collapse or disturb the state to some
extent. Consequently, the quantum communications of real-
life data [e.g., images of O(103) bits or more], even including
the corresponding simulations of the quantum processes on
classical computers, are extremely challenging. For most of
the existing quantum schemes, it is difficult to generalize
them to implement realistic tasks, by using many-qubit (or
many-body) states instead of the states with a small number of
qubits. This is also partially because the Hilbert space grows
exponentially with the number of qubits, and it is extremely
challenging to use classical numeric simulations to guide the
quantum schemes with many qubits. Meanwhile, the quantum
technologies are advanced rapidly, and the number of qubits
that can be entangled in a well-controlled way increases fast
(see for instance several recent progresses in Refs. [17–19]).
Therefore, developing algorithms and protocols to handle
real-life problems using many-qubit states is important and
urgent.

Recently, TN [20–24] is rapidly developed into a powerful
quantum-inspired computational tool for machine learning,
which brings new possibilities and wide perspectives to pro-
cess real-life data, such as images and texts, in the quan-
tum processes based on many-qubit (or many-body) states
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FIG. 1. Illustration of the main steps of TNCS: (1) train the
Born machine |�〉 representing the probability distribution of the
data that Alice considers to send, (2) encode the specific piece of
information to be sent by projecting |�〉, (3) decode the information
as a generative process by the projected Born machine.

[15,25–32]. High efficiencies have been demonstrated at least
for the classical simulations of these quantum processes.
Meanwhile, the underlying relations between TN and the
models executable on quantum platforms (e.g., as quantum
circuits [31,33] or through quantum channels [34]) are re-
vealed. These achievements allow and motivate to explore
novel quantum schemes that previously could not be effi-
ciently simulated even by classical simulations, which will
provide valuable results for the future investigations on the
genuine quantum hardware [31].

In this work, the tensor-network compressed sensing
(TNCS) is proposed. The main idea is to encode and commu-
nicate the information by implementing designed projections
on the state |�〉 (also called Born machine [35]) that is trained
by the unsupervised TN machine learning algorithm [15]. To
explain TNCS, let us consider the following scenario. Alice
wants to send a piece of classical information {x}, e.g., an
image of hand-written digit “3” consisting of O(102) pixels,
to Bob. She intends to send only a small number of pixels
(or features in the terminology of machine learning) denoted
by {xsent} to Bob by classical communication which might be
unsafe or even public. The rest of the information {xrest} (with
{x} = {xsent} ∪ {xrest}) will be encoded in the Born machine
|�〉. To recover {xrest}, Bob projects |�〉 that is previously
provided by Alice in the way determined by {xsent}. After
the projections, |�〉 will be projected to another entangled
state denoted as |�〉, and by design, {xrest} will be encoded
in the separable state that has the minimal distance to |�〉.
Therefore, Bob can reliably recover {xrest} by implementing
projections on |�〉, or generate {xrest} by sampling on |�〉 in
the terms of TN machine learning. A flowchart of TNCS is
given in Fig. 1.

There remain two key questions: how to construct |�〉 and
how to design the projections on it, so that the information
to be sent can be optimally encoded in |�〉 in the above way.
Our proposal is the following. First, Alice trains |�〉 by the
unsupervised TN machine learning algorithm [15], so that |�〉
represents the probability distribution of a huge amount of
information that Alice considers to send. |�〉 is called a Born

machine since the probability of each piece of information is
the square of the corresponding coefficient in |�〉 [35]. Then
to send a specific piece of information, she chooses to send
Bob the pixels, with which the uncertainty of the rest of the
pixels in the probability distribution will be minimized. The
full information {x} is efficiently compressed to (or in other
words, can be accurately reconstructed from) a small part of
the image {xrest} and the Born machine |�〉.

We test our TNCS with the datasets of hand-written digits
and fashion images (namely MNIST [36] and fashion-MNIST
[37]) by classical simulations. Any image in the training
or testing sets can be reconstructed reliably and efficiently.
The efficiency is indicated by the compression ratio r =
Nf /N � 10%, where N = #{x} denotes the total number of
features in {x} and Nf = #{x[sent]} denotes the number of the
sent features. In other words, the information Bob accesses
is about 10 times the information that Alice needs to send
through the classical channels. Most of the information is
encoded in the Born machine (quantum state). Similar to the
compressed sensing, randomly choosing {x[sent]} already leads
to small compression ratios. Better performance is reached
by choosing {x[sent]} with a sampling protocol based on the
entanglement of |�〉 and by implementing post-selections to
access {x[rest]}. Finally, q sparsity to characterize the sparsity
of quantum state is proposed. For TNCS, q sparsity char-
acterizes how fast the Shannon entropy of the probability
distribution will decrease by projecting the Born machine |�〉
and how efficient the compressed sampling can be via |�〉. An
empirical equation to estimate the required number of pixels
for reliable reconstructions is given.

Our proposal shares a similar spirit with the recent works
that combine the standard compressed sensing with the clas-
sical probabilistic models. For instance, the autoencoders
parameterized by deep neural networks are used to design
an efficient Markov sampling process to significantly reduce
the compression ratio [38,39]. Here, we employ a matrix
product state (MPS) [40] that possesses simple and shallow
architecture to encode the information and to design the
sampling strategy based on the entanglement. While this work
will focus on demonstrating TNCS by classical simulations,
our scheme could in principle be implemented on quantum
platforms. The TNCS would pave a way to processing real-
life data through quantum many-body states. The possible
advantages of the TNCS in efficiency, security, etc. when
implemented on quantum platforms are to be discussed in
future.

This paper is organized as follows. In Sec. II, we explain
the basic concepts and theories of TNCS. In Sec. III, TNCS
is improved by introducing a quantum-inspired protocol and
post-selections. In Sec. IV, we introduce q sparsity to charac-
terize the sparsity of quantum states based on entanglement
and projections and in this work to qualitatively characterize
the efficiency of TNCS. At last, we present a summary and the
perspective on quantum communications in Sec. V.

II. TENSOR-NETWORK COMPRESSED SENSING

In this section, we will mainly explain TNCS as a TN
scheme that efficiently deals with quantum many-body states
(optimizations, projections, etc.) by classical simulations.
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Note that TNCS can in principle be generalized to quantum
platforms. Some discussions on the quantum nature of TNCS
can be found in Appendices D, E, and F from the perspectives
of entanglement, security, and efficiency.

Suppose Alice wants to send Bob an image of a handwrit-
ten digit “3” by TNCS (Fig. 1). She first trains the state |�〉 as
the generative model for the training set of many “3” images in
MNIST. This can be done with the unsupervised TN machine
learning algorithm [15]. The idea is to first map the images
to quantum states. For example, the nth pixel (0 � xn � 1) is
mapped to a state of a qubit as

xn → |s(xn)〉 = cos(xnπ/2)|0〉 + sin(xnπ/2)|1〉, (1)

with |0〉 and |1〉 the two eigenstates of the Pauli matrix σ̂ z. In
this way, one image with pixels {x} = (x1, x2, . . .) is mapped
to a separable state |ψ〉 = ∏

n |s(xn)〉. Then the Born machine
|�〉 is optimized to capture the probability distribution of
the training set, by minimizing the distance (negative-log
likelihood) to the probability distribution of the images in
the training set. See more details in Appendix A. Here, we
take |�〉 in the form of MPS [40]. Note that TNCS is a
general scheme, where one may also choose other TN forms to
represent |�〉, such as tree TN or MERA [26,31,32], or simply
a quantum state without a specific entanglement structure.

In the sense of machine learning, though we only use the
“3” images in the training set to optimize |�〉, it is expected
that |�〉 approximately gives the probability distribution of
any “3” images. In other words, |�〉 learns the probability
distribution of the “3” images from a finite (training) set
but can generalize to generate and/or recognize arbitrary “3”
images that |�〉 might have never learned. The ability of a
machine-learning model to process the information beyond
the training set is known as the generalization power (see, e.g.,
Ref. [41]). As shown in the previous works [15,25,26,28–32],
TN models (including MPS) possess remarkable generaliza-
tion power that is competitive to neural networks. Notably,
TN models surpass neural networks as they possess high
interpretability and allow us to implement quantum processes.

As |�〉 gives the probability distribution of the “3” images
in the training set and beyond (due to its generalization
power), it is then possible to use |�〉 to communicate any “3”
images. As a direct advantage, Alice can train |�〉 without
knowing the specific “3” image that will be sent to Bob.
In other words, different “3” images can be communicated
with the same state |�〉, as long as |�〉 can “recognize” (in
the sense of machine learning) it as an image of “3” (see
Appendix B for more discussions).

In the communication, Alice sends Bob only a small part
of this image {xsent} and |�〉; then Bob projects |�〉 according
to {xsent} as

|�〉 =
∏

xn∈{x[sent]}
〈s(xn)|�〉/C, (2)

with C a constant to normalize |�〉. {xsent} should be selected
so that #{xsent} is small and meanwhile Bob can accurately
reconstruct the rest of the pixels {xrest} from |�〉. Note that
in the classical sense, Bob just needs the data of |�〉 (e.g.,
the tensors in the MPS) to simulate the projections. When
considering TNCS as a quantum protocol, many copies of |�〉

will be needed to obtain at least one expected projected state.
Some relevant discussions can be found in Appendix F.

The selection of {xsent} is analog to the sampling process
of compressed sensing [9]. In a standard compressed sensing
scheme, one may randomly choose a certain number of pixels
from the image as {xsent}. The sampling can be compressed
since the randomly selected pixels approximately lead to
averagely distributed frequencies, and meanwhile an image in
the frequency space is normally sparse. These are known as
incoherence and sparsity, which are the two conditions for the
compressed sensing to efficiently work.

For the TNCS, one may also randomly choose {xsent}
from {x}, which is denoted as random ordering (RO). Each
projection by |s(xn)〉 in Eq. (2) projects the state towards
the separable state |ψ〉 = ∏

n |s(xn)〉. With sufficient data in
{xsent}, |�〉 will eventually be projected to such a state, where∏

n |s(xn)〉 (xn ∈ {xrest}) is the separable state that has the mini-
mal distance to |�〉 among all separable states. Therefore, Bob
can access {xrest} by simply projecting on |�〉. Until now, we
can already see that the data can be efficiently compressed by
the TNCS if

∏
xn∈{x[rest]} |〈�|s(xn)〉| → 1 with #{xsent} � #{x}.

In other words, Bob will accurately have #{xsent} when |�〉
is mapped to a state that is sufficiently close to the separable
state corresponding to #{xrest}. Later in Sec. IV, we will give
more discussions about the efficiency from the sparsity of
quantum states.

For extracting {xrest}, let us consider that Bob samples
only once from |�〉 for each pixel, which is dubbed as the
one-shot measurement. When preparing |�〉 as a quantum
state (instead of the classical data as a TN), the one-shot
measurement corresponds to measuring only on one copy of
|�〉. To generate {xrest}, he measures the qubits in the basis
of the Pauli matrix σ̂ z. The probability P(xn) of the nth pixel
xn = 0 or 1 is determined by ρ̂n as P(xn) = 〈xn|ρ̂n|xn〉, where
ρ̂n is the reduced density matrix with respect to the nth qubit

ρ̂n = Tr/n|�〉〈�|, (3)

with Tr/n the trace over all degrees of freedom except for
the nth qubit. Note

∑
xn

P(xn) = Trρ̂n = 1 due to the normal-
ization of |�〉. Considering TNCS as a quantum protocol,
the one-shot measurement will be quite cheap and feasible
in experiments as it requires only one copy of the state.
One drawback is that only black-or-white pixels (xn = 0 or
1) will be generated, instead of the grayscale ones. From
the perspective of machine learning on classical computers,
such a way of obtaining {xrest} is in fact to generate {xrest}
by the Born machine |�〉 [15], which involves the sampling
processes based on the probability distributions P(xn).

We test the TNCS with RO and the one-shot measurement
on MNIST and fashion-MNIST datasets, which consists of the
real-life images of handwritten digits and Zalando’s articles,
respectively. Each dataset contains 10 classes of images and
in total has 60 000 training images and 10 000 testing im-
ages. Each image contains 28 × 28 = 784 grayscale pixels.
In Figs. 2(a) and 2(b), we show the accuracy of TNCS
with different compression ratios r = Nf /N (green solid and
the purple dashed lines). The accuracy is characterized by
the average peak signal-to-noise ratio (PSNR), which (say
between the original data {x} and the reconstructed data {y}) is
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FIG. 2. Average peak signal-to-noise ratio (PSNR) of the con-
structed images in the testing dataset of the handwriting digits “3” in
MNIST and the dresses in fashion-MNIST. The images are generated
from |�〉 in the one-shot way [(a) and (b)] or with the post-selection
[(c) and (d)]. The dimension of the MPS is taken as χ = 16 or 40.
The number of known pixels for reconstruction ranges from about
Nf /N = 0% to 10%. We try three orderings, which are entanglement
ordering (EO), variance ordering (VO), and random ordering (RO).
See the details in the text.

defined as

PSNR({x}, {y}) = 10 log10
784∑

n(xn − yn)2
. (4)

We average the PSNR by the results of reconstructing all the
images in the testing set, which the Born machine did not learn
in the training process. We take the bond dimensions of the
MPS χ = 16 and 40. Generally, the PSNR increases with r
and χ as expected, and TNCS works well by simply sampling
a small number of {xsent} randomly from {x} and implementing
one-shot measurement on |�〉.

III. IMPROVING EFFICIENCY WITH
ENTANGLEMENT-ORDERED SAMPLING

PROTOCOL AND POST-SELECTIONS

While RO works well for TNCS, in the following, we will
propose to improve the performance (i.e., of higher PSNR and
higher efficiency with smaller compression ratio) by incorpo-
rating with a quantum-inspired sampling protocol based on
entanglement and the post-selections of measurements.

Regarding the sampling, the results will change if Alice
selects differently the {xsent}. Other than RO, a natural selec-
tion way dubbed as variance ordering (VO) is to select the
pixels according to the variance. The variance of the nth pixel

is calculated from the training set as

Vn =
∑

i

⎡
⎣xi,n −

⎛
⎝∑

j

x j,n/K

⎞
⎠

⎤
⎦

2

/K. (5)

where xi,n is the nth pixel in the ith image of the training
set and K is the number of the training images. By choosing
{xsent} as the pixels with the highest variance, the PSRN
is obviously improved [see the black diamonds and orange
pentagons in Figs. 2(a) and 2(b)].

A more reasoned way is to select based on the entangle-
ment of |�〉, so that {xsent} will minimize the uncertainty
of {xrest} from the probability distribution given by the Born
machine. Knowing {x[sent]}, the (conditional) probability dis-
tribution of {x[rest]} satisfies

P({x[rest]}|{x[sent]}) = |
∏

xn∈{x[rest]}
〈s(xn)|�〉|2, (6)

where |s(xn)〉 stands for the state associated with the nth pixel
xn [see Eq. (1)], and |�〉 satisfies Eq. (2). The task is to find
the Nf pixels {x[sent]} that minimize the Shannon entropy

SShan = −
∑

{x[rest]}
P({x[rest]}|{x[sent]}) ln P({x[rest]}|{x[sent]}). (7)

Aiming at this task, let us begin with a simpler question:
Which pixel should be sent if Alice sends only one pixel? This
can be determined by the single-site entanglement entropy
(SEE) that (say for the nth qubit) is defined as

Sent
n = −Trρ̂n ln ρ̂n. (8)

Sent
n quantifies the information of the rest of the system that

will be gained if one has the information of the nth qubit. Such
a quantity has been utilized to safely reduce the number of
pixels for efficient supervised TN machine learning [42]. With
Sent

n , Alice can choose the ñth pixel with ñ = arg maxn Sent
n , so

that Bob will gain as much information as possible from one
sent pixel.

Based on the above scheme, we propose the follow-
ing Markov sampling strategy to select {x[sent]}, dubbed as
entanglement-ordered sampling protocol (EOSP).

(1) With an N-qubit state |�(N )〉 (initialized as |�〉),
calculate the SEE Sent

n of all qubits and find the qubit that has
the maximal Sent

n , i.e., ñ = arg maxn Sent
n .

(2) From the reduced density matrix of the ñth qubit, ρ̂ñ,
calculate its dominant eigenstate |sñ〉.

(3) Projecting the ñth qubit of |�(N )〉, a (N − 1)-qubit
state is obtained as |�(N − 1)〉 = 〈sñ|�(N )〉/C, with C a
constant to normalize |�(N − 1)〉.

(4) If Nf qubits have been projected, record the positions
of these qubits and transfer the pixels at these positions of the
image to Bob. Note we have |�(N − Nf )〉 = |�〉 [Eq. (2)].
Otherwise, go back to Step 1 with |�(N − 1)〉.

In short, EOSP selects the pixels in the order of entangle-
ment (EO). A simple example that helps to understand the
EOSP is provided in Appendix C. We shall emphasize that
the order of projections in the EOSP is solely determined by
the entanglement properties of the generative MPS and does
not depend on the specific images to be sent.
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To obtain better accuracy for reconstructing grayscale im-
ages (note the images in the MNIST dataset are grayscale), we
generate the pixels {x[rest]} by locating the separable state with
maximal probability, i.e.,

{x[rest]} = arg max
{x}

∣∣∣∣∣
∏

n

〈s(xn)|�〉
∣∣∣∣∣
2

, (9)

where the product
∏

n goes through {x[rest]}. It means that
each projective basis |s(xn)〉 is the dominant eigenstate of
the corresponding single-site reduced density matrix of |�〉
[Eq. (3)]. We dub such a generation way as “post-selection,”
considering that post-selections [43] will be needed to reach
the maximum in Eq. (9) when the generative MPS is prepared
as a quantum state. Note for the classical simulations of
TNCS, the post-selection scheme will not increase the cost
too much compared with the one-shot scheme, as Bob can
sample as many times as he wants from one |�〉, or he
may simply calculate the reduced density matrices and their
dominant eigenvectors by classical computers from the MPS.
Figures 2(c) and 2(d) show the results with post-selections.
One can see that the PSNR’s for all three selection ways
(EO, VO, and RO) are significantly improved. With EO and
post-selections, the image can be accurately and efficiently
communicated to Bob (with PSNR � 20) for r � 10%.

Combined with the classical compressed sensing, it was
proposed to utilize the classical probabilistic models to sig-
nificantly reduce the compression ratio [38,39]. For instance,
Ref. [38] investigated the compressed sensing assisted by
autoencoders on MNIST and calculated the mean-square error

(MSE) defined as MSE =
∑

n(xn−yn )2

784 = 10−PSNR/10. The au-
toencoder is formed by two parts: a four-layer fully-connected
deep neural network as the so-called recognizer to encode
the data to some latent variables and a neural network with
the same architecture as the generator to decode the latent
variables. The autoencoder is trained and tested on all images
of the ten classes in the dataset simultaneously. The MSE
per image ranges approximately as MSE � 0.06 ∼ 0.01 when
taking the compressed ratio as r � 1% ∼ 10% for all the
samples in the testing dataset. For TNCS, we train the MPS
by the images in a single class of the train set, in order
to control the computational complexity and focus on the
performances of different reconstruction ways given a well-
trained generative MPS. We obtain MSE � 0.047 ∼ 0.016 for
the samples in each class of the testing set. More numerical
results are provided in the Supplemental Material [44].

IV. Q SPARSITY

A prerequisite for the conventional compressed sensing to
work efficiently is the sparsity of the signals. For processing
images, it is known that the signals are usually not sparse
in the real space. Therefore, transformation (such as discrete
cosine/wavelet transformation) is implemented to transform
to another space in which the signals are sparse.

In TNCS, the prerequisite is that the quantum probability
distribution, i.e., the state |�〉, should be “sparse.” Here, the
sparsity is gained in a completely different way from the
standard compressed sensing, which is by mapping the data to
the higher-dimensional quantum Hilbert space. This is analog

FIG. 3. The single-site entanglement entropy (SEE) [Eq. (8)] per
site of |�〉 in the entanglement-ordered sampling protocol (EOSP)
versus the number of the unprojected qubits N − Nf . The more
steeply the SEE per site decays, the faster the information of a
quantum state can be gained by projections.

to the support vector machines [45] by mapping to a higher-
dimensional space where the data can be better classified.
In the unsupervised TN machine learning algorithm, each
pixel x is mapped to the state of a qubit [Eq. (1)], then
one image is mapped to the direct product state of N qubits
with N the number of pixels. Such a vector is defined in
a (2N )-dimensional space H. The MPS |�〉 describes the
joint probability distribution of the “vectorized” images in
H. Essentially, one still deals with the data in the real space.
However, the probability distribution becomes sparse in this
higher-dimensional space, since it can be well captured by an
MPS. An MPS is sparse because such a representation can
only reach a small corner of H that satisfies the so-called
one-dimensional area law of entanglement entropy [46,47].

However, it is not easy to characterize the sparsity of a
many-qubit state (including MPS) by simply treating it as
a vector, as its dimension is exponentially large. We here
propose to use EOSP to do so. In each step of EOSP, the
qubit with the maximal SEE is projected. The entanglement
of the state |�〉 formed by the unprojected qubits decreases
after each projection. Figure 3 shows the SEE per site S̄(ñ) =∑

n Sent
n (ñ)/ñ of |�(ñ)〉 [see Eq. (8)] with a different number

of unprojected qubits ñ = N − Nf . One can see that S̄(ñ)
decays rapidly as ñ decreases, meaning the unprojected qubits
are almost in a separable state for small ñ. For S̄(ñ) = 0, no
information will be gained by knowing the unprojected pixels.
It means all information is contained in the projected pixels,
and there is no uncertainty for the rest pixels, when S̄(ñ)
becomes zero.

From the implication of S̄(ñ) discussed above, we define
q sparsity to qualitatively describe the sparsity of a quantum
state (including MPS) as

Sq =
N∏

ñ=1

d
S̄(ñ)
ln d −1, (10)

with d the dimension of one vectorized pixel. In this work, we
focus on qubits with d = 2. Q sparsity characterizes how fast
the information of a quantum state can be extracted (or how
fast the uncertainty of the rest can be reduced) by projections.
Thus it characterizes the sparsity of quantum probability
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distributions in an essentially different way from the sparsity
of (classical) probability distributions, since quantum pro-
cesses (e.g., measurements) are involved.

For any given state, the q sparsity satisfies

0 � Sq � 1. (11)

Obviously, we have Sq = 0 for separable states. Considering
the maximally-entangled state [48], we have Sq = 1 since
S̄(ñ) = ln 2 for any ñ. For what is in the middle, we take
the N-qubit GHZ state as an example. We have S̄(N ) = ln 2
originally and S̄(ñ 
= N ) = 0 after one projection. Therefore,
we have Sq = 2−N+1. For the conventional k sparsity in
comparison, we have Sk = 2/2N = 2−N+1 = Sq since it only
has two nonzero coefficients in the 2N -component vector.
For the generative MPS’s, we numerically have Sq = 2−768.6

and 2−765.6 with χ = 16 for MNIST and fashion-MNIST,
respectively, and Sq = 2−770.0 and 2−767.5 with χ = 40.

For TNCS, Sq characterizes the efficiency, i.e., the com-
pression ratio. The smaller Sq is, the faster S̄(ñ) decays
in general with the projections, and the less {x[sent]} Bob
will require to accurately reconstruct the full information
by TNCS. Therefore, analog to the conventional compressed
sensing, TNCS requires the quantum probability distribution
to be sparse in the higher-dimensional Hilbert space, i.e., N +
log2 Sq � N . Based on our results on MNIST and fashion-
MNIST (Fig. 2), we have Nf � 10%N (with N = 784) to
reach PSNR � 20 using EOSP and

Nf � c(N + log2 Sq), (12)

with c � 6 [the precision of c is taken up to O(1) considering
the fluctuations of different classes and datasets]. For other
orderings (RO and VO), c will be larger (meaning that more
pixels are required) to reach a comparable PSNR than the one
that EO achieves.

V. SUMMARY AND PERSPECTIVE

In this work, we propose a novel compressed sensing ap-
proach by combining the ideas of compressed sensing, quan-
tum communication, and unsupervised TN machine learning.
The key step is to train the state |�〉 (a Born machine) by
the unsupervised TN machine learning algorithm, so that the
targeted piece of information can be encoded in the separable
state with the minimal distance to |�〉 that is obtained by
implementing projections on |�〉 in a designed way. The q
sparsity is proposed as a property of any quantum states and
is used to estimate the efficiency of TNCS. We apply TNCS to
the real-life datasets (handwritten digits and fashion images).

While the TNCS permits us to compress and communicate
data with competitive efficiency and accuracy as a classical
method, the scheme can be potentially generalized to quantum
states on quantum setups. One may build and optimize the
Born machine on quantum platforms to compress and transmit
information based on quantum theories. In particular, one
could use TN to design the quantum circuit as the Born
machine [31] or directly realize the Born machine as a many-
qubit state. The main difficulties are to implement TN models
(or the many-qubit states) on quantum devices and also the
measurements of entanglement, which are not yet feasible
with nowadays technologies. But it is hopeful that quantum

devices will eventually surpass the classical counterparts in
the future, with which the relevant obstacles would be tackled.
Our work provides possibilities for processing real-life data
by secure quantum communications (see more discussions in
Appendix E).
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APPENDIX A: UNSUPERVISED TENSOR-NETWORK
MACHINE LEARNING ALGORITHM

In the generative TN machine learning algorithm proposed
in Ref. [15], each image is mapped to a product state of N
qubits as

|φi〉 =
∏

n

|s(xi,n)〉, (A1)

with |s(xi,n)〉 = cos(xi,nπ/2)|0〉 + sin(xi,nπ/2)|1〉 and N the
total number of pixels in one image. Here, xi,n is the nth pixel
(gray with 0 � xi,n � 1) of the ith image. The coefficients in
the quantum state |�〉 are optimized to minimize the negative
log-likelihood (NLL) defined as

f = ln |〈�|�〉|2 −
∑

i ln |〈�|φi〉|2
N

. (A2)

The summation
∑

i is over all the training images. NLL
characterizes the resemblance between two probability distri-
butions.

In this work, we choose the TN to be matrix product state
(MPS). The coefficients of |�〉 are in a special form satisfying

|�〉 =
∑
{a}

∏
n

∑
sn=0,1

A[n]
snan,an+1

|sn〉. (A3)

A[n] represents a tensor that corresponds to the nth pixel.
The indexes {a} are known as virtual bonds of the MPS;
their dimensions are bounded by dim(an) � χ , with χ called
virtual bond dimension. MPS is an efficient representation of
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quantum-many-body states where the total number of param-
eter scales linearly with N as ∼2Nχ2. Note that the dimension
of the Hilbert space actually scales exponentially as ∼2N . The
tensors in the MPS are updated alternatively by the gradient
method as A[n] ← A[n] − τ∂ f /∂A[n], with τ the gradient step;
see Ref. [25] or [15] for more details.

After converging, |�〉 gives the joint probability of the
pixels. The probability for any image {x} in |�〉 is given as

P({x}) =
∣∣∣∣∣
∏

n

〈s(xn)|�〉
∣∣∣∣∣
2

. (A4)

Note the probability is the square of the corresponding
coefficient, thus such a TN state is also called the Born
machine [35].

APPENDIX B: AMBIGUOUS CORRELATIONS OF
INFORMATION IN TNCS

Another immediate question about TNCS is how to de-
termine the samples (denoted by A) for training the Born
machine |�〉, and what are the relations to the informa-
tion (denoted by B) that can be transferred or reconstructed
through |�〉. Obviously, we have A ⊆ B. The size of the com-
plementary set C = B − A characterizes the generalization
power of the Born machine.

Evidently, C has to be “ambiguously” correlated to A
somehow. Let us consider an extreme situation, where all
training samples in A are formed by uncorrelated random
numbers. The trained state |�〉 is an entangled state. However,
such a state obviously cannot be used to effectively transfer a
random image as no correlations exist between the random
image and the state.

In this work, we choose A and B as the training and testing
images of the same dataset, respectively. For instance, A and
B are handwritten digits “3” or images of dresses. Although
the “microscopic information” (pixels) of all the images in A
and B are different from each other, a human being can recog-
nize the “macroscopic information” of each image as a digit
“3” (or a dress) without any problem. This suggests that A and
B (thus A and C) must be correlated somehow. In other words,
we here ensure the existence of the “ambiguous” correlations
between A and B by the “macroscopic” information.

With the TN machine learning, we can define the “ambigu-
ous” correlation in a relatively more rigorous way: A and B
are “ambiguously” correlated if the Born machine trained by
A can accurately recognize the data in B. For instance, one
may train two Born machines by the “3” and “4” images in
the training set, respectively, and construct a classifier that
accurately recognizes “3” and “4” images [49]. To classify an
image in B or the testing set, one compares the probability of
have this image in the two Born machines, and classification
is given by finding the largest probability.

The above recognition scheme can give us much useful
information. For instance, the Born machine trained by the
“3” images can be used to implement the TNCS for an image
“3” written by the reader, as long as it can be recognized by the
Born machine. Obviously, the TNCS cannot be implemented
by the Born machine of “3” if the reader writes a “4.” How

to more rigorously characterize and quantify such ambiguous
correlations is an important issue to TNCS. One direction is to
develop more universal classifiers for pattern recognition (not
limited to digits or some certain kind of data). This will also
be helpful to further understand and model the recognition
process.

APPENDIX C: A SIMPLE EXAMPLE TO UNDERSTAND
ENTANGLEMENT-ORDERED SAMPLING PROTOCOL

To explain why the entanglement-ordered sampling proto-
col (EOSP) works, let us consider the following four-qubit
state as an example,

|�〉 =
(√

2

2
|01〉 +

√
2

2
|10〉

)
⊗

(
1

2
|01〉 +

√
3

2
|10〉

)

=
√

2

4
|0101〉 +

√
6

4
|0110〉 +

√
2

4
|1001〉 +

√
6

4
|1010〉.

(C1)

Such a state can describe a dataset of four images (0, 1, 0, 1),
(0, 1, 1, 0), (1, 0, 0, 1), and (1, 0, 1, 0), with the probability
P = 1/8, 3/8, 1/8, and 3/8, respectively.

If Alice wants to send two pixels and encode the remaining
two in the state, the pixel that Alice should first choose is
obviously the first (or the second) pixel. Since the first two
qubits are in the maximally entangled state, one of the pixels
can be determined by knowing the other pixel. The second
pixel Alice chooses should be the third or the fourth one.
These two qubits are entangled (but not maximally), thus
knowing one of them will gain certain (but not the full)
information of the other. In all, Alice should send the first (or
second) and the third (or the fourth) pixels to Bob.

The EOSP gives the same answer. The SEE of |ψ〉 satis-
fies Sent

1 = Sent
2 = ln 2 � 0.693, and Sent

3 = Sent
4 = − 1

4 ln 1
4 −

3
4 ln 3

4 � 0.562. In step 1 of the EOSP, Alice chooses the
first or the second pixel. The reduced density matrices satisfy
ρ̂1 = ρ̂2 = I/2, with I the 2 × 2 identity. Therefore, Alice
decides to measure the first qubit by |0〉〈0| or |1〉〈1|. In either
case, the resulting three-qubit state will be |�(3)〉 = |x〉 ⊗
( 1

2 |01〉 +
√

3
2 |10〉) with x = 0 or 1. In the second iteration,

Alice has Sent
2 = 0 and Sent

3 = Sent
4 � 0.562, thus she decides

to send the third (or forth) pixel. In comparison, Alice will
choose to send the first and second pixels according to the
variance, which is not a good idea since Bob will not be able
to gain any information about the third and fourth pixels.
Again, we would like to emphasize that this example is to
help understand EOSP; it is too simple to draw any general
conclusions about the advantages/disadvantages of quantum
methods over classical ones.

APPENDIX D: QUANTUM NATURE IN TNCS

With Nf = #{xsent} = 0, Bob will randomly generate an
image according to the probability distribution give by |�〉.
If the post-selections are used, the result will approach the
separable state that has the minimal distance to |�〉. This
separable state gives the image that has the maximal proba-
bility in the probability distribution. We dub such an image
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FIG. 4. The images by taking simple average of each pixel and
by taking the quantum average (generated by MPS with no known
pixel).

from no known pixel as the quantum average. One |�〉
gives one unique quantum average (we assume that all ρ̂n’s
have nondegenerated eigenvalues). As shown in Fig. 4, the
quantum average is different from the simple average x̄n =∑

i xi,n/K where no correlations are considered. Correlations
(and entanglement) are considered in the quantum average
when calculating the reduced density matrix.

Figure 5 shows which pixels are selected in EO and VO
with different values of Nf . To illustrate the orders, we mark
a pixel redder than those pixels that are behind this pixel in
the order. Both EO and VO manage to capture the general
shapes. Particularly, the “checkerboard” pattern appears in
EO with relatively large Nf . This brings higher efficiency
for the following reason. Since each two nearest-neighbor
pixels should possess a strong correlation, the corresponding
qubits are expected in a highly entangled state. It means that
one only needs to know the information of one qubit (pixel)
to access the information of the other qubit (pixel). Taking
the maximally entangled two-qubit state |01〉 + |10〉 as an
example, if one knows that the first qubit is in the state |0〉 (or
|1〉), meaning that the first pixel x1 = 0 (or x1 = 1), one will
know that the second qubit is in the state |1〉 (or |0〉), meaning
that the second pixel x2 = 1 (or x2 = 0). In this case, one only
needs to send the information of one of the pixels, and the rest
will be obtained from the state.

Intuitively, both the quantum entanglement and the (classi-
cal) variance measure the amount of the carried information.
For instance, considering a pixel (labeled as n) that is always
black in all the training images, such a pixel obviously carries
no information, and we have Sn = Vn = 0. On the other hand,
if a pixel changes dramatically with the training images,
not necessarily but normally, this pixel may contain more

FIG. 5. Which Nf pixels are selected in EO and VO. To illustrate
the orders by color, we mark a pixel redder than those behind this
pixel in the order.

information, and we will have large Sn and Vn. One essential
difference is that Sn and Vn are properties from the quantum
state and the classical data, respectively. In our case, the
quantum quantity (EO) outperforms the classical one (VO),
providing evidence of the quantum advantage in the TNCS.

However, we cannot state here any general quantum ad-
vantages over classical information with these two specific
methods. As we stated before, EO considers certain nonlocal
properties while VO is purely local. Nevertheless, TNCS
indeed provides a new path to investigate quantum advantages
over classical information techniques. Several important and
interesting questions are to be investigated, such as how
to define new (classical or quantum) quantities that better
suppress the compression ratio and/or increase the accuracy.
Possible choices include the (classical) co-variance of the
training data, the (quantum) correlation functions from |�〉,
and the multipartite entanglement. The performance of both
quantum and classical methods for selecting {xsent} need to
be pushed to their limits to discuss more clearly about the
possible quantum advantages.

APPENDIX E: SECURITY OF TNCS WITH
QUANTUM MANY-BODY STATES

In the scenario depicted above, TNCS can be potentially
used to securely send information via quantum many-body
states. The information is secure under the assumption that
|�〉 cannot be intercepted or replaced without letting Alice or
Bob know, and those without |�〉 cannot reconstruct the full
information solely from Nf � N pixels.

With a subset of the pixels of the image sent by Alice,
Bob will need many copies of the state (the generative model)
to project the corresponding qubits onto a product state ac-
cording to the values of the sent pixels. An attacker Eve may
just intercept the entire communication to get the information
intended for Bob. Eve may also be able to hide her presence
by sending Bob the same pixels she intercepted and certain
new many-body states, e.g., the product states, which encode
the image she received. As we argue below, this interception
attack of Eve can be detected if the sent states are highly
entangled.

Let us remind the readers that security in the “standard”
quantum cryptographic protocols relies on shared nonlocality
in the Ekert’s scheme [50] or on the entanglement of the
effective shared two-party density matrix (cf. [51,52]) in the
prepare-and-measure schemes like the Bennett-Brassar one
[53]. Since in the present situation, Alice sends to Bob many
copies of a quantum many-body state, she may restrict herself
to sending a (moderately or highly) entangled state. Our
scheme belongs to such a case according to the entanglement
properties of the generative models shown in Fig. 3. Moreover,
for Bob, who has the access to many copies of this state,
he can measure and detect this entanglement using many
entanglement witnesses [54], for instance the ones aimed at
measuring the many-body Bell correlations with pair correla-
tors (cf. [55–59]). The witness operators for these protocols
might be even announced publicly.

If Eve intercepts the communication, she needs to send to
Bob the states having the same entanglement properties: not
too weak, but also not too strong. Thus she has to measure

033293-8



TENSOR NETWORK COMPRESSED SENSING WITH … PHYSICAL REVIEW RESEARCH 2, 033293 (2020)

what she needs to send on several, say initial copies, and
replace them by something completely unrelated. Bob by
performing the same measurement on these unrelated copies
should be able to detect interception. Of course, this way of as-
suring security is not easy or cheap, but in a sense it consists of
using necessary methods to characterize the sent state, which
might be useful and even necessary for its application for other
quantum protocols (simulation, computation, metrology, etc.).

In this scheme, there is a possible leak of the information
from {x[sent]} that is sent by classical channels. Regarding this
issue, there are many ways to enhance the security classically.
For example, Alice can introduce a one-to-one (reversible)
deterministic map {y[sent]} = F ({x[sent]}; {x[rest]}) to encrypt
{x[sent]}. Without F , the {x[sent]}, which might be unsafe, could
contain critical information (see for example Fig. 5, which are
almost meaningful images for Nf > 40). The purpose of F is
to avoid containing any meaningful information in {x[sent]}.

Such an F -encrypted TNCS will contain the following
steps: (1) Alice designs the function F , and trains |�〉 by the
images formed by {x[rest]} and {y[sent]}; (2) Alice sends |�〉 to
Bob; (3) For the information to be sent, Alice sends {y[sent]} =
F ({x[sent]}; {x[rest]}) and the function F to Bob through clas-
sical channels that may not be safe; (4) Bob obtains {x[rest]}
by |�〉 and {y[sent]} (same to the standard TNCS), and obtains
{x[sent]} by {y[sent]}, {x[rest]}, and the inverse of F . Then Bob
will have the full information {x[sent]} + {x[rest]}. The infor-
mation will be safe since those without |�〉 cannot have
{x[rest]}, thus cannot obtain {x[rest]}) even if they have F and
{y[sent]}.

Since the information to be sent is not restricted to the data
that train |�〉, Alice can provide previously the copies of |�〉
to multiple parties and send any piece of “ambiguously” corre-
lated information to each party anytime afterwards. Different
pieces of information can be sent via the copies of the same
state.

Meanwhile, Alice does not allow other parties to access the
coefficients of |�〉, to guarantee herself as the only provider
of the state. One potential risk is that Alice provides too many
copies of |�〉 to others, with which the coefficients of |�〉 can
be cracked by, e.g., quantum state tomography [60]. In our
case, this risk should be low since N is large. Specifically, as
the state is designed in the form of MPS, Alice should avoid
sending out polynomially many states (or more) [61].

In the scenario discussed above, Alice sends a small part
of the classical information {x[sent]} and the whole state |�〉 to
Bob. Bob then generates the missing information {x[rest]} from
|�〉 and {x[sent]}. In this scenario, one does not need to stabilize
the entanglement between the qubits that are far separated.

This process can be replaced by a more standard quantum
communication scheme. First, Alice trains and prepares |�〉.
Then she sends the qubits corresponding to {x[rest]} to Bob
and keeps those corresponding to {x[sent]} to herself. Note that
these qubits of {x[sent]} and {x[rest]} form the whole entangled
state |�〉. To send the information, Alice projects her qubits
according to {x[sent]}. Afterwards, Bob generates the {x[rest]}
from his qubits.

In this scenario, Alice only gives a part of the qubits in |�〉
to Bob or other receivers and does not need to transfer the
information of {x[sent]} through a classical channel. It avoids
the risks in communicating {x[sent]} classically. The disadvan-

tage is that the qubits with Alice and the receivers need to
be kept entangled in certain distance until Alice implements
measurements on her qubits. The discussions about security
given above also apply to this scheme.

APPENDIX F: EFFICIENCY OF TNCS WITH
QUANTUM MANY-BODY STATES

It is not obvious whether the TNCS with quantum many-
body states could exhibit any advantages over the one using
classical computers from the perspective of efficiency. Let
us try to give some preliminary discussions by considering
the total number of qubits in the copies that Bob needs to
reconstruct the information by measurements and the number
of bits to send the state in the form of MPS classically. For the
quantum-state scheme, we consider that Bob uses one-shot
measurement for generating {xrest} for simplicity. Therefore,
the number of the copies of the state |�〉 that Bob needs is
determined by how efficiently |�〉 can be projected to the
targeted state |�〉 [Eq. (2)].

The probability of projecting |�〉 to |�〉 can be
estimated as

P = 1 − 〈�̃|�̃〉, (F1)

with |�̃〉 = ∏
xn∈{x[sent]}〈s(xn)|�〉 the measured “state” without

normalization. If Bob has M copies of |�〉, the probability of
obtaining at least one |�〉 satisfies

P̄(M ) = 1 − (1 − P)M . (F2)

To further simplify our discussion on estimating P, let
us consider the following “ideal” case. We assume that the
images are binary, meaning each pixel can only take the value
0 (black) or 1 (white). Then one can see that the product
states {|φi〉} [Eq. (A1)] are orthonormal to each other. We also
suppose that |�〉 that gives the minimum of the loss function
[Eq. (A2)] can be reached. In this case, we consider to send
any images in the training set and have |〈�|φi〉|2 = 1/Ni with
Ni the total number of the training images. In other words,
the probabilities of the images are equally distributed at the
minimal point. Due to the orthonormal properties of {|φi〉},
we have 〈�̃|�̃〉 = |∏xn∈{x[sent]}〈s(xn)|�〉|2 � 1/Ni when the
{x[sent]} of any two images are not identical. In other words,
|�〉 will be projected to any one of {|φi〉} with an equal prob-
ability. We have P = 1 − 1/Ni and P̄(M ) = 1 − (1 − 1/Ni )M .
Figure 6 demonstrates P̄(M ) versus Ni and M. With P̄(M ),
one can estimate the number of needed copies (M) to obtain
at least one expected projection with a given probability. The
total number of needed qubits will be Nqubit = MN with N
the number of pixels in one image, which is the number of
qubits in one copy. The bits to send an MPS classically is
estimated as NMPS

bit = 2kNχ2 with k = 64 if one takes the
double-float precision for each element of the tensors in the
MPS. Compared with NMPS

bit with χ = 40 as an example, we
have M ∼ O(105) so that Nqubit � NMPS

bit . With this number of
copies and supposing Ni ∼ O(103), the probability of having
at least one expected projected state is high.

We shall stress that the case with the fashion-MNIST
dataset (and most other real-life cases) is much more com-
plicated than the ideal one discussed above. The images are
grayscale (or colorful), where the number of values each

033293-9



RAN, SUN, FEI, SU, AND LEWENSTEIN PHYSICAL REVIEW RESEARCH 2, 033293 (2020)

FIG. 6. The estimated probability P̄ = 1 − (1 − 1/Ni )M of hav-
ing at least one expected projected state |�〉 [Eq. (2)] given M copies
of the state |�〉. Ni is the number of images. See the details in
Appendix F.

pixel can take is much larger than 2. The images to be sent
are normally not restrained to the training set. Consequently,

|〈�|φi〉|2 will probably suffer from large fluctuations for,
e.g., different images (indexed by i) and different datasets.
Meanwhile, it is unclear if any tricks (e.g., state tomography)
can be used to reduce the number of needed copies. Therefore,
systematic investigations and thorough simulations are needed
to draw any conclusions, which we leave for our future study.

APPENDIX G: IMAGES GENERATED BY TNCS

Figure 7 provides some reconstructed images with different
numbers Nf of {xsent} to give some intuitive impressions of
how the accuracy increases with Nf . The pixels {xsent} are
picked in three different orders (EO, RO, and VO). Take the
reconstruction of a dress image as an example (last three rows
in Fig. 7). The quantum average (Nf = 0) is quite different
from the image to be sent. With only Nf � 5 known pixels
picked by EO, the sleeves emerge. In contrast, the sleeves
appear until 50 pixels are known if they are picked randomly.
For the VO, the sleeves also emerge with 5 pixels but in a bad
shape. The shape of the sleeves is reconstructed with Nf � 20
in VO to a similar quality as Nf � 5 in EO. The length of the
sleeves is corrected with Nf � 50 for EO and Nf � 110 for
RO and VO.

FIG. 7. Examples of the original and generated images in MNIST and fashion-MNIST in the entanglement order (EO), random order (RO),
and variance order (VO). The number of known features Nf varies from 0 to 170, while the total number of features in an image is 784. We
take the bond dimension of the generative MPS as χ = 40.
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