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The existence of three generations of neutrinos (charged leptons/quarks) and their mass mixing are deep
mysteries of our universe. It might indicate a profound internal structure of all elementary particles. It is
well known that the history of neutrino physics can be traced back to Majorana’s elegant work on a real
solution of the Dirac equation—known as the Majorana fermion. Recently, Majorana’s spirit returns in modern
condensed matter physics—in the context of topological Majorana zero modes in certain classes of topological
superconductors (TSCs). In this paper, we attempt to investigate the topological nature of the neutrino by
assuming that a relativistic Majorana fermion can be divided into four topological Majorana zero modes at
cutoff energy scale, e.g., planck scale. We begin with an exactly solvable 1D lattice model which realizes a
T 2 = −1 time reversal symmetry protected TSC, and show that a pair of topological Majorana zero modes can
realize a T 4 = −1 time reversal symmetry. Moreover, we find that a pair of topological Majorana zero modes can
also realize a P4 = −1 parity symmetry and even a nontrivial C

4 = −1 charge conjugation symmetry. Next, we
argue that the origin of three generations of neutrinos (charged leptons and quarks) can be naturally explained as
three distinguishable ways of forming a pair of complex fermions (with opposite spin polarizations) out of four
topological Majorana zero modes, characterized by the T 4 = −1, (T P)4 = −1, and (TC)4 = −1 fractionalized
symmetries that each complex fermion carries at cutoff energy scale. Finally, we use a semiclassical approach to
compute the neutrino mass mixing matrix at leading order(LO), e.g., in the absence of CP violation correction.
We obtain θ12 = 31.7◦, θ23 = 45◦, and θ13 = 0◦, which is consistent with an A5 flavor symmetry pattern (the
golden ratio pattern). We further predict an exact mass ratio of the three mass eigenstates of neutrinos with
m1/m3 = m2/m3 = 3/

√
5 and an effective mass of neutrinoless double beta decay m0νββ = m1/

√
5.
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I. INTRODUCTION

A. The neutrino puzzles

The neutrino, first discovered in 1956 [1] and named as the
“ghost particle”, has extremely weak interactions with other
matters, and it is one of the big mysteries to us and has a deep
relationship with the physics of early universe. The theoretical
perspective of neutrino physics can be traced back to Ettore
Majorana’s elegant work [2] on a real solution of the Dirac
equation—known as the Majorana fermion. Unfortunately, for
over a century, we have found that all the fundamental parti-
cles have their own antiparticles and therefore are described as
Dirac fermions. However, the neutrino is still possible to be a
Majorana fermion because it does not carry electric charge. In
the Standard model (SM), the neutrino is described as a chiral
Weyl fermion with zero rest mass [3].

A cutting-edge step toward understanding this big puzzle
has been taken by the neutrino oscillation experiments during
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the past decade [4–15]. These experiments have confirmed
that the neutrino has a nonzero mass, at energy scale of 0.1 eV.
This big discovery starts to shake the foundation of modern
particle physics, which is built on the well tested SM. So
far, it is the first and the only new physics beyond the SM
that has been observed experimentally. Nevertheless, it is still
unclear whether the neutrino is a Dirac fermion or a Majorana
fermion. The smoking gun experiment that might be able
to distinguish these two cases is the so-called neutrinoless
double-β decay. Unfortunately, such experimental evidence is
still missing so far [16–19].

The biggest puzzles are: (1) where does the neutrino
mass come from? (2) Why there are three generations of
neutrinos(charged-leptons/quarks) [20]? (3) Where do those
mystery mixing angles come from? An elegant way to explain
the origin of neutrino mass is to introduce a sterile right-
handed neutrino that does not carry any electroweak charge,
and through the so called seesaw mechanism [21–24]—by
introducing a heavy Majorana mass for the right-handed ster-
ile neutrino, a small mass for the left-handed light neutrino
can be induced. Apparently, the seesaw mechanism requires
the neutrino to be a Majorana fermion [25]. Nevertheless,
the rest two puzzles have not been resolved in a natural and
simple way so far. The observed neutrino mass mixing an-
gles clearly indicates certain (approximate) flavor symmetry,
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but it is unclear where the mystery flavor symmetry comes
from.

B. Topological Majorana zero mode and symmetry
fractionalization

After almost 80 years since Majorana’s mystery disappear-
ance, his spirit returns in modern condensed matter physics
[26]—in the context of topological Majorana zero modes in
certain classes of topological superconductors(TSCs) [27,28].
A topological Majorana zero mode can be viewed as a “half
fermion” and carries non-Abelian statistics. Searching for
topological Majorana zero modes has become a fascinat-
ing subject both theoretically [29–33] and experimentally.
Very recently, experimental evidences for the existence of
topological Majorana zero modes in 1D have been observed
in superconductor/semiconductor nanowire devices [34–36]
based on an elegant theoretical proposal [37,38]. The most
interesting property of topological Majorana zero modes is
that they can carry fractionalized time reversal, parity and
charge conjugation symmetry. In this paper, we will begin
with an exactly solvable 1D condensed matter model which
realizes a T 2 = −1 time reversal symmetry protected TSC
and show that the pair of topological Majorana zero modes
on its ends realizes a T 4 = −1 representation of time reversal
symmetry. We then show that such kind of fractionalized time
reversal symmetry for a pair of topological Majorana zero
modes can be generalized into P4 = −1 parity symmetry and
even a nontrivial C

4 = −1 charge conjugation symmetry(or
particle-hole symmetry in terms of condensed matter physics
language) as well. These fractionalized C, P, and T symme-
tries make a topological Majorana zero mode really behave
like a “half fermion.”

C. A topological aspect of the Majorana fermion

Despite the similarity in mathematical structure, from
a usual perspective, the localized topological objects—
topological Majorana zero modes have nothing to do with the
propagating relativistic Majorana fermion. In this paper, we
attempt to investigate the topological nature of neutrinos by
establishing a connection between a Majorana fermion and
topological Majorana zero modes—assuming a relativistic
Majorana fermion can be divided into four topological Ma-
jorana zero modes at cutoff energy scale, e.g., planck scale.

Actually, the topological aspect of elementary particles was
first proposed by Lord Kelvin 150 years ago. He conjectured
that different atoms could be described as vortex rings linking
in topologically distinguishable ways. The attractive point of
Kelvin’s idea is that the topological objects—vortex rings,
are (topologically) robust elementary objects that can not be
further divided. Nowadays, we know that Kelvin was wrong
and atoms can be divided into quarks and leptons; however,
we can still raise the similar question: what are quarks and
leptons made up of? In our scenario, they are all made up of
fundamental topological Majorana zero modes, which are the
quantum analogs of Kelvin’s vortex rings.

Mathematically, it is well known that 2 + 1D topo-
logical quantum particles, e.g., topological Majorana zero
modes, can be described by excitations of an underlying

FIG. 1. All fundamental particles, e.g., quarks (antiquarks), elec-
trons (positrons), and neutrinos are described by a two-component
complex Weyl fermion which is equivalent to a four-component
real Majorana fermion. A potential underlying TQFT regulation for
SM suggests that a four-component relativistic Majorana fermion
can be divided into four topological Majorana zero modes at cutoff
energy scale, e.g., planck scale. However, as a single topological
Majorana zero mode carries Non-Abelian statistics and can not exist
as a pointlike particle in 3 + 1D. Thus we further conjecture that a
Majorana fermion consisting of four topological Majorana zero
modes should be regarded as two tiny open Kitaev’s Majorana
chains. (More precisely, the two ends of each Majorana chain must
further attach onto two linked loops such that the Majorana chain
will not shrink to a pointlike excitation, see Sec. III for more
explanations.)

topological quantum field theory(TQFT) or its equiva-
lent algebraic description—the unitary modular tensor cate-
gory(UMTC) theory. Therefore our scenario suggests that an
ultimate unification theory for all physical laws at cutoff scale,
e.g., planck scale could be described by an underlying 3 + 1D
TQFT which is ultraviolet (UV) complete and differmorphism
invariant. Despite the absence of propagating modes in a
TQFT, there is no obstruction at planck scale since nothing
can propagate at that scale, e.g., light can not escape from a
black hole! At low energy, relativistic quantum field theory
easily emerges from an ultimate TQFT if certain topological
objects are condensed. For example, let us consider a BF
theory in 3 + 1D with a topologically invariant action Stop =

1
2π

∫
B ∧ F , where B is a two-form gauge field that couples to

the looplike objects while F is the field strength of a one-form
gauge field that couples to the particlelike objects. In the loop
condensed phase, B is in the Higgs phase and will acquire a
mass term m2B2. By integrating out the B field, it is easy to
see the emergence of Maxwell term 1

m2 F 2. Unfortunately, so
far it is unclear how to derive SM and Einstein gravity from
any known TQFT. We believe that the concept of topological
Majorana zero mode might play an essential role along this
line of thinking.

Topological Majorana zero mode in 3 + 1D system was
first introduced in a nonlinear sigma model in Ref. [33].
Later, it was pointed out that a single Majorana zero mode
carries Non-Abelian statistics and can not consistently exist
in 3 + 1D as a pointlike particle [39]. In fact, it must be
attached to the end of a stringlike extensive object, as shown
in Fig. 1. Such a composite structure is consistent with the
mathematical foundation of 3 + 1D TQFT, namely, unitary
modular tensor 2-category (UMT2C) theory which consists of
both pointlike and looplike simple objects [40]. For example,
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a topological BF theory in 3 + 1D contains both particlelike
(gauge charge) and looplike (flux line) sources. Therefore a
Majorana fermion consisting of four topological Majorana
zero modes should be regarded as two tiny Kitaev’s
Majorana chains at cutoff scale, e.g. planck scale, and each
Majorana chain is attached by two topological Majorana zero
modes on its ends. (More precisely, the two ends of Majorana
chain must be attached to a pair of linked loops, see Sec. III for
more details.) At low energy, if the loop has a very big tension,
the pair of topological Majorana zero modes will be confined.
In this limit, two tiny Majorana chains with four topological
Majorana zero modes will just describe two possible particle
states with opposite spin polarizations, which is the usual
perspective for a Majorana fermion. Finally, we note that our
topological scenario can also be applied to quarks and charged
leptons, since a Dirac fermion can always be decomposed into
two Majorana fermions.

D. Key assumption and basic logic of the paper

As having been discussed above, the key assumption of
this paper is that a relativistic Majorana fermion can be
divided into four topological Majorana zero modes at cutoff
energy scale, e.g., planck scale. By constructing a 3D lattice
model formed by topological Majorana zero modes, we show
that relativistic Majorana fields (equivalent to two-component
Weyl fields) can emerge at low energy as a collective motion
of Majorana zero modes. In principle, strong interactions
among topological Majorana zero modes can even produce the
whole SM at low energy and all the fundamental particles can
be regarded as collective motions of Majorana zero modes.
(Just like in certain strongly correlated electron systems,
the low-energy excitations are actually collective motions of
electrons.)

Most strikingly, such a simple assumption can even natu-
rally explain the origin of three generations of neutrinos (as
well as quarks and charged leptons, since a Dirac field can
always be decomposed into two Majorana fields), because
there are three inequivalent ways to form a pair of com-
plex fermions (with opposite spin polarizations) out of four
topological Majorana zero modes, characterized by T 4 = −1,
(T P)4 = −1, and (TC)4 = −1 fractionalized symmetry that
each complex fermion carries at cutoff energy scale. The
above physical statement can also be understood as there
are three and only three inequivalent ways of spontaneously
breaking SL(4, R) [isomorphic to SO(3, 3)] space-time sym-
metry down to SO(3, 1) space-time symmetry [isomorphic
to SL(2,C)]. [We note that for a TQFT, e.g., topological
BF theory, the space-time symmetry at cutoff energy scale
can potentially be enlarged to SL(4, R) instead of the usual
Lorentz symmetry SO(3, 1).]

E. Main results and outline

Although topological Majorana zero modes can not be
directly observed at low energy in SM, these objects can
indeed play the role of the right-handed neutrinos in the
seesaw mechanism at cutoff energy scale. Moreover, if we
assume that the nontrivial charge conjugation symmetry
is, indeed, a Z2 local(gauge) symmetry, the origin of the

right-handed neutrino mass can be explained by spontaneous
gauge symmetry breaking through the Higgs mechanism.

By using the minimal coupling principle, we are able to
compute the right-handed neutrino mass mixing matrix with
no fitting parameters by using a semiclassical approach and
the obtained mixing angles are consistent with the phemome-
logically proposed golden ratio (GR) pattern [41–44], which
arises from an underlying A5 flavor symmetry.

At leading order (LO), e.g., neglecting the CP violation
corrections, if we further impose the A5 flavor symmetry for
the whole lepton sector, we will be able to predict that the left-
handed light neutrinos have an inverted hierarchy structure
with a special mass ratio m1 = m2 = 3√

5
m3 and the effective

mass of neutrinoless double beta decay m0νββ = m1/
√

5. In
fact, our topological scenario also gives rise to the possible
origin of the (approximate) A5 flavor symmetry in extended
SM.

Based on the current experimental data for �m2
23, within

LO approximation, we obtain m1 = m2 � 0.075 eV, m3 �
0.054 eV, and m0νββ = 0.0335 eV. Our prediction of (approx-
imate) neutrino masses is also consistent with the current
cosmological bound on neutrino masses, where m1 + m2 +
m3 < 0.3 eV [45].

The rest of the paper is organized as follows. In Sec. II,
we begin with a 1D TSC protected by T 2 = −1 symmetry
and show why a pair of topological Majorana zero modes
on each end must carry a T 4 = −1 symmetry. In Sec. III,
we discuss how to realize topological Majorana zero modes
and T 4 = −1 time reversal symmetry in higher dimensions.
In Sec. IV, we construct a lattice model and argue that the
proliferation of topological Majorana zero modes in TSC will
lead to the emergence of relativistic dispersion and SU(2)
spin. In Sec. V, we show that the C, P, T symmetries for a
Majorana fermion(assuming it is made up of four topological
Majorana zero modes) form a superalgebra. In Sec. VI, we
generalize the CPT superalgebra into relativistic quantum
field theory and discuss the origin of (right-handed) neutrino
masses. In Sec. VII, we give a simple physical picture for
the origin of three generations of neutrinos based on the
fractionalized C, P, and T symmetries. We further discuss
how to use a potential TQFT framework to understand the
origin of three generations of neutrinos from spontaneously
breaking SL(4, R) space-time symmetry down to SO(3, 1)
space-time symmetry at cutoff energy scale, e.g., planck scale.
In Sec. VIII, we derive the right-handed neutrino mass mixing
matrix within LO approximation without fitting parameters,
which is consistent with an A5 flavor symmetry pattern. Fi-
nally, we summarize the new concepts proposed in this paper
and discuss other possible new physics along this direction.

II. TOPOLOGICAL MAJORANA ZERO MODES
AND T 4 = −1 TIME REVERSAL SYMMETRY

A. 1D Majorana chain with T 2 = −1 time reversal symmetry

To begin, we consider a 1D topological superconductor
protected by the time reversal symmetry T 2 = −1, which
realizes a special symmetry protected topological(SPT) phase
[46] in 1D. Literally, such a 1D TSC has been originally
proposed in a 1D free fermion system with a T 2 = −1
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FIG. 2. A 1D topological superconductor protected by the T 2 =
−1 time reversal symmetry can be constructed by two copies of
Kitaev’s Majorana chain with opposite spin species. We note that
each physical site consists of four topological Majorana modes, or
two Majorana spinons. The dangling Majorana spinons on both ends
become zero modes protected by the time reversal symmetry.

symmetry(the DIII class) [47,48]. The simplest model that re-
alizes such a 1D topological superconductor is just two copies
of Kitaev’s Majorana chain [27] with opposite spin species, as
seen in Fig. 2, described by the following Hamiltonian:

H =
N∑

i=1

∑
σ

iσγ ′
i,σ γi+1,σ . (1)

The Majorana operators γi,σ and γ ′
i,σ satisfy:

{γi,σ , γ ′
i′,σ ′ } = 0; {γi,σ , γi′,σ ′ } = 2δii′δσσ ′ . (2)

In terms of the complex fermion operators,

ci,↑ = 1
2 (γi,↑ + iγ ′

i,↑); ci,↓ = 1
2 (γi,↓ − iγ ′

i,↓). (3)

We can rewrite the above Hamiltonian as

H =
N∑

i=1

∑
σ

(ci,σ − c†
i,σ )(ci+1,σ + c†

i+1,σ ). (4)

Under the time reversal symmetry, the bulk complex fermion
operators transform as usual:

T ci,↑T −1 = −ci,↓; T ci,↓T −1 = ci,↑,

T c†
i,↑T −1 = −c†

i,↓; T c†
i,↓T −1 = c†

i,↑, (5)

According to Eq. (3), it is clear that Majorana spinons
(γi,↑, γi,↓) and (γ ′

i,↑, γ ′
i,↓) on a single site should transform in

the same way:

T γi,↑T −1 = −γi,↓; T γi,↓T −1 = γi,↑,

T γ ′
i,↑T −1 = −γ ′

i,↓; T γ ′
i,↓T −1 = γ ′

i,↑ (6)

Although the model Hamiltonian (1) is very simple, it
describes a nontrivial time reversal symmetry protected TSC,
characterized by topological Majorana zero modes and the
symmetry fractionalization on its ends. On the other hand,
Eq. (1) also describes a fixed point Hamiltonian with zero
correlation length, therefore all its nontrivial topological prop-
erties could be applied to generic models describing the same
SPT phase.

As seen in Fig. 2, a pair of dangling topological Majorana
modes with opposite spins( γ↑ ≡ γ1,↑, γ↓ ≡ γ1,↓ for left end
and γ ′

↑ ≡ γ ′
N,↑, γ ′

↓ ≡ γ ′
N,↓ for right end) form a Majorana

spinon on each end, and Eq. (6) implies that the fermion
mass term iγ↑γ↓(iγ ′

↑γ ′
↓) changes sign under the time reversal.

Thus the pair of topological Majorana modes is stable against

T -preserving interactions and the Hamiltonian (1) describes
a time reversal symmetry protected TSC. Recent progress on
the classification of 1D SPT phases [49,50] further pointed
out that the edge topological Majorana zero modes, indeed,
carry the T 4 = −1 projective representation of time reversal
symmetry, rather than the usual T 2 = −1 representation. A
simple reason why we need such a T 4 = −1 representation
can be explained as following. If we assume a Majorana
spinon carries the same T 2 = −1 representation as Kramers
doublets, the total time reversal symmetry action on a single
physical site will carry a T 2 = 1 representation as it contains
two Majorana spinons. Therefore a T 2 = −1 representation
for the complex spinon on a single physical site prohibits the
same T 2 = −1 representation for a Majorana spinon.

To understand the origin of the T 4 = −1 representation,
we need to investigate the precise meaning of T 2 = −1 time
reversal symmetry for interacting fermion systems. Indeed,
the local Hilbert space on a single site for the above T 2 =
−1 TSC is a Fock-space which involves both fermion parity
odd states c†

i,↑|0〉, c†
i,↓|0〉 and parity even states |0〉, c†

i,↑c†
i,↓|0〉.

It is clear that the fermion parity odd basis carries a pro-
jective representation of time reversal symmetry T 2 = −1
while the fermion parity even basis carries a linear repre-
sentation T 2 = 1. As a result, the time reversal symmetry
group for interacting fermion systems has been an extension
of the Z2 fermion parity symmetry group {I, Pf }, and the
total symmetry group should consist of four group elements
{I, T, T 2, T 3} with T 4 = 1, which is a Z4 group. We note that
the Z2 fermion parity symmetry can not be broken in local
interacting fermion systems, hence such a group extension
can not be avoided. Since 1D SPT phases are classified by
the projective representation of the corresponding symmetry
group [49,50], the Majorana spinons (γ↑, γ↓) and (γ ′

↑, γ ′
↓)

on both ends must carry the projective representation of the
bulk Z4 antiunitary symmetry with T 4 = 1, which leads to
the T 4 = −1 representation.

Possible experimental realizations of such an interesting
TSC have been proposed by several groups recently [51–54].
In the following, we will show how to write down an explicit
time reversal operator to realize the fractionalized T 4 = −1
symmetry for a Majorana spinon.

B. T 4 = −1 time reversal symmetry

For the pair of topological Majorana zero modes γ↑ and
γ↓ on the left end, let us define the antiunitary operator T by
T = UK , where U is a unitary operator:

U = 1√
2

(1 + γ↑γ↓) = e
π
4 γ↑γ↓ . (7)

Since (γ↑γ↓)† = γ↓γ↑ = −γ↑γ↓, we have

U † = 1√
2

(1 − γ↑γ↓) = e− π
4 γ↑γ↓ . (8)

It is straightforward to verify that U is a unitary operator:

UU † = 1
2 (1 + γ↑γ↓)(1 − γ↑γ↓) = 1. (9)
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Furthermore, this new definition of time reversal operator
gives rise to the correct transformation law for γ↑ and γ↓:

T γ↑T −1 = 1
2 (1 + γ↑γ↓)γ↑(1 − γ↑γ↓) = −γ↓,

T γ↓T −1 = 1
2 (1 + γ↑γ↓)γ↓(1 − γ↑γ↓) = γ↑. (10)

However, we notice that T 2 = γ↑γ↓ �= −1 and satisfies

T 4 = (γ↑γ↓)2 = −1. (11)

We call the two topological Majorana modes that carry the
above T 4 = −1 representation Majorana doublets, which can
be viewed as a square root representation of the usual Kramers
doublets. With such a definition of time reversal symmetry
operator for a pair of topological Majorana modes, the sym-
metry protected nature becomes manifested, since a T 4 = −1
projective representation can not be destroyed by time reversal
preserving local interactions.

Similarly, for the pair of topological Majorana zero modes
γ ′

↑, γ ′
↓ on the right end, T can be defined by T = U ′K with

U ′ = 1√
2

(1 + γ ′
↑γ ′

↓) = e
π
4 γ ′

↑γ ′
↓ . (12)

The above definition of T 4 = −1 time reversal operators
on both ends can be applied to any physical site i which
contains two Majorana spinons (γi,↑, γi,↓) and (γ ′

i,↑, γ ′
i,↓). The

total time reversal action is defined by T = Ui ⊗ U ′
i K with

Ui = e
π
4 γi,↑γi,↓ and U ′

i = e
π
4 γ ′

i,↑γ ′
i↓ . We have

T 2 = γi,↑γi,↓γ ′
i,↑γ ′

i,↓ = P f
i = P f

i,LP f
i,R (13)

with

P f
i,L = −iγi,↑γi,↓; P f

i,R = iγ ′
i,↑γ ′

i,↓. (14)

Here, P f is the total fermion parity for a single physical site
and P f

L (P f
R ) is fermion parity operator for the left (right) pair

of Majorana spinon. The above definition of time reversal
symmetry operator satisfies the requirement of T 2 = −1 for
fermion parity odd states while it satisfies T 2 = 1 for fermion
parity even states.

C. Representation theory of the T 4 = −1 time reversal
symmetry

In the above, we use an algebraic way to construct the T 4 =
−1 symmetry, which will be very helpful for us to understand
the underlying physics and provide us a simple way to do
calculations. Now let us work out the explicit representation
theory for the T 4 = −1 time reversal symmetry. We note that
the two pairs of Majorana spinons on both ends allow us to
define two complex fermions cL and cR:

cL = 1
2 (γ↑ + iγ↓); cR = 1

2 (γ ′
↑ − iγ ′

↓), (15)

where cL(R) transforms nontrivially under the T 4 = −1 sym-
metry. We have

T cLT −1 = −ic†
L; T cRT −1 = ic†

R,

T c†
LT −1 = icL; T c†

RT −1 = −icR. (16)

Since the T operator only involves two Majorana operators,
we are able to construct a precise two dimensional represen-
tation theory for the T 4 = −1 symmetry. On the other hand,

a projective representation can not be one dimensional, hence
we must have

T |̃0〉 = UK |̃0〉 = U |̃0〉 = |̃1〉 ≡ c†
L(R) |̃0〉, (17)

where |̃0〉 is the vacuum of cL(R) fermion satisfying cL(R) |̃0〉 =
0 and |̃1〉 ≡ c†

L(R) |̃0〉. We also assume that the global phase

of |̃0〉 is fixed in such a way that the complex conjugate K
has a trivial action on it. From the relation Eq. (16), it is
straightforward to derive

T |̃1〉 = UKc†
L(R) |̃0〉 = Uc†

L(R) |̃0〉
= T c†

L(R)T
−1T |̃0〉 = ±icL(R)c

†
L(R) |̃0〉 = ±i|̃0〉. (18)

Here the + sign corresponds to cL and the − sign corresponds
to cR. Thus, on the basis of |̃0〉 and |̃1〉, we can derive the
representation theory T = UK with

U =
(

0 1
±i 0

)
, (19)

Clearly, the above representation satisfies T 4 = −1.

III. TOPOLOGICAL MAJORANA ZERO MODES
IN HIGHER DIMENSIONS

In the previous section, we have discussed a simple exam-
ple of a 1D T 2 = −1 TSC with topological Majorana zero
modes on its ends. Topological Majorana zero modes exist
in DIII class TSC in higher dimensions as well. In 2D, it is
well known that a single topological Majorana zero mode can
emerge on the vortex core of a p + ip or p − ip TSC [28], but
the time reversal symmetry is broken in this class of chiral
TSCs.

Nevertheless, the DIII class TSC in 2D consisting of a
composition of a p + ip and a p − ip TSC with opposite
spins [55] can preserve the T 2 = −1 time reversal symmetry.
Apparently, the vortex core of such a TSC has a pair of
topological Majorana zero modes γ↑ and γ↓ with opposite
spins. Hence, we argue that they also carry a T 4 = −1 repre-
sentation of time reversal symmetry. As having been discussed
in Ref. [55], a time reversal action on a single vortex core
will change the local fermion parity of the complex fermion
zero mode cL = γ↑ + iγ↓ for the ground state wavefunction,
therefore we expect the same representation theory (17)–(19)
for the zero modes inside the vortex core, which satisfies
T 4 = −1.

The realization of topological Majorana zero modes in
3D becomes much harder. This is because in 3D, pointlike
object can only carry boson and fermion statistics, and a single
topological Majroana mode with non-Abelian statistics must
be realized by looplike extended objects. Very recently, new
types of interacting topological superconductor are proposed
[56,57] and they shed new light to realize topological Ma-
jorana zero modes in 3D. The simplest example requires an
additional gauge symmetry Z4 × Z4, and it has been shown
that the flux lines of the Z4 gauge groups can carry Ising non-
Abelian statistics. Thus a simple physical picture describing
the Ising non-Abelian statistics can be regarded as attaching
an open Majorana chain onto a pair of linked loops (Z4 flux
lines), as seen in Fig. 3. We would like to stress that in 3D, a
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FIG. 3. Topological Majorana zero modes in 3D can be realized
as the bound states on linked flux lines of certain interacting topolog-
ical superconductors.

flux line attached with a Majorana zero mode must be linked
to another flux line, otherwise one can always smoothly shrink
a flux line into a pointlike object with a single Majorana zero
mode on it. Similar to the 2D case, in the presence of time
reversal symmetry, the two topological Majorana zero modes
on the pair of linked loop can also carry the T 4 = −1 time
reversal symmetry.

Finally, we would like to point out an important difference
for the topological Majorana zero modes between 1D and
higher dimensions. In 1D, for a generic Hamiltonian, the
zero modes are only well defined in the infinite long chain
limit. However, in 2D and 3D, the distance between vortices
and flux lines can be finite (but much larger than penetration
depth) since the zero modes are well defined bound states and
they can be regarded as elementary excitations in the bulk.

IV. EMERGENT RELATIVISTIC DISPERSION, SU(2) SPIN
AT QUANTUM CRITICALITY

A. Deconfined topological Majorana zero modes in 1D

In the following, we will show that relativistic dispersion
and SU(2) spin rotational symmetry will emerge at a quantum
critical point where topological Majorana zero modes are
proliferated. Let us begin with a 1D model by adding a
chemical potential term to the Hamiltonian (1):

H ′ =
N∑

i=1

∑
σ

(ci,σ − c†
i,σ )(ci+1,σ + c†

i+1,σ )

− 2μ

N∑
i=1

∑
σ

(
c†

i,σ ci,σ − 1

2

)
, (20)

As having been discussed in Ref. [27], a phase transition oc-
curs at μ = 1 and the system becomes a trivial superconductor
when μ > 1. In terms of Majorana operators, we will have a

FIG. 4. At the deconfined quantum critical point, the prolifera-
tion of topological Majorana zero modes leads to the emergence of
relativistic dispersion and SU(2) (pseudo) spin rotational symmetry.

simple picture to visualize the above phase transition:

H ′ =
N∑

i=1

∑
σ

iσγ ′
i,σ γi+1,σ + μ

N∑
i=1

∑
σ

iσγ ′
i,σ γi,σ , (21)

As seen in Fig. 4, in the limit where the on site hop-
ping t2 ≡ μ is dominant, the above Hamiltonian describes
a trivial superconductor, while in the limit where the inter
site hopping t1(= 1) is dominant, it describes a topological
superconductor with topological Majorana modes confined on
both ends. At the phase transition point t2 = t1 = 1, the Ma-
jorana spinon with T 4 = −1 time reversal symmetry becomes
deconfined. The analog of such a deconfined quantum critical
phenomenon has been known for a long time in 1D spin
chain models with T 2 = 1 time reversal symmetry, e.g., in
certain spin-1 chain systems [58], 1/2 spinon with T 2 = −1
time reversal symmetry on its ends becomes deconfined at the
phase transition point.

At low energy, the critical theory has emergent relativis-
tic dispersion and SU(2) (pseudo) spin. In terms of cL(R)

fermions, we can rewrite the critical Hamiltonian as

H1D = i
∑

i

(c†
i,Lci+1,R − c†

i+1,Rci,L )

+ i
∑

i

(c†
i,Lci,R − c†

i,Rci,L ). (22)

In momentum space, the above Hamiltonian can be diagonal-
ized by

H1D =
∑

k

(c†
L(k), c†

R(k))

(
0 i(1 + eik )

−i(1 + e−ik ) 0

)(
cL(k)
cR(k)

)
. (23)

The above Hamiltonian has one positive energy mode
and one negative energy mode with Ek = ±2t | cos k

2 |. The
dispersion relation is relativistic around the momentum points

k = ±π . The particle and hole excitations in such a system
form an SU(2) doublet. However, for a 1D chain, the SU(2)
(pseudo) spin rotational symmetry does not carry angular
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momentum and is a purely internal symmetry. However, in
3D, the deconfinement of topological Majorana zero modes
might lead to the emergence of SU(2) spin carrying angular
momentum, which is no longer a purely internal symmetry.
Since the universal conformal field theory description for
deconfinement topological Majorana zero modes in 3D is still
unknown so far, let us just construct a particular model here
to illustrate the main idea.

B. Deconfined topological Majorana zero modes in 3D
and emergent relativistic dispersion, SU(2) spin

First, we construct a 3D cubic lattice model consisting of
linked (confinement) loops with positive chirality occupied
sublattice A and linked (confinement) loops with negative
chirality occupied sublattice B, as seen in Fig. 5. We use
red dots to represent the pair of topological Majorana modes
(γ↑, γ↓) on the linked (confinement) loops with positive
chirality and blue dots to represent the pair of topological
Majorana modes (γ ′

↑, γ ′
↓) on the linked (confinement) loops

with negative chirality.
Similar to the 1D cases, we then turn on the hopping among

those topological Majorana modes and consider the following
Hamiltonian:

FIG. 5. A 3D cubic lattice for linked (confiment) loops. Red
dots represent the pair of topological Majorana modes (γ↑, γ↓)
on linked (confiment) loops with positive chirality and blue dots
represent the pair of topological Majorana modes (γ ′

↑, γ
′
↓) on linked

(confiment) loops with negative chirality. Solid/dashed lines rep-
resent the hopping amplitude 1/ − 1. Lines with arrows represent
the hopping amplitudes ±i. Multiplications of the hopping ampli-
tudes surround a square surface give rise to −1, e.g., ti jt jktkl tli =
−1. Such a hopping amplitudes pattern is the so called π -flux
pattern.

H3D = −
∑

i∈A;j=i±x̂

(iγi,↑γ ′
j,↓ + iγi,↓γ ′

j,↑) +
∑

i∈A;j=i±ŷ

(iγi,↑γ ′
j,↑ − iγi,↓γ ′

j,↓)

+
∑

i∈A;j=i+ẑ

(iγi,↑γj,↓ − iγi,↓γj,↑) +
∑

i∈B;j=i+ẑ

(iγ ′
i,↑γ ′

j,↓ − iγ ′
i,↓γ ′

j,↑). (24)

In terms of complex fermions ci,L = γi,↑ + iγi,↓ and ci,R = γ ′
i,↑ − iγ ′

i↓, we have

H3D =
∑

i∈A;j=i±x̂

(c†
L,icR,j + c†

R,jcL,i) + i
∑

i∈A;j=i±ŷ

(c†
L,icR,j − c†

R,jcL,i)

+
∑

i∈A;j=i+ẑ

(c†
L,icL,j + c†

L,jcL,i) −
∑

i∈B;j=i+ẑ

(c†
R,icR,j + c†

R,jcR,i). (25)

The special hopping pattern in the above Hamiltonian is one way to realize the so called π -flux pattern, namely, a pattern with
the enclosed flux π on each face of the cubic lattice. The Hamiltonian is invariant under the time reversal symmetry T̃ = T (−)iz .
Without such a twisted definition of the time reversal symmetry, the fermion hopping in the z direction will change sign under
the time reversal. It is clear that such a twisted definition is allowed because we can choose either T or T −1 as the definition of
the time reversal symmetry.

In momentum space, we have

H3D =
∑

k

(c†
L(k), c†

R(k))

(
2 cos kz 2 cos kx + 2i cos ky

2 cos kx − 2i cos ky −2 cos kz

)(
cL(k)
cR(k)

)
. (26)

The above Hamiltonian has one positive energy mode and one negative energy mode with

Ek = ±2
√

cos2 kx + cos2 ky + cos2 kz, (27)

Around the momentum point k0 = (π/2, π/2, π/2), the above Hamiltonian describes a chiral Weyl fermion:

He f f
(π/2,π/2,π/2) = 2

∑
k

(c†
L(k), c†

R(k))

(
k̄z k̄x + ik̄y

k̄x − ik̄y −k̄z

)(
cL(k)
cR(k)

)
, (28)

where k = k0 + k̄. It is clear that the above Hamiltonian has a relativistic dispersion Ek = ±2|k̄| and an emergent SU(2) spin
carrying angular momentum.
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In the above, we construct a particular 3D lattice model
for linked (confinement) loops with proliferated topological
Majorana zero modes. Other models with deconfined topo-
logical Majorana modes have also been considered recently,
e.g., the fermion dimer model [59] and the Majorana flat band
model in certain gapless TSC [60]. However, one of the most
important features in our model is that it has a sublattice
structure, and the sublattice degeneracy naturally leads to an
SU(2) spin degree of freedom at low energy. Actually, our
model can be viewed as the 3D analog of the 2D graphene
system for spinless fermions, where the valley degeneracy
becomes the emergent SU(2) spin at low energy. However,
why lattice models with a sublattice structure are more natural
than those models without a sublattice structure? This is a
rather philosophical question and there is no good answer
from condensed matter point of view. However, from high-
energy physics experiments, all elementary fermions must
carry SU(2) spin due to the presence of Lorentz invariance
at low energy. In other words, once we introduced a latticed
model regulation for Standard model, there is no way to avoid
the sublattice structure.

Unfortunately, SM with an explicit cutoff is absent so far
due to the chiral fermion problem. Recent development on
the vanishing of non-perturbative anomaly in chiral SO(10)
gauge theory [61,62] sheds new light on this long standing
hard problem and makes it possible to realize chiral gauge
theory in lattice models with strong interactions among.

Finally, although lattice models could be thought as a
natural venue to regulate a quantum field theory, any pre-
assumed lattice structure for space-time will break the Lorentz
invariance. To overcome this difficulty, the topological non-
linear sigma model defining on dynamical lattices will be a
promising candidate. Important progress along this direction
has been made recently [63,64], even with fermions [65].

V. FRACTIONALIZED PARITY AND CHARGE
CONJUGATION SYMMETRY

So far, we have constructed concrete condensed matter
models with topological Majorana zero modes carrying T 4 =
−1 time reversal symmetry on pointlike defects in certain
classes of TSCs. In last section, we have also shown that the
proliferation of topological Majorana zero modes will lead to
a chiral Weyl fermion with emergent relativistic dispersion
and SU(2) spin at low energy. Since neutrinos are described
as the chiral Weyl fermion, it is very natural to ask if they can
be interpreted as the (proliferated) topological Majorana zero
modes. However, such a conjecture could be very challenging
as it requires a strongly correlated vacuum instead of the
trivial vacuum assumed in traditional quantum field theory.
Nevertheless, in the semiclassical limit, it is still possible to in-
vestigate other fractionalized (discrete) symmetries carried by
topological Majorana zero modes and discuss the interesting
physical consequence. In this section, we limit our discussion
at the single particle level, and the generalization into the
quantum field theory will be presented in the next section.

As having been discussed in last section, the confinement
of linked loops suggests that the four topological Majorana
zero modes γ↑, γ ′

↑, γ↓, and γ ′
↓ identify the local degrees

of freedom with respect to translational symmetry. (For a

lattice model, those are the degrees of freedom in a unit cell.)
On the other hand, a relativistic Majorana fermion is a four-
component Lorentz spinon; hence, it is natural to investigate
the full symmetry properties of the four dimensional zero
energy subspace expanded by the four topological Majorana
zero modes γ↑, γ ′

↑, γ↓, and γ ′
↓. Particularly, we will discuss

the other two fundamental discrete symmetries—parity and
charge conjugation.

A. P4 = −1 parity symmetry for a pair of topological Majorana
zero modes

For a single particle, we only consider the parity symmetry
as a Z2 action on the internal degrees of freedom, and in
quantum field theory, we will include its action on coordinates
as well. Interestingly, in the zero energy subspace expanded
by four topological Majorana zero modes, we can define a
P4 = −1 symmetry for each parity pair of topological Ma-
jorana zero modes γ↑, γ ′

↑ or γ↓, γ ′
↓. The reason why we can

have such a fractionalized parity symmetry for topological
Majorana zero modes is the same as the reason for time
reversal symmetry. The parity symmetry for an interacting
spin-1/2 fermion system is actually P2 = P f . Therefore, for
the Fock basis c†

↑|0〉, c†
↓|0〉 and |0〉, c†

↑c†
↓|0〉, the parity odd

sector satisfies P2 = −1 while the parity even sector satisfies
P2 = 1. Here the complex fermion operators c↑ and c↓ are
defined by

c↑ = γ↑ + iγ ′
↑; c↓ = γ↓ − iγ ′

↓, (29)

which gives rise to a natural notion of spin basis out of four
topological Majorana zero modes.

The explicit construction of P4 = −1 operator for a pair of
topological Majorana zero modes is very similar to that for the
T 4 = −1 time reversal symmetry. For the pair of topological
Majorana modes γ↑, γ ′

↑ and γ↓, γ ′
↓, their parity operators are

defined by

P↑↑′ = 1√
2

(1 + γ↑γ ′
↑) = e

π
4 γ↑γ ′

↑ ;

P↓↓′ = 1√
2

(1 − γ↓γ ′
↓) = e− π

4 γ↓γ ′
↓ . (30)

We see such a definition satisfies P4
↑↑′(↓↓′ ) = −1 for each

pair of topological Majorana modes. The total parity action
on the four topological Majorana zero modes is defined by
P = P↑↑′ ⊗ P↓↓′ . Its action on the four topological Majorana
modes reads

Pγ↑P−1 = −γ ′
↑; Pγ↓P−1 = γ ′

↓,

Pγ ′
↑P−1 = γ↑; Pγ ′

↓P−1 = −γ↓. (31)

It is easy to verify that the complex fermions c↑ and c↓
representing the spin basis transform in an expected way

Pc↑P−1 = ic↑; Pc↓P−1 = ic↓,

Pc†
↑P−1 = −ic†

↑; Pc†
↓P−1 = −ic†

↓. (32)

We note that although the spin of a particle does not change
under parity, there could be a nontrivial phase factor for
the spin-1/2 particle. On the other hand, cL = γ↑ + iγ↓ and
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cR = γ ′
↑ − iγ ′

↓ transform like a neutrino and an antineutrino
pair:

PcLP−1 = −cR; PcRP−1 = cL,

Pc†
LP−1 = −c†

R; Pc†
RP−1 = cL.† (33)

Our definition of parity operator is comparable with the time
reversal operator PT P−1 = P f T with T = e

π
4 γ↑γ↓e

π
4 γ ′

↑γ ′
↓K ,

and P f = γ↑γ↓γ ′
↑γ ′

↓ is the total fermion parity operator.

B. C
4 = −1 charge conjugation symmetry for a pair

of topological Majorana zero modes

Since the Majorana fermion describes a neutral parti-
cle, the charge conjugation action is trivial from a tra-
ditional perspective. Strikingly, we find a way to define
a nontrivial C

4 = −1 charge conjugation symmetry for
a pair of topological Majorana zero modes. Similar to
the T 4 = −1/P4 = −1 time reversal/parity symmetry, for
each pair of topological Majorana zero modes with oppo-
site spins, we can define a C

4 = −1 charge conjugation
operator:

C↑↓′ = 1√
2

(1 + γ↑γ ′
↓) = e

π
4 γ↑γ ′

↓ ;

C↓↑′ = 1√
2

(1 + γ↓γ ′
↑) = e

π
4 γ↓γ ′

↑ , (34)

and the total action of charge conjugation symmetry on four
topological Majorana zero modes is C = C↑↓′ ⊗ C↓↑′ . It is
straightforward to verify that

Cγ↑C
−1 = −γ ′

↓; Cγ↓C
−1 = −γ ′

↑,

Cγ ′
↑C

−1 = γ↓; Cγ ′
↓C

−1 = γ↑, (35)

which implies

Cc↑C
−1 = ic†

↓; Cc↓C
−1 = −ic†

↑,

Cc†
↑C

−1 = −ic↓; Cc†
↓C

−1 = ic↑, (36)

and

CcLC
−1 = −icR; CcRC

−1 = −icL,

Cc†
LC

−1 = ic†
R; Cc†

RC
−1 = ic†

L. (37)

We note that for the spin basis c↑(↓), the charge conjugation
acts as a particle-hole symmetry; however, for the cL(R) basis it
acts like a neutrino and antineutrino exchange symmetry(if we
interpret cL as a neutrino and cR as an antineutrino). Similar
to the commutation relation between time reversal and parity
symmetry, the C

4 = −1 charge conjugation symmetry also
commutes with the other two symmetries up to a total fermion
parity.

CTC
−1 = P f T ; CPC

−1 = P f P. (38)

C. C, P, T superalgebra for a Majorana fermion

Let us summarize the closed algebraic relation of C, P, T,

and P f symmetries for a Majorana fermion formed by four

topological Majorana zero modes.

C
2 = P f ; P2 = P f ; T 2 = P f ; (P f )

2 = 1,

T P f = P f T ; PP f = P f P; CP f = P f C,

T P = P f PT ; TC = P f CT ; PC = P f CP. (39)

The above algebra satisfied by the C, P, T symmetries is
indeed a superalgebra, which can be regarded as a super
extension of the usual charge conjugation, parity and time
reversal symmetries over the fermion parity symmetry P f .
This superalgebra is one of the central results of this paper. It
arises from the topological nature of the topological Majorana
zero modes and reflects the strongly correlated nature of the
vacuum.

In next section, we will show that the above C, P, T
superalgebra is also applicable for Majorana field. In quantum
field theory, such a super extension is allowed because P f is
not a physical observable, or in other words, there is no way
to measure the total fermion parity of a quantum state since
any physical process must preserve fermion parity symmetry.
From a traditional point of view, our results suggest that the
C, P, T transformations for Majorana field can be different
from a Dirac field, just like a scalar field and a Dirac field have
very different C, P, T transformations. Therefore a Majorana
field with a topological origination has a completely new
physical meaning and indicates a strongly correlated vacuum,
despite the equivalence between Majorana representation and
Weyl representation [66].

In addition to the fundamental discrete symmetries
C, P, T , we can also define a spin rotational symmetry
in the spin basis, where c†

↑|0〉, c†
↓|0〉 carry spin 1/2, while

|0〉, c†
↑c†

↓|0〉 carry spin 0. Therefore the SU(2) spin operator
S can be naturally defined by

Sα = 1

2

∑
σ,σ ′

c†
σ τα

σσ ′cσ ′ ; α = x, y, z, (40)

where τα is the usual Pauli matrix. It is easy to verify that

T ST −1 = −S; PSP−1 = S; CSC
−1 = S. (41)

The above nice property makes the C, P, T symmetries
commute with the SU(2) spin rotational symmetry and allows
us to generalize the C, P, T superalgebra into the relativistic
quantum field theory.

VI. C, P, T SYMMETRIES FOR MAJORANA FIELD

A. C, P, T symmetries for relativistic quantum field theory

Let us implement the C, P, T symmetries to a Majorana
field. We choose four real gamma matrices:

γ0 = −iρz ⊗ σy; γ1 = −I ⊗ σx;

γ2 = ρy ⊗ σy; γ3 = I ⊗ σz, (42)

where ρ and σ are Pauli matrices and I is the identity matrix.
We can define a real γ5 by

γ5 = γ0γ1γ2γ3 = iρx ⊗ σy. (43)
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The four-component Majorana field describing the pair of
complex fermions cL and cR reads

ψc(x) =
(

ξ (x)
η(x)

)
, (44)

where

ξ (x) =
(

γ↑(x)
γ↓(x)

)
; η(x) =

(−γ ′
↑(x)

γ ′
↓(x)

)
. (45)

Here the Majorana spinon basis ξ (x) and η(x) are equivalent
to complex fermions cL and cR, which gives rise to a natural
notion of neutrino and antineutrino.

The (equal time) canonical commutation relation reads

{ψ†
c (x), ψc(y)} = 2δ(3)(x − y). (46)

In terms of real Majorana modes γσ (x) and γ ′
σ (x), we have

{γσ (x), γ ′
σ ′ (y)} = 0;

{γσ (x), γσ ′ (y)} = 2δ(3)(x − y)δσσ ′ , (47)

which is the continuum version of the commutation relation
(2). The C, P, T symmetry operators can be defined by

C =
∏

x

e
π
4 γ↑(x)γ ′

↓(x)e
π
4 γ↓(x)γ ′

↑(x)

= e
π
4

∫
d3xγ↑(x)γ ′

↓(x)e
π
4

∫
d3xγ↓(x)γ ′

↑(x),

P = UPP0 =
∏

x

e
π
4 γ↑(x)γ ′

↑(x)e− π
4 γ↓(x)γ ′

↓(x)P0

= e
π
4

∫
d3xγ↑(x)γ ′

↑(x)e− π
4

∫
d3xγ↓(x)γ ′

↓(x)P0,

T = UT K =
∏

x

e
π
4 γ↑(x)γ↓(x)e

π
4 γ ′

↑(x)γ ′
↓(x)K

= e
π
4

∫
d3xγ↑(x)γ↓(x)e

π
4

∫
d3xγ ′

↑(x)γ ′
↓(x)K,

P f =
∏

x

γ↑(x)γ↓(x)γ ′
↑(x)γ ′

↓(x) = C
2 = T 2 = P2. (48)

Here, P0 is the action on the spacial coordinates with
P0xP−1

0 = −x. It is easy to check that the above C, P, T
symmetry operators satisfy the superalgebra Eq. (39).

The transformations of the Majorana field under the above
C, P, T symmetries can also be derived:

Cψc(x)C
−1 =

(−εη(x)
−εξ (x)

)
= −γ5ψc(x);

Pψc(x)P−1 =
(

η(̃x)
−ξ (̃x)

)
= γ0γ5ψc (̃x);

T ψc(x)T −1 =
(−εξ (−x̃)

εη(−x̃)

)
= γ0ψc(−x̃), (49)

where x̃ = (t,−x). Let us consider the Majorana field La-
grangian in the massless limit:

L0 = 1
4ψc(x)iγμ∂μψc(x); ψc(x) = ψ†

c (x)γ0, (50)

Apparently, L0 is invariant under the C, P, T symmetries:

CL0(x)C
−1 = L0(x); PL0(x)P−1 = L0 (̃x);

TL0(x)T −1 = L0(−x̃), (51)

B. Charge conjugation as a Z2 gauge symmetry and its
spontaneous breaking—the origin of (right-handed)

neutrino mass

Given the new definition of C, P, T symmetries for a
Majorana fermion, we are ready to discuss the origin of
the neutrino mass, assuming that the neutrino is a Majorana
fermion. We can construct a mass term preserving time rever-
sal symmetry, parity symmetry, and spin rotational symmetry:

Hm = m

2
[iγ↑(x)γ ′

↑(x) − iγ↓(x)γ ′
↓(x)]. (52)

However, such a mass term breaks the charge conjugation
symmetry since CHmC

−1 = −Hm.
If we elevate the charge conjugation symmetry to a Z2

gauge symmetry (more precisely, it is a Z4 gauge symmetry
if we also include the fermion parity symmetry.) the origin of
the Majorana mass term can be explained as the spontaneous
gauge symmetry breaking through the Anderson-Higgs mech-
anism [67]. The fundamental Z2 gauge field is potentially
be detectable via cosmic string (Z2 flux line) in the early
universe. Finally, to be compatible with the SM, the neutrino
mass discussed here should be the mass of the right-handed
sterile neutrino, since a Majorana mass term for the left-
handed light neutrino is not allowed in the original SM (no
extension of the electroweak Higgs sector) and can only be
induced through the seesaw mechanism [21–24].

To implement the above idea in quantum field theory, we
can introduce a new real scalar field φ(x) = φ(t, x) which car-
ries Z2 gauge charge one [thus it transforms as Cφ(x)C

−1 =
−φ(x)] and couple it to the Majorana field. The Anderson-
Higgs mechanism [67] can be realized by condensing the real
scalar field φ(x). We assume that such a fundamental scalar
field does not carry other gauge charge and is invariant under
the P and T symmetry. The following Lagrangian preserves
all the C, P, T symmetries:

L = L0 + Lm + Lφ + LZ2

= 1

4
ψc(x)iγμDμψc(x) + ig

4
φ(x)ψc(x)γ5ψc(x)

+ |Dμφ|2 − V (φ) + LZ2 . (53)

If we assume that the real scalar field condenses at
〈φ(x)〉 = φ0, a mass term imψc(x)γ5ψc(x) arises with m =
gφ0/4. Here, Dμ represents the covariant derivative and LZ2

represents the action of Z2 gauge field. (We need to regulate
the field theory in a discrete space-time or use topological BF
theory to write down its explicit form.)

VII. ORIGIN OF THREE GENERATIONS OF NEUTRINOS

A. General discussion and some physical pictures

The existence of three generations of neutrinos is one of
the biggest mysteries in our universe. In this section, we
will show that such a puzzle can be naturally resolved by
assuming that a Majorana fermion is made up of four topolog-
ical Majorana zero modes. The key observation is that there
are three inequivalent ways to define two Majorana spinons
which describe a pair of complex fermions with opposite spin
polarizations out of four topological Majorana zero modes.
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Apparently, the two Majorana spinons can be made up not
only by (γ↑, γ↓), (γ ′

↑, γ ′
↓), but also by (γ ′

↑, γ↓), (γ↑, γ ′
↓) or

(γ↑, γ ′
↑), (γ↓, γ ′

↓).
Let us define

dL = 1
2 (γ↑ − iγ ′

↓); dR = 1
2 (γ ′

↑ − iγ↓). (54)

Under the C, P, T symmetries, they transform as

CdLC
−1 = −idL; CdRC

−1 = idR,

PdLP−1 = −dR; PdRP−1 = dL,

T dLT −1 = id†
R; T dRT −1 = id†

L . (55)

Similarly, we can define

fL = 1
2 (γ↑ + iγ ′

↑) = c↑; fR = 1
2 (γ↓ + iγ ′

↓) = c†
↓. (56)

Under the C, P, T symmetries, they transform as

C fLC
−1 = i fR; C fRC

−1 = i fL,

P fLP−1 = i fL; P fRP−1 = −i fR,

T fLT −1 = − f †
R ; T fRT −1 = f †

L . (57)

We see that dL(R) and fL(R) fermions transform differently un-
der the C, P, T symmetries. Especially, the local Fock space
of dL(R) carries the (T P)4 = −1 projective representation of
T P symmetry while the local Fock space of fL(R) carries the
(TC)4 = −1 projective representation of TC symmetry. We
have

(T P)dL(T P)−1 = −id†
L ; (T P)dR(T P)−1 = id†

R,

(TC) fL(TC)−1 = −i f †
L ; (TC) fR(TC)−1 = i f †

R . (58)

Apparently the above T P and TC transformations for dL(R)

and fL(R) fermions have the same form as Eq. (16), therefore
they carry the same representation theory as Eq. (19).

From a condensed matter theory point of view, the above
argument can be understood as there are three different
types of pointlike topological defects in a TSC protected by
C, P, and T symmetries, characterized by the T 4 = −1,
(T P)4 = −1, and (TC)4 = −1 projective symmetries that
the corresponding topological Majorana zero modes carry.
Since pointlike defects can only be created/anihilated in pairs,
there is a natural notion of neutrino and antineutrino pair.
In the following, we again construct some explicit 1D TSC
models to further explain this idea. Similar to the time reversal
protected Majorana chain that has been discussed at the very
beginning of this paper, we can also construct T P(Here again
we only consider the internal action of P symmetry, since
the symmetry protected nature of topological Majorana zero
modes only relies on the internal action and has nothing to
do with the coordinate action.) and TC protected Majorana
chains explicitly. Let us consider the following Hamiltonian:

Hd =
N∑

i=1

(iγ ′
i,↑γi+1,↑ + iγi,↓γ ′

i+1,↓) (59)

and

Hf =
N∑

i=1

(iγi,↓γi+1,↑ + iγ ′
i,↓γ ′

i+1,↑). (60)

FIG. 6. The other two 1D TSC models protected by T P and TC
symmetries, the topological Majorana modes on their ends carry the
(T P)4 = −1 and (TC)4 = −1 projective representations.

It is clear that Hd is invariant under the T P symmetry and
Hf is invariant under the TC symmetry. In Fig. 6, we see
that for Hd , the pair of topological Majorana modes on both
ends form a (T P)4 = −1 representation, while for Hf , the
pair of topological Majorana modes on both ends form a
(TC)4 = −1 representation. All our discussions for the 1D
model can be generalized into 3D as well, where the pair
topological Majorana modes will be attached onto a pair
of linked loops. Similar lattice model Eq. (25) for linked
(confinement) loops with proliferated topological Majorana
modes can be constructed in the same way by replacing cL(R)

fermion with dL(R) and fL(R) fermions.

B. Possible internal structure of Majorana fermion:
a semiclassical picture

Although the lattice model of topological defects is very
promising and insightful for us to understand the origin of
three generations of neutrinos, it has been believed that a
fundamental theory does not necessarily emerge from any
preassumed lattice model. Here we would like to provide an
alternative understanding for the origin of three generations of
neutrinos by proposing a possible internal structure of a Majo-
rana fermion. As seen in Fig. 7, we conjecture that a Majorana
fermion is actually made up of four topological Majorana
zero modes at cutoff scale. However, since a topological
Majorana zero mode carries Non-abelian statistics and could
not be a pointlike particle in 3D, it must be attached attached
on linked (confinement) loops. As having been discussed in
Sec. III, an open Kitaev’s Majorana chain with a pair of
topological Majorana modes can be attached onto such a pair
of linked loops. In the confinement phase of loops, such an
open Majorana chain with planck length can be naturally
regarded as a complex fermion. Thus the origin of three
generations of neutrinos can be explained by three different
ways of forming a pair of complex fermions(with opposite
spin polarizations) out of four topological Majorana modes,
namely, c†

L(R), d†
L(R), and f †

L(R). In such a way, the experimental
observed netrino oscillation can be regarded as re-linking
process of the underlying linked (confinement) loops such that
they will carry three types of complex fermion zero modes
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FIG. 7. A conjectured internal structure of a Majorana fermion
at cutoff scale, which consists of four topological Majorana zero
modes. (More precisely, a pair of topological Majorana zero
modes must be attached onto a pair of linked loops.) The in-
ternal structure of neutrino suggests that the three generations of
neutrinos/antineutrinos can be explained as three different ways of
forming a pair of complex fermions out of four topological Majorana
modes, characterized by the T 4 = −1, (T P)4 = −1, and (TC)4 =
−1 symmetries that they carry.

identified by the T 4 = −1, (T P)4 = −1, and (TC)4 = −1
fractionalized symmetries.

Indeed, both the internal structure and topological defect
picture share the same spirit: the Hilbert space for each pair
of topological Majorana modes must be spatially separated at
cutoff scale to make the projective representations T 4 = −1,
(T P)4 = −1, and (TC)4 = −1 meaningful. Thus the three
generations of neutrinos can be uniquely identified by the
fractionalized C, P, T symmetries that they carry at cutoff
energy scale. We would like to stress that since a Dirac
fermion can always be decomposed into two of Majorana
spinors, the topological Majorana zero mode scenario will be
applicable for the Dirac fermion as well. As a result, the origin
of three generations of quarks and charged leptons can be
understood in the same way. Unfortunately, as a rigorous way
to incorporate the internal structure of a fundamental quantum
field is absent so far, the above single particle picture can not
be generalized into quantum field theory,

C. A potential topological quantum field theory description
and flavor gauge symmetry at cutoff energy scale

Before closing this section, we would like to mention
a potential mathematical framework toward constructing a
topological quantum field theory that can incorporate the
internal structure of a Majorana fermion consisting of four
topological Majorana modes. Comparing to the lattice regu-
lation scheme proposed in Fig. 5, the TQFT regulation has
its unique advantage of preserving Lorentz invariance, even at
cutoff scale. In 2D, it is well known that the (Ising) UMTC
theory serves as an algebraic description of the underlying
TQFT for topological Majorana modes. In such a framework,
a single topological Majorana mode γ actually represents a
half degree of freedom with Non-Abelian statistics—the Ising
anyon σ , and the fusion rule of a σ particle satisfies σ × σ =
1 + ψ , where ψ is a complex fermion. In the presence of
P and T symmetries, there will be four kinds of topological

Majorana modes γ↑, γ↓, γ ′
↑, γ ′

↓ representing four different
Ising anyons σ↑, σ↓, σ ′

↑, σ ′
↓. They can fuse into complex

fermions in three different ways.

σ↑ × σ↓ × σ ′
↑ × σ ′

↓ = (1 + ψc)(1 + ψ ′
c)

= (1 + ψd )(1 + ψ ′
d ) = (1 + ψ f )(1 + ψ ′

f ). (61)

In principle, such kind of fusion rules can be generalized into
3D as well. Nevertheless, as aforementioned, since pointlike
particle in 3D can only carry boson or fermion statistics, any-
onlike objects must be realized on the linked loops. Therefore
we need to develop an algebraic theory for looplike extensive
topological objects. Recently, it has been shown that loops in
3D can carry nontrivial statistics [68,69], and a potential alge-
braic theory would be the mathematically unknown UMT2C
theory, which will obviously be an attractive future direction.

Another advantage of the above TQFT framework is that it
naturally unifies three generations of neutrinos at the planck
scale. In the semiclassical picture (Fig. 7), the three different
pairs of topological Majorana modes should be thought as
three different types of (topological) open strings and they can
fuse into each other. Therefore, at the TQFT scale, three gen-
erations of neutrinos will be unified and they can be viewed
as three different resonating valence bonds(RVB) formed by
topological Majorana modes.

In other words, at cutoff energy scale, we can view the fla-
vor symmetry as a gauge symmetry in the fundamental TQFT
and three generations of neutrinos are indeed three different
local gauge choices to label the same Hilbert space expanded
by four topological Majorana modes.(We note that “local
gauge symmetry” is actually not a symmetry but a relabeling
scheme of the same Hilbert space.) At low energy, e.g., in the
SM, the flavor gauge symmetry will be spontaneously broken
and we can introduce three independent fields to describe the
low-energy physics. In terms of physical picture, one can view
the SM as the loop confinement phase and each tiny Majorana
chain in Fig. 7 becomes pointlike particle carrying different
fractionalized C, P, T symmetries. (We note that the loop
confinement phase naturally introduces an energy scale of
loop tension and it is no longer a TQFT.) More precisely,
in a TQFT, e.g., a topological BF theory Stop = 1

2π

∫
B ∧ F ,

has an enhanced SL(4, R) space-time symmetry and a four-
component Majorana fermion consisting of four topological
Majorana zero modes is indeed a SL(4, R) spinor. Thus the
loop confinement phase will lead to a spontaneous symmetry
breaking of SL(4, R) space-time symmetry down to Lorentz
symmetry SO(3, 1) with SL(2,C) spinor. In fact, there are
three and only three different ways of such a spontaneous
symmetry breaking since SL(4, R) is isomorphic to SO(3, 3),
and its breaking down to SO(3, 1) can be realized by choosing
one of the timelike directions in SO(3, 3).

In next section, we will first develop a “poor man” quantum
field theory approach by taking the continuum limit of the
lattice model proposed in Fig. 5 and use a semiclassical
approximation to compute the neutrino mass mixing matrix
and neutrino mass ratios among three generations. Then we
will use the concept of flavor gauge symmetry to derive the
same results. These predictions can be carefully examined by
future experiments.
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VIII. APPLICATION: RIGHT-HANDED NEUTRINO MASS
MIXING MATRIX AND A5 FLAVOR SYMMETRY

A. Seesaw mechanism

It is well known that a Majorana mass term of the form
mψ (x)ψ (x) is prohibited for left-handed light neutrinos since
it breaks the electroweak gauge symmetry, and that is why the
original SM predicts zero neutrino mass. A nice way to fix
this problem is to assume the existence of three generations of
heavy sterile neutrinos, and masses of the left-handed light
neutrinos can be induced by the type-I seesaw mechanism
[21–24]. The total mass matrix reads:

Mtotal =
(

0 mD

mD M

)
, (62)

where mD is the 3 × 3 Dirac mass matrix and M is the 3 × 3
Majorana mass matrix of right-handed sterile neutrinos. (We
note that the left-handed neutrinos have a zero mass.) If we
assume that mD is at the electroweak symmetry breaking
energy scale (250 GeV) and M is at the grand unification
theory (GUT) energy scale(1015 GeV), a mass at the energy
scale of 0.1 eV can be induced for the left-handed light
neutrinos. There is no general principle to fix mD as well as
the mass matrix of charged leptons in SM, unless we impose
certain flavor symmetry within LO approximation (e.g., in the
absence of CP violation correction).

We will first apply the idea of topological Majorana zero
modes to derive the right-handed neutrino mass matrix, which
essentially implies an A5 flavor symmetry. Then we apply the
A5 flavor symmetry, together with the derived right-handed
neutrino mass matrix to compute the mass mixing matrix as
well as exact mass ratios for left-handed neutrinos within
LO approximation. The potential topological origin of the A5

flavor symmetry will be discussed at the end of this section.

B. A “poor man” quantum field theory description for three
generations of right-handed neutrinos at cutoff energy scale

In order to derive the right-handed neutrino mass matrix
M in extended SM, here we would like to develop a “poor
man” quantum field theory description for three generations
of neutrinos. As having been pointed out in Sec. VII, without
an explicit cutoff, there is no way to distinguish the three
generations of Majorana fermions made up of four topological
Majorana zero modes. However, if we have already introduced
three independent Majorana fields in SM, there is no difficulty
for us to develop a “poor man” quantum field theory to
describe their unusual C, P, T properties, e.g., by taking the
continuum limit of the lattice model Fig. 5, and for the purpose
of computing M semiclassically, such a “poor man” approach
would be sufficient.

The key idea of constructing the lattice model Fig. 5
is to split a four dimensional Fock space expanded by
c†

x,↑|0〉, c†
x,↓|0〉, |0〉, c†

x,↑c†
x,↓|0〉 at a single spacial point x into

a pair of two dimensional Hilbert spaces on each single site at
cutoff scale(assuming there are two sublattices per unit cell).
This is possible and natural since a spacial point x represents
a unit cell at low energy and long wavelength. As seen in
Fig. 5, to describe the cL(R) fermion, we just need to put a pair
of topological Majorana modes γ↑, γ↓ on sublattice-A while

another pair γ↑, γ↓ on sublattice B. It is clear that in such
a construction, the Majorana spinon basis ξ (xA) and η(xB)
carrying T 4 = −1 time reversal symmetry correspond to the
local degrees of freedom on sublattices A and B. Only at long
wavelength and low energy when xA and xB are identified
as the same spacial point x, the four-component relativistic
Majorana field ψc(x) emerges.

Alternatively, we can also put topological Majorana zero
modes (γ ′

↑, γ↓), (γ↑, γ ′
↓) or (γ↑, γ ′

↑), (γ↓, γ ′
↓) on sublattices

A and B, corresponding to the (T P)4 = −1 and (TC)4 =
−1 projective representations on each sublattice. To describe
neutrino(antineutrino) made by fL(R) fermion at cutoff energy
scale, we just need to define the Majorana fermion field

ψ f (x) = (̃ξ (x)
η̃(x)

) with a different Majorana spinon basis:

ξ̃ (x) =
(

γ̃↑(x)
γ̃ ′

↑(x)

)
; η̃(x) =

(
γ̃↓(x)
γ̃ ′

↓(x)

)
. (63)

The above Majorana fermion field satisfies the C, P, T
symmetries:

Cψ f (x)C
−1 = −γ5ψ f (x); Pψ f (x)P−1 = γ0ψ f (̃x);

T ψ f (x)T −1 = −γ0γ5ψ f (−x̃), (64)

where the definitions of C, P, T operators are the same as
Eq. (49) after we replace all the γσ (x), γ ′

σ (x) by γ̃σ (x), γ̃ ′
σ (x).

It is clear that the fL(R) fermion transforms differently under
C, P, T symmetries, and for the fL(R) fermion, its mass term
takes the usual form:

Lm = ig

4
φ(x)ψ f (x)ψ f (x), ψ f (x) = ψ

†
f (x)γ0. (65)

Finally, for the neutrino (antineutrino) made by the dL(R)

fermion at cutoff energy scale, we need to choose γ̄0 =
Rγ0R−1 = iρx ⊗ σy ≡ γ5 with

R = 1√
2

(
1 1

−1 1

)
= 1√

2
(1 + γ0γ5). (66)

The corresponding γ1,2,3 and γ5 transform as: γ̄1,2,3 =
Rγ1,2,3R−1 = γ1,2,3 and γ̄5 = Rγ5R−1 = iρz ⊗ σy ≡ −γ0). In-
deed, this representation was first proposed by Ettore Majo-
rana.

The quantum field theory can be obtained by defining
ψd (x) = (ξ̂ (x)

η̂(x)) with

ξ̂ (x) =
(

γ̂↑(x)
γ̂ ′

↓(x)

)
; η̂(x) =

(
γ̂↓(x)

−γ̂ ′
↑(x)

)
. (67)

Under the C, P, T symmetries with above definition, ψd (x)
transforms as

Cψd (x)C
−1 = −γ̄5ψd (x) ≡ γ0ψd (x);

Pψd (x)P−1 = γ̄0ψd (̃x) ≡ γ5ψd (̃x);

T ψd (x)T −1 = −γ̄0γ̄5ψd (−x̃) ≡ −γ0γ5ψd (−x̃), (68)

where the definitions of C, P, T operators are also the same as
Eq. (49) after we replace all the γσ (x), γ ′

σ (x) by γ̂σ (x), γ̂ ′
σ (x).

For the dL(R) fermion, the mass term also takes the usual form:

Lm = ig

4
φ(x)ψd (x)ψd (x), ψd (x) = ψ

†
d (x)γ̄0 = ψ

†
d (x)γ5.

(69)
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The three generations of neutrino fields described by cL(R),
fL(R) and dL(R) fermions can also be identified by their dif-
ferent C, P, T transformation laws in momentum space, see
Appendix B for details.

We would like to argue that the above “poor man” quantum
field theory descriptions are very general and do not depend
on any particular scheme of lattice regulation. In fact, we can,
in principle, construct a dynamical lattice model and restore
the Lorentz symmetry even at cutoff scale. As long as the
sublattice structure is imposed, we will end up with the same
continuum field theory descriptions for three generations of
right-handed neutrinos.

To this end, let us clarify the key difference between
extended SM and our “poor man” quantum field theory de-
scriptions for three generations of right-handed neutrinos. In
SM. three generations of right-handed neutrinos are described
as three copies of the same right-handed Weyl fermion fields,
and there is not any quantum number that can distinguish
them. However, in our “poor man” quantum field theory
descriptions, we use three different pairs of Majorana spinon
basis ξ (x), η(x), ξ̃ (x), η̃(x), and ξ̂ (x), η̂(x) to describe three
generations of righ-handed neutrinos. If we are not allowed
to redefine the four-component Majorana fields ψc, ψ f and
ψd by mixing the pair of Majorana spinon basis ξ (x), η(x),
ξ̃ (x), η̃(x), and ξ̂ (x), η̂(x), they can be distinguished by dif-
ferent C, P, T properties. Apparently, this is a reasonable
assumption for right-handed neutrino before they get a mass,
since M is very close to the cutoff scale. On the other hand,
at low energy, e.g., in the extended SM where right-handed
neutrinos has already got a very big mass, we should allow
field redefinition for the full four-component Majorana fields
ψc(x), ψd (x) and ψ f (x). Thus we can make them have the
same C, P, T properties, which is the standard convention in
extended SM.

In Sec. VI, we propose that the origin of the right-handed
neutrino mass can be understood as the spontaneous break-
ing of the Z2 charge conjugation gauge symmetry. In the
following we will apply the same idea to derive the entire
right-handed neutrino mass matrix M.

C. Right-handed neutrino mass matrix

First, according to the Z2 gauge (minimal coupling) prin-
ciple, we can write down the most general C, P, T invariant
mass term for three generations of right-handed neutrinos. We
have

Lm = ig

4
φ(x)[ψ f (x)ψ f (x) + ψd (x)ψd (x) + ψc(x)γ5ψc(x)]

+ ig′

4
φ(x)[ψd (x)(1 + γ0γ5)(1 + γ5)ψc(x)

+ψc(x)(1 + γ5)(1 − γ0γ5)ψd (x)]

+ ig′

4
φ(x)[ψ f (x)(1+ γ5)ψc(x)+ψc(x)(1+ γ5)ψ f (x)]

+ ig′

4
φ(x)[ψ f (x)(1 − γ0γ5)ψd (x)

+ψd (x)(1 + γ0γ5)ψ f (x)]. (70)

Here we use the same coupling g for all the diagonal mass
terms and g′ for all the off-diagonal mass terms. Again, this
is because the three generations of right-handed neutrinos are
the three resonating states out of the same four topological
Majorana zero modes at cutoff scale. The above argument can
also be incorporated into quantum field theory language(in
the absence of cutoff physics) by imposing a flavor gauge
symmetry to constrain the coupling constant, see next subsec-
tion for details. We note that for ψc(x) and ψ f (x), the boost
generators are defined by S0i = 1

4 [γ0, γi], while for ψd (x),
the boost generator is defined by S̄0i = 1

4 [γ̄0, γi] = 1
4 [γ5, γi].

Such an interesting twist makes the above mass term invariant
under the Lorentz transformation, despite the existence of
(1 ± γ0γ5) term which does not seem to be invariant under
the Lorentz boost.

In the extended SM [where φ(x) ∼ φ0 is condensed], three
generations of right-handed neutrinos are described by three
copies of the same Majorana field. Let us redefine ψ f (x) by

ψ ′
f (x) ≡ Rψ f (x) ≡ 1√

2
(1 + γ0γ5)ψ f (x), (71)

The corresponding γ0 and γ1,2,3 will change into γ̄0 and γ̄1,2,3.
Similarly, we can also redefine ψc by

ψ ′
c(x) ≡ R

1 + γ5√
2

ψc(x) ≡ 1

2
(1 + γ0γ5)(1 + γ5)ψc(x). (72)

It is easy to see that ψ ′
f (x), ψd (x), and ψ ′

c(x) transform in the

same way under the C, P, T symmetries, therefore, they can
be interpreted as the three generations of right-handed sterile
neutrinos in the extended SM. In terms of ψ ′

f (x), ψd (x), and

ψ ′
c(x), the C, P, T invariant mass term takes the following

form:

Lm = ig

4
φ0[ψ

′
f (x)ψ ′

f (x) + ψd (x)ψd (x) + ψ ′
c(x)ψ ′

c(x)]

+ 2ig′

4
φ0[ψd (x)ψ ′

c(x) + ψ ′
c(x)ψd (x)]

+
√

2ig′

4
φ0[ψ ′

f (x)ψ ′
c(x) + ψ ′

c(x)ψ ′
f (x)]

+
√

2ig′

4
φ0[ψ ′

f (x)ψd (x) + ψd (x)ψ ′
f (x)] (73)

with ψ
′
f (x) = (ψ ′

f )†(x)γ̄0 and ψ
′
c(x) = (ψ ′

c)†(x)γ̄0. (We note
that the corresponding boost generators should be S̄0i =
1
4 [γ̄0, γi].)

We see that the mass mixing pattern has already been fixed,
regardless of the relative strength of g and g′. The mass matrix
can be diagonalized by (the basis is ordered as ψ ′

f , ψd , ψ ′
c,

and φ0

4 is set to be 1)

M =

⎛⎜⎝ g
√

2g′ √
2g′

√
2g′ g 2g′

√
2g′ 2g′ g

⎞⎟⎠

= V †

⎛⎜⎝(1 − √
5)g′ + g 0 0

0 (1 + √
5)g′ + g 0

0 0 −2g′ + g

⎞⎟⎠V,

(74)
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with

V † =

⎛⎜⎜⎜⎜⎜⎝

√
5+√

5
10

√
5−√

5
10 0

−
√

5−√
5

20

√
5+√

5
20 − 1√

2

−
√

5−√
5

20

√
5+√

5
20

1√
2

⎞⎟⎟⎟⎟⎟⎠

�
⎛⎝ 0.85 0.53 0

−0.37 0.6 −0.71
−0.37 0.6 0.71

⎞⎠. (75)

In terms of mixing angle, we have

θ23 = −45◦; θ13 = 0; θ12 = 31.7◦ = arctan

(√
5 − 1

2

)
.

(76)

We note that the physical masses of the mass egienstates are
the absolute value of Eq. (75), with M1 = |(1 − √

5)g′ + g|,
M2 = |(1 + √

5)g′ + g|, and M3 = | − 2g′ + g|, and the ±
sign in front of θ23 is just a gauge choice of the basis. Finally,
due to the same reason that the three generations of right-

handed neutrinos are the three resonating states out of the
same four topological Majorana zero modes at cutoff scale,
we further argue that the diagonal Yukawa coupling must have
the same strength as the off-diagonal coupling with |g| = |g′|.

D. Computing the right-handed neutrino mass matrix by using
the flavor gauge symmetry at cutoff energy scale

In this section, we provide a flavor gauge symmetry argu-
ment for the choice of Yukawa couplings in Eq. (70). The
proposed internal structure of a Majorana fermion suggests
that the flavor symmetry should be a gauge symmetry rather
than a global symmetry at cutoff scale. Since a gauge sym-
metry is nothing but a relabeling of the same Hilbert space,
we can replace γ̃σ , γ̂σ with γσ and γ̃ ′

σ , γ̂ ′
σ with γ ′

σ at a cutoff
scale. This will provide us an alternative way to compute
the mass matrix of right-handed sterile neutrinos. Such an
approach could work because the mass mixing phenomenon
for right-handed sterile neutrinos occurs at GUT scale, which
is much higher than the extended SM energy scale that breaks
flavor gauge symmetry.

Let us start with the diagonal term and assume there are
three independent couplings g f , gd , and gc.

Lm-diag = i

4
φ(x)[g f ψ f (x)ψ f (x) + gdψd (x)ψd (x) + gcψc(x)γ5ψc(x)]. (77)

At cutoff scale, all the mass terms should be regarded as interactions between the scalar particle φ and the four topological
Majorana modes γ↑, γ↓, γ ′

↑, and γ ′
↓. For example, all the three terms in Eq. (77) can be expressed as

ig f

4
φ(x)ψ f (x)ψ f (x) = ig f

2
φ(x)[γ↑(x)γ ′

↑(x) − γ↓(x)γ ′
↓(x)];

igd

4
φ(x)ψd (x)ψd (x) = igd

2
φ(x)[γ↑(x)γ ′

↑(x) − γ↓(x)γ ′
↓(x)];

igc

4
φ(x)ψc(x)γ5ψc(x) = igc

2
φ(x)[γ↑(x)γ ′

↑(x) − γ↓(x)γ ′
↓(x)]. (78)

The above expression implies that the three mass terms are indeed the same term at cutoff. Physically, we can attribute the
existence of three generations of neutrinos to the three different (local) ways of making a pair of complex fermions(with opposite
spin polarization) out of four topological Majorana zero modes.

The same argument also applies to the off-diagonal mass term:

Lm-offdiag = igcd

4
φ(x)[ψd (x)(1 + γ0γ5)(1 + γ5)ψc(x) + ψc(x)(1 + γ5)(1 − γ0γ5)ψd (x)]

+ igc f

4
φ(x)[ψ f (x)(1 + γ5)ψc(x) + ψc(x)(1 + γ5)ψ f (x)]

+ igdf

4
φ(x)[ψ f (x)(1 − γ0γ5)ψd (x) + ψd (x)(1 + γ0γ5)ψ f (x)], (79)

which can be expressed as

igcd

4
φ(x)[ψd (x)(1 + γ0γ5)(1 + γ5)ψc(x) + ψc(x)(1 + γ5)(1 − γ0γ5)ψd (x)] = igcd

2
φ(x)[γ↑(x)γ ′

↑(x) − γ↓(x)γ ′
↓(x)]; (80)

igc f

4
φ(x)[ψ f (x)(1 + γ5)ψc(x) + ψc(x)(1 + γ5)ψ f (x)] = igc f

2
φ(x)[γ↑(x)γ ′

↑(x) − γ↓(x)γ ′
↓(x)]; (81)

igdf

4
φ(x)[ψ f (x)(1 − γ0γ5)ψd (x) + ψd (x)(1 + γ0γ5)ψ f (x)] = igdf

2
φ(x)[γ↑(x)γ ′

↑(x) − γ↓(x)γ ′
↓(x)]. (82)
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Thus we can derive gcd = gc f = gdf = g′. Finally, by compar-
ing the diagonal and off-diagonal mass terms, we can further
derive |g| = |g′|. Here the relative sign of g and g′ can not be
fixed because a Z2 gauge flux is possible for a loop enclosed
by three generation hopping phases.

E. A5 flavor symmetry and prediction of left-handed
neutrino mass

In the above, we use a semiclassical approach based on
our topological scenario to compute the right-handed neutrino
mass matrix(under certain basis choice). However, in order to
make measurable predictions for the mass matrix of the left-
handed neutrino, we must impose a proper flavor symmetry
to determine the charged lepton and the neutrino Yukawa
couplings as well. (We note that these Dirac mass terms
at electroweak energy scale have a very different physical
origin.)

Since the mixing angle of right-handed neutrinos is con-
sistent with the GR pattern [41,42], it is straightforward to
check that M is invariant under a Z2 ⊗ Z2 Klein symmetry
with generators U and S defined by

U =
⎛⎝1 0 0

0 0 1
0 1 0

⎞⎠; S = 1√
5

⎛⎜⎝ 1 −√
2 −√

2

−√
2 − (

√
5+1)
2

(
√

5−1)
2

−√
2 (

√
5−1)
2 − (

√
5+1)
2

⎞⎟⎠.

(83)

In Ref. [41], it has been shown that the above Z2 ⊗ Z2

symmetry arises from an underlying A5 flavor symmetry
and that S is one of the generators of A5 group. Therefore,
within LO approximation, it is natural to assume such an A5

flavor symmetry, which can further enforce the mass matrix
of charged lepton to be diagonal and mD proportional to U
[41]. In fact, our topological scenario also gives rise to a
natural origin of such A5 flavor symmetry. This is because
the spontaneous symmetry breaking of SL(4, R) space-time
symmetry down to SO(3, 1) space-time symmetry allows
additional unbroken discrete symmetry, e.g., A5. In terms of
physical picture, the above math statement can be understood
as following: Although there are three and only three dif-
ferent ways to break SL(4, R) space-time symmetry down
to SO(3, 1) space-time symmetry (this explains the origin
of three generations), an additional discrete A5 remainant
symmetry is still allowed in such a symmetry breaking pattern
and it plays a role as flavor symmetry.

According to the seesaw mechanism, the mass mixing
matrix for left-handed light neutrino takes the same form as
Eq. (75) (in the limit mD � M); however, the mass hierarchy
is reversed. Thus the solution with g = −g′ implies M1 =
M2 = √

5g and M3 = 3g, which leads to m1/m3 = m2/m3 =
3/

√
5(here m1, m2 and m3 are eigen masses of the left-handed

light neutrinos) and can match the current experimental ob-
servations. (We assume that the small mass splitting �m12

is negligible within LO approximation.) On the contrary,
the solution g = g′ leads to M1 = (

√
5 − 2)g < M3 = g <

M2 = (
√

5 + 2)g and contradicts to the current experimental
results with either m1 � m2 < m3 or m1 � m2 > m3. There-
fore here we choose g = −g′. Based on the current experi-
mental data �m2

23 � 2.5 × 10−3 eV2, we obtain m1 = m2 �

0.075 eV and m3 � 0.054 eV. In addition, we predict that
m0νββ ≡ |∑i U 2

eimi| = m1/
√

5 � 0.0335 eV.
Finally, we stress that in the usual A5 flavor symmetry

scenario, there is no constraint on mass ratios. Actually, the
choice of g = −g′ in our case leads to an additional Z2

symmetry generator R:

R = 1√
2

⎛⎜⎜⎝
0 i i

−i 1√
2

− 1√
2

−i − 1√
2

1√
2

⎞⎟⎟⎠. (84)

Together with U and S, we find

U T MU = M; ST MS = M, (85)

and

U 2 = 1; S2 = 1; R2 = 1,

US = SU ; UR = RU ; SR = −URS, (86)

which form a D4 group. Since D4 is not a subgroup of A5,
our scenario suggests an enlarged flavor symmetry which
contains A5 as a subgroup. For example, S5 is a possible
candidate since R can be viewed as an additional reflection
symmetry. Within LO approximation, the physical origin of
the underlying flavor symmetry is a very deep and interesting
problem. In fact, the S5 symmetry group has a deep relation-
ship with 3 + 1D TQFT, which is the symmetry group of
a 4-simplex. In 2 + 1D, it is well known that a large class
of TQFT constructed from Turaev-Viro State-Sum invariants
admits the full tetrahedra symmetry S4 for the 6 j G symbol.
In 3 + 1D, a similar construction naturally admits an S5 or A5

symmetry for the corresponding 15 j symbol.

F. The effect of CP violation

Before conclusion, we discuss the effect of CP violation
for the neutrino mass mixing matrix. Recently, the DaYa-
Bay’s experiment has reported a nonzero θ13 � 8.8◦ [13].
From our point of view, the experimentally observed (not
very small) θ13 has already implied the presence of CP vio-
lation! This is because the GR pattern we derive has a zero
θ13 within LO approximation, and if we ignore the charged
lepton contribution for θ13 due to its huge mass hierarchy
(this assumption is reasonable since in the CKM quark mass
mixing matrix, θ13 is significantly small due to its huge mass
hierarchy), the experimentally observed θ13 must come from
CP violation. On the other hand, our theory predicts m1 =
m2 within LO approximation, therefore the experimentally
observed small mass splitting �m2

12 is also contributed by CP
violation. Interestingly, the current experimental results point
to an approximate relation |�m2

12/�m2
23| ∼ θ2

13/θ
2
23. Since

our topological scenario within LO approximation requires
�m2

12 = 0 and θ13 = 0, this might suggest that the nonzero
�m2

12 and θ13 observed in current experiments might have a
common origin—the CP violation. We will leave a detailed
study of CP violation physics in our future publications.

IX. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we start with a simple 1D TSC model
protected by T 2 = −1 time reversal symmetry and show that
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the pair of time reversal protected topological Majorana zero
modes on each end carries a T 4 = −1 representation of time
reversal symmetry and 1/4 spin. Then we generalize the
T 4 = −1 fractionalized representation for a pair of topolog-
ical Majorana zero modes into a P4 = −1 parity symmetry
and a C

4 = −1 nontrivial charge conjugation symmetry as
well. We also construct explicit condensed matter models
and show that the proliferation of topological Majorana zero
modes will lead to a relativistic dispersion and an SU(2)
spin.

These interesting observations from condensed matter sys-
tems motivate us to interpret a Majorana fermion as four
topological Majorana zero modes (or a Lorentz spinon zero
mode) and revisit its C, P, T symmetries. Surprisingly, we
find that the C, P, T symmetries for a Majorana fermion
made up of four Majorana zero modes satisfy a superalgebra.
The CPT superalgebra for a Majorana fermion can be gen-
eralized into quantum filed theory as well. We further point
out that the nontrivial charge conjugation symmetry C can
be promoted to a Z2 gauge symmetry and its spontaneous
breaking leads to the origin of (right-handed) neutrino mass.
Indeed, the seesaw mechanism scenario requires such a fifth
force. In the classical limit, all the coupling terms arise
from (gauge) interactions, hence it is not necessary to have
any coupling term between SM particles and right-handed
neutrinos since the right-handed sterile neutrino does not carry
any SM gauge charge. However, in the seesaw mechanism,
there is a coupling term in the form of Lφ̃νR (the Dirac
mass term with L as the lepton doublets, φ as the Higgs
field and νR as the right-handed neutrino field). Although it
is an “allowed” term by gauge invariance, it is not a “natural”
term since there is no interaction between Lφ̃ and νR. In the
presence of the Z2 gauge force, such a term becomes natural
since νL and νR can carry opposite half-Z2 charge. Here the
concept of half-Z2 charge arises from the transformation (55),
where the dL(R) fermion operator takes eigen value ∓i under
charge conjugation symmetry, which is indeed a Z4 charge.
The reason why a fermion can carry a half-Z2 (or Z4) charge
is again due to the group extension of the nontrivial charge
conjugation symmetry C over the fermion parity symmetry
that makes the total symmetry group to be Z4. The half-Z2

charge assignment of a single fermion is also consistent with
the fact that the mass term (a fermion bilinear) carries Z2

charge one.
These novel concepts even provide us a natural way to

understand the origin of three generations of neutrinos, as
there are three inequivalent ways to form a pair of com-
plex fermions (with opposite spin polarizations) out of four
topological Majorana zero modes, characterized by the T 4 =
−1, (T P)4 = −1 and (TC)4 = −1 fractionalized symmetries
that the complex fermions carry. This argument requires that
a Majorana fermion is not a pointlike particle and has an
internal structure at cutoff scale. In the semiclassical limit,
together with the Z2 gauge (minimal coupling) principle, we
are able to uniquely determine the C, P, T invariant mass
term and compute the neutrino mass mixing matrix with
no fitting parameters within LO approximation (without CP
violation and charged lepton contribution). We obtain θ12 =
31.7◦, θ23 = 45◦, and θ13 = 0◦ (the golden ratio pattern),
which is consistent with the an A5 flavor symmetry. We further

predict an exact mass ratio for the three mass eigenstates with
m1/m3 = m2/m3 = 3/

√
5.

For future works, we would like to point out several
interesting directions along this line of thinking: (a) the quark
CKM mass mixing matrix. It is possible to use similar topo-
logical scenario to compute the quark CKM mass mixing
matrix. However, a crucial difference in the quark CKM mass
mixing matrix is the mass hierarchy problem, which leads to a
significant suppressing of its mixing angles. It is important to
understand the origin of quark mass hierarchy. (b)The cutoff
problem. A challenging and deep way to deal with the cutoff
problem is to develop a mathematical framework for quantum
field theory in discrete space-time. If a fundamental theory
has extremely strong quantum fluctuation at cutoff scale,
the discrete structure would become crucial. The potential
TQFT and UMT2C framework proposed in this paper are very
promising future direction. (c) Hidden superalgebra for the
SM. From experimental point of view, to avoid fine-tuning,
a superalgebraic structure of the SM is demanded. Recent
experimental results on the Higgs mass near 126 GeV [70,71]
point to a relation MHiggs � (Mu + Md + Mc + Ms + Mt +
Mb)/

√
2 (the Higgs boson mass is intrinsically close to the

summation of six quark masses divided by
√

2). We also
notice Mt � MW + MZ (top quark mass is intrinsically close
to the summation of W and Z boson masses) by pass. If the
above two relations are not coincident, they must be strong
indications that SM might satisfy a hidden superalgebra. We
note that these interesting mass relations are merely among
the known fermions and bosons in the SM, therefore they
can not be explained by traditional supersymmetry (SUSY).
Nevertheless, the topological Majorana zero modes might
provide us a new way to understand these relations, since
they will generate degenerated states with different fermion
parities, and the corresponding superalgebra is very different
from traditional SUSY.

ACKNOWLEDGMENTS

Z.-C.G. thank T. K. Ng’s invitation for IAS Program
on Topological Materials and Strongly Correlated Electronic
Systems at HKUST, where the work was initiated, and Henry
Tye, K. T. Law, Z-X Liu, T. Liu for helpful discussions on
early results. Z.-C.G. especially thank John Preskill, Alexei
Kitaev, Neil Turok’s encourages and delightful discussions for
this work. Z.-C.G. also thank X-G Wen, Y-S Wu, D. Gaiotto’s
suggestions for improving presentations, and his wife Y-F
Ge’s help on investigating experiment results. This work is
supported by the Government of Canada through Industry
Canada and by the Province of Ontario through the Ministry
of Research and Innovation. This work is also partially sup-
ported by a grant from the Research Grants Council of the
Hong Kong Special Administrative Region, China (Project
No. AoE/P-404/18).

APPENDIX A: THE MAPPING BETWEEN MAJORANA
FERMION REPRESENTATION AND WYEL FERMION

REPRESENTATION

In this section, we will show how to map a real four-
component Majorana fermion representation to the standard
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Wyel fermion representation. Let us start from the real gamma
matrix γ̄0 ≡ γ5 and γ̄i ≡ γi (i = 1, 2, 3), which is the real
gamma matrix first proposed by E. Majorana. Let us introduce
a unitary transformation

Ũ =
(

1 + σ2 −i(1 − σ2)
i(1 − σ2) 1 + σ2

)
. (A1)

It is straightforward to verify that

γ̃0 = Ũ (−iγ̄ 0)Ũ † =
(

0 1
1 0

)
(A2)

and

γ̃i = Ũ (−iγ̄ i )Ũ † =
(

0 σi

−σi 0

)
. (A3)

Clearly, γ̃0 and γ̃i are the corresponding gamma matrix
representation for Wyel fermion. Therefore, from a real
four-component Majorana fermion field, we can construct
a complex two component Wyel fermion representation via
� = Uψ . More explicitly, in terms of real components
ψ1, ψ2, ψ3, and ψ4, we have

� = Ũ = 1

2

⎛⎜⎝ (ψ1 + ψ4) − i(ψ2 + ψ3)
(ψ2 − ψ3) + i(ψ1 − ψ4)

−(ψ2 − ψ3) + i(ψ1 − ψ4)
(ψ1 + ψ4) + i(ψ2 + ψ3)

⎞⎟⎠ ≡
(

χ

−iσ2χ
∗

)
,

(A4)

where the complex field χ is the complex two component
Wyel fermion field.

APPENDIX B: C, P, T SYMMETRIES
IN MOMENTUM SPACE

In this section, we will use a momentum space pic-
ture to describe the three generations of neutrinos. First,
let us examine the C, P, T symmetry transformations of
the Fourier modes γσ (k) = 1√

V

∫
d3xe−ik·xγσ (x) and γ ′

σ (k) =
1√
V

∫
d3xe−ik·xγ ′

σ (x). It is straightforward to derive

Cγ↑(k)C
−1 = −γ ′

↓(k); Cγ↓(k)C
−1 = −γ ′

↑(k);

Cγ ′
↑(k)C

−1 = γ↓(k); Cγ ′
↓(k)C

−1 = γ↑(k), (B1)

Pγ↑(k)P−1 = −γ ′
↑(−k); Pγ↓(k)P−1 = γ ′

↓(−k);

Pγ ′
↑(k)P−1 = γ↑(−k); Pγ ′

↓(k)P−1 = −γ↓(−k), (B2)

T γ↑(k)T −1 = −γ↓(−k); T γ↓(k)T −1 = γ↑(−k);

T γ ′
↑(k)T −1 = −γ ′

↓(−k); T γ ′
↓(k)T −1 = γ ′

↑(−k). (B3)

We note that the above transformation rules are also correct
for Majorana spinon γ̃σ , γ̃ ′

σ and γ̂σ , γ̂ ′
σ .

We can apply the similar argument to the emergence of
three generations of Majorana fermions for their Fourier
modes in momentum space as well.

cL(k) = γ↑(k) + iγ↓(k); cR(k) = γ ′
↑(k) − iγ ′

↓(k),

fL(k) = γ̃↑(k) + iγ̃ ′
↑(k); fR(k) = γ̃↓(k) + iγ̃ ′

↓(k),

dL(k) = γ̂↑(k) − iγ̂ ′
↓(k); dR(k) = γ̂ ′

↑(k) − iγ̂↓(k). (B4)
Under T P, T , and TC symmetries, they transform as

T cL(k)T −1 = −ic†
L(k),

T cR(k)T −1 = ic†
R(k),

(TC) fL(k)(TC)−1 = −i f †
L (k),

(TC) fR(k)(TC)−1 = i f †
R (k),

(T P)dL(k)(T P)−1 = −id†
L (−k),

(T P)dR(k)(T P)−1 = id†
R(−k). (B5)

The Hamiltonian of massless Majorana fermion has the
following form in momentum space, e.g., for ψd (x):

Hd = 1

4

∑
k

ψ†(k)γ̄0γ̄ikiψ (k), (B6)

where ψ (k) is the Fourier mode of ψ (x), defined as
ψ (k) = 1√

V

∫
d3xe−ik·xψ (x). It is straightforward to verify

that ψ†(k) = ψ t (−k). If we assume the chiral basis has a spin
polarization in the y direction, we can fix the momentum to be
k = (0, k, 0). Thus we obtain

Hd = 1

4

∑
k

[kγ̂↑(−k)γ̂↑(k) − kγ̂↓(−k)γ̂↓(k) − kγ̂ ′
↑(−k)γ̂ ′

↑(k) + kγ̂ ′
↓(−k)γ̂ ′

↓(k)]. (B7)

In terms of the chiral fermion fields dL(k) and dR(k), we have

Hd = 1

2

∑
k

[kd†
L (k)dL(k) − kd†

R(k)dR(k)]. (B8)

For any given momentum k, we can define its positive energy mode as a left-handed neutrino and the negative energy mode as a
right-handed antineutrino. However, we note that the zero energy mode dL(E = 0) and dR(E = 0) still transform as

(T P)dL(E = 0)(T P)−1 = −id†
L (E = 0); (T P)dR(E = 0)(T P)−1 = id†

R(E = 0). (B9)

Thus both of them carry the (T P)4 = −1 fractionalized symmetry. Furthermore, since the zero energy mode dL(R) transforms
trivially under Lorentz symmetry, we can say that the vacuum effectively carries a (T P)4 = −1 fractionalized symmetry. Such an
observation is pretty interesting, as traditional quantum field theory assume a unique vacuum that carries a trivial representation
of T P symmetry. The experimental consequence of such a fractionalized symmetry will be investigated in our future work.
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For cL(R) and fL(R), their Hamiltonian in momentum space read

Hc( f ) = 1

4

∑
k

ψ†(k)γ0γikiψ (k), (B10)

If we assume the chiral basis has a spin polarization in the z direction, we can fix the momentum to be k = (0, 0, k) In terms of
the cL(R) and fL(R) fermion operators, we have

Hd = 1

2

∑
k

[kc†
L(k)c†

L(−k) − kc†
R(k)c†

R(−k) + H.c.];

H f = 1

2

∑
k

[k f †
L (k) f †

L (−k) − k f †
R (k) f †

R (−k) + H.c.], (B11)

In the Nambu basis, we obtain

Hc = 1

2

∑
k

[c†
L(k) + c†

R(k), cL(−k) − cR(−k)]

(
0 k
k 0

)[
cL(k) + cR(k)

c†
L(−k) − c†

R(−k)

]
,

H f = 1

2

∑
k

[ f †
L (k) − f †

R (k), fL(−k) + fR(−k)]

(
0 k
k 0

)[
fL(k) − fR(k)

f †
L (−k) + f †

R (−k)

]
. (B12)

After diagonalizing the above two Hamiltonians, we can again define a positive mode corresponding to the left-handed neutrino
and a negative energy mode corresponding to the right-handed antineutrino.

Similarly, the zero energy mode cL(R)(E = 0) and fL(R)(E = 0) transform as

T cL(E = 0)T −1 = −ic†
L(E = 0);

T cR(E = 0)T −1 = ic†
R(E = 0), (B13)

and

(TC) fL(E = 0)(TC)−1 = −i f †
L (E = 0);

(TC) fR(E = 0)(TC)−1 = i f †
R (E = 0). (B14)

Therefore we can say that the vacuum for for cL(R) and fL(R) fermions can effectively carry T 4 = −1 and (TC)4 = −1
fractionalized symmetries.
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