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Anomalous transport independent of gauge fields
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We show that three-dimensional trace anomalies lead to new universal anomalous transport effects on a
conformally flat space-time with background scalar fields. In contrast to conventional anomalous transports in
quantum chromodynamics or quantum electrodynamics, our current is independent of background gauge fields.
Therefore, our anomalous transport survives even in the absence of vectorlike external sources. By manipulating
background fields, we suggest a setup to detect our anomalous transport. If one turns on scalar couplings in a
finite interval and considers a conformal factor depending just on (conformal) time, we find anomalous transport
localized at the interfaces of the interval flows perpendicularly to the interval. The magnitude of the currents is
the same on the two interfaces but with opposite directions. Without the assumption on scalar couplings, and
only assuming the conformal factor depending solely on (conformal) time as usually done in cosmology, one
also finds the three-dimensional Hubble parameter naturally appears in our current.
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I. INTRODUCTION

Quantum field theories (QFTs) often have anomalies in
global symmetries, called ’t Hooft anomalies [1], which char-
acterize QFTs. The global symmetries can be either internal or
space-time symmetries. In the latter case, one can still employ
the anomalies to study QFTs. A remarkable example is the
a theorem [2]. In those papers, they coupled a theory to a
background metric specified by a “dilaton.” Some terms of the
dilaton effective action survive even after taking the flat limit,
which were used to show the a theorem in four-dimensional
QFTs defined on the Minkowski space. An important lesson
one can learn from this example is that anomalies can have
remnants even after turning off background fields introduced
to diagnose anomalies.

Anomalies also lead to interesting phenomena by inducing
currents. Particularly, the anomalous transport is generated
by the chiral anomaly in hot and/or dense environments.
For example, the chiral separation effect [3,4] and the chiral
magnetic effect [5,6] induce the axial current jA and the vector
current jV parallel to an external magnetic field B in the dense
medium μV �= 0 and the chiral imbalance medium μA �= 0,
respectively:

〈 jA〉 = μV

2π2
eB, 〈 jV 〉 = μA

2π2
eB, (1)

where μV and μA are the ordinary and chiral chemical po-
tentials, respectively. Furthermore, in rotating systems, an
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additional term shows up in the expression of the axial and
vector current, which is called the chiral vortical effect [7–9],

〈 jA〉 =
(

T 2

6
+ μ2

V + μ2
A

2π2

)
�, 〈 jV 〉 = μV μA

π2
�, (2)

where � denotes the angular velocity. This is not the usual
background gauge field, but a vectorlike external source,
which is not dynamical but rather specified by hand. Besides
the chiral anomaly, the anomalous breaking of the scale sym-
metry also leads to an anomalous transport. As was discussed
in Ref. [10], an electric current in a curved space-time is
generated by the scale electric effect and the scale magnetic
effect

〈 jV 〉 = −2β(e)

e

∂τ (x)

∂t
E(x) + 2β(e)

e
∇τ (x) × B(x), (3)

where τ (x) represents the local scale factor and β(e) is the
beta function of quantum electrodynamics (QED).

The induced anomalous current at zero temperature com-
pletely relies on the background gauge fields as was shown
in Eqs. (1)–(3). Therefore, as background gauge fields are
turned off, the conventional anomalous currents vanish (at
zero temperature). [The chiral vortical effect (2) at nonzero
temperature also vanishes if one turns off the vectorlike exter-
nal source �.] So, as in the proof of the a theorem, if one is
eventually interested in A = 0 (and � = 0), all known anoma-
lous transports become trivial. In a sense, this conclusion is
natural because a current is a space-time vector, and it seems
we need a “seed” to produce such a vector-valued quantity.
Of course, if one looks at broader currents, one can have
nonzero currents in the absence of vectorlike external sources
as in scalar QED. (In that case, one has jμ ∼ φ∗∂μφ − φ∂μφ∗
with complex dynamical scalar field φ.) However, if one
restricts oneself to currents induced by anomalies, all known
examples vanish once vectorlike external sources are turned
off. [The conclusion is unaffected even if one takes mass terms
into account in (four-dimensional) quantum chromodynamics
(QCD) and QED. See Ref. [20] below.] So it is natural to ask
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“is it really necessary to keep background gauge fields (or
more precisely, vectorlike external sources) to have nonzero
anomalous transports?” We would like to address this question
in this paper. And of course the answer is no. One does not
have to keep nonzero background gauge fields to have nonzero
anomalous transports. We construct an example.

II. SETUP

To concretely derive the anomalous transport independent
of external gauge fields, we begin by introducing three-
dimensional [11] conformal field theories (CFTs) with a
global symmetry G (charge conjugation is not necessarily
assumed) on a conformally flat space-time

γμν (x) = e2τ (x)ημν, (4)

where μ = 0, 1, 2, ημν = diag(+1,−1,−1) is the Lorentzian
metric, and |τ | � 1. Then via a conformal map, one can
translate results on the geometry (4) to those on the flat
space-time. On considering renormalization group on such
a curved space-time, one has to use local renormalization
group (LRG) [12,13]. The LRG transformations are realized
by Weyl transformations γμν (x) �→ e2σ (x)γμν (x). To keep ef-
fective action invariant under the transformations, one has
to promote all coupling constants λI to background scalar
fields λI (x), and modify them appropriately according to
beta functionals. After introducing the background fields, the
partition function Z becomes a functional of background fields
[14]

Z[τ, λ, A] :=
∫

DX exp

{
iSCFT[X ] + i

∫
d3xτ (x)T μ

μ (x)

+ i
∫

d3xλI (x)OI (x)

− i
∫

d3xAa
μ(x) jaμ(x) + · · ·

}
, (5)

where X collectively denotes dynamical fields, Aa
μ(x) is

the background G gauge field, and λI (x) denote the cou-
pling constants promoted to the space-time-dependent back-
ground scalar fields. The background scalar fields belong
to representations RI : G → End(V dim RI

RI (G) ) of G. One then
imposes the generating functional be invariant under LRG
operator �σ := ∫

d3xσ (x){2γμν (x) δ
δγμν (x) + βI [λ(x)] δ

δλI (x) +
βa

μ[λ(x)] δ
δAa

μ(x) } up to anomalies, where βI [λ] and βa
μ[λ] ≡

DμλIρa
I [λ] are scalar and vector beta functionals, respectively.

Namely, one requires �σ Z[τ, λ, A] = 0 + (anomaly) corre-
sponding to the invariance of observables under a change of
an artificial mass scale μ, e.g., dZ

d ln μ
= 0 in the usual RG.

By using the generating functional (5), one can compute
expectation values of operators including trace of the energy-
momentum tensor T μ

μ(x), composite (scalar) operators OI (x),
and currents jaμ(x) by taking functional derivatives with
respect to appropriate background fields:

〈
T μ

μ(x)
〉 = −i

δ ln Z[τ, λ, A]

δτ (x)
, 〈OI (x)〉 = −i

δ ln Z[τ, λ, A]

δλI (x)
,

〈 jaμ(x)〉 = i
δ ln Z[τ, λ, A]

δAa
μ(x)

. (6)

In CFTs, trace of the energy-momentum tensor vanishes as
an operator, however, can suffer from anomalies [15]. In three
dimensions, the general form of the trace anomaly is given by
[16]

〈
T μ

μ

〉 = εμνρCIJK [λ]DμλI Dνλ
JDρλ

K + εμνρCa
I [λ]F a

μνDρλ
I ,

(7)

where εμνρ is the Levi-Civita tensor with ε012 = +1, F a
μν is

the field strength of A, i.e., F = dA + [A, A], and the covariant
derivative is defined by DμλI = [δI

J∂μ + iAa
μ(T a)I

J ]λJ with T a

the representation matrices of RI . Since εμνρ is completely
antisymmetric, CIJK [λ] is also a completely antisymmetric
three-tensor. Once a CFT is specified, the coefficient func-
tionals CIJK and Ca

I are fixed. These are analogs of central
charges, which in general depend on couplings. Similarly,
“central charges” CIJK and Ca

I depend on couplings in general.
Since one promotes coupling constants to background (scalar)
fields in LRG, the central charges are functionals of the back-
ground scalar fields in the LRG framework. The functionals
are subject to constraints [16] 3βI [λ]CIJK [λ] + ρa

I [λ]Ca
J [λ] −

ρa
J [λ]Ca

I [λ] = 0, βI [λ]Ca
I [λ] = 0, originating from the Wess-

Zumino consistency condition [17].
The possibility of three-dimensional trace anomaly was

studied holographically [18], and concluded that the anomaly
does not exist in odd dimensions if gravity duals of the CFTs
exist. However, the trace anomaly has not been ruled out if
CFTs do not admit holographic duals. So in the first part of
this paper where we impose conformal symmetry, we simply
assume an existence of the three-dimensional trace anomaly,
and later we relax the assumption of conformal symmetry
in which case we do have an example of nonzero trace
“anomaly.”

The current 〈 jaμ〉 induced by the weak background gauge
field Aa

μ(x), the small local dilatations of the metric τ (x), and
the small space-time-dependent coupling constants λI (x) can
be expanded in series of these background fields:

〈 jaμ〉 = 〈 jaμ〉τ + 〈 jaμ〉λ + 〈 jaμ〉A + 〈 jaμ〉ττ + 〈 jaμ〉τλ

+ 〈 jaμ〉τA + 〈 jaμ〉λλ + 〈 jaμ〉λA + 〈 jaμ〉AA + · · · .

(8)

To perform this expansion systematically, we assume the
background fields τ, λ, and A are all proportional to a small
(positive) number ε, |ε| � 1. The first term 〈 jaμ〉τ corre-
sponds to the linear response of the current to the operator
τ (x)T μ

μ(x),

〈 jaμ(x)〉τ = i
∫

d3y〈 jaμ(x)T ν
ν (y)〉0τ (y), (9)

where 〈· · · 〉0 indicates that the expectation value is
evaluated by setting background fields to zero after the
computation. The correlation function can be calculated easily
by taking a functional derivative of (7) with respect
to the background gauge field: 〈 jaμ(x)T ν

ν (y)〉0 =
i δ〈T ν

ν (y)〉
δAa

μ(x) |τ,λ,A→0 = 0. Thus the first term of (8) vanishes:

〈 jaμ〉τ = 0. The other terms can be computed in the
same way. Generically nonvanishing terms are given by
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〈 jaμ〉λ, 〈 jaμ(x)〉A, 〈 jaμ(x)〉λλ, 〈 jaμ(x)〉λA, 〈 jaμ(x)〉AA, and

〈 jaμ(x)〉τλ = −
∫

d3y
∫

d3z〈 jaμ(x)T ν
ν (y)OI (z)〉0τ (y)λI (z)

= −
∫

d3y
∫

d3z
δ2

〈
T ν

ν (y)
〉

δAa
μ(x)δλI (z)

∣∣∣∣
τ,λ,A→0

τ (y)λI (z)

= 2εμνρ∂νλ
I (x)∂ρ

{
Ca

I [λ(x)]τ (x)
}
. (10)

These are our main results [19]. [Throughout this paper, we
consider generic G, but if one considers G = U (1), one only
has to drop adjoint indices a, b, . . . = 1, 2, . . . , dim G from
our formulas.] As we mentioned in the Introduction, anoma-
lous currents (10) remain finite even after turning off the back-
ground gauge field, A = 0. One may ask how nontrivial this
fact is. Actually, as one can show, one cannot obtain nonzero
anomalous transports in (four-dimensional) QCD or QED at
A = 0 [20]. Therefore, once vectorlike external sources are
switched off, observed anomalous transports can be identified
with our current almost uniquely. Remarkably, the anomalous
current with this striking property allows us to have a chance
to detect the trance anomaly (7), as explained below.

Since expectation values of currents may include λ’s (pos-
sibly with covariant derivatives), generically nonzero correla-
tors listed above (10) are interesting to study on their own.
However, since we would like to focus on the anomalous
transport induced by the trace anomaly in this paper, we just
consider (10) from now on. Note that Ca

I depends on a theory
(namely, if one specifies a CFT, the functional is determined),
but the form of the current is universal among CFTs with the
trace anomaly (7). Said differently again, the conventional
anomalous transport goes away with vanishing vectorlike
external sources A = 0, so that it would strongly signal an
existence of the trace anomaly (7) if one finds this sort of
current. Note that the local counterterm,

∫
d3xτ (x)λI (x)JI (x),

induces a current similar to our result (10). However, the
induced current has order O(ε3) if JI depends on A. Thus up
to O(ε2) the current induced by the local counterterm can be
dropped. Therefore, our result is intact up to O(ε2) even if the
local counterterm is included.

III. DETECTING OUR ANOMALOUS CURRENT

Now, since we found our anomalous current (10) is phys-
ical, we would like to discuss its consequences and how to
detect it. All observables one has in CFTs are correlation
functions because there is no asymptotic state. Therefore we
should study correlators including the current operator jaμ.
Then we find anomalous current manifests in contact terms
of higher point functions of jaμ and scalar operators OI or
trace of the energy-momentum operator T μ

μ. For example, the
anomalous current leads to a contact term 〈 jaμ(x)T ν

ν (y)〉 �
−2iεμνρ∂νλ

I (x)∂x
ρ{Ca

I [λ(x)]δ(3)(x − y)}. In a realistic experi-
ment, it is difficult to respect the exact conformal symmetry
(due to finite size of materials, for example). So as long as
we assume conformal symmetry, the only hope to detect the
contact term is in lattice simulations. In principle, we believe
that the contact term can be detected in numerical lattice
simulations. However, since contact terms are sensitive to
regularizations, it would be difficult to detect the contact term

in lattice simulations. Therefore, in order to discuss a way to
detect our current in a more realistic experiment, we would
like to relax the assumption of the conformal symmetry.

Without conformal symmetry, one can no longer bring
results back to (conformally) flat space-times. However, as we
mentioned in Ref. [19], if the current (10) cannot be shifted
with local counterterms, it is still physical. Therefore, the
remnant of the “anomalous” current [21] can be observed
in experiments. Furthermore, because of smaller space-time
symmetry, we do have a theory [18] with nonzero trace
anomaly (7). The nonzero central charge Ca

I basically corre-
sponds to the anomalous dimension γ a

b = −ρc
I [λ]δbc(iT aλ)I

of the current operator Jaμ, where we used the operator
equation DμJaμ = −(iT aλ)I OI [see Eq. (43) of the paper].
The holography (assumed in the paper) is nowadays applied
to condensed matter physics under the name AdS/CMT cor-
respondence, and there also exist some experimental checks
(see, say, [22] for a review). Therefore employing the experi-
mental setup, we believe our anomalous current is detectable
in real materials at least in theories studied in Ref. [18].

How do the anomalous currents manifest in experiments?
Let us discuss the consequences, and a way to detect them.
We propose two places where our anomalous current gives
physical consequences; one is real materials and another is
the boundary of our observable universe. (“Confinement” of
degrees of freedom to such boundaries can be realized by
some known mechanisms such as anomaly inflow. However,
since we take the effective field theoretical approach, we do
not care how exactly the situations are realized.) Let us start
from a general consideration. In the case of G = U (1) and
assuming an existence of massless photon field a, one can
couple the anomalous current to the dynamical-photon field
embedded in A as A = a + Ā, where we interpret Ā as a
background U (1) gauge field which is sent to zero in our
setup. Then the anomalous current induces the single-photon
production. The amplitude of the single-photon production
tagged with the momentum q and the polarization ε (i)(q) is
obtained from the generating function,

iMτλ(i; q) = 〈ε (i)(q)|0〉

= −i
ε (i)μ(q)√
(2π )22q0

∫
d3xeiq·x〈 jμ(x)〉τλ. (11)

This amplitude implies that the real photon is surely emitted
from the nonzero anomalous transport. Interestingly, the pho-
ton emission (11) is certainly produced even in the absence
of vectorlike external sources in contrast to the single-photon
production driven by the conventional anomalous transport
[23]. So if one detects photons in the absence of background
gauge fields, the result suggests the photons are emitted
from our anomalous current and not others. In particular, by
manipulating background fields (possible in experiments with
real materials but difficult at the boundary of our observable
universe), one can distinguish our current from the others in
this way. Furthermore, if photons are detected in the situation,
it suggests an experimental discovery of the trace anomaly,
which has not been found theoretically yet.

In order to make the prediction (11) more precise, we
would like to manipulate background fields. We take them as
we wish in accord with defining properties such as |τ | � 1.
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(The following discussion can be repeated assuming confor-
mal symmetry.)

As a first example, let us set λI (x) = εIθ (x1)θ (l − x1)
where εI ’s are numbers of order ε and l is some length. This
choice is motivated by doping in condensed matter physics;
one can dope a material with a fermion ψ only in an interval
x1 ∈ [0, l]. Then an example of position-dependent scalar
coupling is given by a Yukawa coupling λφψ̄ψ between ψ

and a scalar field φ with λ ∼ θ (x1)θ (l − x1). Preparing more
Yukawa couplings λI , we can model the situation as λI ’s
are turned on only in the interval, λI (x) = εIθ (x1)θ (l − x1).
Adopting this choice of scalar background fields, we get

〈 ja0(x)〉τλ = 2εICa
I (ε/2)∂2τ (x)[δ(x1) − δ(l − x1)],

〈 ja1(x)〉τλ = 0, (12)

〈 ja2(x)〉τλ = −2εICa
I (ε/2)∂0τ (x)[δ(x1) − δ(l − x1)],

We would like to make three comments on this result: (i)
This result shows that (if one prepares doped materials as
we described) our anomalous current, perpendicular to the
interval x1 ∈ [0, l], is generated at the interface of doped
intervals. (ii) The form of anomalous current is independent
of models (only central charges Ca

I depend on theories), and
current necessarily exists if Ca

I is nonzero as in holographic
QFTs [18]. (iii) Even though the current is proportional to
small numbers εI , its magnitude is amplified by Dirac’s delta,
which would enable experimental detection. Consequently,
the anomalous current produces the nonzero amplitude (11). It
strongly indicates that the real-photon emission is induced at
the interfaces of, say, doped materials, which is a significant
consequence of the nonzero anomalous current independent
of the external gauge fields.

Next, we shall consider a second example with τ (x) =
τ (x0). This form is motivated by cosmology (although we
are focusing on three dimensions and not four dimensions);
in cosmology, assuming the homogeneous isotropic universe,
one usually considers a metric ds2 = dt2 − a2(t )δi jdxidx j ,
where t is the cosmic time, and a(t ) expresses the size of
the universe. Via a coordinate transformation dt = a[t (η)]dη,

the metric reduces to the conformally flat one: ds2 =
a2[t (η)](dη2 − δi jdxidx j ) (η is called the conformal time).
Identifying η = x0, we have τ (x0) = ln a[t (x0)]. We cannot
apply the setup to the bulk but to the boundary of the ob-
servable universe as follows: The (spatial) boundary of our
observable universe can be modeled by a 2-sphere with radius
runiverse. Since its curvature scaling as 1/r2

universe is negligible,
it can be approximated by the flat 2-space. Therefore, the
boundary of the observable universe (approximately) has a
conformally flat metric, and our setup is applicable. The
three-dimensional space-time has the Hubble parameter
H3d (t ) := a−1(t )da(t )/dt , which characterizes the expansion

of our universe. The three-dimensional Hubble parameter
naturally enters in the derivative of τ :

dτ (x0)

dx0
= H3d [t (x0)]a[t (x0)]. (13)

Now, let us turn to the current. Employing τ = τ (x0), one
obtains formulas; however, its physical meaning is unclear.
To draw physical meaning, we take a reference time t = t0,
and set a(t0) = 1. Typically, t0 can be taken as the current
age of the universe, which is “long” in the ordinary sense.
We consider a small deviation from the reference time, |(t −
t0)/t0| � 1. Then we have H3d [t (x0)] = ȧ(t0) + O[|(t (x0) −
t0)/t0|]. The leading term is the three-dimensional Hubble
constant: ȧ(t0) = (H3d )0. Expanding our currents in powers
of |(t (x0) − t0)/t0|, we obtain

〈 ja0(x)〉τλ =O[|(t (x0) − t0)/t0|],
〈 ja1(x)〉τλ =2∂2λ

I (x)Ca
I [λ(x)](H3d )0 + O{|[t (x0) − t0]/t0|},

〈 ja2(x)〉τλ =−2∂1λ
I (x)Ca

I [λ(x)](H3d )0+O{|[t (x0)−t0]/t0|}.
(14)

This result implies that the anomalous current is possibly
triggered by the expansion of the universe, which causes the
photon emission from the edge of the observable universe. So,
it is expected that the emitted photons mix with other sources
of radiation such as cosmic microwave background (CMB).
To see this, let us consider another set of background fields.

The final example is λI (x) = εIθ (x1)θ (l − x1) and τ (x) =
τ (x0). Then we immediately obtain

〈 ja0(x)〉τλ = 0, 〈 ja1(x)〉τλ = 0,

〈 ja2(x)〉τλ = −2εICa
I (ε/2)

da[t (x0)]

dt (x0)
[δ(x1) − δ(l − x1)].

(15)

In order to relate this result to cosmology, one can take, for
example, particles on the boundary of our observable uni-
verse as sources of photon emission. Such particles, modeled
by a 3-ball, have one-dimensional (spatial) interfaces when
projected to the boundary. Then with suitable modifications
on λI (x), our result (15) predicts currents generated at the
interfaces. Accordingly, photons are emitted at the interfaces.
The photons mix with CMB, and the scattered sources of
photons may explain fluctuations in CMB. It is intriguing to
push this consideration forward.
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