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Minimal quantum heat manager boosted by bath spectral filtering
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We reveal the potentially important role of a general mechanism in quantum heat management schemes,
namely, spectral filtering of the coupling between the heat baths in the setup and the quantum system that
controls the heat flow. Such filtering is enabled by interfaces between the system and the baths by means of
harmonic-oscillator modes whose resonant frequencies and coupling strengths are used as control parameters of
the system-bath coupling spectra. We show that this uniquely quantum-electrodynamic mechanism, here dubbed
bath spectral filtering, boosts the performance of a minimal quantum heat manager comprised of two interacting
qubits or an analogous optomechanical system, allowing this device to attain either perfect heat diode action or
strongly enhanced heat transistor action.
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I. INTRODUCTION

There has been tremendous upsurge in theoretical activity
related to heat management in quantum systems, particularly
heat flow rectification or amplification [1–19]. This activity
has been mainly motivated by interest in potential quantum
technological applications, but also by the quest for new
insights into quantum thermodynamics. However, the lack of
fundamental, general principles of quantum heat management
is underscored by the abundance of models and diverse ap-
proaches to the subject. Such principles are needed not only
for deeper conceptual understanding of quantum thermody-
namics, but also as guidance for the design of a quantum
device capable of near-perfect execution of the aforemen-
tioned functionalities, namely, heat-flow rectification, known
as heat-diode (HD) action [4,5,7–11,18,19], as well as heat-
flow amplification with negative differential heat resistance,
alias heat transistor (HT) action [12–17] (see Fig. 1).

Here we reveal the potentially important role of a general
mechanism that has hitherto been little invoked [18,19] in
quantum heat management schemes, namely, spectral filtering
of the coupling between the heat baths in the setup and
the quantum system that controls the heat flow. Such fil-
tering is enabled by interfaces between the system and the
baths by means of harmonic-oscillator modes whose reso-
nant frequencies and coupling strengths are used as control
parameters of the system-bath coupling spectra. We show that
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this mechanism (Sec. II), here dubbed bath spectral filtering
(BSF), boosts the performance of a minimal quantum heat
manager comprised of two interacting qubits or an analogous
optomechanical system, allowing this device to attain either
perfect HD action (Sec. III) or enhanced HT action (Sec. IV).
We stress that the BSF is a genuinely quantum electrodynamic
effect, which stands in contrast to most mechanisms employed
in existing quantum heat management schemes that have clas-
sical counterparts. Feasible experimental setups are proposed
(Sec. V) and the relevant derivations are outlined (Appendixes
A–D)

II. HEAT MANAGEMENT WITH BSF

Consider a multilevel system S that is sandwiched between
heat baths on its left (L) and right (R) sides. If these baths
differ only in temperature, can such a system control or
manage the heat flow between the baths? The expressions
for the heat currents through the system are given in the
Markovian approximation by [20–22]

Jα = Tr{(Lαρ)HS}. (1)

Here, Lα is the Lindbladian corresponding to the bath α,
where α = L, R and the time evolution of ρ is given by

ρ̇ = LL(ρ) + LR(ρ). (2)

The Lindbladians have the form

Lα =
∑

i

[
Gα (ωi )D̂

[
Aωi

] + Gα (−ωi )D̂
[
A†

ωi

]]
, (3)

where for any pair of noncommuting operators O and O† the
dissipator is given by

D̂[O] = 1
2 (2OρO† − O†Oρ − ρO†O), (4)
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(a)

(b)

FIG. 1. Schematic diagram of (a) heat diode (HD), (b) heat
transistor (HT) based on two coupled two-level systems (TLS) or
two harmonic oscillators with an anisotropic interaction strength g.
For the HD, the frequency of the subsystem “L” (“R”) is ωL (ωR),
and it is coupled to a thermal bath at temperature TL (TR). For the HT,
the subsystem “a” is coupled to two thermal baths at temperatures TE

and TC , while the subsystem “b” is coupled to a single thermal bath
at temperature TB. These baths are independent and may have any
distinct non-negative temperatures.

and Aωi and A†
ωi

are the lowering and raising operators
corresponding to the eigenstates of the system with energy
difference ωi. The system-bath coupling spectra are given by
[22–25]

Gα (ω) =
⎧⎨
⎩

κα (ω)[1 + n̄α (ω)] ω > 0,

κα (|ω|)n̄α (|ω|) ω < 0,

0 ω = 0.

(5)

Here, n̄α (ω) = 1/[ exp (ω/Tα ) − 1] is the mean excitation
number (number of quanta) in the thermal baths and κα (ω)
is the coupling strength of the system to the respective bath.

Let us assume that the two heat baths have the same
characteristics, so that LL and LR differ only in temperature.
The minimal model for S suitable for heat management is then
[26]

Ĥ1 = ωL

2
σ̂ z

L + ωR

2
σ̂ z

R + gσ̂ z
Lσ̂ x

R, (6)

where z and x label the corresponding Pauli matrices. Upon
diagonalizing this Hamiltonian, we obtain

H̃1 = ωL

2
σ̃ z

L + �

2
σ̃ z

R, (7)

where � =
√

ω2
R + 4g2. The transformed Pauli matrices are

denoted by σ̃ β
α , where β = x, y, z. The subsystems L and

R are coupled to corresponding baths. In this transformed

basis, the Lindblad superoperator for the right-hand bath reads
(Appendix A)

L̂R = GR(�) cos2 θD̂[σ̃−
R ] + GR(−�) cos2 θD̂[σ̃+

R ], (8)

with θ = arctan(2g/ωR). Thanks to θ being nonzero, the
Lindblad superoperators are not L-R interchangeable even if
the temperatures are interchanged.

Another minimal model for heat management in this sce-
nario is the optomechanical system (OMS) associated with
photon-phonon interactions [24,27]

Ĥ2 = ωLâ†â + ωRb̂†b̂ − gâ†â(b̂ + b̂†). (9)

In the limit of small excitation numbers, this model becomes
isomorphic to the two-qubit model, so that it suffices to
consider the latter in what follows.

The tacit assumption behind all treatments of quantum
heat management thus far has been that the couplings κα (ω)
are spectrally flat, an assumption dubbed flat spectral density
(FSD). We stress here that FSD can put severe constraints on
heat control by coupled subsystems, as in the minimal models
above. This is explained in detail in Secs. III and IV. Can one
overcome these restrictions and attain better heat control for
weakly asymmetric L-R subsystems?

The remedy proposed here is bath-spectral filtering (BSF).
Our central point is that the ability to controllably shape
κα (ω), thus abandoning the FSD constraint, provides a key
resource for heat management. This ability comes about if
each bath is supplemented with a harmonic-oscillator (HO)
mode that serves as an interface between the bath and the
respective subsystem, e.g., qubit. As first shown in Ref. [28]
and subsequently employed in the analysis of quantum heat
machines [23–25,29], a filter HO mode with resonant fre-
quency ω̃α that is coupled to the qubit with strength ηα and
to the bath via coupling spectrum Gα (ω), yields the following
modified (filtered) qubit-bath coupling spectrum:

G̃α = ηα

π

(πGα (ω))

[ω − (ω̃α + �α (ω))]2 + (πGα (ω))2
, (10)

where Gα is the unfiltered coupling spectrum and

�α (ω) = P

[ ∫ ∞

o
dω′ Gα (ω′)

ω − ω′

]
, (11)

P, �α (ω) being, respectively, the principal value and the
bath-induced Lamb shift. Similar results are shown in
Appendix B to hold for OMS. The filtered spectrum [Eq. (10)]
can be drastically different from its original (unfiltered) coun-
terpart. In general, the spectral shape of the filtered spectrum
is a skewed-Lorentzian [28]. In the case of unfiltered FSD, the
filtered counterpart is a regular Lorentzian [18,19]

G̃α = ηα

π

κ2
α

(ω − ωα )2 + (πκα )2
, (12)

whose width and center are, respectively, the controllable κα

and ωα . However, Eq. (12) may not suffice for our purposes,
since the tails of a regular Lorentzian fall off too slowly
with frequency. Instead, we require BSF that yields a strongly
asymmetric skewed-Lorentzian with fast spectral drop-off on
one wing.

In the case of coupled qubits, one filtered bath couples to
the transition at frequency �, while the other to the transition
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at frequencies ωL and ωL + �, provided the coupling spectra
are filtered to be skewed-Lorentzians that satisfy

GL(ωL + �) � GR(ωL + �),

GL(ωL ) � GR(ωL ),

GL(�) � GR(�). (13)

Only such BSF here can separate the coupling spectra of the
L and R subsystems to their respective baths.

III. RECTIFICATION WITH BSF

Heat flow rectification between two baths [4,5,7–11] is
quantified by the rectification factor

R = |JR(TR, TL ) + JR(TL, TR)|
Max(|JR(TR, TL )|, |JR(TL, TR)|) , (14)

where JL (TR, TL) is the heat current for TL > TR. The recti-
fication factor varies between 1 for perfect rectification and
0 for complete reciprocity of the heat flows. It is clear from
Eq. (3) that if LL and LR differ only in temperature [the mean
n̄(ω)], then the L and R heat currents are interchangeable
when the respective temperatures are interchanged, so that
complete heat reciprocity obtains. In order to have nonre-
ciprocity, we must introduce asymmetry between the L and R
Lindblad superoperators, independently of the respective tem-
peratures. One way to incur such asymmetry is by composing
the multilevel system of two subsystems with L-R asymmetric
interaction. A minimal model for such a composite system is
given in Eq. (6).

The FSD puts severe restrictions on the rectification. This
can be seen upon considering the possible channels that
contribute to global heat transfer, i.e., heat transfer between
the baths in Fig. 2. Similar energy cycles can be identified
for OMS, as in the example shown in Figs. 7(a)–7(b). The
rectification factor falls short of 1 depending on the coupling
strength between the subsystems, the energy mismatch of
the subsystems and the bath temperatures. In particular, for
symmetric (identical) qubits, the rectification factor is typi-
cally much less than 1, as shown in Appendix C. However,
conditions [Eq. (13)] ensure that only one bath contributes
to the heat flow in either direction, and thus leaves only one
unidirectional heat-transfer channel (Raman cycle) intact in
Fig. 2. This ensures perfect rectification, regardless of whether
the qubits are identical (resonant) or what the magnitude of
g is (Fig. 3), as detailed in Appendix C. By contrast, FSD or
regular Lorentzian BSF allow for other, bidirectional channels
due to spectral overlap of the two baths and therefore can
yield weak rectification. There are, however, situations where
skewed-Lorentzian BSF is not mandatory for rectification
(Appendix C).

IV. HEAT-TRANSISTOR AMPLIFICATION WITH BSF

A three-terminal heat-transistor (HT) setup is comprised
of three baths dubbed base (B), emitter (E) and collector (C)
that are coupled via a controller system S (Fig. 1), where the
frequency of subsystem A (B) is labeled by ωa (ωb). The HT
functions properly if a small change of the B temperature
results in a massively amplified heat flow through E or C. The

(a)

(c)

(b)

FIG. 2. The process that rectifies heat current in an HD based on
two coupled TLS. In (a), the left bath is hotter than the right bath,
and in (b), it is the opposite. The dashed and dotted lines correspond
to transitions induced by the right and left baths, respectively. Solid
arrow thickness represents the transition rate. The transition at ωL

is weak due to the choice of a filtered left bath spectrum, whereas
the right bath has FSD. Heat can flow from left to right via the
only possible Raman cycle (4124) in (a), whereas the opposite cycle
(4214) in (b) is inhibited because the cold bath cannot excite the
|4〉 → |2〉 transition. Accordingly, there is no heat flow in panel (b),
and our HD gives perfect rectification. (c) Filtered spectral response
function of the L bath with G(ωL − �) = 0 is a strongly skewed-
Lorentzian obtained according to Eqs. (10) and (13).

amplification factor is [12–17]

αE ,C = ∂JE ,C

∂JB
, (15)

or equivalently, upon using energy conservation, as

αE =
∣∣∣∣ ∂ (JE )

∂ (JE + JC )

∣∣∣∣ =
∣∣∣∣ RE

RE + RC

∣∣∣∣. (16)

Here, RE = (∂JE/∂JB)−1
TE=const

and RC = −(∂JC/∂JB)−1
TC=const

are differential thermal resistances. Similar relations can be
written for αC . Amplification factors larger than 1 require,
according to Eq. (16), negative differential thermal resistance
(NDTR), RE × RC < 0.

The question we pose here is: which mechanisms ensure
that the amplification factors exceed 1 and that NDTR holds
in the minimal models considered above? For two coupled
qubits under appropriate BSF only 2 (Raman) cycles and
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(a)

(b)

FIG. 3. Rectification R as a function of the (a) coupling strength
g, (b) temperature TL for the coupled TLS. The solid and dashed
lines are for the filtered and unfiltered L bath spectrum, respectively.
The L bath has filtered spectral density as shown in Fig. 2(c), and
the right bath has FSD. The shaded region is for ωL � �. Parame-
ters: ωL = 1, ωR = 0.1, κL = κR = 0.001, (a) TL = 2, TR = 0.2, and
(b) g = 0.35, TR = 0.5. All the system parameters are scaled with
ωL/2π = 10 GHz.

their inverse (Fig. 4) are open channels for heat flow between
all three baths, whereby energy absorption from B results
in energy transfer from E to C [Fig. 4(a)] or vice versa
[Fig. 4(b)]. The heat currents are then given by (Appendix D)

JE = ω−K, JC = −ωaK, JB = �K, (17)

where ω− := ωa − �, K = s2�T, s = 2g/�. The expression
for the factor �T in the steady-state currents under the chosen
BSF (Appendix D) shows that JC, JE , and JB are associated
with the transition frequencies ωa, ω−, and �, respectively.
For weakly coupled qubits, we have ωa > ω− � �, so that,
accordingly, JC,JE � JB, and the amplification factors be-
come αE = ω−/�, and αC = −ωa/�. This choice of the BSF
ensures the optimal HT regime (Appendix D), wherein small
increase in TB results in only slight increase of JB, but in large
increase of JE and JC . The heat currents are shown in Figs. 5
and 10 for the bath spectral densities in Figs. 4(c) and 9(c).

Energy cycles similar to those presented in Fig. 4 de-
scribe heat amplification in the case of OMS, as explained
in Fig. 7(c). We note that, for OMS, ωb = �, and Eq. (17)
only holds in the weak coupling regime g2〈b̃†b̃〉 � ω2

b, where
the transformed creation (annhilation) bosonic operators b̃†(b̃)
are given in Appendix A. In OMS based on optical photons,
the photon frequency greatly surpasses the phonon frequency,
ωa � ωb, consequently, we can get very large heat amplifi-
cation. However, for microwave photons the frequency may
be close to that of the phonons, leading to suppressed heat
amplification.

Our main point is that the amplification factor, which
depends on the two-qubit coupling strength g, can be strongly
boosted by resorting to BSF, as in the case of rectification.
The amplification boost can be understood by noting that
in the optimal HT regime (Fig. 4) we have, from energy

(a)

(c)

(b)

FIG. 4. The processes involved in optimal HT heat transfer via
coupled TLS under BSF. The choice of skewed-Lorentzian filtered
bath spectra for E and C baths is shown in panel (c), whereas the
B bath has FSD. In panels (a) and (b) the Raman cycles (4324) and
(3213), respectively, and their inverse are the only allowed cycles for
heat transfer. The dashed, dashed-dotted and solid arrows represent
the transitions induced by the C, E, and B baths, respectively. All
other cycles, including four-wave mixing cycles, are prohibited. The
B current is associated with the lowest transition frequency (�) in
the system. The horizontal arrows denote the heat currents JE , JC ,
and JB.

FIG. 5. HT amplification αE as a function of the base tempera-
ture TB for coupled TLS. The solid, dashed, and dot-dashed lines are
for BSF with the choice of bath spectra shown in Fig. 4(c), Fig. 9(c),
and unfiltered baths, respectively. BSF gives rise to dramatic boost
in amplification. Parameters: ωa = 1, ωb = 0.01, g = 0.005, κC =
κE = κB = 0.001, TE = 1, and TC = 0.01.
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conservation, opposite heat flows from E and C,

|JC | ≈ |JE |. (18)

To avoid mutual cancellation of these heat flows, which
can strongly inhibit the amplification factors αE and αC

(Appendix D), we must spectrally isolate JC and JE . To this
end, we should couple the transition frequencies associated
with the E and C heat flows to separate baths: The E bath
should couple only to the transition at frequency ωE = ωa,
and the C bath only to that at ωC = ωa − �. This condition
amounts to the separation of the C and E coupling spectra
by BSF, which again corresponds to skewed-Lorentzians with
weakly overlapping tails (Fig. 4). By contrast, since the B
current feeds on the much lower � and is much smaller than
the other currents, it is unaffected by BSF: the B bath may
conform to FSD.

The amplification boost due to BSF can be dramatic, as
shown in Fig. 5. Similar effect is obtained for the amplification
if the transitions at the frequencies �, ωa and ωa + � are
induced by the B, E, and C baths, respectively.

V. EXPERIMENTAL REALIZATIONS

The advantageous HD or HT schemes boosted by BSF
described here can be experimentally realized in a number
of setups that may employ analogs of the quantum optical
methods proposed here and in Ref. [11].

(A) Solid-state setups, may be based on qubits that are
NV centers or similar defects with optical and microwave
transitions. These qubits can be embedded in a bimodal
cavity. Each qubit can be near-resonantly coupled to another
cavity mode that has an antinode at its location. That cavity
mode acts as a filter coupling the qubit to one or another
thermal bath whose temperature is set by the respective pair
of mirrors, as shown in Fig. 6(a). Two-qubit coupling can
be mediated by their near-resonant dipole-dipole interaction
[30] whose separation- dependent strength may be drastically
modified in cavities [31], waveguides [32,33], or in peri-
odic structures with photonic band gaps [34–37]. Heat-flow
rectification can be observed upon interchanging the mirror
temperatures. When the cavity finesse is high enough, BSF
takes place, the bath spectra associated with the two high-Q
modes have suppressed overlap, and rectification is boosted.
A HT configuration can be realized by exposing all qubits to
the same thermal radiation at a much lower (microwave or
far-infrared) frequency that plays the role of the base bath B
[Fig. 6(a)]. This configuration can exhibit skewed-Lorentzian
BSF when the qubits are placed within distributed Bragg
reflectors (DBR), as shown in the Fig. 6(b).

(B) Optomechanical systems with spectrally structured
phononic baths engineered by sonic DBR exhibit similar
BSF. They can rely on recent progress in phononic bandgap
materials and phononic cavities [38–47].

(C) Electronic circuits composed of transmon qubits in
superconducting cavities [48] have been identified as pos-
sible HD [19]. The analog of a mechanical mode in such
circuits may be implemented by a transmission line and
optomechanical-like coupling can be induced between super-
conducting microwave resonators [49,50].

(a)

(b)

FIG. 6. (a) Realization of the model in Fig. 1 for coupled qubits
in a bimodal cavity. The qubits (a and b) are coupled via dipole-
dipole interaction with separation dependent coupling strength g that
can be engineered in a cavity. The qubits are coupled to the cavity
modes that act as BSF: filters coupling the qubit a (b) to the thermal
bath at temperature TC (TE ). A heat insulating strip (black) allows
the coexistence of two regions with different temperatures. For HT
configuration, the qubits are exposed to thermal radiations at a much
lower frequency that plays the role of base bath B at temperature
Tb. (b) Realization of the same model with skewed-Lorentzian BSF
inside distributed Bragg reflectors (DBR). The coupled qubits (a and
b) are placed at the crossing region of the two cavity fields.

VI. CONCLUSIONS

The analysis presented here has underscored the ability of
bath spectral filtering (BSF) to serve as a resource for boosting
the performance of a multifunctional heat manager, particu-
larly as heat diode (HD) or heat transistor (HT), when this
manager is based on a quantum heat-control system with the
minimal number of degrees of freedom. The key to optimize
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HD performance, i.e., achieve perfect heat-flow rectification,
is asymmetry in the coupling of the control system to left-and
right-hand baths. Such asymmetric coupling between left and
right hand subsystems can be incurred via the coupling of
two subsystems whose minimal models are anisotropic two-
qubit coupling or optomechanical system (OMS) coupling.
However, restrictions on the coupling strength imply that
adequate asymmetry is not always attainable, particularly for
identical qubits or resonant OMS.

Remarkably, BSF that yield strongly skewed-Lorentzian
bath lineshapes has been shown here to enable perfect rec-
tification of an HD regardless of such restrictions. Equally
remarkable is the finding that skewed-Lorentzian BSF applied
to the collector and emitter baths can boost HT amplification
in the optimal regime where the base heat current is very
small, so that the collector and emitter heat currents are
nearly equal in magnitude and flow in opposite directions.
For suitable system parameters, the proposed setup in Fig. 1
can also be employed as a thermal switch [9] or a heat valve
[10], and these functionalities may also be strongly boosted
by skewed-Lorentzian BSF. Essentially, the beneficial role
of such BSF in quantum heat management is akin to that
previously predicted for qubit-based minimal heat engines and
refrigerators [22–25,29,51] that must be coupled to spectrally-
separated hot and cold baths in order to attain high efficiency
or power.

The guidelines for engineering the skewed-Lorentzian BSF
in Eq. (11) to ensure HD and HT performance boost [as
in Eq. (14)] are essentially as follows: Introduce a cutoff
or at least sharp drop-off on the required spectral wing
of the Lorentzian by appropriately selecting the filter-mode
frequency ω̃α and the Lamb shift in Eq. (12). In general,
distributed Bragg reflectors (DBR) possess band gaps that
allow for such engineering [28,33–37].

The predicted BSF boost of quantum heat management
may open a new avenue in our ability to pursue advantageous
thermodynamic functionalities based on quantum systems, by
exploiting hitherto untapped resources. As opposed to pre-
vailing resources employed in quantum HT and HD schemes
that have classical analogs, the BSF is a uniquely quan-
tum mechanical resource: it stems from the renormalization
of the interaction between the system and the bath and is
manifest in their dissipative rate of energy exchange as well
as in the bath-induced dispersive (Lamb) shift [28,35] (see
Appendix B).
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APPENDIX A: MASTER EQUATION DERIVATION

Here we present the master equation for the cases consid-
ered in the main text. The Hamiltonian for the three indepen-
dent baths is given by

Ĥα =
∑

k

ωkâ†α
k âα

k , (A1)

where â†α
k (âα

k ) are the creation (annihilation) operator of the
kth mode of the bath α = E ,C, B. The system bath interaction
Hamiltonian has the form

HSB = ŝa ⊗
∑

k

gi
k

(
âi

k + â†i
k

) + ŝb ⊗
∑

k

gB
k

(
âB

k + â†B
k

)
,

(A2)

where i = E ,C and the ŝa (ŝb) annihilation operator pertains
to the right (left) subsystem. In Sec. III, for the discussion of
rectification, subsystem a (b) is labeled by L (R) and the bath
temperature TE (TB) is relabeled as TL (TR).

We next consider the cases of two coupled two-level sys-
tems( TLS or qubits) and two coupled harmonic oscillators.

(i) For the coupled TLS, ŝa,b are σ̂ x
a,b Pauli operators in

Eq. (A2). The system Hamiltonian given in Eq. (6), can be
diagonalized by the unitary transformation

U := exp
(

− i
θ

2
σ̂ z

a σ̂
y
b

)
, (A3)

where the angle θ is defined as sin θ := 2g/� and cos θ :=
ωb/� such that � :=

√
ω2

b + 4g2. The diagonalized Hamilto-
nian takes the form

H̃qq = ωa

2
σ̃ z

a + �

2
σ̃ z

b , (A4)

and the transformed operators read

σ̃ z
a = σ̂ z

a , (A5)

σ̃ z
b = cosθσ̂ z

a + sinθσ̂ z
a σ̂ x

b . (A6)

The eigenstates of the diagonalized Hamiltonian are repre-
sented by | j〉, j = 1, 2, 3, and 4 with their correspond-
ing eigenvalues ω1 = 1

2 (ωa + �), ω2 = 1
2 (ωa − �), ω3 =

1
2 (−ωa + �), and ω4 = 1

2 (−ωa − �), respectively. In order
to derive the master equation, we transform the operators to
the interaction picture in which

σ̂ x
a (t ) = cos θσ̃−

a e−iωat − sin θσ̃+
a σ̃−

b e−i(�−ωa )t

+ sin θσ̃−
a σ̃−

b e−i(�+ωa )t + H.c., (A7)

σ̂ x
b (t ) = cos θσ̃−

b e−i�t + 1
2 sin θσ̃ z

a σ̃ z
b + H.c. (A8)

The master equation in the interaction picture evaluates to

˙̂ρ = (L̂E + L̂C + L̂B)(ρ̂), (A9)

where the superoperators L̂αρ̂ with α = E , C, and B, de-
scribing the quantum dynamics of the system that interacts
with the baths, are of the form [11]

L̂o,i = Gi(ωa)c2D̂[σ̃−
a ] + Gi(−ωa)c2D̂[σ̃+

a ], (A10)

L̂q,i = Gi(ωq)s2D̂[w̃q] + Gi(−ωq)s2D̂[w̃†
q], q = ±1,

L̂B = GB(�)c2D̂[σ̃−
b ] + GB(−�)c2D̂[σ̃+

b ], (A11)

where L̂i = L̂o,i + L̂q,i, i = E ,C, w̃1 = σ̃−
a σ̃−

b , w̃−1 =
σ̃−

a σ̃+
b , ω±1 = ωa ± �, c = cos θ , and s = sin θ .

(ii) For the optomechanical system (OMS) (see Fig. 7),
ŝa = (â + â†), ŝb = (b̂ + b̂†), the unitary transformation

Uom := exp(βâ†â(b̂† − b̂)), (A12)
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(a)

(c)

(b)

FIG. 7. [(a) and (b)] Examples of the processes involved in heat
transfer via an OMS. In the eigenstates |na, mb〉, na = 0, 1, 2, . . .

corresponds to the number of photons, and mb to the number of
phonons in the nth photon subspace. As for coupled TLS, the
cold bath may not be able to excite |na, mb + 1〉 → |na + 1, mb + 1〉
transition shown in (b), resulting in the rectification of heat flow
from left to right. (c) shows examples of processes that transfer heat
between all three baths. The base heat current JB is associated with
the lowest transition frequency in the system.

diagonalizes the optomechanical Hamiltonian and takes the
form

H̃om = ωaã†ã + ωbb̃†b̃ − g2

ωb
(ã†ã)2. (A13)

The eigenstates of this Hamiltonian are |na, mb〉, where mb

are the number of phonons in the nath photon subpace. The
transformed operators in the interaction picture are given by

â(t ) = ãe−iωat
∞∑

n=0

βn(b̃e−iωbt − b̃†eiωbt )n

≈ ãe−iωat + βãb̃e−i(ωa+ωb)t − βãb̃†e−i(ωa−ωb)t ,

b̂(t ) = b̃e−iωbt + βã†ã. (A14)

The master equation in the interaction picture is the one given
in Eq. (A9). For the OMS, the dissipators in Eqs. (A10) and
(A11) have c = 1, s = g/ωb, and the Pauli operators σ̃−

a (σ̃−
b )

are replaced by the bosonic operators ã (b̃).

APPENDIX B: BSF FOR OMS

Generically, an optomechanical-like interaction between
two subsystems labeled with A and B is of the form

H = ωaa†a + ωbb†b + ga†a(b + b†), (B1)

where a, b and a†, b† are the annihilation and creation ladder
operators of excitations in corresponding subsystems. The
excitation frequencies are denoted by ωa, ωb, and g stands

for the coupling coefficient. Subsystem A consists of either
spins or bosons, while subsystem B is assumed to be always
bosonic. Both subsystems are attached to their respective ther-
mal reservoirs, which are modeled as ensembles of harmonic
oscillators described by

Ha-bath =
∑

q

ηa(q)(a†aq + aa†
q), (B2)

Hb-bath =
∑

q

ηb(q)(b†bq + bb†
q), (B3)

where the rotating wave approximation is employed and the
system-bath coupling strengths ηa, ηb are assumed to be weak
relative to ωa, ωb. After a canonical transformation (similar
to the Frölich polaron or the Schrieffer-Wolff transformation)
with the unitary U = exp (S), where

S = g

ωb
a†a(b† − b) (B4)

the system Hamiltonian changes to H ′ = U †HU and reads

H ′ = ωaa†a + χ (a†a)2 + ωbb†b (B5)

and the system-bath interactions become

H ′
a−bath =

∑
q

ηa(q)(a†eḡ(b†−b)aq + H.c.), (B6)

H ′
b−bath =

∑
q

ηb(q)(b†bq + bb†
q)

+
∑

q

ḡηb(q)a†a(bq + b†
q), (B7)

where ḡ = g/ωb is introduced for brevity. For simplicity,
we here assume ωb � g so that we can ignore sideband
contributions in the system-bath interactions. In addition, we
will neglect the Kerr-type squeezing term in the transformed
system Hamiltonian. The spectral response function of the
bosonic bath coupled to a bosonic system, when the bath is
spectrally structured, e.g., has band gaps, can be calculated
analogously to that of a two-level atom in such a structured
bath, e.g., in a photonic band gap material, where a skewed-
Lorentzian response function has been found [33]. For a
harmonic oscillator coupled to a bosonic bath,such studies
are conspicuously absent,with one notable exception [52]. We
here sketch a simplified derivation of the spectral response in
the case of a fully bosonic system-bath interaction using the
resolvent operator method. The resolvent operator, or Green
function, method has been developed for sequential decay
[53–55] and applied to quantum optical systems [56–58]. It
has been subsequently generalized to structured environments
subsequently [28]. Let us first write the Hamiltonian of our
isolated, reduced problem as

H = H0 + V, (B8)

where

H0 =
∑

n

ω(n + 1/2)|n〉〈n| +
∑

q

ωq(b†
qbq ), (B9)

V =
∑

nq

ηnq(|n + 1〉〈n|bq + |n〉〈n + 1|b†
q ). (B10)
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We look for the broadening and shift of each energy level of
the quantum oscillator system. For that we assume the system
is prepared in the initial state

|I〉 = |n〉|0q〉 = |n, 0q〉, (B11)

denoting the vacuum state of the bath modes as |0q〉. The
interaction V can couple the initial state to the state

|Bq〉 = |n − 1〉|1q〉 = |n − 1, 1q〉. (B12)

The eigenvalues of the states |I〉 and |Bq〉 are given by

ωI = ω(n + 1/2), (B13)

ωBq = ω(n − 1/2) + ωq. (B14)

The equation for the resolvent operator R(z) is given by [35]

(z − H0)R(z) = I + V R(z), (B15)

where I is the unit operator. Taking the matrix element of
Eq. (B15) 〈0q, n|R(z)|n, 0q〉 = Rn;n we find

[z − ω(n + 1/2)]Rn;n = 1 +
∑

q

ηn−1,qRn−1,1q ;n. (B16)

This suggests that we need an equation for the matrix element
Rn−1,1q ;n, too. Similarly then we find

[z − ω(n − 1/2) − ωq]Rn−1,1q ;n

= ηn−1,qRn;n + ηn−2,qRn−1,1q ;n−2,2q . (B17)

The last term can be used for improving the perturbative ex-
pansion by systematically iterating the recursive relation. Here
we will be content with the lowest order expression and drop
the second order terms in interaction strength. Substituting
Rn−1,1q ;n from Eq. (B17) into Eq. (B15), we get

Rn;n = 1

z − ω(n + 1/2) − Wn(z)
, (B18)

where the so-called shift-width function is identified to be

Wn(z) =
∑

q

η2
n−1,q

z − ω(n − 1/2) − ωq
. (B19)

At z = ω(n + 1/2) + iε, the shape is Lorentzian

W (0)
n =

∑
q

η2
n−1,q

ω − ωq + iε
. (B20)

This expression has a similar form to that obtained for a two-
level atom embedded in a bosonic bath [33]. Calculating W (z)
in the complex-z place by contour integration with the residue
theorem (principal value integration) over a contour just above
the real axis (−∞,∞) one finds the real part of the response,

which is responsible for the bath-induced Lamb shift of the
nth level, �n(ω). The corresponding imaginary part of the
response yields the nth level width �n. Due to the similarity
with the two-level atom calculation [33], we will only present
the key results. The spectrally structured character of the
environment (bath) enters the expression through the density
of states D(ωq) and the dispersion relation of ωq, when the
summation over bath modes is replaced by an integral under
continuum approximation.

Wn(z) =
∫

dωq
Gn(ωq)

z − ω(n − 1/2) − ωq
. (B21)

Here,

Gn(ωq) =
∑

σ

∫
d�qD(ωq)η2

n−1,q, (B22)

is the spectral response function of the phonon bath. The
solid angle for the quasimomentum q is denoted by �q.
Substituting W 0

n (ω) = �n(ω) + iGn(ω) into Rn;n and taking
the imaginary part yields the quantum(photon or phonon)
emission probability, or the bath spectrum, as

G̃n := 1

π

πGn(ω)

[(ω − (ω(n + 1/2) + �n(ω))2 + (πGn(ω))2]
,

(B23)

where 1/π is introduced for a skewed-Lorentzian function
expression. We may conclude that both photonic or phononic
spectrally structured baths would act as a bandpass filter to
yield a skewed-Lorentzian for a harmonic oscillator system,
similarly to the case of a two-level atom [23].

APPENDIX C: RECTIFICATION WITH BSF

For the choice of bath spectra shown in Fig. 2(c), the master
equation for the coupled TLS in the dressed state basis | j〉 is
given by

LL(ρ) = s2�L
14(|4〉 〈4| − |1〉 〈1|) + c2�L

24(|4〉 〈4| − |2〉 〈2|),
LR(ρ) = c2�R

12(|2〉 〈2| − |1〉 〈1|). (C1)

Here, c = ωR/�, s = 2g/�, and

�α
i j = καωi j[(1 + n̄α (ωi j ))ρii − n̄α (ωi j )ρ j j], (C2)

where n̄α is defined in Eq. (5). The steady-state heat current
can be evaluated by noting, LL + LR = 0, and �α

i j = −�α
ji,

and given by

JL = −�c2�, JR = �c2�, (C3)

where � = �L
14 = �R

21. The expression for � is cumbersome.
For κL = κR = κ and ωL = �, it reads as

� = 2κ�2c4(ex − ey)

−c2(1 + e−x − 2ex − e2x + 3e−x+y) − 2s2(−1 + e−x + ex − e−2x − ey + e−x+y)
, (C4)

where x = �/TL and y = �/TR. The corresponding heat cur-
rent expressions for the unfiltered bath spectra are not pre-
sented here due to their cumbersome form.

There can be situations where BSF is not mandatory for
rectification, as in Fig. 8, where the R bath is only coupled
to the transition at the frequency � which is much less than
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(a)

(b)

FIG. 8. Rectification R in the HD of Fig. 2, (a) as a function
of the coupling strength g and (b) as a function of the left bath
temperature TL . The solid and dashed lines are for coupled TLS,
and OMS, respectively. The left bath has filtered spectral density
as shown in Fig. 2(c), and the right baths has FSD. In (a), BSF
ensures perfect rectification for any g. In (b), rectification is perfect
unless temperature gradient is small. Parameters: ωL = 1, ωR = 0.1,
κL = κR = 0.001, (a) TL = 2, TR = 0.02, and (b) g = 0.01, TR = 1.
All the system parameters are scaled with ωL/2π = 10 GHz.

the frequencies ωL, ωL − �, and ωL + �, whereas the L bath
is coupled to the transitions with frequencies ωL and ωL + �.
Therefore, when we change the bath temperatures, the cold
bath temperature (here R bath temperature) is not sufficient to
induce transitions except at the frequency �. Without BSF, the
other possible global cycle is associated with the transitions
at the frequencies ωL, ωL − � by the L bath and � by the
R bath. For the parameter choice in Fig. 3, as the R bath
temperature cannot induce the transition even at the frequency
ωL − � (as it is much higher than �), there is no significant
effect of BSF on the rectification. By contrast, for ωL ∼ �,
the cold bath may able to induce transitions at ωL − � that
results in the decrease of heat rectification. In this case, BSF
drastically improves the rectification if we select our L bath
spectrum such that, the transition ωL − � is either completely
filtered out or at least drastically suppressed, as in the example
of Fig. 2.

APPENDIX D: AMPLIFICATION WITH BSF

For the choice of bath spectra shown in Fig. 4(c), the master
equation for the coupled TLS in the diagonalized basis | j〉 is

(a) (b)

(c)

FIG. 9. (a) The possible transitions induced by the three baths
under suitable BSF. The filtered bath spectra are presented in (c).
The solid, dashed, dot-dashed transitions are induced by the base,
emitter and collector baths, respectively. The slashed lines represent
direct transfer of heat between the emitter and the collector without
passing through the base. (b) An example of an energy cycle that
transfers the heat between the three baths. It shows that �E

32 and �E
24

have opposite signs.

given by (in the notation of Appendix C)

LE (ρ) = s2�E
23(|3〉 〈3| − |2〉 〈2|),

LC (ρ) = c2�C
13(|3〉 〈3| − |1〉 〈1|) + c2�C

24(|4〉 〈4| − |2〉 〈2|),
LB(ρ) = s2�B

12(|2〉 〈2| − |1〉 〈1|) + s2�B
34(|4〉 〈4| − |3〉 〈3|).

(D1)

The steady-state heat currents are given by

JE = ω−s2�T, JB = �s2�T, JC = −ωas2�T, (D2)

where ω− = ωa − �, and note that the emitter and base heat
currents are in the opposite direction to the collector current.
The exact expression for �T is cumbersome. In the limit TE →
∞, it is simplified to the form

�T = c2γEγCγB(e�/TB − eωa/TC )

c2γEγB(1 + e�/TB )(1 + eωa/TC ) + s2γE [eωa/TC γB + e�/TB (γE + eωa/TC (γE + γB))]
, (D3)

where

γE = ω−κE n̄(ω−), γC = ωaκcn̄(ωa), γB = �κcn̄(�).

(D4)

The amplification factors in this case evaluate to

αE = ∂JE

∂JB
= ω−

�
, αC = ∂JC

∂JB
= −ωa

�
. (D5)
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(a) (b)

(c) (d)

FIG. 10. Amplifier: (a) and (b) present the steady-state heat
currents J , (c) and (d) amplification factors α, as a function of the
base temperature TB, for the coupled TLS, and the OMS, respectively.
In (a) and (b), solid, dashed, and dot-dashed lines are for JE , JC , and
JB, respectively. In (c) and (d), solid and dot-dashed lines are for αE

and αC , respectively, in addition, the emitter and collector baths have
filtered spectral densities as shown in Fig. 4(c), and the base has FSD.
Parameters: ωa = 1, ωb = 0.01, g = 0.005, κC = κE = κB = 0.001,
TE = 1.1, and TC = 0.1.

For the selection of the baths spectra shown in Fig. 9(c),
the possible transitions induced by the baths are shown in
Fig. 9(a), and the steady-state heat currents in this case are

given by

JB = �s2�1,

JE = ω−s2�1 − ωac2�2,

JC = −ωas2�1 + ωac2�2, (D6)

where �1 := �E
32 and �2 := �E

13 + �E
24. For the same system

parameters, this choice of baths spectra allows us, as com-
pared to Fig. 4(c), more energy cycles to transfer heat between
the baths, including direct transfer of heat between emitter
and collector, which is indicated by slashed lines in Fig. 9(a).
This can also be seen by comparing Eqs. (D2) and (D6),
and noting that �1 and �2 have always opposite signs. To
elaborate on this point, we consider an energy cycle shown
in Fig. 9(b), which shows that �C

24 > 0, and to transfer the
heat directly between collector and emitter �E

24 < 0. A similar
cycle can be considered to show that if �C

13 > 0 then �E
13 < 0.

Consequently, in all possible cycles, �1 and �2 must have
opposite signs, which results in the increase of heat currents
in the system compared to Eq. (D2). The amplification factors
in this case is given by

αE = ω−
�

− ωac2

�s2

∂�2

∂�1
, αC = −ωa

�
+ ωac2

�s2

∂�2

∂�1
. (D7)

Heat amplification is reduced for the choice of bath spectra
shown in Fig. 9(c) as compared to the case presented in
Fig. 4(c). This can be seen by comparing Eqs. (D5) and (D7),
and noting that ∂�2/∂�1 > 0. In Fig. 5, we compare the am-
plification factors αE for the baths spectra shown in Figs. 4(c),
9(c), and unfiltered baths, which shows that BSF can strongly
increase the heat amplification. The amplification factors
(αE , αC ) for both TLS and OMS are presented in Fig. 10.
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body quantum absorption refrigerators with optomechanical-
like interactions, Quantum Sci. Technol. 5, 035006 (2020).

[52] J. D. Cresser and B. J. Dalton, Resolvent operator theory of
sequential quantum processes, J. Phys. A 13, 795 (1980).

[53] L. Mower, Decay theory of closely coupled unstable states,
Phys. Rev. 146, 1222 (1966).

[54] L. Mower, Sequential decay theory and sequential transitions,
Phys. Rev. 165, 145 (1968).

[55] A. S. Goldhaber and K. M. Watson, Theory of sequential
decays, Phys. Rev. 160, 1151 (1967).

[56] Quantum Optics and Electronics, edited by C. Dewitt,
A. Blandin, and C. Cohen-Tannoudji, Les Houches 1964

033285-11

https://doi.org/10.1103/PhysRevE.99.032114
https://doi.org/10.1103/PhysRevE.99.042102
https://doi.org/10.1103/PhysRevE.99.062123
https://doi.org/10.1088/1367-2630/aaea90
http://arxiv.org/abs/arXiv:1908.05574
https://doi.org/10.1146/annurev-physchem-040513-103724
https://doi.org/10.1007/978-3-319-99046-02
https://doi.org/10.1016/bs.aamop.2015.07.002
https://doi.org/10.1103/PhysRevE.90.022102
https://doi.org/10.1038/srep07809
https://doi.org/10.1103/PhysRevE.87.012140
https://doi.org/10.1103/PhysRevA.83.032105
https://doi.org/10.1073/pnas.1419326112
https://doi.org/10.1080/09500349414550381
https://doi.org/10.1073/pnas.1805354115
https://doi.org/10.1103/PhysRevLett.89.207902
https://doi.org/10.1103/PhysRevA.53.R35
https://doi.org/10.1103/PhysRevA.83.033806
https://doi.org/10.1073/pnas.1401346111
https://doi.org/10.1103/PhysRevA.42.2915
https://doi.org/10.1088/0034-4885/63/4/201
https://doi.org/10.1364/OPTICA.3.000725
https://doi.org/10.1038/nphys3834
https://doi.org/10.1088/2058-7058/18/12/30
https://doi.org/10.1103/PhysRevLett.71.2022
https://doi.org/10.1103/PhysRevB.68.024302
https://doi.org/10.1063/1.1637152
https://doi.org/10.1063/1.368456
https://doi.org/10.1063/1.3111797
https://doi.org/10.1063/1.1757642
https://doi.org/10.1038/s41598-016-0028-x
https://doi.org/10.1038/nphys3169
https://doi.org/10.1103/PhysRevA.90.053833
https://doi.org/10.1103/PhysRevLett.120.227702
https://doi.org/10.1088/2058-9565/ab8d89
https://doi.org/10.1088/0305-4470/13/3/013
https://doi.org/10.1103/PhysRev.146.1222
https://doi.org/10.1103/PhysRev.165.145
https://doi.org/10.1103/PhysRev.160.1151


M. TAHIR NASEEM et al. PHYSICAL REVIEW RESEARCH 2, 033285 (2020)

(Gordon and Breach, New York, 1965), Nucl. Phys. 72, 696
(1965).

[57] G. S. Agarwal, Quantum statistical theories of spontaneous
emission and their relation to other approaches, in Quantum

Optics, Springer Tracts in Modern Physics, Vol. 70, edited by
G. Höhler (Springer, Berlin, Heidelberg, 1974).

[58] S. N. Dixit and P. Lambropoulos, Photon correlation effects in
resonant multiphoton ionization, Phys. Rev. A 21, 168 (1980).

033285-12

https://doi.org/10.1103/PhysRevA.21.168

