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Unquantized thermal Hall effect in quantum spin liquids with spinon Fermi surfaces
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Recent theoretical studies have found quantum spin-liquid states with spinon Fermi surfaces upon the
application of a magnetic field on a gapped state with topological order. We investigate the thermal Hall
conductivity across this transition, describing how the quantized thermal Hall conductivity of the gapped state
changes to an unquantized thermal Hall conductivity in the gapless spinon Fermi surface state. We consider
two cases, both of potential experimental interest: the state with non-Abelian Ising topological order on the
honeycomb lattice and the state with Abelian chiral spin-liquid topological order on the triangular lattice.
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I. INTRODUCTION

Quantum spin liquids (QSLs) are highly correlated systems
of mutually interacting spins, in which zero-point quantum
fluctuations are so strong as to prevent symmetry-breaking
magnetic ordering down to the lowest temperatures [1–4].
More generally speaking, QSLs are best defined as phases
of matter realizing ground states with long-range many-body
entanglement, or massive quantum superposition [5]. The
exotic properties of these highly entangled states can often be
better understood in terms of new (possibly nonlocal) degrees
of freedom rather than the constituent spins themselves [6].
Indeed, quite generically, QSLs are characterized by “frac-
tionalized” excitations such as charge-neutral spinons. These
spinons, which are accompanied by emergent gauge fields,
may or may not possess an energy gap and can obey either
Fermi or Bose statistics [7–9].

First proposed in the 1970s, QSLs eluded experimental
discovery in magnetic compounds for nearly half a century
and even today, undisputed material candidates are few and
far in between [10,11]. On the theoretical side, however, mod-
els of these enigmatic phases are plentiful. The prototypical
example of a system with an exact spin-liquid ground state is
the Kitaev model [12]. When placed in a magnetic field, this
model hosts a gapped phase with topological order, supporting
Majorana fermions and non-Abelian Ising anyons [13], which
may be relevant for quantum computation [14]. Despite the
seemingly contrived form of the bond-directional interactions
in the Kitaev model, variants thereof can actually be realized
in some spin-orbit entangled j = 1/2 Mott insulators [15–17].
Among these so-called “Kitaev materials” [18–22] are layered
iridates such as Na2IrO3 [23,24] and La2IrO3 [25], where the
iridium atoms form the sites of a honeycomb lattice.
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Another promising material in this family, which has at-
tracted much attention recently, is α-RuCl3; here, the Ru3+

ions act as effective localized moments. The ground state
of α-RuCl3 is known to be magnetically ordered [26,27]
in the absence of a Zeeman field, with a zigzag antiferro-
magnetic pattern [28–30]. While the system orders, in zero
field, at about 7 K [31,32], the Kitaev exchange interac-
tion is estimated to be ∼50–90 K. This wide separation
of scales has been interpreted as evidence for proximity
to Kitaev’s QSL state. However, searching for fingerprints
of charge-neutral quasiparticles that could unambiguously
identify this state is challenging with the familiar techniques
that rely on electrical transport. In this regard, a powerful
probe of unconventional excitations in insulators is the ther-
mal Hall effect, also known as the Righi-Leduc effect. For
instance, recent measurements of a giant thermal Hall con-
ductivity in several undoped cuprate superconductors [33,34]
have offered new insights [35–40] into their underlying
electronic phases.

The thermal Hall effect is especially of relevance to the
Kitaev materials because even if the charge degrees of free-
dom are frozen out, heat transport [41] can still be facilitated
through charge-neutral modes. In α-RuCl3, upon applying a
Zeeman field, the intrinsic zigzag order melts [42–45], driving
the system into a paramagnetic phase. If the field induces
the aforementioned topologically ordered phase, which has
a chiral Majorana fermion edge state, one would expect a
half-quantized [in units of (π/6)k2

B/h̄] thermal Hall response
[46] as T → 0. Claims of such observations [47], suggesting
a non-Abelian Ising anyon phase, have sparked extensive
investigation, both experimentally [48–52] and theoretically
[53–56]. Curiously enough, a finite but unquantized thermal
Hall conductivity was also measured in α-RuCl3, over a broad
range of temperatures and magnetic fields [48,57]. This points
toward a scenario where the effect of the field yields an
additional U(1) QSL phase [58]. Indeed a plethora of numer-
ical studies [59–65] indicate the presence of an intermediate
gapless phase with spinon Fermi surfaces (SFS), between the
gapped topological order and the trivial polarized phase at
very strong fields.
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Motivated by these diverse observations, we examine the
thermal Hall response in the Kitaev model for a wide variety
of field strengths and orientations using a parton mean-field
theory [66–68]. One of our goals will be to understand the
half-quantized conductivity—and its stability—as a function
of an applied magnetic field. The quantization ceases to
hold as the system undergoes a phase transition [69] to a
field-induced U(1) spin liquid. We systematically investigate
the thermal Hall signatures of this gapless phase, including
its temperature and field dependence, and show that it is
consistent with the behavior seen in experiments. In particular,
we demonstrate that an unquantized response can be obtained
from simply the pure Kitaev model, coupled to a field, without
requiring any of the auxiliary Dzyaloshinskii-Moriya interac-
tions assumed in Ref. [70].

Interestingly, similar gapless QSLs with Fermi surfaces
of neutral emergent excitations can also appear in systems
lacking spin-orbit coupling. One of the most commonly
studied examples of this type is the Heisenberg model on
a triangular lattice. The physical importance of this simple
model is paramount as sundry QSL candidates fall in the cat-
egory of layered spin-1/2 triangular-lattice magnets, like the
organic salts [71–75] and the transition metal dichalcogenides
[76–79]. In all these materials, which belong to the family of
weak Mott insulators with strong charge fluctuations [80–84],
transport measurements hint at the existence of extensive
mobile gapless spin excitations. While, conventionally, many
of the Hamiltonians used to describe these compounds have
included “ring-exchange” couplings involving multiple spins,
replacing these with competing two-spin interactions between
different neighboring sites leads to equally rich physics. In
fact, such competition between neighboring couplings has
proved to be an essential ingredient in understanding potential
QSL states in the triangular-lattice delafossites [85–89] and
rare-earth compounds [90–96]. Guided by recent numerical
work identifying a gapless chiral spin-liquid (CSL) phase on
the triangular lattice [97], we analyze the thermal Hall coef-
ficient in a Heisenberg antiferromagnet with competing ex-
change terms up to third-nearest neighbors. Furthermore, we
compare and contrast this conductivity to that calculated for
α-RuCl3 earlier. Our work highlights how two seemingly dis-
parate systems—the Kitaev and Heisenberg models—exhibit
parallel unquantized thermal Hall responses, and underscores
the generality of the same.

II. KITAEV HONEYCOMB MODEL

Kitaev’s eponymous model, introduced in Ref. [12], is
composed of S = 1/2 spins arranged on a honeycomb lattice,
with the Hamiltonian

HK = Kx

∑
x links

Sx
j S

x
j + Ky

∑
y links

Sy
j S

y
j + Kz

∑
z links

Sz
jS

z
j, (1)

where S j = (Sx
j , Sy

j , Sz
j ) represents the spin operator at site j.

The spin and orbital degrees of freedom are locally entangled
as the interactions between nearest neighbors depend on the
type of the link. There are three nonequivalent bond direc-
tions: the z links are the vertical bonds of the lattice, whereas
the bonds angled at ±π/3 from the vertical constitute the x
and y links (see Fig. 1). A remarkable feature of this model

FIG. 1. (a) The Kitaev model on the honeycomb lattice. Each
hexagon has three types of links, labeled by x, y, or z; the inter-
actions between nearest-neighboring spins are bond-dependent, as
prescribed by Eq. (1). The operations R and C6 designate reflection
across the x = y plane, and sixfold c-axis rotation, respectively. (b) A
hexagonal plaquette embedded in the three-dimensional cubic lattice.
The c axis is oriented along the [111] direction. The lattice plane in
(a), c = 0, is shaded in yellow, while the blue shading marks the ac
plane (containing the magnetic field directions studied here).

is that it is exactly solvable and hosts different QSL [4–6]
ground states. It has a gapped topological phase (known as
the A phase), which is equivalent to the toric code [98] and
supports Abelian anyons. It also has a gapless phase (the B
phase), which morphs to a gapped non-Abelian topological
phase, realizing Ising topological order (ITO), under a time-
reversal symmetry-breaking perturbation. The fractionalized
excitations in this gapped QSL are Majorana fermions and
Ising anyons.

Before studying the Kitaev model in a magnetic field,
it is instructive to first consider how the zero-field model
can be solved by writing the spins in terms of Majorana
fermions. This will also help us to draw a distinction with the
fermionization procedure employed later in Sec. II B. We first
define, for each site j, four Majorana fermions {χμ} such that

2Sα
j = i χα

j χ0
j ; α = x, y, z. (2)

This representation induces a redundancy in the description,
and to correctly reproduce the Hilbert space of a spin-1/2
particle, the constraint

χ x
i χ

y
i χ z

i χ
0
i = 1 (3)

has to be implemented ∀ i, wherefore

2Sα = iχαχ0 = −i
εαβγ

2
χβχγ . (4)

In this formulation, the model Eq. (1) can be kneaded into

HK = −1

4

∑
〈i, j〉

(
iKαi j χ

αi j

i χ
αi j

j

)(
i χ0

i χ0
j

)
. (5)

Physically, this can be thought of as a simple problem of
Majorana fermions {χ0

i } that hop with a bond-dependent
amplitude ti j = iKαi j χ

αi j

i χ
αi j

j . A key observation by Kitaev
[12] was that the Z2 flux around each hexagonal plaquette p,

�p =
∏

〈i, j〉 ∈ p

(
iχ

αi j

i χ
αi j

j

) = ±1, (6)

is a conserved quantity at zero field. Therefore, Eq. (5) can be
reinterpreted as describing Majorana fermions hopping in a
background Z2 gauge flux. Conveniently, Lieb’s theorem [99]
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then asserts that the ground state is given by a uniform zero-
flux state where �p = +1 ∀ p.

Solving the Bogoliubov-de Gennes (BdG) Hamiltonian for
{χ0

i } in momentum space leads to a fermionic band structure,
which encodes all the information about the (short-ranged)
spin correlations [100]. The spectrum is fully gapped if |Kz| >

|Kx| = |Ky|, which places us in the A phase. Contrarily, if
|Kz| < |Kx| = |Ky|, then one finds a graphenelike band struc-
ture with a pair of Dirac points at zero energy, positioned at
momenta ± arccos [−Kz/(2K )] (taking Kx = Ky ≡ K). This
corresponds to the phase B, which carries gapped vortices and
gapless fermions. A low-energy description of this phase is
thus given by Dirac fermions coupled to a dynamical Z2 gauge
field.

Moving away from the solvable limit, we now add to HK a
Zeeman coupling to the magnetic field

HZ = −
∑

j

h · S j = −
∑

i

(
hxSx

j + hySy
j + hzS

z
j

)
, (7)

where h ≡ (hx, hy, hz ) is the applied field, and we have ab-
sorbed the Bohr magneton μB in its definition. Kitaev [12]
proved that a generic perturbation of this kind opens up a
spectral gap in the originally gapless B phase. To see this, we
can consider the effect of HZ in perturbation theory within
the zero-flux (or vortex-free) sector; for simplicity, let us
assume isotropy, i.e., Kx = Ky = Kz ≡ K . In this low-energy
sector, all perturbations vanish at first order in h, while the
second-order terms simply renormalize the original coupling
K between each nearest neighbor (abbreviated hereafter as
NN). The lowest nonzero correction actually arises at third
order in the field, leading to an effective Hamiltonian,

H3s 	 −hx hy hz

K2

∑
j,k,l

Sx
j S

y
kSz

l , (8)

where the summation runs over two possible configurations
of three spins arranged as follows: In terms of the Majorana
fermions {χ0

i }, H3s generates second-NN hopping as well
as four-fermion interactions, and introduces a gap in the
spectrum.

Taken together, HK + HZ + H3s now encompasses all the
ingredients for a mean-field Hamiltonian of the pure Kitaev
model Eq. (1) coupled to a magnetic field, which we will
construct in Sec. II C. Since H3s is derived above as only
a perturbative approximation to HZ, including both these
terms in a theory might naively seem redundant. However,
at the mean-field level, we allow for all possible symmetry-
permitted terms, so it becomes necessary to separately incor-
porate the distinct first- and second-NN interactions stemming
from Eqs. (7) and (8), respectively.

A. Symmetries

To proceed further, we have to establish the space group
symmetries of the Kitaev model that must be taken into
account by our eventual mean-field theory. In this regard, it
is useful to visualize the honeycomb lattice in Fig. 1(a) as
being embedded within a 3D cubic lattice [Fig. 1(b)], as is
indeed the case in material realizations such as the layered
iridates [17,19,23,25]. Given the strong spin-orbit coupling,

all symmetry transformations must act simultaneously on the
spin and spatial degrees of freedom, which live in three-
dimensional real space (rather than on the 2D honeycomb
lattice alone).

In the absence of a magnetic field, the space group is
generated by the following elements. First, the Hamiltonian
enjoys the translational symmetries T1,2 along the two prim-
itive lattice vectors n1,2. One possible set of point-group
generators is [101,102]:

1. Inversion—or twofold rotation—C2; the representation
of this symmetry is simply

C2 : Sx
r → Sx

C2r, Sy
r → Sy

C2r, Sz
r → Sz

C2r. (9)

2. Pseudomirror R∗, composed of the conventional mirror
symmetry (namely, a reflection R across the x = y plane) and
a spin rotation eiπSy

ei(π/2)Sz
, which acts as

R∗ : Sx
r → −Sy

Rr, Sy
r → −Sx

Rr, Sz
r → −Sz

Rr. (10)

3. Improper rotation S6, defined by a sixfold rotation about
the c axis, followed by a reflection across the c = 0 lattice
plane i.e., S6 ≡ C6 · ei(2π/3)(Sx+Sy+Sz )/

√
3 such that (S6)6 = 1.

This symmetry holds only for the isotropic Kitaev model with
a Zeeman field in the [1,1,1] direction.

The components of these three operations acting on the 2D
honeycomb lattice are sketched in Fig. 1

In addition, the zero-field Kitaev model naturally possesses
time-reversal symmetry. The antiunitary time-reversal opera-
tion (	) has no effect on the lattice per se but acts on the spins
as iSy K, where K denotes complex conjugation. Even though
	2 = −1 for a single spin, note that we have 	2 = +1 for the
global time-reversal symmetry operation due to the bipartite
nature of the honeycomb lattice.

The time-reversal symmetry will, of course, be broken by
a finite magnetic field. Furthermore, a field along a generic
direction also breaks the pseudo-mirror symmetry. Both these
properties of the applied field are crucial since the presence
of either time-reversal or pseudo-mirror symmetry prohibits
a finite thermal Hall conductivity. We can illustrate this point
by contrasting two specific field directions. Let κxy denote the
in-plane thermal Hall conductivity, with both the temperature
gradient and the ensuing heat current in the honeycomb-lattice
planes depicted in Fig. 1(a). Now, for example, if we take
h ‖ [1̄10], parallel to the b axis, then κxy must necessarily
vanish as a consequence of the R∗ symmetry. On the contrary,
if h ‖ [11x], in the ac plane, then the pseudo-mirror and
time-reversal symmetries are individually broken but their
combination is preserved; in this case, one can have a nonzero
κxy. Hence, in experiments [47], the Zeeman field is aligned to
be on the ac plane. We will begin by considering a magnetic
field along the [111] direction; thereafter, we generalize the
orientation to [11x] and observe the change in the thermal Hall
response brought about by such a rotation.

B. Parton construction

While Kitaev’s original solution of the model Eq. (1)
entailed a rewriting of the spin variables in terms of Ma-
jorana fermions, the correct low-energy degrees of freedom
can also be singled out by a different fermionization proce-
dure using spinful complex fermions [66]. Guided by this
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correspondence, we will use the latter formalism to study
the Kitaev spin-liquid and proximate phases upon perturbing
away from the exactly solvable zero-field limit.

In the Abrikosov fermion representation [103–105] moti-
vated above, the spin operator at each site is decomposed as

Si = 1
2 c†

i σ ci ; (11)

here, ci ≡ (ci,1, ci,2)T is a two-component fermionic spinon
operator, and σ denotes the three usual Pauli matrices. Im-
portantly, the mapping from spin-1/2 to fermions in Eq. (11)
expands the Hilbert space and, to remain within the physical
subspace, we must restrict ourselves to the fermionic states
with single occupation per site. Hence, this decoupling is to
be supplemented with the constraints

c†
i ci = 1, c†

i,1c†
i,2 = 0, ci,1ci,2 = 0, (12)

and therefore, any faithful fermionic band structure of the
spinons is always constrained to be at half-filling.

Related to this constraint, the parton construction outlined
above exhibits an SU(2) gauge structure [106,107]. This can
be made apparent by defining the matrix

Ci =
(

ci,1 −c†
i,2

ci,2 c†
i,1

)
, (13)

containing the spinon operators on site i. The physical spin
operators can now be written in terms of Ci as

Si = 1
4 Tr(C†

i σ Ci ). (14)

As Eq. (14) is invariant under a local SU(2) transformation

Ci → Ci Wi , (15)

where Wi is an SU(2) matrix, this parton construction has
an SU(2) gauge redundancy. This leads to a description of
the underlying spin model as a theory of fermions coupled
to an SU(2) gauge field [104,108,109]. However, the actual
residual gauge group can be smaller than the full SU(2)
depending on the particular phase of interest. For instance, in
the SFS state, the SU(2) symmetry is broken down to the U(1)
subgroup—this is an emergent dynamical U(1) gauge field
(as opposed to the conventional U(1) electromagnetic field
under which the spinons are charge-neutral); the associated
gauge transformation that leaves the spins invariant reads as
ci → cieiθi . Moreover, if the spinons are in a superconducting
phase (such as in the CSL), then this gauge symmetry is
broken down to Z2 (ci → ±ci) by the pairing terms.

Owing to the gauge redundancy arising from the Abrikosov
fermion representation, a gauge transformation g ∈ G, with
G being the residual gauge group, leaves the Hamiltonian
invariant. Any operation—including, in particular, the sym-
metry transformations listed in Sec. II A—can act within
this gauge space in addition to the spin degrees of freedom.
Hence, all symmetries act projectively and are defined by
the corresponding left (W ) and right (G) multiplications of
the spinon matrix C in Eq. (13): this information, known as
the projective symmetry group (PSG) [110,111], characterizes
the fractionalized phases. The PSG for the Kitaev model was
worked out by Ref. [101]. In a generic gauge, c transforms to a

linear combination of c and c†. Such a description is inconve-
nient for U(1) SFS spin liquids, as it would imply that pairing
terms (cic j + H.c.) could be generated from purely hopping
terms (c†

i c j + H.c.) due to symmetry transformations alone.
This drawback can be circumvented, however, by choosing a
suitable gauge [102]. We define such a gauge in Appendix A
and denote the corresponding spinon operators by fiη, f †

iη,
η = 1, 2, in the following. In that gauge, the symmetries
act as

T1,2 : fi → fi+n1,2 , (16a)

S6 : fi → ei 5π
6 U †

S6
fC6i, (16b)

	R∗ : fi → e−i π
4 U †

	R∗ fR i, (16c)

where

US6
≡ 1 + i(σ1 + σ2 + σ3)

2
, (17a)

U	R∗ ≡ e−iσ3
π
4 . (17b)

Now we can see explicitly that the gauge charge of the spinons
is preserved by the symmetry implementation. This will be
very convenient in the following mean-field treatment.

C. Mean-field theory

The Kitaev honeycomb lattice model was studied using the
SU(2) fermion formalism by Ref. [66], which showed that
the description of Ref. [12] can be exactly reproduced in this
language. To be precise, the physical correlation functions
of the true ground state of Eq. (1) are captured by a stable
mean-field theory which can be constructed as follows.

Since all the Kitaev interactions in HK involve two spins,
inserting the representation Eq. (11) generates terms that are
a product of four fermions; the resultant fermionic Hamilto-
nian is rather complicated due to the lack of spin rotation
invariance in the model. One way to proceed is to use a
Hubbard-Stratonovich transformation [112] to decouple the
four-fermion interactions, which can be recast into interac-
tions between a pair of fermion operators on the sites i and j
and a bosonic field (which lives on the link between them).
At the mean-field level, these four auxiliary fields assume
nonzero expectation values. Imposing the self-consistency of
the expectation values, which can be expressed in terms of
Kx,y,z leads to the coefficients of the quadratic terms of the
Hamiltonian at the saddle point of interest.

However, significant physical insight can be gleaned from
a phenomenological analysis of such a mean-field description
without necessarily self-consistently solving the theory. To
this end, we rewrite the Kitaev model in terms of the spinon
operators f as the sum:

H MF
K = Hhopping + Hpairing. (18)

The detailed form of these terms are documented in
Appendix A. Hhopping consists solely of hopping operators
of the spinons, i.e., each term therein preserves the U(1)
symmetry. Conversely, Hpairing contains purely pairing terms
of the spinons that break the U(1) gauge symmetry down
to Z2. In total, H MF

K is described by two types of first-
NN interactions, of strengths J1 and J ′

1, and second-NN
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FIG. 2. Dispersions of the mean-field spinon Hamiltonian, Eq. (18), for the Kitaev model with J1 = 1 and J ′
1 = 3.5; plotted here is εn,k ≡

En,k − μ. At low fields (a, b), we take the coefficient of the second-NN hopping to be J2 = −2.5h3, in accordance with Eq. (8). For h = 0.7/
√

3
(a), the system is in the ITO phase; diagonalizing HITO [Eq. (19a)] yields eight fully gapped bands. At h = 0.8/

√
3 (b), the band structure

clearly displays both electronlike and holelike Fermi surfaces as expected in the SFS phase. When h > 1 (c, d), H3s is no longer perturbative,
so we employ an ansatz in which J2 = −0.75 and constant; the corresponding field strengths are (c) h = 4/

√
3, and (d) h = 6/

√
3. The Fermi

surfaces shrink as the field is increased, eventually leading to the gapped polarized phase (d).

interactions with a coupling J2. Equation (8) informs us
that such a second-NN term originates from the effect of
a magnetic field in third-order perturbation theory, so, in
principle, J2 should be varied as ∝hxhyhz. This perturbative
expansion, of course, only holds for small h; in the regime of
large magnetic fields, we can think of a constant J2 as being
spontaneously induced by the field.

The mean field Hamiltonians that we construct for the
different phases are thus

HITO = Hhopping + ξ (h) Hpairing + Hh, (19a)

HSFS = Hhopping + Hh, (19b)

where

Hh = −
∑

i

f †
i (hxσ1 + hyσ2 + hzσ3) fi (20)

represents the Zeeman coupling to a magnetic field in the
[hxhyhz] direction. Nevertheless, Hh should not be literally
taken as the full effect of a Zeeman field, since the latter
can also renormalize the parameters in the other terms of the
Hamiltonian. The strength of the pairing ξ (h) is modulated
as ξ (h) = [1 − |h|/hc1(ĥ)]1/2 ∈ [0, 1] such that it vanishes at
the critical field hc1(ĥ), and ξ (h) = 0 for |h| > hc1(ĥ). Since
the Higgs mechanism is responsible for the ITO to SFS phase
transition, the choice of a 1/2 power law is in analogy to
the pairing amplitude of a superconductor. In general, the
critical field hc1 depends on the direction of the magnetic
field, ĥ = h/|h|. For concreteness, however, we will neglect

this anisotropy and set hc1(ĥ) = 0.8 throughout this work.
We reiterate that choosing a gauge that does not mix f and
f † in the symmetry transformations Eq. (16) is essential
here since, otherwise, dropping the pairing term would break
the symmetries of the system and, as such, not constitute a
proper description of the ITO to SFS transition. Within our
description, Hhopping, Hpairing, and Hh separately preserve all
symmetries in Eq. (16).

To match the conventions of the literature with the mag-
netic field along the [111] direction, we use h not to denote the
magnitude of h, but instead to parametrize it as h = (h, h, h)T

for this specific orientation of the magnetic field.
Some representative dispersions of this mean-field Hamil-

tonian are shown in Fig. 2. As the magnetic field is increased,
the Fermi pockets emerge, change in size and shape, and
eventually disappear. In this process there can be Dirac cross-
ings of the four bands, but since such crossings always occur
away from the chemical potential, they do not induce a phase
transition [102].

III. THERMAL HALL RESPONSE IN THE
FIELD-INDUCED PHASES

Prior to delving into the thermal Hall response of H MF
K , let

us briefly recast the phase diagram of the finite-field Kitaev
model in the language of fermionic spinons. First, the gapless
B phase, within this description, is a p-wave superconducting
state of the spinons with zero-energy excitations at nodal
points [66]; these excitations, in turn, constitute a single Dirac
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FIG. 3. Phases of the isotropic Kitaev model under a magnetic
field in the [111] direction, i.e., hx = hy = hz = h. Starting with the B
phase at h = 0, the system transitions from a non-Abelian chiral QSL
with Ising topological order, to a gapless U(1) spin liquid, and finally,
into a trivial polarized state as the field is varied. The three field-
induced phases can also be reinterpreted in terms of the fermiology
of the spinons as a px + i py weak-pairing superconductor, a metal,
and a band insulator, respectively, as depicted.

fermion. The Majorana fermions of the solution in Sec. II
appear as the BdG quasiparticles of the superconducting state.
In the presence of a field, the order parameter acquires an ip
component (resulting in a weak pairing [113] px + ipy chiral
topological superconductor) and the Dirac fermion develops
a mass. This leads to a gapped ITO phase—with a non-
Abelian chiral QSL ground state—which remains stable for
small magnetic fields h ‖ [111] and weak anisotropy, i.e., Kz 	
Kx = Ky = K . Recognizing the correspondence to a px + ipy

superconductor, it immediately follows that this state must
break both time-reversal and mirror-reflection symmetries as
asserted previously.

Bordering the ITO phase is the gapless U(1) spin liquid,
which can be interpreted as a spinon metal. It is characterized
by both electron and hole Fermi surfaces of neutral spinons,
coupled to a dynamical U(1) gauge field. This phase persists
up to intermediate magnetic fields and weak anisotropy. In-
creasing the [111] field further shrinks these pockets, bringing
us to the gapped polarized phase, which is just a band insulator
of spinons. This is a partially polarized magnetic phase [65]
that is adiabatically connected to the trivial fully-polarized
product state at high fields. As a function of the field, the
magnetization monotonically increases toward its saturation
value attained when all the spins are aligned along the [111]
direction.

Finally, in the limit of strong anisotropy, one can also
realize the A phase of the Kitaev model. This gapped Z2 spin
liquid corresponds to a trivial strong pairing p-wave super-
conductor of the spinons [7,114]. The state is fully gapped
because the nodes in the order parameter do not intersect the
Fermi surface. When h � K , the phase boundary between
the non-Abelian ITO and this Abelian toric phase follows
from perturbation theory [115] as Kz/K 	 2 − 38 (h/K )2 +
O(h/K )4. Similarly, analyzing the properties of the toric code
under a transverse field [116–118], the phase boundary with
the polarized phase can be analytically determined to be
Kz/K ∼ (h/K )−1. The line Kz/K = 1, which we focus on,
does not cross these boundaries in the (h/K, Kz/K )-plane, so
we will never actually encounter the Abelian phase in our
calculations. A schematic phase diagram summarizing the
phases that we probe below is presented in Fig. 3.

Our computation of the thermal Hall response will be
carried out at the parton mean-field level, and we will not

consider the consequences of gauge fluctuations. In the ITO,
the gauge fluctuations are fully gapped and only lead to
exponentially small corrections to κxy at low temperatures.
On the other hand, the U(1) gauge fluctuations in the gapless
Fermi surface phase can lead to significant corrections: the
structure of these corrections has been discussed elsewhere
[40].

A. Formalism

The thermal Hall conductivity can be computed from the
microscopic Hamiltonian using a linear response framework.
It is, however, well recognized that calculations of κxy based
on a direct application of the Kubo formula are plagued by
unphysical divergences at zero temperature [119,120]. This
is known to be a consequence of the broken time-reversal
symmetry in the system. Under such circumstances, a tem-
perature gradient drives not only the transport current, but also
an experimentally unobservable circulating current [121,122].
While the microscopic current density calculated by the stan-
dard linear response theory encapsulates both contributions,
the circulating component has to be subtracted out for a well-
defined response since it does not facilitate heat transport.
As pointed out by Qin et al. [123], this can be achieved by
carefully accounting for the electromagnetic and gravitomag-
netic energy magnetizations [124,125], which naturally arise
as corrections to the thermal transport coefficients.

We now use the formalism of Ref. [123] to first compute
κxy in the SFS phase, for which the Hamiltonian [Eq. (19b)]
does not involve any pairing terms. Transforming to momen-
tum space, we have

fA(B),η(k) = 1√
N

∑
k

e−ik·r fA(B),η(r), (21)

where A, B stand for the two sublattices, N is the number of
unit cells, and η = 1, 2. The mean-field Hamiltonian can now
be expressed as

H MF
K =

∑
k

ψ
†
k H (k) ψk ,

ψk = [ fA,1(k), fA,2(k), fB,1(k), fB,2(k)]T. (22)

Diagonalizing H (k) produces the dispersion in Figs. 2(b)–
2(d); there are four bands, labeled by n, with the corre-
sponding eigenergies En,k. The thermal transport coefficient
is directly related to the Berry curvature in momentum space
[119], which is given by

�n,k = −2 Im

〈
∂ un,k

∂kx

∣∣∣∣∂ un,k

∂ky

〉
, (23)

un,k being the periodic part of the Bloch wave function with
band index n = 1, . . . , 4. For reference, Fig. 4 displays �n,k

for the n = 2 and n = 3 bands (yellow and green, respec-
tively) of Figs. 2(b) and 2(c), corresponding to the SFS phase
at two different fields; we will see shortly how the variations
in κxy can be connected to the momentum space distribution
of the Berry curvatures. Defining

σxy(ε) = −
∫

En,k<ε

d2k
(2π )2

�n,k, (24)
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FIG. 4. Berry curvatures �n,k for the second, n = 2, and third,
n = 3, bands (which cross the Fermi surfaces) in Figs. 2(b) and 2(c).
The profiles here correspond to h = (h, h, h)T with (a) h = 0.8/

√
3,

n = 2, (b) h = 0.8/
√

3, n = 3, (c) h = 4/
√

3, n = 2, and (d) h =
4/

√
3, n = 3. The integrals of the curvatures over the Brillouin zone

[Eq. (26)] define the Chern numbers, which are (a) 2, (b) 0, (c) −1,
and (d) 1.

which is simply h̄/e2 times the zero-temperature anoma-
lous Hall coefficient for a system with chemical potential ε

[126,127], the thermal Hall conductivity is given by [123]

κxy = − k2
B

h̄ T

∫
dε (ε − μ)2 σxy (ε) f′(ε − μ) (25)

where μ is the chemical potential and f (ε) is the Fermi dis-
tribution function. Enforcing the parton constraint in Eq. (12)
fixes μ so that the system is always maintained at half-filling.

For an isolated band separated from all others by an energy
gap, the Chern number, which is the integral of the Berry
curvature over the Brillouin zone,

Cn = 1

2π

∫
d2k �n,k ∈ Z, (26)

is well-defined and integer-valued. Using the Sommerfeld
expansion, it is easy to see that as T → 0,

κxy

T
= −π k2

B

6 h̄

∑
n ∈ filled bands

Cn. (27)

Consequently, κxy/T is quantized in units of π/6 as T →
0. On the other hand, if either the occupied bands are all
topologically trivial or the net sum of their Chern numbers
is zero, then κxy eventually vanishes at T = 0. Clearly, this
analysis is not applicable to the SFS state, which is gapless,
but it will prove to be relevant to the polarized phase, as well
as to Sec. IV B below.

The story has to be modified when the Hamiltonian in-
volves spinon pairing terms, such as for the ITO phase
[Eq. (19a)], since the spinor structure in Eq. (22) can no longer
be used. Instead, we can manipulate the Hamiltonian into the
BdG form,

H MF
K = 1

2

∑
k

�
†
k HBdG(k) �k ,

�k = [ fA (k), fB (k), f †
A (−k), f †

B (−k)]T, (28)

where � is an eight-component Nambu spinor; note that
we have suppressed the index η = 1, 2 on each of fA,B for
brevity of notation. The bands obtained upon diagonalization
of HBdG are plotted in Fig. 2(a); we, once again, denote the
associated eigenenergies and wavefunctions by En,k and un,k,
respectively, but with the distinction that n = 1, . . . , 8. This
eight-band description necessitates a theory of the thermal
Hall effect for superconductors [128–131]. The most general
formalism in this regard was developed by Ref. [132], starting
from the assumptions that the BdG Hamiltonian is Hermitian
and preserves particle-hole symmetry, both of which are sat-
isfied by Eq. (28). The end result is remarkably simple:

κxy = −1

2

k2
B

h̄ T

∫
dε (ε − μ)2 σxy (ε) f′(ε − μ), (29)

lim
T →0

κxy

T
= −π k2

B

12 h̄

∑
n | En,k�0

Cn, (30)

where σ and Cn are defined exactly as in Eqs. (24) and (26),
respectively, but for the BdG spectrum. The crucial difference
compared to Eq. (27) is the additional factor of 1/2, which
implies that κxy/T is now half-quantized at zero temperature.
Nonetheless, if all pairing terms were to be dropped, then
Eqs. (25) and (29) would yield identical answers for κxy.

Notably, the derivation of the quantum thermal Hall con-
ductivity in Ref. [132] relies solely on the bulk microscopic
Hamiltonian without any reference to the edge whatsoever.
However, their final formula [Eq. (29)] is in complete agree-
ment with the result in Ref. [113], which studied the purely
edge theory in a spinless chiral p-wave superconductor to
show that the thermal Hall coefficient in the low-temperature
limit is precisely c (πT/6)(k2

B/h̄), where c = 1/2 is the cen-
tral charge of the Ising conformal field theory describing the
Majorana edge state.

B. Results

The thermal Hall conductivity for the parton mean-field
theory [Eq. (18)] of the Kitaev model is shown in Fig. 5.
Let us first concentrate on the low-field regime with h‖[111]:
under these conditions, as discussed earlier, the second-NN
interactions can be regarded as arising from the perturbative
three-spin term of Eq. (8), so we set J2 = −2.5h3. Figure 5(a)
illustrates that for small h, κxy/T is quantized at precisely
−π/12 as T → 0 over a substantial field range. This plateau,
which is at half of the two-dimensional thermal Hall con-
ductance in integer quantum Hall systems, agrees perfectly
with the existence of the Majorana edge mode in the ITO
phase. The negative sign simply follows from Eq. (30) as
the Chern numbers of the lowest four bands in Fig. 2(a)
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FIG. 5. Thermal Hall conductivity of the Kitaev model (in mean-field theory) as a function of field strengths and orientations. Gapped
(gapless) phases are portrayed as solid (dashed) lines. (a) For small magnetic fields in the [111] direction, the zero-temperature value of κxy/T
is half-quantized at −π/12, which is indicative of the Majorana edge state. Increasing |h| leads to the onset of the SFS phase, whereupon we
obtain an unquantized coefficient. (b) The SFS phase transitions to the trivial partially polarized state at high fields; the latter is characterized
by a vanishing thermal Hall response as T → 0. (c) Temperature dependence of κxy/T for a magnetic field in the [11x] direction with a fixed
magnitude |h| = 0.8 but variable polar angle θ with respect to the c-axis in the ac plane. (d) Scanning the angle from θ = −π/2 to θ = π/2
in increments of π/12 for a magnetic field |h| = 0.6 shows clear anisotropy, with a change of sign between θ = −π/4 and θ = −π/6. (e–f)
Field dependence of κxy/T for a magnetic field in the [11x] direction with fixed temperatures T/J1 = 0.1 (e) and T/J1 = 0.5 (f).

are {1,−1, 0, 1} and thus, sum to +1. In the opposite limit
of high temperatures (T � J1), the bands are all equally
populated, as determined by the Fermi distribution function;
since the net Chern number of all the bands is necessarily
zero, the thermal Hall conductivity also vanishes as T → ∞.
The quantization persists up to |h| � hc1 = 0.8. Increasing
the field beyond this critical value results in the formation of
Fermi surfaces, as seen in Fig. 2(b), and the response ceases
to be pinned at −π/12. This transition from the ITO to the
SFS phase is described by QCD3-Chern-Simons theory, which
has emergent gapless Dirac fermions (with Nf = 1 flavors)
coupled to a U(2) Chern-Simons gauge field [102,133,134].
Once the Fermi surfaces begin to grow, there is an additional
component to the zero-temperature value of κxy/T , which we
can quantify as � ≡ limT →0 (κxy/T ) − (−π/12). The sign of
this deviation � is positive in Fig. 5(a) and can be understood
in terms of the Berry curvatures as follows. As h is increased
from hc1 , the electronlike Fermi surfaces near the � point of
the Brillouin zone, as well as the holelike pockets near the K
and K ′ points, start to expand. In the process, κxy effectively
gains (loses) some contribution from part of the third (second)
band. However, from Fig. 4(b), we can see that the Berry
curvature of the n = 3 band centered around the � point is
negative, so, by Eq. (25), the portion of the third band below
the Fermi surface contributes to a positive �. Analogously,
the curvature of the n = 2 band in the vicinity of K and K ′ is
positive, and therefore, given the holelike nature of the Fermi
surfaces concerned, this too leads to a net positive �.

Proceeding to even larger h, one would expect to move
beyond the scope of Eq. (8); therefore, we now take the
parameter J2 to be a constant (instead of the earlier cubic

h dependence); physically, this amounts to asserting that a
finite J2 emerges spontaneously as the effect of an external
magnetic field. Specifically, we set the ratio J2/J1 = −0.75,
as suggested by the density-matrix renormalization group
(DMRG) results of Zou and He [102]. Upon increasing the
field, the Fermi surfaces gradually shrink [see Fig. 2(c)],
and the system is driven into the field-induced polarized
phase. Figure 5(b) highlights the thermal Hall signatures of
this quantum phase transition, which can be described by
Nf = 2 QCD3 [102]. While we initially observe a nonzero
κxy/T at zero temperature for h � hc2 = 5.5, this disappears in
the partially polarized phase, for which limT →0 (κxy/T ) = 0.
Intuitively, this trivial response can be deduced from Eq. (27)
as the sum of the Chern numbers of the occupied bands
is zero. The trends of κxy/T in Fig. 5(b) can once again
be understood, at least at low temperatures, in terms of the
Berry curvatures for the n = 2 and n = 3 bands, plotted in
Figs. 4(c) and 4(d), respectively. Note that the mean-field
hc2 does not match the critical field predicted in numerics,
which is unsurprising since we neglect the possibility that
the magnetic field can also nontrivially renormalize the other
couplings in the Hamiltonian. Moreover, while the sum of
Chern numbers in the occupied bands is zero in the polarized
state, the Chern number of each individual band is nontrivial.
However, because we expect the excitations in the polarized
state are “spin-flips,” which are bound pairs of spinons, the
spinon band topology is not directly relevant.

Thus, we have demonstrated the origin of a large but un-
quantized thermal Hall conductivity in Kitaev materials, such
as α-RuCl3, without assuming any spin-orbit coupling terms
in the Hamiltonian beyond those already in the original Kitaev
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model Eq. (1). This is to be contrasted with the scenario
proposed by Ref. [70], in which the spinons experience an
emergent Lorentz force in the applied field due to additional
Dzyaloshinskii-Moriya (DM) interactions [135,136]. Such a
mechanism relies on the field generating a finite second-NN
scalar spin chirality on the honeycomb lattice through the DM
interaction, thereby inducing an internal gauge flux for the
spinons, which gives rise to thermal Hall transport. However,
our calculations above show that the unquantized behavior of
the thermal Hall effect does not hinge on DM interactions, the
microscopic forms of which are presently unclear [137], but
rather, is a much more general phenomenon.

Recall that we can also obtain a nonzero thermal Hall
conductivity of O(k2

B/h̄) for a generic vector h‖[11x], which
lies on the ac plane. A special case of this is, of course, the
[111] direction that we have considered so far. To generalize
our previous results, we present in Figs. 5(c) and 5(d) the
temperature dependence of κxy for other polar angles, θ , of
the magnetic field [56], with strengths corresponding to the
SFS and ITO phases, respectively. Note that the variation
with θ changes not only the Zeeman term in Eq. (20) but
also the coefficient J2 ∝ hxhyhz. Interestingly, we observe in
Fig. 5(c) that, for small rotation angles around θ = π/8,
the zero-temperature value of κxy/T is enhanced from the
quantized value in the ITO phase. While κxy is almost invariant
under change of sign of the angle θ in the SFS state (not shown
for clarity), there is a clear anisotropy in the ITO phase [see
Fig. 5(d)], as was noticed earlier [51,138]; upon increasing
θ from −π/2, we see that κxy/T is first half-quantized at a
positive value, and subsequently changes sign between θ =
−π/4 and θ = −π/6 to a negative value.

Finally, in Figs. 5(e) and 5(f), we show the magnetic-
field dependence of κxy/T at two different temperatures for
different angles θ . At a low but finite temperature in Fig. 5(e),
κxy/T decreases smoothly for small magnetic field. As the
field’s magnitude increases to |h| = 0.6, a plateau at −π/12
for θ = 0 and θ = π/24 indicates the ITO phase. We note that
for lower temperatures T/J1 < 0.1 (not shown), the plateau
persists for a wider range of fields. Further increase of the
magnitude of the field to |h| = 0.8 shows a phase transition to
the SFS phase. At a higher temperature, Fig. 5(f), the thermal
Hall conductivity dies off approaching zero as expected.

IV. TRIANGULAR-LATTICE HEISENBERG
ANTIFERROMAGNET

The Kitaev model, studied in the previous sections, pro-
vided a natural platform to probe the thermal Hall transport
in a gapless U(1) spin liquid: associated with the onset of
Fermi surfaces, we found an additional zero-temperature con-
tribution to κxy that destroys the original quantization. To gain
more insight into this generic behavior, we now turn to a
different class of spin models: Heisenberg antiferromagnets.
Recent numerical evidence [97] suggests that, on a triangular
lattice, the Heisenberg model with competing interactions of-
fers another example of a quantum spin liquid with emergent
Fermi surfaces. Importantly for our purposes, the physics of
this system, which is fully spin-rotation invariant, is inherently
different from the Kitaev model that, by construction, relies on
spin-orbit coupling.

The Heisenberg model on the triangular lattice has long
been the prototype to understand the effects of competing
interactions on magnetic orders [85–88] and potential QSL
states [92] in several materials. We here consider exchange
interactions up to third NNs with the corresponding Hamilto-
nian

HH = J1

∑
〈i, j〉

Si · S j + J2

∑
〈〈i, j〉〉

Si · S j + J3

∑
〈〈〈i, j〉〉〉

Si · S j,

(31)
where Jn > 0 stands for the strength of the nth-NN exchange
coupling; in particular, the inclusion of further interactions
beyond NNs alone is believed to be an important ingredient
in stabilizing QSLs. In such a frustrated system, quantum
fluctuations can induce QSL states in the vicinity of classical
phase boundaries between different magnetic orders [7,139].

Even with J3 = 0, the model in Eq. (31) is widely recog-
nized to host a spin-liquid phase. The nature of this so-called
J1-J2 spin liquid has been a subject of extensive debate, with
several proposed scenarios including a gapless U(1) Dirac
spin liquid [140–142], a gapped Z2 spin liquid [143–145], or
competing spin-liquid states [146] among others. The story is
even richer upon adding the J3 coupling; it is believed that
the J1-J2 spin liquid can then extend to a larger parameter
range [147,148]. In a recent work, Gong et al. [97] studied
the J1-J2-J3 Heisenberg model using the DMRG algorithm.
Choosing J1 = 1.0 as the overall energy scale, they identified
a CSL phase in the coupling range 0 � J2/J1 � 0.7, 0 �
J3/J1 � 0.4, in proximity to the previously found J1-J2 spin
liquid and the triple point of the different magnetic orders. Un-
like the gapped CSL phase on the kagomé lattice [149–151],
the CSL phase harbored by the triangular lattice is gapless.
This state spontaneously breaks time-reversal symmetry with
a finite scalar chiral order 〈Si · (S j × Sk )〉 for the three spins
i, j, k on a triangular plaquette. Moreover, the large central
charge estimated numerically is redolent of a scenario with
emergent spinon Fermi surfaces [81,82,152,153]. In light of
these observations, we will now try to understand the thermal
Hall effect in this CSL phase and compare the response to that
previously evaluated for the Kitaev model.

A. Model

To explain the abovementioned DMRG results, Ref. [97]
proposed a staggered flux state, which could account for both
the Fermi surfaces in the gapless CSL and the observed coex-
isting chiral edge modes [154,155]. As before, we construct a
mean-field theory for this state using the Abrikosov-fermion
representation of spin-1/2 operators Eq. (14). Due to the
SU(2) spin-rotational symmetry, the Hamiltonian simplifies
considerably using the identity

Ŝx
i Ŝx

j + Ŝy
i Ŝy

j + Ŝz
i Ŝz

j = − 1
2 c†

iαc jαc†
jβciβ + 1

4 c†
iαciαc†

jβc jβ,

with repeated indices implicitly summed over. In a U(1)
QSL, all spinon pairing terms must necessarily vanish. Thus,
carrying out the mean-field decoupling with the assumption
that only fermionic hopping terms acquire nonzero expecta-
tion values, the Heisenberg Hamiltonian H 	 ∑

i, j Ji j Si · S j
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FIG. 6. Phase diagram of the J1-J2-J3 Heisenberg model in
mean-field theory [see Eq. (34)]. At J2 = 0, the spectrum is gapless
and hosts a pair of Dirac cones. By varying J3 while keeping J2

fixed, the system can be driven from a gapped J1-J2 spin liquid,
with a quantized zero-temperature κxy/T to a gapless U(1) CSL with
emergent spinon Fermi surfaces and an unquantized response. The
red points indicate the values of J3 considered for computing the
thermal Hall conductivity in Fig. 8(a).

reads (up to constants) as

H MF
H =

∑
〈i j〉

Ji j

4

∑
α

(−ζ ∗
i j c†

i,αc j,α + H.c.) +
∑
〈i j〉

Ji j

4
|ζi j |2;

ζi j ≡
∑

α

〈c†
i,αc j,α〉 = ζ ∗

ji. (32)

Note that in deriving Eq. (32), we have made use of the
single-occupancy constraint (12) on the parton Hilbert space
to eliminate on-site terms such as 〈c†

iαciα〉 at the mean-field
level.

In principle, the ζi j can be solved for self-consistently
but here, for the sake of generality, we treat them as free
(bounded) parameters. The expectation values {ζi j} then col-
lectively define a mean-field ansatz. The projective action of
lattice or time-reversal symmetries on this ansatz describes
the particular spin-liquid state of interest. Specifically, we
focus on a U(1) spin liquid known as the staggered flux state
[110,156,157]. Its PSG specifies that the fermionic spinons
transform as

cα (r)
T1−→ cα (r + a1), cα (r)

T2−→ (−)r1 c†
α (r + a2), (33)

under translations T1 and T2 along the unit vectors a1 = (1, 0)
and a2 = (1,

√
3) of the triangular lattice, respectively. As

can be seen from the factor of (−1)r1 in Eq. (33), the mean-
field ansatz is translationally invariant only modulo a gauge
transformation, thus necessitating the use of a two-site unit
cell when working in a fixed gauge. In spite of the unit
cell being doubled, the projected wave function, of course,
preserves the lattice translation symmetries along both a1,2.

The mean-field phase diagram determined from this ansatz
is sketched in Fig. 6. While the explicit form of the Hamil-
tonian is detailed in Appendix B, let us briefly discuss its
structure here. Since the underlying spin model retains cou-
plings up to third-NN sites, it is only natural to allow for all

FIG. 7. Band structure of the staggered-flux ansatz [Eq. (34)]
along high-symmetry lines with mean-field parameters as follows.
The amplitudes of the first-, second-, and third-NN hoppings are
ζ = 1.0, λ = 1.0, and ρ = 3.0; the associated phases are φ1 =
φ2 = π/2, ϕ1 = ϕ2 = ϕ3 = 0, and γ1 = γ2 = γ3 = π/2, respec-
tively. Each band is doubly degenerate as the two spinon species have
identical energies. (a) At J2 = J3 = 0, there are two Dirac cones in
the spectrum. (b) Adding a nonzero J2 = 0.3 gaps them out. (c) A
small J3 = 0.04/ρ shifts the two cones unequally; note that the state
is still gapped at this stage. (d) Finally, beyond a threshold J3, Fermi
surfaces emerge as plotted here for J3 = 0.16/ρ. (e) The blue and
yellow pockets trace out electronlike and holelike Fermi surfaces,
respectively. Owing to our choice of a two-site unit cell, the Brillouin
zone is defined as the region enclosed by the dashed rectangle. (f)
The Berry curvature is a function of J2 alone; for each of the two
bands, its distribution in momentum space is peaked at the k-vectors
of the original Dirac points.

symmetry-allowed hopping terms up to the same range in the
mean-field ansatz. To wit, we take

H MF
H = J1H1 + J2H2 + J3H3, (34)

where Hi describes hopping between ith neighbors. The first-
NN hopping processes are characterized by an amplitude ζ

and two phases φ1, φ2. On setting φ1 = φ2 = π/2, the ansatz
with NN hopping alone reduces to the familiar π -flux U(1)
QSL state [158], and the spectrum exhibits a pair of Dirac
cones, centered at half filling, for each spinon species as
drawn in Fig. 7(a). However, one can also engineer any other
value of the flux threading each plaquette through a suitable
choice of the phases φ1,2. Inclusion of the second-NN (or
third-NN) hoppings result in the opening of a direct gap
at each Dirac cone. The resultant (fully gapped) bands are
topologically nontrivial, with Chern numbers C = ±1; from
the bulk-boundary correspondence [159,160], this gives rise
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FIG. 8. Temperature dependence of the thermal Hall conductivity for the J1-J2-J3 Heisenberg model described by the mean-field theories
(a) H MF

H [Eq. (34)], and (b) H̃ MF
H [Eq. (36)]. In both cases, the system can be tuned from the J1-J2 spin liquid, with a quantized thermal Hall

coefficient of π/3, to a CSL, endowed with spinon Fermi surfaces and an unquantized response, by varying either (a) the third-NN coupling
J3, or (b) the magnetic field Bz. The precise mean-field parameters used for the computation of κxy/T are detailed in Figs. 7(b)–7(d) and 9,
respectively. (c) Field dependence of κxy/T of H̃ MF

H for a magnetic field in the z direction. As expected, the thermal Hall conductivity dies off
at higher temperatures.

to the chiral edge state. Last, the third-NN hoppings split the
degeneracy of the two Dirac cones, generating a particlelike
and a holelike SFS, one around each Dirac point [blue and
red, respectively, in Figs. 7(e)]. These terms do not alter any of
the topological properties, which are controlled instead by J2.
Since the mean-field ground state is, once again, at half-filling
by virtue of Eq. (12), the particle- and holelike Fermi surfaces
are always perfectly compensated.

So far, we have regarded the couplings Ji as material pa-
rameters which are inherent to the particular quantum magnet
under consideration and thus, cannot be easily varied. For the
purpose of tunability, therefore, it is useful to consider the
coupling to an external field, as a function of which, the sys-
tem can be driven across a phase transition between the J1-J2

spin liquid and the CSL. Note that time-reversal symmetry is
already broken by a nonzero J2 in Eq. (34) (i.e., there does
not exist a gauge transformation which, combined with the
action of the TRS operation, leaves the ansatz invariant)—this
points toward a natural route to incorporating the effect of
a magnetic field, as in the Kitaev model. However, H2 also
breaks further symmetries, including reflections, C2 rotation,
as well as the combination of reflection and time-reversal:
so, as it stands, H2 lacks the correct symmetries to describe
a physical magnetic field perpendicular to the plane of the
system. Similar considerations apply to H3 as well; in fact,
it can be shown for this model that any term breaking the
degeneracy of the Dirac points cannot have the symmetries
of a perpendicular magnetic field (see Appendix B).

To correct for this shortcoming, we now construct an alter-
native mean-field Hamiltonian which resembles Eq. (34) but
with the minimal modification that the second-NN hopping
term mimics the orbital coupling of a magnetic field [161]
from the point of view of symmetries. The spinons transform
as

cα (r)
C2−→ (−)r1+r2 cα (C2r), (35a)

cα (r)
	−→ (−)r1+r2 cᾱ (r), (35b)

cα (r)
R1−→ e−i r2π/2 cα (R1r), (35c)

cα (r)
R2−→ ei (r1π−r2π/2)cα (R2r), (35d)

where R1(R2) refers to the horizontal (vertical) axis of reflec-
tion. The modified term, which we label H̃2, breaks time-

reversal and both reflections, but preserves C2 and 	 Ri.
Including a coupling to a Zeeman field in the ẑ direction
as well, the combined Hamiltonian, shown in Appendix B,
assumes the form

H̃ MF
H = J1H1 + J̃2H̃2 + J3H3 − 1

2

∑
i,α

(−)αBz c†
i,αci,α,

(36)
with J̃2 ∝ Bz. The physics of this model, as we will see below,
is similar to that of Eq. (34).

B. Thermal Hall conductivity

Since the projective actions of translation symmetries in
Eq. (33) dictate the use of a two-sublattice unit cell, the
Fourier-transformed counterparts of both H MF

H and H̃ MF
H can be

compactly expressed in momentum space by using a spinor
structure identical to Eq. (22). This implies that four bands
are obtained upon diagonalization of the respective kernels.
With regard to H MF

H , the bands for the different spinon species
are degenerate, as conveyed by Fig. 7. This degeneracy is split
by the Zeeman field in H̃ MF

H ; the dispersions of this model for
relevant parameters are arrayed in Fig. 9 of Appendix B.

Armed with the band structures, the thermal Hall con-
ductivities of our two mean-field theories for the J1-J2-J3

Heisenberg model can now be computed using Eq. (25); the
final results are illustrated in Fig. 8. Beginning with H MF

H , at
small J3 � J1, we notice that κxy/T is quantized for T → 0
[Fig. 8(a)], as before. However, the key difference with Fig. 5
lies in that the plateau occurs at π/3 (gauge fluctuations
modify this to π/6 [40]), as opposed to −π/12 for the Kitaev
model. Recognizing that the Chern number of the lower band
in Fig. 7(c) is −1, this fourfold-enhanced transport coefficient
can be explained straightforwardly from Eq. (27), multiplied
by an additional factor of 2 to account for the two spinon
species. As the Fermi surfaces develop for larger J3, the
zero-temperature value strays from the quantized number;
following arguments analogous to Sec. III B, the sign of this
deviation can be intuited by inspecting the profiles of the
Berry curvatures in the Brillouin zone [Fig. 7(f)]. Finally, we
also study the thermal Hall response of H̃ MF

H in Fig. 8(b), as a
function of the magnetic field Bz, which takes the system from
a fully gapped phase to one with emergent Fermi surfaces. The
general features of the conductivity are comparable to those
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FIG. 9. Dispersion of the mean-field Hamiltonian Eq. (36) with
the same hopping amplitudes and phase factors as in Fig. 7 for H1

and H3. The main difference comes from the term H̃2, in which
we set θ1 = π/2, θ2 = 0. The remaining parameters (J̃2,J3ρ, Bz )
are taken to be (a) (0, 0.1, 0), (b) (0.1, 0.1, 0.05), (c) (0.2, 0.1, 0.1),
and (d) (0.3, 0.1, 0.15). Since the modified second-NN hopping
in Eq. (B6) is assumed to originate from the orbital coupling of
a magnetic field, the coupling J̃2 is varied proportionally to the
Zeeman field Bz.

seen in Fig. 8(a), in terms of both the quantization (or lack
thereof) as well as the overall magnitude. It is interesting to
note, however, that for any given T , κxy/T is always monoton-
ically increasing with Bz; such uniform monotonicity is absent
in the case of H MF

H , for which κxy/T can either increase or
decrease as J3 is tuned, depending on the temperature range.
This effect is also shown in Fig. 8(c), which illustrates the
thermal Hall response as a function of the field magnitude Bz.

V. SUMMARY AND CONCLUSION

In this work, we analyzed the thermal Hall conductivity
in two important models of quantum magnets—the Kitaev
honeycomb lattice model and the J1-J2-J3 Heisenberg mag-
net on the triangular lattice. We paid special attention to
the impact of the magnetic field, taking into account that it
can drive the gapped QSL phases these systems harbor into
gapless QSLs with spinon Fermi surfaces, as indicated by re-
cent numerical studies [59–65,97]. For our computations, we
employed a mean-field description of these phases, based on
fermionic spinons, that is constrained by the aforementioned
numerics and a PSG analysis.

For the Kitaev honeycomb lattice model in a magnetic
field, HK + HZ defined in Eqs. (1) and (7), our analysis cap-
tures three phases: as illustrated in Fig. 3, the non-Abelian
ITO phase, which emerges when gapping out the Kitaev B
phase by a small magnetic field, transitions into a gapless U(1)
QSL at an intermediate value, hc1, of the magnetic field. In the
fermionic spinon language, this corresponds to the magnetic-
field-induced loss of px + ipy superconducting pairing; we
capture this by the mean-field Hamiltonian in Eq. (19) where
the ξ (h) describes the vanishing of the superconducting term.
Besides ξ (h), the magnetic field also enters as the usual
Zeeman term and nonlinearly induces a second-NN hopping
J2 ∝ hxhyhz of the spinons. As a result of the finite gap,

the thermal Hall conductivity κxy/T is quantized at zero
temperature in the ITO phase, see solid lines in Fig. 5(a);
it reaches −π/12 in units of k2

B/h̄ at T = 0, resulting from
the Chern numbers of the BdG spinon bands, and is associ-
ated with the presence of Majorana edge modes. When the
superconducting pairing disappears at hc1, we obtain spinon
Fermi surfaces and limT →0 κxy/T is not quantized any more,
but varies continuously with magnetic field, see dashed lines
in Figs. 5(a) and 5(b). We have related its increase with |h| to
the distribution of the Berry curvature and Fermi surfaces of
the spinons. For larger magnetic fields, we eventually reach a
phase at |h| = hc2 that is adiabatically connected to the fully
polarized state. This corresponds to a gapped spinon band
structure with vanishing net Chern number in the occupied
bands and associated vanishing κxy/T at zero temperature,
see solid lines in Fig. 5(b). We have also studied in detail
the predicted dependence as a function of the direction of the
magnetic field, as summarized in Figs. 5(c)–5(f), both for the
ITO and SFS phases.

In the second part of the paper, we have performed a
similar analysis for the triangular-lattice Heisenberg model
with exchange interactions up to third NNs, which is ex-
perimentally relevant as a low-energy description of vari-
ous QSL candidate materials [71–79,85–96]. Motivated by
a recent numerical study [97] indicating that this model can
host a gapless spin-liquid phase with nonvanishing chiral
spin correlations, we study two different ansätze, Eqs. (34)
and (36), that can capture the transition from a gapped to
a gapless CSL on the triangular lattice, see Fig. 6. Unlike
the Kitaev honeycomb-lattice model, this model does not
involve any spin-orbit coupling; nonetheless, the behavior of
κxy/T is qualitatively similar, as can be seen in Fig. 8: in
the gapped phase [solid lines in Figs. 8(a) and 8(b)], κxy/T
is quantized as T → 0, albeit with a value four times larger,
resulting from the presence of spinful and complex spinons
(as opposed to the nondegenerate bands of Majorana fermions
in our description of the ITO phase of the Kitaev model);
in the gapless phase with a spinon Fermi surface, we again
observe that the low-temperature thermal Hall conductivity is
not quantized and reduced in magnitude (see dashed lines).

Taken together, our analysis shows that a proper descrip-
tion of the thermal Hall conductivity in a QSL requires taking
into account the effect of the magnetic field on the parameters
of the underlying parton ansatz. We believe that a detailed
comparison of our predictions with future measurements of
κxy will help shed light on the possible QSL phases hosted by
“Kitaev materials” and other frustrated magnets.

Finally, we note that our computations were in the context
of a spinon mean-field theory. This yields the correct exact
value of the thermal Hall conductivity in the non-Abelian
ITO phase. Gauge fluctuations will be important in the other
phases, and some discussion of their consequences appears
elsewhere [40].
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APPENDIX A: MEAN-FIELD THEORY
FOR THE KITAEV MODEL

In this Appendix, we discuss the representation of the
Kitaev model [12] in terms of fermionic spinons, following
closely the analyses of Refs. [101,102]. Each two-spin term
in the original model Eq. (1) can be written as a product of
four Majorana fermions, as outlined in Eq. (5). Carrying out

a systematic mean-field decoupling, the Kitaev model reduces
to a quadratic Hamiltonian of Majorana fermions χα

A,B, with
α = 0, x, y, z, where A(B) connotes the sublattice index. This
consists of three types of terms:

H MF
K = H1 + H2 + H3, (A1)

where H1,3 involve NN couplings while H2 couples next-NNs.
These are given by

H1 = 2iJ1

∑
ri

(
χ0

B (ri )χ
0
A (ri ) + χ0

B (ri + n2)χ0
A (ri ) + χ0

B (ri − n1)χ0
A (ri )

)
,

H2 = 2iJ2

∑
ri

(
χ0

A (ri + n1)χ0
A (ri ) + χ0

A (ri + n2)χ0
A (ri ) + χ0

A (ri + n3)χ0
A (ri )

−χ0
B (ri + n1)χ0

B (ri ) − χ0
B (ri + n2)χ0

B (ri ) − χ0
B (ri + n3)χ0

B (ri )
)
,

H3 = 2iJ ′
1

∑
ri

(
χ z

A(ri )χ
z
B(ri ) + χ x

A(ri − n2)χ x
B(ri ) + χ

y
A(ri + n1)χ y

B(ri )
)
, (A2)

with n1,2 denoting the lattice vectors along the directions
corresponding to translations T1,2 in Fig. 1(a). Our focus will
be not so much on the precise values of J1, J2, and J ′

1 (which
can, in principle, be solved for self-consistently) but rather, on
the set of phases that can be obtained by varying them as free
parameters.

Next, we need to specify how the Abrikosov fermions are
constructed from the Majoranas but this mapping is certainly
not unique. You et al. [101] relate the spinon c, defined in
Eq. (13), to the Majorana fermions via

c1 = 1√
2

(χ0 + iχ z ), c2 = 1√
2

(iχ x − χ y). (A3)

However, the SU(2) gauge redundancy Eq. (15) connotes that
we have the freedom to define another (equally valid) set of
partons fi,η, η = 1, 2, which are related to Eq. (14) by a gauge
transformation,

Fi =
(

fi,1 − f †
i,2

fi,2 f †
i,1

)
= Ci Wi, (A4)

where we take W to be WA(B) on the A(B) sublattice, such that

WA = a + i(bσ1 + a σ3), WB = e−iσ3
π
4 W∗

A eiσ3
π
4 , (A5)

with

a =
√

1

6 − 2
√

3
, b = (

√
3 − 1) a. (A6)

The utility of this exercise lies in that the gauge charge of
these new spinons is always preserved under the symmetry
transformations. The Majorana Hamiltonian Eq. (A2) can
easily be re-expressed using these modified spinons. In the
spirit of Eq. (18), we now decompose each of the three pieces
in Eq. (A1) individually into hopping and pairing terms, in
accordance with the prescription of Zou and He [102]. In the
following, our equations employ the convention that the first
lines on the right-hand-side always contribute to Hhopping only,
while the second lines add to Hpairing alone.

When expanded using the transformed spinons, H1 reads as

2iJ1χ
0
B (r j )χ

0
A (ri ) = J1

{
f †
B (r j )

[(
a2 + b2

2

)
+

(
a2 − b2

2

)
σ3 + abσ1 + abσ2

]
fA (ri ) + H.c.

+ f T
B (r j )

[(
ia2 + b2

2

)
+

(
ia2 − b2

2

)
σ3 + ab(1 + i)σ1

]
fA (ri ) + H.c.

}
. (A7)

All terms in H2 are of the form 2iJ2τzχ
0(r j )χ0(ri ), with τz = +1 (τz = −1) for the A(B) sublattice:

2iJ2τzχ
0(r j )χ

0(ri ) = J2

{
f †(r j )

[
i

(
a2 + b2

2

)
+ i

(
a2 − b2

2

)
σ3 + iabσ1 + iabσ2

]
τz f (ri ) + H.c.

+ f T (r j )

[(
a2 − ib2

2

)
+

(
a2 + ib2

2

)
σ3 + ab(1 − i)σ1

]
f (ri ) + H.c.

}
.

(A8)
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The minus sign between the two sublattices is due to the directed nature of the Majorana hopping stemming from the effective
Hamiltonian Eq. (8); for details of the derivation, we refer the interested reader to Eq. (48) of Ref. [12]. Finally, the terms in H3,
which depend on the type of the bond (x, y, or z), have the spinon representation

2iJ ′
1χ

x
A(r j )χ

x
B(ri ) = J ′

1

{
f †
A (r j )

[(
−a2 − b2

2

)
+

(
a2 − b2

2

)
σ3 − abσ1 + abσ2

]
fB (ri ) + H.c.

+ f T
A (r j )

[(
−ia2 − b2

2

)
−

(
−ia2 + b2

2

)
σ3 − ab(1 + i)σ1

]
fB (ri ) + H.c.

}
, (A9)

2iJ ′
1χ

y
A(r j )χ

y
B(ri ) = J ′

1

{
f †
A (r j )

[(
−a2 − b2

2

)
+

(
a2 − b2

2

)
σ3 + abσ1 − abσ2

]
fB (ri ) + H.c.

+ f T
A (r j )

[(
ia2 + b2

2

)
+

(
−ia2 + b2

2

)
σ3 − ab(1 + i)σ1

]
fB (ri ) + H.c.

}
, (A10)

2iJ ′
1χ

z
A(r j )χ

z
B(ri ) = J ′

1

{
f †(r j )

[(
−a2 − b2

2

)
−

(
a2 − b2

2

)
σ3 + abσ1 + abσ2

]
f (ri ) + H.c.

+ f T (r j )

[(
−ia2 − b2

2

)
+

(
−ia2 + b2

2

)
σ3 + ab(1 + i)σ1

]
f (ri ) + H.c.

}
. (A11)

APPENDIX B: ANSATZ FOR THE
STAGGERED FLUX STATE

In this section, we summarize the details for the staggered
flux state proposed by Gong et al. [97] to explain their
numerical observation of a gapless CSL in the J1- J2- J3

Heisenberg model.
The structure of the mean-field theory that we study is

specified by Eq. (34), wherein Hi encompasses ith NN hop-
ping processes. The ground state is always at half-filling
of the fermionic spinons. For the purpose of the following
discussion, it suffices to consider only one of the two species
of spinons; the Hamiltonian for the other species is identical.

To begin, we note that the unit cell is doubled in the mean-
field ansatz [162]. Defining the three NN vectors

δ1 = (1, 0) = a1,

δ2 =
(

1

2
,

√
3

2

)
= a2

2
,

δ3 =
(

−1

2
,

√
3

2

)
= a2

2
− a1, (B1)

the hopping Hamiltonians Hi can be explicitly written as

H1 = ζ
∑

r

(
eiφ1 c†

r cr+δ1
+ e−iφ1 c†

r+δ2
cr+δ1+δ2

+ eiφ2 c†
r cr+δ2

− e−iφ2 c†
r+δ2

cr+2δ2
+ c†

r cr+δ3
+ c†

r+δ2
cr+δ3+δ2

+ H.c.
)
,

H2 = λ
∑

r

(
eiϕ1 c†

r cr+δ1+δ2
+ e−iϕ1 c†

r+δ2
cr+δ1+2δ2

+ eiϕ2 c†
r cr+δ2+δ3

+ e−iϕ2 c†
r+δ2

cr+2δ2+δ3
+ eiϕ3 c†

r cr+δ3−δ1

− e−iϕ3 c†
r+δ2

cr+δ2+δ3−δ1
+ H.c.

)
,

H3 = ρ
∑

r

(
eiγ1 c†

r cr+2δ1
− e−iγ1 c†

r+δ2
cr+δ2+2δ1

+ eiγ2 c†
r cr+2δ2

− e−iγ2 c†
r+δ2

cr+3δ2
+ eiγ3 c†

r cr+2δ3

− e−iγ3 c†
r+δ2

cr+δ2+2δ3
+ H.c.

)
.

While we set the NN-hopping strength ζ to unity without
loss of generality, the real-valued amplitudes λ and ρ are
still allowed to vary freely. To ensure compatibility with the
DMRG results of Ref. [97], we choose λ = 1.0, and ρ = 3.0,
with the accompanying phases φ1 = φ2 = π/2, ϕ1 = ϕ2 =
ϕ3 = 0, and γ1 = γ2 = γ3 = π/2.

Since H2 and H3 already break symmetries such as time
reversal and reflection, we are motivated to incorporate the
effect of the orbital magnetic field coupling into those terms.
However, it turns out that this will not be possible for H3,
which breaks the degeneracy of the Dirac points. To show
that a Fermi surface cannot arise from induced field couplings
in this particular model, we first recognize that to have a
Fermi surface, the degeneracy of the Dirac points at k =
(0, π/2

√
3) and (π, π/2

√
3) must be broken. After a Fourier

transformation, a general coupling contributes a term to the
Hamiltonian in the form of

∑
k

η
†
k

(
v0(k)I +

3∑
i=1

vi(k)σ i

)
ηk, ηk = (ck,+, ck,−)T ,

(B2)

where we have denoted I to be the identity matrix and +,−
to be sublattice labels. Under this coupling, the energy of
the (possibly gapped) Dirac points are shifted by v0(k) −√

vi(k)2. Note that v0(k) and vi(k) are made up of trigono-
metric terms with the general form

sin

⎛⎝ 3∑
j=1

n jδ j · k + ϑ

⎞⎠, (B3)

for ni ∈ Z. Now, due to the constraints from the projective
translation symmetry, any allowed vi(k) term will end up
not breaking the degeneracy of the Dirac points. Therefore,
the condition that the two Dirac points are shifted differently
means that we must have a v0(k) term that does so. Such terms
come from couplings between the same sublattice (+ or −)
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and can take the form

eiφc†
r cr+n1δ1+2n2δ2

+ e−iφc†
r+δ2

cr+δ2+n1δ1+2n2δ2
, (B4)

with φ �= ±π/2 for n1 odd or

eiφc†
r cr+n1δ1+2n2δ2

− e−iφc†
r+δ2

cr+δ2+n1δ1+2n2δ2
, (B5)

with φ �= 0 or π for n1 even. It can be checked that neither of
the terms above have the correct symmetries of the magnetic
field, which breaks time-reversal and reflections, but preserves
their composition. Thus, field-induced couplings in this ansatz
will not lead to a Fermi surface.

The orbital coupling to a magnetic field can be incorpo-
rated by modifying the second-NN term H2, which is then

replaced by

H̃2 =
∑

r

(
eiθ1 c†

r cr+δ1+δ2
+ e−iθ1 c†

r+δ2
cr+δ1+2δ2

+ eiθ2 c†
r cr+δ2−2δ1

− e−iθ2 c†
r+δ2

cr+2δ2−2δ1
+ H.c.

)
.

(B6)

We have set θ1 = π/2, θ2 = 0. This modified second-NN
term opens up a direct gap at each Dirac point, leading to
topologically nontrivial bands. We have retained the original
H3, which generates a Fermi surface around each Dirac point.
The full Hamiltonian in this case, including the effect of a
Zeeman coupling, is listed in Eq. (36).
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