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Semiclassical dynamics of a dark soliton in a one-dimensional bosonic superfluid in an optical lattice

Yusuke Ozaki ,1,* Kazuma Nagao,2,3 Ippei Danshita ,1,† and Kenichi Kasamatsu1

1Department of Physics, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
2Institut für Laserphysik and Zentrum für Optische Quantentechnologien, Universität Hamburg, D-22761 Hamburg, Germany

3Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany

(Received 23 April 2020; accepted 29 July 2020; published 19 August 2020)

We study quantum dynamics of a dark soliton in a one-dimensional Bose gas in an optical lattice within
the truncated Wigner approximation. Previous work has revealed that in the absence of quantum fluctuations,
dynamical stability of the dark soliton significantly depends on whether its phase kink is located at a lattice site
or a link of two neighboring sites. It has also shown that the dark soliton is unstable in a regime of strong quantum
fluctuations regardless of the phase-kink position. To bridge the gap between the classical and strongly quantum
regimes, we investigate the dynamical stability of the dark soliton in a regime of weak quantum fluctuations. We
find that the position dependence of the dynamical stability gradually diminishes and eventually vanishes as the
strength of quantum fluctuations increases. This classical-to-quantum crossover of the soliton stability remains
even in the presence of a parabolic trapping potential. We suggest that the crossover behavior can be used for
experimentally diagnosing whether the instability of a dark soliton is due to quantum fluctuations or classical
dynamical instability.
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I. INTRODUCTION

Solitons are robust nonlinear waves, which are localized
and collide elastically with one another like particles. Soli-
ton solutions in classical systems are described as analytical
solutions of integrable nonlinear equations, including the
Korteweg–de Vries equation [1], the sine-Gordon equation
[2], and nonlinear Schrödinger equations [3]. The nonlinear
Schrödinger equation with cubic nonlinearity, namely, the
Gross-Pitaevskii (GP) equation, can describe Bose-Einstein
condensates (BECs) of ultracold atomic gases in a weakly
interacting regime [4]. Experiments with ultracold atoms are
suited for studying dynamical processes of BECs in an ideal
situation because the system is well isolated from environment
and the relaxation time is sufficiently longer than the typical
timescale of interesting dynamical phenomena. Taking these
advantages, previous experiments have extensively investi-
gated dynamical properties of solitons in atomic BECs [5–10].

Previous theoretical studies have revealed that a dark soli-
ton state of a BEC is dynamically stable when the BEC is
a one-dimensional (1D) continuous system [11,12]. Recent
experiments [13–16] have realized highly 1D BECs, whose
radial size is much smaller than the healing length, enabling
exploration of quantum phenomena in 1D systems. Such
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experimental developments in creating 1D BECs indicate that
a stable dark soliton can be experimentally observed in the
near future. Since the strength of quantum fluctuations is
widely controllable in the system of a 1D BEC by tuning
the density, the interatomic interaction, or the depth of an
optical lattice, previous works have investigated the effects of
quantum fluctuations on a dark soliton by means of various
theoretical methods, such as the Bogoliubov theory [17],
Bethe ansatz [18], matrix product states (MPS) [19–21], and
truncated Wigner approximation (TWA) [22,23]. In particular,
Mishmash et al. have analyzed stability of a dark soliton in
the presence of an optical lattice in the classical regime by the
Bogoliubov approximation and in a regime of strong quantum
fluctuations by using the MPS [19]. There is a remarkable
difference in the classical dynamical stability depending on
whether the phase kink of the dark soliton is located at a
lattice site or at a link of two neighboring sites [24]. They have
also revealed that by contrast strong quantum fluctuations
destabilize a dark soliton regardless of its location. Hence,
one can naturally expect that the stability of the dark soliton
changes between the classical regime and the regime of strong
quantum fluctuations.

In this paper, we study the dynamical stability of the dark
soliton of a 1D lattice Bose gas in a regime of weak quantum
fluctuations. First, we reconsider the stability of the dark soli-
ton in the classical limit by solving the Bogoliubov equations
numerically. The critical interaction strength, above which the
soliton state is dynamically unstable, is determined from the
condition for a complex normal-mode frequency to emerge.
We discuss reasons why the soliton stability depends on its
kink position by considering the difference in the energy gain
of the system due to a small-amplitude fluctuation. Second, we
numerically analyze dynamics of the dark soliton including
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quantum fluctuations within the TWA [25–27]. We find that
even in the semiclassical regime, quantum fluctuations sig-
nificantly affect the stability of the dark soliton. Specifically,
when the strength of quantum fluctuations increases, the dis-
tinction in the soliton stability with respect to the kink position
gradually disappears. We show that this disappearance can
be attributed to the fact that stronger fluctuations cause a
soliton oscillation with larger amplitude regardless of the kink
position, thus invaliding the classical stability analysis.

This paper is organized as follows. In Sec. II we introduce
the Bose-Hubbard model, which describes ultracold bosons in
a deep optical lattice. In Sec. III we review theoretical meth-
ods used for analyzing stability of a dark soliton. Specifically,
in Sec. III A we formulate a linear stability analysis of BECs
in the classical limit on the basis of the GP mean-field theory.
In Sec. III B we explain the TWA, which allows for computa-
tion of quantum dynamics of the Bose-Hubbard model within
the semiclassical regime. In Sec. IV A we present results of
the linear stability analysis on a dark soliton in a box potential
in a wide range of parameters and discuss reasons why the
soliton stability significantly depends on its kink position. In
Sec. IV B we analyze the semiclassical dynamics of the dark
soliton in a box potential by means of the TWA. In Secs.
V A and V B we perform the numerical analyses in the case
that a parabolic trapping potential is present. In Sec. VI we
summarize our results.

II. MODEL

We consider an ultracold Bose gas elongated in one spatial
direction. We assume that the confinement in the transverse
directions is sufficiently strong so that thermal and dynam-
ical excitations in the transverse directions can be safely
neglected, i.e., the system is 1D. Such strong confinement can
be created with use of optical lattices [28,29] or atom chips
[13–16]. We also assume that an optical lattice is present in
the longitudinal direction and is sufficiently deep. Then, our
system can be described by the Bose-Hubbard Hamiltonian
(BHH) [30,31]:

Ĥ = −J
M−1∑
j=1

(b̂†
j+1b̂ j + H.c.) + U

2

M∑
j=1

n̂ j (n̂ j − 1)

+
M∑

j=1

ε j n̂ j, (1)

where J is the nearest-neighbor hopping amplitude, U (>0)
is the on-site interaction coefficient, ε j is an external po-
tential, M is the total number of sites, b̂ j and b̂†

j are the
bosonic annihilation and creation operators at jth site, and
the number operator n̂ j = b̂†

j b̂ j counts the number of particles
at the jth site. The summation over index j on the hopping
term contains only M − 1 terms under open (box) boundary
conditions.

The ground-state phase diagram of the BHH includes the
superfluid and Mott insulator phases, which are separated
by a continuous quantum phase transition [30]. When the
dimensionless parameter, γ = U/(zνJ ), is small, the system
favors the superfluid phase, where z and ν denote the co-
ordination number and the filling factor, respectively. When

ν is integer, the Mott insulator phase is favored at large
γ . The quantum phase transition across the two phases has
been indeed observed in experiments with ultracold bosons in
optical lattices in one [32], two [33], and three dimensions
[34]. The critical value of the quantum phase transition at
unit filling in one dimension has been obtained as (U/J )c =
3.367 with numerical methods [35]. The critical values of the
dimensionless parameter, γc, for the transitions in one, two,
and three dimensions have been precisely determined for arbi-
trary filling factors in previous literature [35–44]. Throughout
the present work, we assume that the system is deep in a
superfluid region, i.e., γ � 1, where the semiclassical TWA
can describe its quantum dynamics at least qualitatively.

III. METHODS

A. Linear stability analysis in the classical limit

In this section, we review the GP mean-field theory for the
BHH, in which dynamics of a BEC is described by the discrete
nonlinear Schrödinger equation (DNLSE) [45,46]. We explain
how to analyze stability of stationary solutions of the DNLSE
on the basis of the Bogoliubov equations [47].

The Heisenberg equation of motion for the annihilation
operator b̂ j is given by

ih̄
∂

∂t
b̂ j = [b̂ j, Ĥ ]. (2)

By replacing b̂ j with its mean field, 〈b̂ j〉 ≡ � j , under the
assumption that the quantum and thermal depletions are neg-
ligibly small, we obtain the DNLSE,

ih̄
∂

∂t
� j = −J (� j+1 + � j−1) + U |� j |2� j + ε j� j . (3)

Let us seek a solution of the DNLSE describing small
fluctuations around a stationary solution � j ,

� j (t ) = e−iμt/h̄[� j + δ� j (t )], (4)

where μ is the chemical potential and � j obeys the time-
independent DNLSE,

μ� j = −J (� j+1 + � j−1) + U |� j |2� j + ε j� j . (5)

The fluctuation part, δ� j (t ), can be expanded as the following
form:

δ� j (t ) =
∑

	

[
u(	)

j e−iω	t − v
(	)∗
j eiω∗

	 t
]
, (6)

where u(	)
j and v

(	)
j are the amplitudes of the 	th normal mode

and ω	 is the associated mode frequency. By substituting
Eq. (6) into Eq. (3), we obtain the following pair of coupled
equations for u(	)

j and v
(	)
j , namely, the Bogoliubov equations:

− J
(
u(	)

j+1 + u(	)
j−1

) + 2U |� j |2u(	)
j + ε ju

(	)
j

− U�2
jv

(	)
j = h̄ω	u(	)

j , (7)

J
(
v

(	)
j+1 + v

(	)
j−1

) − 2U |� j |2v(	)
j − ε jv

(	)
j

+ U�∗
j
2u(	)

j = h̄ω	v
(	)
j . (8)

Solving these simultaneous equations, we obtain 2M eigen-
vectors (u(	)

j , v
(	)
j ) and eigenvalues ω	.
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The stability of the stationary solution � j against the
small fluctuations can be identified with the eigenvalues and
eigenvectors of the Bogoliubov equations [47]. If there ex-
ists a normal mode whose Im[ω	] is finite, the stationary
solution � j is dynamically unstable. If all the normal-mode
frequencies are real and there exists a normal mode with
negative ω	 and positive norm,

∑
j[|u(	)

j |2 − |v(	)
j |2] > 0, the

stationary solution � j is energetically unstable. However, as
long as the system is well decoupled from the environment as
in typical ultracold-gas experiments, the energetic instability,
called Landau instability, does not make the system unstable
at sufficiently low temperatures, where the thermal depletion
from the BEC is negligibly small [48]. Other than these two
cases, the stationary solution is stable.

In Sec. IV A we use the formulation described above
in order to analyze the stability of stationary dark-soliton
solutions. To obtain the stationary solutions, we perform the
imaginary-time propagation of Eq. (3) under the constraint
condition that the phase of � j jumps by π across the center
of the system.

B. Truncated Wigner approximation

In this section, we briefly review the TWA method applied
to the BHH [25–27]. A quantum state can be in general
described by a distribution function in a classical phase
space. With the phase space method, the time evolution of
quantized particles or fields can be expressed by the Wigner
function W (�α, �α∗, t ), which corresponds to a quasiprobability
distribution and the Wigner-Weyl transform of the density
matrix ρ̂(t ). In the TWA for BHH, we consider a 2M-
dimensional phase space of a complex-valued vector �α =
(α1, α2, . . . , αM ). The time evolution of the Wigner function
can be obtained by performing the Wigner-Weyl transform of
the von Neumann equation as

ih̄
∂

∂t
W (�α, �α∗, t ) = 2HW (�α, �α∗) sinh

(
�c

2

)
W (�α, �α∗, t ),

(9)
where HW = (Ĥ )W is the Wigner-Weyl transform of the
Hamiltonian, �c = ∑

j [
←−
∂ α j

−→
∂ α∗

j
− ←−

∂ α∗
j

−→
∂ α j ] is the sym-

plectic operator acting on c-number functions defined in the
phase space [26,27]. The expectation value of an operator
Â(t ), which is expressed by 〈Â(t )〉 = Tr[ρ̂(t )Â], can be de-
scribed as

〈Â(t )〉 =
∫

d �α d �α∗W (�α, �α∗, t )AW (�α, �α∗), (10)

where d �α d �α∗ = π−M
∏

j dRe[α j]dIm[α j], AW = (Â)W is
the Wigner-Weyl transform of Â [26,27].

The complete information about the quantum dynamics
can be obtained by solving Eq. (9). However, it is difficult
to solve Eq. (9) exactly. Instead, we perform a semiclassical
expansion of the right-hand side of Eq. (9) with respect to the
symplectic operator �c. If one neglects higher-order terms of
O(�3

c ), which is called TWA [25–27], then the time evolution
of the Wigner function is described by the classical Liouville
equation ih̄∂tW ≈ {HW ,W }P.B. = HW �cW . Here the bracket
{·, ·}P.B. represents the Poisson bracket defined in the phase
space. In the TWA, the Wigner function is conserved in time

along the classical trajectories, which are solutions of the
DNLSE,

ih̄
∂αcl, j

∂t
= ∂HW

∂α∗
cl, j

. (11)

By replacing αcl, j with ψ j , one can write the explicit form of
the DNLSE,

ih̄
∂ψ j

∂t
= − J (ψ j+1 + ψ j−1) + U (|ψ j |2 − 1)ψ j + ε jψ j .

(12)

The expectation value of an operator Â(t ) can be reduced to a
semiclassical form,

〈Â(t )〉 ≈
∫

d �ψ0d �ψ∗
0W0( �ψ0, �ψ∗

0 )AW [ �ψ (t ), �ψ∗(t )], (13)

where �ψ (t ) = �ψ ( �ψ0, �ψ∗
0 , t ) is a solution of the DNLSE for an

initial classical field �ψ0. The initial classical fields distribute
over the phase space according to the Wigner function of
the initial quantum state, W0 ≡ W (t = 0), which describes a
leading-order correction of quantum fluctuations to the mean-
field solution [49]. If γ = 0 in BHH, corresponding to U/J =
0 or ν = ∞, the semiclassical approximation becomes exact.
As long as the condition γ � 1 is satisfied, the TWA captures
quantum dynamics of the BHH at least qualitatively [27,50].

We assume that the system is initially in a direct-product
state of the local coherent state labeled by a complex
number ψ̄ j ,

|�ini〉 =
M⊗

j=1

eψ̄ j b̂
†
j−ψ̄∗

j b̂ j |0〉 , (14)

where |0〉 is the vacuum of the lattice bosons. Plugging ψ̄ j =
� j into each coherent state and performing the Wigner-Weyl
transform of this pure state, we have the following distribution
function as W0 [27]:

W0( �ψ0, �ψ∗
0 ) =

M∏
j=1

{2 exp[−2|ψ j,0 − � j |2]}. (15)

We recall that � j is a solution of the time-independent
DNLSE (5), which is a dark-soliton state in the calculations
below. For all computations of the TWA in real time, we
perform Monte Carlo sampling of 50 000 random initial states
of the classical fields according to the probability distribution
of Eq. (15) and use the standard fourth-order Runge-Kutta
routine for time evolution.

The coherent state of Eq. (14) is the ground state of the
BHH at νU/J = 0 [27]. However, we choose this type of state
as an initial state for time evolution of a dark soliton at finite
νU/J . Our main motivation for this choice is that the Wigner
function of the coherent state takes the Gaussian form of
Eq. (15), which is rather simple from a theoretical viewpoint.
We aim to address effects of the quantum fluctuations gener-
ated by the simple Wigner function on the stability of a dark
soliton. It is worth noting that while the choice of the coherent
state makes it difficult to prepare the same initial state in
experiments, it is still feasible with currently available tech-
niques. Specifically, one can utilize the Feshbach resonance to
set U = 0 and also can design the external potential ε j , e.g.,
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(a)

(xj − xctr)/d

(b)

(xj − xctr)/d

R
e(

Φ
j
)

R
e(

Φ
j
)

M = 30 (link soliton)

M = 31 (site soliton)

FIG. 1. The spatial profile of the stationary solutions � j at κ =
0.5 and ν = 2000 for (a) M = 30 and (b) M = 31. The solid lines
are a guide to the eye. xctr = (M + 1)/2 denotes the central position
of the system.

with use of a digital micromirror device [51] in such a way
that the density profile of the ground state almost coincides
with that of a dark-soliton state at finite νU/J . By applying
the phase imprinting method [5,6,8] to the prepared state,
quenching νU/J towards a desired value, and changing ε j

to a box or parabolic trap potential, the subsequent dynamics
mimics time evolution of a dark soliton at the finite νU/J in
the presence of quantum fluctuations generated by the initial
coherent state, which we will study in the following sections.

IV. SYSTEM WITH A BOX POTENTIAL

In this section, for theoretical simplicity, we assume that
ε j is homogeneous and the boundary condition is open. This
means that a Bose gas is confined in a box potential. While
a trapping potential of parabolic shape is used more often
in experiments for confining ultracold gases, some previous
experiments have successfully confined ultracold gases in box
potentials [52–54].

(a)

R
e(

ω
1
/
J
)

Im
(

ω
1
/
J
)

κ

M = 30 (link soliton)
M = 31 (site soliton)

(b)

R
e(

ω
1
/
J
)

Im
(

ω
1
/
J
)

κ
(c)

R
e(

ω
1
/
J
)

Im
(

ω
1
/
J
)

κ

FIG. 2. Frequency h̄ω1/J of the normal mode that is relevant
to the energetic and dynamical instability of the dark soliton as a
function of κ , where M = 30 (red triangles) and 31 (blue circles).
(a) h̄ω1/J in the small-κ region, 0 � κ � 0.6, for both M = 30 and
31, which is a reproduction of Fig. 11 of Ref. [19]. (b, c) h̄ω1/J in
the expanded region, 0 � κ � 14, for M = 30 and 31, respectively.

A. Classical regime

In Fig. 1 we show the spatial profile of the stationary
solutions � j of the DNLSE at κ = 0.5 for M = 30 and 31
that possess a dark soliton at the center of the system, which
are obtained by the imaginary-time propagation of Eq. (3).
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FIG. 3. Time evolution of the density profile in the system with a box potential for γ = 6.25 × 10−8, κ = 0.5, and ν = 2000. (a, b) The
density profile in a single shot for M = 30 and 31. (c, d) The density profile averaged over all the TWA samples, corresponding to its quantum
average, for M = 30 and 31.

Notice that the dimensionless parameter κ ≡ νU/J quantifies
the strength of the nonlinear term relative to the hopping term
in the DNLSE [55]. It is clearly seen that the phase kink of
the dark soliton for M = 31 is located at the central site while
that for M = 30 is located at the link between the two central
sites [56]. For later convenience, we call the former “a site
soliton” and the latter “a link soliton,” respectively. Previous
studies have shown that the difference in the kink position
significantly affects the stability of the dark-soliton solutions
in the classical limit [19,24]. In this section, we briefly review
the linear stability analysis of Ref. [19] and discuss reasons
why the stability of the dark soliton depends on the kink
position. We also extend the linear stability analysis to a wider
parameter region.

Figure 2 depicts the frequency h̄ω1/J of the normal mode
that is relevant to the energetic and dynamical instabilities of
the dark soliton as a function of κ . When κ is smaller than
a certain critical value κc � 0.3, h̄ω1/J is real and negative
for both M = 30 and 31. This normal mode corresponds to
an oscillation of a dark-soliton position around the center of
the system [19]. When κ exceeds κc, the real part of h̄ω1/J
vanishes and its imaginary part emerges in the case of M =
30, signaling the dynamical instability of the link soliton. By
contrast, when κ increases above κc in the case of M = 31,
the real part of h̄ω1/J grows. As shown in Fig. 2(c), when

κ exceeds κ � 0.7, the imaginary part of h̄ω1/J starts to
grow, signaling the dynamical instability of the site soliton,
but behaves rather irregularly. This irregular behavior is due
to the crossing with antimodes whose norm is negative, i.e.,∑

j[|u(	)
j |2 − |v(	)

j |2] < 0. It is known that such a coupling
between a mode and antimodes results in the emergence of
dynamical instability [57]. Indeed, Im(h̄ω1/J ) vanishes when
κ > 13, in which |Re(h̄ω1/J )| is larger than the frequencies of
all the other modes so that there is no antimode coupled with
the normal mode. Thus, the dynamical stability of the dark
soliton significantly depends on the location of its kink.

Let us discuss mechanisms how the difference between the
link and site solitons with respect to the dynamical stability
emerges. For this purpose, it is useful to pay attention to the
three important length scales, namely, the lattice spacing d ,
the system size L = Md , and the healing length ξ = d

√
2/κ .

In the limit of κ → 0, ξ diverges such that the condition ξ �
L � d holds. In this situation, the dark soliton state reduces
to the first excited state of the linear Schrödinger equation and
the size of its density notch is set by L.

In the region of 0.05 � κ � 0.2, where the condition L �
ξ � d holds, the size of the density notch is comparable to ξ .
There the continuous approximation is safely valid so that the
site and link solitons are almost equivalent to each other. In
this region, h̄ω1/J approaches zero with increasing κ for the
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FIG. 4. Time evolution of the density profile in the system with a box potential for γ = 1.0 × 10−4, κ = 0.5, and ν = 50. (a, b) The density
profile in a single shot for M = 30 and 31. (c, d) The quantum average of the density profile for M = 30 and 31.

following reason. In a continuous system, the system in the
ground state has approximate translational symmetry and the
presence of a dark soliton breaks the symmetry. This means
that the dark-soliton state has a Nambu-Goldstone mode with
ω = 0. When κ increases, the healing length ξ decreases so
that the normal mode with the frequency ω1 approaches the
Nambu-Goldstone mode.

Notice that a collective mode restoring a spatial transla-
tional symmetry broken by certain defects has been regarded
as a Nambu-Goldstone mode in previous literature. Examples
include the Kelvin mode of a single vortex line [58,59]
and Tkachenko modes of two-dimensional vortex lattices in
scalar BECs [60], and a ripplon mode in a segregated two-
component BEC [59,61].

In the region of κ � κc, ξ is comparable to d so that
the continuous approximation breaks down. Then, the differ-
ence between the site and link solitons becomes remarkable.
Specifically, in the region of ξ � d , a small fluctuation from
the site soliton decreases the total energy of the system be-
cause the presence of a density hole at a site costs a significant
amount of the interaction energy. This indicates that h̄ω1/J for
the site soliton should take a large negative value at large κ ,
and this is the case realized in Fig. 2(c). By contrast, a small
fluctuation from the link soliton increases the total energy
because it digs a hole in the central sites. This indicates that
h̄ω1/J for the link soliton should take a large positive value

at large κ . However, since h̄ω1/J is negative in the small-κ
region, h̄ω1/J has to touch zero at a certain κ , which is nothing
but κc, before the sign change. The touch on zero of h̄ω1/J
results in the coupling to the antimode of itself, leading to
the emergence of the dynamical instability. The dynamical
instability caused by a similar mechanism has been seen in
a dark soliton of a 1D BEC pinned by a repulsive potential
barrier [62].

In the following section, we will analyze the stability of the
dark soliton within the semiclassical regime, focusing on the
region of κc � κ � 0.7 where the dark soliton is dynamically
unstable only if M is even.

B. Weakly quantum regime

In this section we analyze the semiclassical dynamics of
a dark soliton within the TWA. According to the previous
studies using the MPS method, a dark soliton is dynamically
unstable in a regime of strong quantum fluctuations, even
if the soliton is dynamically stable in the classical regime
[19,20,63]. This indicates that the dynamical stability of
a dark soliton changes between the two regimes. In order
to corroborate the switch of the dynamical stability due to
quantum fluctuations, we perform TWA analyses of soliton
dynamics for a wide range of γ ≡ U/(zνJ ), which controls
the strength of quantum fluctuations, while fixing the value of
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M = 30 (link soliton)

M = 31 (site soliton)

τ c
J
/

1/ν

FIG. 5. Classical-to-quantum crossover of the stability of the two
types of dark soliton in a box potential by quantum fluctuations
for κ = 0.5. We show the dependence of the decay time τcJ/h̄ on
quantum-fluctuation strength 1/ν for M = 31 and M = 30. When
1/ν increases, τcJ/h̄ of the site soliton approaches that of the link
soliton.

κ ≡ νU/J . Specifically, in the case of a box potential, we set
the nonlinearity strength as κ = 0.5, at which the site soliton
for M = 31 is dynamically stable while the link soliton for
M = 30 is dynamically unstable. It is worth noting that in
the regime of weak quantum fluctuations that is treated in
the present work the average filling factor ν is as large as
30 � ν � 5000 and κ � 0.7. In such a parameter region, it
is practically impossible to compute the soliton dynamics by
means of the MPS method because the size of the local Hilbert
space is too large.

In Fig. 3 we show the time evolution of the density
profile for ν = 2000, where quantum fluctuations are weak.
The initial state for the time evolution possesses a standing
dark soliton at the center of the system. Figures 3(a) and
3(b) represent dynamics in a single shot arbitrarily chosen
among the TWA samples for M = 31 and 30. In Fig. 3(a)
we see that the site soliton remains localized near the center
during the time evolution, i.e., it is dynamically stable. In
Fig. 3(b) we see that the link soliton departs away from its
initial position in an early stage and moves over a broad
range of the system in a later stage, i.e., it is dynamically
unstable. These results are consistent with the classical linear
stability analysis presented in Sec. IV A. Figures 3(c) and 3(d)
represent the time evolution of the quantum average of the
density profile, 〈n̂ j (t )〉. While the behavior of the site soliton
is almost identical to the single shot [compare Fig. 3(c) with
3(a)], the notch in the average density of the link soliton
becomes filled as time evolves in contrast to the single-shot
result [compare Fig. 3(d) with 3(b)]. This happens because
the link soliton moves depending on a random initial velocity
in each single shot and averaging such random motions of the
density notch leads to the apparent disappearance of the notch
[17,21,64].

In Fig. 4 we show the time evolution of the density profile
for stronger quantum fluctuations, say, ν = 50. In a single shot
shown in Figs. 4(a) and 4(b), we see that for both cases of
M = 31 and 30 the dark soliton departs away from its initial
position in an early stage and moves over a broad range of

(a)

(b)

FIG. 6. The two length scales related to the effect of quantum
fluctuations on the dark soliton for κ = 0.5. (a) The standard de-
viation of the initial position of the density notch �xkink in units
of the lattice constant d versus the fluctuation strength 1/ν for
M = 31 (blue circles) and M = 30 (red triangles). (b) The oscillation
amplitude estimated by the initial velocity A in units of the healing
length ξ versus 1/ν for M = 31.

the system in a later-time stage. In the quantum average, the
density notch of the dark soliton becomes filled in a short time.
Thus, in the regime of relatively strong quantum fluctuations,
both of the site and link solitons are dynamically unstable in
contrast to the results of the classical stability analysis.

In order to quantify the change in the stability of the dark
soliton, we calculate the decay time τc [20], which can be
extracted from the soliton contrast,

C(t ) ≡ 〈n̂max〉 − 〈n̂mid〉
〈n̂max〉 + 〈n̂mid〉 , (16)

where 〈n̂max〉 is the maximal averaged density over all sites j
and 〈n̂mid〉 is the averaged density at the center of the system.
At the initial time, t = 0, the averaged density at the center
satisfies 〈n̂mid(0)〉 � 0 because the dark soliton is located at
the center of the system. If the notch of the averaged density
decays over time, the soliton contrast approaches C � 0 from
C(0) � 1. We define the decay time τc as the half-life of C
from the initial value C(0),

C(τc)

C(0)
= 1

2
. (17)

In Fig. 5 we show the decay time τcJ/h̄ versus 1/ν for
M = 30 (red triangles) and 31 (blue circles). Here 1/ν is pro-
portional to

√
γ , which characterizes the strength of quantum

fluctuations, because we fix κ . In a regime of weak quantum
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(a)

(xj − xctr)/d

(b)

(xj − xctr)/d

R
e(

Φ
j
)

R
e(

Φ
j
)

M = 50 (link soliton)

M = 51 (site soliton)

FIG. 7. The spatial profile of the stationary solutions � j at κTF =
1.0 and νTF = 1000 for (a) M = 50 and (b) M = 51. The solid lines
are a guide to the eye.

fluctuations, e.g., 1/ν � 0.001, τcJ/h̄ for M = 31 is much
larger than that for M = 30, reflecting the difference between
the classical stabilities of the site and link solitons. When 1/ν

increases, the former τcJ/h̄ approaches the latter. In the region
of 1/ν � 0.005, both τcJ/h̄ coincide with each other. Thus, by
calculating τcJ/h̄ versus 1/ν we have successfully identified
the crossover behavior of the dark-soliton stability from the
classical regime to the quantum regime.

The dynamical instability due to quantum fluctuations can
be attributed to a large-amplitude oscillation induced by the
initial random noise present in the TWA calculations. In order
to corroborate this scenario, we show in Fig. 6(a) the standard
deviation of the initial position of the soliton notch �xkink/d
and in Fig. 6(b) the averaged amplitude of soliton oscillations
during the time evolution A/ξ as functions of 1/ν. On the one
hand, in Fig. 6(a) we see that �xkink is much smaller than d
over the parameter region, in which the crossover happens.
This means that the fluctuation in the initial position of the
soliton notch is not a main cause for the quantum dynamical
instability. On the other hand, the amplitude A increases with
increasing 1/ν to become comparable to ξ in the crossover
regime. Since the classical linear stability analysis is valid
under the assumption that amplitude of normal modes is

(a)

R
e(

ω
1
/
J
)

Im
(

ω
1
/
J
) M = 50 (link soliton)

M = 51 (site soliton)

κTF(b)

R
e(

ω
1
/
J
)

Im
(

ω
1
/
J
)

κTF(c)

R
e(

ω
1
/
J
)

Im
(

ω
1
/
J
)

κTF

FIG. 8. Frequency h̄ω1/J of the normal mode that is relevant
to the energetic and dynamical instability of the dark soliton as a
function of κTF, where M = 50 (red triangles) and 51 (blue circles).
(a) h̄ω1/J in the small-κTF region, 0 � κ � 1.2, for both M = 50 and
51. (b, c) h̄ω1/J in the expanded region, 0 � κTF � 14, for M = 50
and 51, for panels (b) and (c), respectively.

small, the emergence of the oscillation with the amplitude
comparable with ξ implies the breakdown of the classical
picture.

033272-8



SEMICLASSICAL DYNAMICS OF A DARK SOLITON IN A … PHYSICAL REVIEW RESEARCH 2, 033272 (2020)

FIG. 9. Time evolution of the density profile in the system with a parabolic trap potential for κTF = 1.0 and νTF = 1000. (a, b) The density
profile averaged over all the TWA samples, corresponding to its quantum average, for M = 50 and 51.

V. SYSTEM WITH A PARABOLIC TRAP POTENTIAL

In this section, we consider a situation in which a 1D
lattice Bose gas is confined in a parabolic trap potential.
In our formulation, this corresponds to setting ε j in the
BHH (1) as

ε j = �( j − xctr/d )2. (18)

The coefficient � is related to the trap frequency ωz as � =
1
2 mω2

z d2, where m denotes the bare mass of the boson. Since
a parabolic trap potential is present in typical ultracold-gas
experiments, it is important to investigate whether or not our
findings for a box potential shown in Sec. IV, especially
the classical-to-quantum crossover of the soliton stability, are
relevant even in the presence of the trap potential.

For a systematic analysis of quantum-fluctuation effects
on the soliton stability, we need to control the size of the
gas R and the filling factor at the center of the system ν.
Notice that we define R and ν as those of the ground state
because ν in the dark soliton state is nearly equal to zero. In
the case of a box potential, R is simply equal to L and ν is
approximately given by ν = N/M as long as ξ � L, where N
is the total number of particles. By contrast, in the presence
of a parabolic potential, R and ν significantly depend not only
on N but also on �/U . Specifically, when the nonlinearity
of the DNLSE is strong enough for the condition R � az to
be satisfied, the Thomas-Fermi approximation provides the
following analytical expression [47,65]:

R = 2

(
3UN

4�

) 1
3

d, (19)

νTF =
(

9N2�

16U

) 1
3

, (20)

where az = d (J/�)
1
4 denotes the harmonic oscillator length

and νTF means the filling factor at the trap center within the
Thomas-Fermi approximation. The length scale RTF = R/2 is
often called the Thomas-Fermi radius. Using Eqs. (19) and
(20), we adjust the three parameters N , �/J , and U/J in such
a way that R, νTF, and κTF ≡ νTFU/J become desired values.

In the calculations shown below, we set R = 30. Moreover,
we set M = 51 (M = 50) for the case of the site (link) soliton.

A. Classical regime

Figure 7 depicts the spatial profile of � j of the dark-soliton
solutions at κTF = 1.0 for M = 50 and 51 in the presence
of a parabolic trap potential. We perform the classical linear
stability analysis of such soliton solutions on the basis of
the Bogoliubov equations for various values of κTF [66].
Figure 8 depicts the frequency h̄ω1/J of the normal mode that
is relevant to the energetic and dynamical instabilities of the
dark soliton as a function of κTF.

We see in Fig. 8(a) that for κTF � 0.3, |h̄ω1/J| increases
as κTF increases. This is in stark contrast to the case of a box
potential shown in Fig. 2(a). The reason for this behavior is
rather simple. When κTF increases for fixed R and νTF, �/J
increases. Since h̄ω1/J � −√

2�/J in the continuum limit
[12], the value |h̄ω1/J| increases with �/J . The tendency of
h̄ω1/J in a region of larger κTF is similar to the case of a box
potential. On the one hand, when κTF exceeds a certain critical
value (κTF � 0.75), Re(h̄ω1/J ) vanishes and Im(h̄ω1/J ) be-
comes finite for M = 50, signaling the dynamical instability
of the link soliton. On the other hand, when κTF exceeds
another certain critical value (κTF � 0.6), Re(h̄ω1/J ) keeps
growing but Im(h̄ω1/J ) becomes finite for M = 51 due to the
coupling with antimodes, signaling the dynamical instability
of the site soliton. However, we emphasize that there is the
parameter region 0.95 � κTF � 1.1, in which the site soliton
is dynamically stable while the link soliton is dynamically
unstable as is the case analyzed in Sec. IV.

B. Weakly quantum regime

In this section, we present results of semiclassical dynam-
ics of a dark soliton in a parabolic potential obtained by
using the TWA. Since our main purpose here is to corroborate
the relevance of the classical-to-quantum crossover, which
we found for a box potential, to the case of the parabolic
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FIG. 10. Time evolution of the density profile in the system with a parabolic trap potential for κTF = 1.0 and νTF = 30. (a, b) The density
profile averaged over all the TWA samples, corresponding to its quantum average, for M = 50 and 51.

potential, we set κTF = 1.0, at which the site (link) soliton is
dynamically stable (unstable) in the classical limit.

Figure 9 depicts the time evolution of the average density
profile, 〈n̂ j (t )〉, for (a) M = 51 and (b) M = 50. The initial
state for the time evolution possesses a standing dark soliton
at the center of the system. There we set ν = 1000, at which
quantum fluctuations are rather weak. We see that the site
soliton for M = 51 shown in Fig. 9(a) is dynamically stable
while the density notch of the link soliton for M = 50 in
Fig. 9(b) decays in time. In short, the stability of the dark
solitons in this regime of very weak quantum fluctuations
is consistent with the classical stability as is the case in the
system with a box potential.

In Fig. 10 we take ν = 30, at which quantum fluctua-
tions are relatively strong, and show the time evolution of
the average density profile for (a) M = 51 and (b) M = 50.
The density notches of both site and link solitons decay in
time, meaning that both are dynamically unstable. Since the
site soliton is dynamically stable in the classical limit, its
instability should be due to quantum fluctuations.

In order to quantify the classical-to-quantum crossover of
the soliton stability, we show in Fig. 11 the decay time of the
soliton contrast τcJ/h̄ as a function of 1/νTF. In a regime of
very weak quantum fluctuations, say 1/νTF � 0.002, τcJ/h̄ for
the site soliton is much larger than that for the link soliton,
corresponding to the classical regime. When 1/νTF increases,
τcJ/h̄ for the site soliton approaches that for the link soliton.
The almost coincide with each other when 1/νTF � 0.01.
Thus, the system with a parabolic trap potential exhibits
the classical-to-quantum crossover with respect to dynamical
stability of the two types of dark soliton, as seen in the system
with a box potential.

VI. CONCLUSIONS

In conclusion, we have investigated the stability of a
dark soliton in a 1D lattice Bose gas, focusing on effects
of weak quantum fluctuations on it. First, we revisited the
stability analysis in the classical regime on the basis of the
Gross-Pitaevskii mean-field theory to clarify reasons why the
stability of a dark soliton differs depending on whether its

phase kink is located at a lattice site or a site at two sites.
The link soliton is dynamically unstable when the nonlinear
parameter κ = νU/J is larger than a critical value. By con-
trast, there are some ranges of κ in which the site soliton is
dynamically stable above the critical value. The dependence
of the instability results from the difference of energy gain
by small oscillations, which is determined by the competition
of three length scales, the box size M, the healing length ξ

and the lattice constant d . Although the dynamical instability
of the link soliton can be explained by this mechanism, we
reported the emergence of the dynamical instability for the site
soliton due to a different mechanism for the large κ region.

To elucidate the effects of weak quantum fluctuations on
the soliton stability, we analyzed the time evolution of a dark
soliton under a box potential and a harmonic potential within
the truncated Wigner approximation. We numerically showed
that when the strength of quantum fluctuations increases, the
lifetime of a site soliton gradually approaches that of a link
soliton in both the potentials. This means that the distinction in
the two types of dark soliton, which is present in the classical

M = 50 (link soliton)
M = 51 (site soliton)

1/νTF

τ c
J
/

FIG. 11. Classical-to-quantum crossover of the stability of the
two types of dark soliton in a parabolic trap potential by quantum
fluctuations for κTF = 1.0. We show the dependence of the decay
time τcJ/h̄ on quantum-fluctuation strength 1/νTF for M = 51 and
M = 50. When 1/νTF increases, τcJ/h̄ of the site soliton approaches
that of the link soliton in both potentials.
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limit, is smeared out by quantum fluctuations. This finding
enables us to distinguish the instability of a dark soliton
due to quantum fluctuations from the classical dynamical
instability by observing the difference in dynamics between
the two types of dark solitons. We also discussed a mechanism
for quantum fluctuations to destabilize the dark soliton and
revealed that quantum fluctuations amplify the oscillation of
the site soliton, which leads to its destabilization.
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