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Molecule-photon interactions in phononic environments
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Molecules constitute compact hybrid quantum optical systems that can interface photons, electronic degrees
of freedom, localized mechanical vibrations, and phonons. In particular, the strong vibronic interaction between
electrons and nuclear motion in a molecule resembles the optomechanical radiation pressure Hamiltonian.
While molecular vibrations are often in the ground state even at elevated temperatures, one still needs to get
a handle on decoherence channels associated with phonons before an efficient quantum optical network based
on optovibrational interactions in solid-state molecular systems could be realized. As a step towards a better
understanding of decoherence in phononic environments, we take here an open quantum system approach to the
nonequilibrium dynamics of guest molecules embedded in a crystal, identifying regimes of Markovian versus
non-Markovian vibrational relaxation. A stochastic treatment, based on quantum Langevin equations, predicts
collective vibron-vibron dynamics that resembles processes of sub- and super-radiance for radiative transitions.
This in turn leads to the possibility of decoupling intramolecular vibrations from the phononic bath, allowing for
enhanced coherence times of collective vibrations. For molecular polaritonics in strongly confined geometries,
we also show that the imprint of optovibrational couplings onto the emerging output field results in effective
polariton cross-talk rates for finite bath occupancies.

DOI: 10.1103/PhysRevResearch.2.033270

I. INTRODUCTION

Molecules are natural quantum mechanical platforms
where several atoms are interlinked via electronic bonds. The
inherent coupling between the electronic transitions at optical
frequencies and the mechanical nuclear motions (vibrons) at
terahertz (THz) frequencies renders molecular systems ideal
for the realization of quantum optomechanical effects. This
is however different from the radiation pressure coupling
mechanism in macroscopic systems, as optomechanical inter-
actions in molecules intrinsically occur in a hybrid fashion
involving a two-step process of photon-electron and vibron-
electron (vibronic) interactions [1–4]. The vibronic coupling
resembles the radiation pressure Hamiltonian (via a boson-
spin replacement) which can be in the strong coupling regime
since the strength of the coherent coupling can be compara-
ble to the vibrational frequency. At cryogenic temperatures
(e.g., at T ∼ 4 K), molecular vibrations are in their quantum
ground state thus circumventing usual complications arising
from additional optical cooling requirements [5]. Moreover,
naturally occurring or engineered differences in the curvatures
of the ground and excited state potential surfaces of the molec-
ular electronic orbitals can lead to the direct generation of

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by the Max Planck Society.

nonclassical squeezed vibrational wave packets [6]. These as-
pects suggest that molecular systems offer natural platforms,
where one can exploit the inherent optovibrational coupling
as a quantum resource.

When molecules couple to their condensed-matter envi-
ronment, e.g., in the solid state, the mechanical modes of lo-
calized intramolecular vibrations (vibrons) are augmented by
collective delocalized vibrational excitations of the host ma-
terial (phonons), which allow for electron-phonon (polaron)
couplings. In practice, coupling to a large number of phonon
modes makes the study of molecular vibrations in the solid
state notoriously challenging. Some of the challenges can be
tamed under cryogenic conditions where experiments manage
to reduce phonon coupling on the so-called zero-phonon line
(ZPL) of the transition between |g, nν = 0〉 and |e, nν = 0〉
sufficiently to reach its natural linewidth limit. This can be
verified in ensemble measurements, e.g., via hole burning,
or in single-molecule spectroscopy [7]. A good example of
an experimental platform is provided by dibenzoterrylene
(DBT) molecules embedded in anthracene crystals [see Fig. 1
(a)], exhibiting a lifetime-limited linewidth and near-unity
radiative yields at cryogenic temperatures [8–12]. However,
even if vibrational spectroscopy at the single-molecule level
is readily accessible in the laboratory [13,14], a quantita-
tive understanding of the couplings between the molecular
vibrational modes and their internal and external degrees of
freedom is still largely missing. In particular, a detailed study
of decoherence sources is necessary.

An open quantum system approach, such as employed
in our treatment, can shed light onto a few aspects of co-
herent and incoherent vibrational dynamics and onto the
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FIG. 1. Model. (a) Schematic representation of a host crystal
containing molecular impuritites (e.g., DBT) which is placed inside
an optical cavity. For simplicity, we restrict our treatment to a single
nuclear coordinate. The molecules are either illuminated directly
by a laser with amplitude η� or indirectly driven via the cavity
mode with amplitude ηc. (b) Jablonski scheme of a molecule in a
solid-state environment showing vibrational and phononic sublevels
of both electronic excited |e〉 and ground |g〉 state. Excitation of the
molecule is typically followed by quick vibrational relaxation (wavy
lines). (c) Illustration of the relevant couplings between electronic
{σ }, localized vibrational {Q}, phononic {qk}, and optical {a} degrees
of freedom as well as decay processes indicated by wavy lines
(spontaneous emission rate γ , cavity decay rate κ , and phonon decay
rate γ

ph
k ).

light-matter interactions in the presence of vibrons, phonons
and cavity-localized photon modes. Our formalism makes use
of quantum Langevin equations which allows us to follow the
evolution of system operators such as the electronic coherence
and vibrational quadratures and to derive analytical results for
the time dynamics of both expectation values and two-time
correlations (needed for the computation of emission and
absorption spectra). We find that closely spaced molecules can
experience collective vibrational relaxation, an effect similar
to the sub- and super-radiance of quantum emitters in the elec-
tromagnetic vacuum. This can be exploited to decouple col-
lective two-molecule vibrational states from the decohering
phononic environment leading to the possibility of coherently
mapping motion onto light and vice versa. In addition, at the
level of the pure light-matter interface, coupling to confined
optical cavity modes can increase the oscillator strength of the
molecule by effectively reducing vibronic couplings [12].

Our formalism also allows us to treat problems rele-
vant to experiments in cavity quantum electrodynamics with
molecules, where standard concepts such as strong coupling
or the Purcell effect can suffer important modifications once
couplings between electronic transitions and vibrations are
taken into account. To this end, we make use of analyti-
cal tools based on quantum Langevin equations [15] to ac-
count for an arbitrary number of vibron and phonon modes.

Earlier theoretical works have either traced out the typically
fast vibrational degrees of freedom [16,17], used limited
numerical simulations, or focused mostly on aspects such as
vibrational relaxation in solids [18–21], electron-phonon and
electron-vibron couplings [22–24], temperature dependence
of the zero-phonon linewidth [25,26] and anharmonic effects
[27,28].

However, it should also be borne in mind that the relevance
of our treatment is not restricted to the physical system
considered here as very similar effects also occur in related
solid-state emitters such as quantum dots or vacancy cen-
ters in diamond. The coupling of such systems to photonic
nanostructures has been studied quite extensively over the
last years [29–36]. There is, furthermore, a general current
interest in impurities interacting with a quantum many-body
environment, such as molecular rotors immersed in liquid
solvents [37,38], Rydberg impurities in quantum gases [39]
or magnetic polarons in the Fermi-Hubbard model [40]. Our
treatment can then be understood as a general model for
the coupled dynamics of spin systems to many, possibly
interconnected, bosonic degrees of freedom as illustrated in
Fig. 1(c).

II. MODEL

A. General considerations

We develop here a complex model where all interactions
between light, electronic transitions, vibrons, and phonons
are taken into account for finite temperatures. We derive
general expressions for the light scattered by a molecular
system (of one or more molecules) embedded in a solid-state
environment outside or inside an optical cavity [see Fig. 1(a)].
As schematically illustrated in Fig. 1(c) the light (mode a)
couples to electronic transitions (Pauli operator σ ) via a Tavis-
Cummings Hamiltonian. These are in turn affected by the
vibronic coupling to one or more molecular vibrations which
leads to the redshifted Stokes lines in emission [cf. Fig. 1(b)].
We focus here on a single mode with relative motion coor-
dinate Q for the sake of simplicity. The solid-state matrix
supports a multitude of bosonic phonon modes with displace-
ments qk (k from 1 to N), which directly modify the elec-
tronic transition leading to the occurrence of phonon wings
in the emission and absorption spectra. In addition, molecular
vibrons can deposit energy into phonons as a displacement-
displacement interaction, leading to an irreversible process of
vibrational relaxation. We will start with the description of the
vibrational relaxation process in Sec. III since all subsequent
effects will depend on this mechanism. We show that linear
phonon-vibron couplings can already result in irreversible
vibrational relaxation involving both single- and multiphonon
processes. Moreover, such dynamics can be either Markovian
or non-Markovian, depending on the relation between the
vibrational frequency and the maximum phonon frequency.
For closely spaced molecules, the same formalism allows for
the derivation of collective relaxation dynamics exhibiting
effects similar to super/subradiance in dense quantum emitter
systems. Classical light driving is included in Sec. IV by
calculating absorption spectra for coherently driven molecules
under the influence of vibronic and phononic couplings
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as well as thermal effects. We show that interestingly,
the vibronic and electron-phonon couplings do not cause
any dephasing dynamics even at high temperatures, i.e.,
the zero-phonon line is mainly lifetime-limited in the linear
coupling model. Following a quantum Langevin equations
approach, we derive absorption spectra for coherently driven
molecules under the influence of vibronic and phononic cou-
plings as well as thermal and finite-size effects. Finally, for
molecular polaritonic systems in a cavity setting, we derive
transmission functions of the cavity field (see Sec. V), show-
ing the reduction of the vacuum Rabi splitting with increasing
vibronic and phononic coupling, as well as phononic sig-
natures in the Purcell regime. The effect of temperature on
the asymmetry of cavity polaritons is quantified by deriving
effective rate equations for the polariton cross-talk dynamics.

B. Hamiltonian formulation

We consider one molecule (later we extend to more than
one) embedded in a bulk medium comprised of N unit cells.
Our perturbational assumption is that, since the bulk is large,
the guest molecule does not significantly change the overall
modes of the bulk. The electronic degrees of freedom of the
molecule are denoted by states |g〉 and |e〉 with the former
at zero energy and the latter at ω0 (we set h̄ to unity),
corresponding to a lowering operator σ = |g〉 〈e|. We assume
only a pair of ground and excited potential landscapes with
identical curvature along the nuclear coordinate and make
the harmonic approximation, where the motion of the nuclei
can be described by a harmonic vibration at frequency ν

and bosonic operators b and b†, satisfying the usual bosonic
commutation relations [b, b†] = 1.

From the displacement between the minima of the two
potential landscapes one obtains a vibronic coupling quan-
tified by a dimensionless factor λ (the square root of the
Huang-Rhys parameter) and described by a standard Holstein-
Hamiltonian [41],

Hel-vib = −λν
√

2σ †σQ, (1)

where Q = (b + b†)/
√

2 is the dimensionless position opera-
tor of the vibronic degree of freedom (the momentum quadra-
ture is given by P = i(b† − b)/

√
2). The Holstein coupling

also leads to a shift of the electronic excited state energy
ω0 + λ2ν, which is removed by the diagonalizing polaron
transformation Uel-vib. The polaron transformation Uel-vib =
ei

√
2λPσ †σ = |g〉 〈g| + B† |e〉 〈e| can be seen as a conditional

displacement affecting only the excited state, where B† =
ei

√
2λP is the inverse displacement operator for the molecular

vibration creating a coherent state when applied to vacuum:
B† |0ν〉 = |−λ〉. The Hamiltonian in Eq. (1) does not con-
sider nonadiabatic vibronic coupling which would lead to
off-diagonal coupling terms (proportional to σx and σy) and
which could drive electronic transitions. Such nonadiabatic
terms become relevant if two potential surfaces come close
to each other [76]. In Appendix H, we briefly discuss how one
could treat such terms in the Langevin equations of motion.
One could also consider a difference in curvatures between
ground (frequency ν) and excited state (frequency ν̄) potential
surfaces which would result in a quadratic coupling term
Hquad

el-vib = βQ2σ †σ with squeezing parameter of the vibrational

wave packet β = (ν̄2 − ν2)/(2ν). We will assume that the
vibron quickly thermalizes with the environment (via the fast
mechanism of vibron-phonon coupling described below) at
temperature T and achieves a steady-state thermal occupancy
n̄ = [exp(ν/(kBT)) − 1]−1.

The electronic transition is coupled to the quantum elec-
tromagnetic vacuum which opens a radiative decay channel
with collapse operator σ via spontaneous emission at rate
γ . For a general collapse operator O with rate γO, we
model the dissipative dynamics via a Lindblad term LO[ρ] =
γO{2OρO† − ρO†O − O†Oρ} applied as a superoperator to
the density operator ρ of the system. The vibronic coupling
leads to the presence of Stokes lines in emission and to a
mismatch between the molecular emission and absorption
profiles. Following the stochastic quantum evolution of a
polaron operator σ̃ = B†σ (vibrationally dressed Pauli op-
erator for the electronic transition) analytical solutions for
the absorption and emission spectra of the molecule can be
derived in the presence of vibrons [15].

In addition to the coupling to internal vibrations of its
nuclei, the electronic transition is also modified through cou-
pling to the delocalized phonon modes of the crystal. We
describe the bulk modes as a bath of independent harmonic
oscillators with bosonic operators ck and c†

k and frequen-
cies ωk . The electron-phonon coupling (see Appendix A for
derivations) can then be cast in the same Holstein form as for
the vibron

Hel-phon = −
∑

k

λkωk

√
2σ †σqk, (2)

where the displacement operators refer to each individual
collective phonon mode qk = (ck + c†

k )/
√

2 (the momentum
operator is given by pk = i(c†

k − ck )/
√

2). The coupling fac-
tors λk depend on the specifics of the molecule and the
bulk crystal. Similarly to the vibronic case, the electron-
phonon interaction can be diagonalized by means of a po-
laron transformation Uel-phon = |g〉 〈g| + D† |e〉 〈e|, whereby

D† =∏k D
†
k = e

∑
k i

√
2λk pk is the product of all phonon mode

displacements, signifying a collective transformation for all
phonon modes. We will assume that the bulk is kept at a con-
stant temperature and is always in thermal equilibrium with
the individual mode thermal average occupancies amounting
to n̄k = [exp(ωk/(kBT)) − 1]−1. The coupling to the phonons
gives rise to a multitude of sidebands in the absorption and
emission spectra which coalesce into a phonon wing that
becomes especially important at elevated temperatures. We
will then follow the temporal dynamics of a collective po-
laron operator σ̃ = D†B†σ , which includes both vibronic and
electron-phonon couplings.

Phonons also affect the dynamics of the vibrational mode.
Modifications of the bond length associated with the molec-
ular vibration leads to a force on the surrounding crystal
(and vice versa), giving rise to a displacement-displacement
coupling,

Hvib-phon = −
∑

k

αkqkQ . (3)

The coupling coefficients αk are explicitly derived in
Appendix A. In the limit of large bulk media, this
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Hamiltonian can lead to an effective irreversible dynamics,
i.e., a vibrational relaxation effect. This is the Caldeira-
Leggett model widely treated in the literature as it leads to
a nontrivial master equation evolution which cannot be ex-
pressed in Lindblad form and is cumbersome to solve analyti-
cally [42–44]. To circumvent this difficulty, we follow the for-
malism of Langevin equations under the concrete conditions
imposed by the one-dimensional situation considered here.
We are then in a position to identify the Markovian versus
non-Markovian regimes of vibrational relaxation conditioned
on the phonon spectrum, namely on the maximum phonon
frequency ωmax of the system. We can additionally account
for a finite phonon lifetime by including a decay rate γ

ph
k for

each phonon mode.
To perform spectroscopy, we add a laser drive modeled

as H� = iη�(σ †e−iω�t − σeiω�t ) with amplitude η�. We will
assume weak driving such that the assumption of thermal
equilibrium is still valid. Furthermore, to treat various as-
pects of molecular polaritonics, we describe the dynamics
of a hybrid light-matter platform by adding the coupling of
a confined optical mode at frequency ωc to the electronic
transition via a Jaynes-Cummings interaction

HJC = g(aσ † + σa†). (4)

The bosonic operator a satisfies the commutation re-
lation [a, a†] = 1 and the coupling is given by g =
[d2

egωc/(2ε0V )]1/2, where deg is the electronic transition dipole
moment and V is the quantization volume (ε0 is vacuum
permittivity). Spectroscopy of the cavity-molecule system can
be done by adding a cavity pump H� = iηc(a†e−iω�t − aeiω�t )
with amplitude ηc. The cavity loss is modeled as a Lindblad
process with collapse operator a and rate κ . In standard cavity
QED, depending on the magnitude of the coherent exchange
rate g to the loss terms κ and γ one can progressively advance
from a strong cooperativity Purcell regime to a strong cou-
pling regime where polaritons emerge. We will mainly focus
on analytical derivations of the effects of electron-vibron
and electron-phonon couplings at finite temperatures on the
emergence of a spectral splitting in the strong coupling regime
as well as the transmission in the Purcell regime.

III. VIBRATIONAL RELAXATION

A decay path for the molecular vibration stems from its
coupling to the bath of phonon modes supported by the bulk.
While it is generally agreed that nonlinear vibron-phonon
couplings contribute to the vibrational relaxation process,
especially in the higher temperature regime [45], we restrict
our treatment to a coupling in the bilinear form of Eq. (3). To
understand the physical picture, we first show that in pertur-
bation theory the bilinear Hamiltonian leads to a competition
between fundamental processes that involve the decay of a vi-
brational quantum into superpositions of either single phonon
states or many phonons adding together in energy to the initial
vibrational state energy. Afterwards we proceed by writing a
set of coupled deterministic equations of motion for the vibra-
tional quadratures of the molecule {Q, P} and the collective
normal modes of crystal vibrations {qk, pk}. This allows for
the elimination of the phonon degrees of freedom and the
derivation of an effective Brownian noise stochastic evolution

model for the molecular vibrations. We illustrate regimes of
Markovian and non-Markovian dynamics and show that an
equivalent approach tailored to two molecules can lead to
collective vibrational relaxation strongly dependent on the
molecule-molecule separation.

A. Fundamental vibron-phonon processes

Let us consider an initial state containing a single vi-
brational quantum |1ν, vacph〉 that evolves according to the
vibron-phonon bilinear Hamiltonian of Eq. (3). We aim to
follow the fundamental processes leading to the energy of the
vibration deposited in superpositions of single or multiphonon
states. We move to the interaction picture by removing the
free energy with U = eiH0t with the free Hamiltonian H0 =
νb†b +∑N

k=1 ωkc†
kck . The time-dependent interaction picture

Hamiltonian, thus, becomes

H̃ =−
N∑

k=1

αk(e
−iνt b + eiνt b†)(e−iωkt ck + eiωkt c†

k ). (5)

The formal solution of the Schrödinger equation can then be
written as a Dyson series |φ(t )〉 = T e−i

∫ t
0 dτ H̃ (τ ) |1ν, vacph〉.

We can proceed by evaluating the first term in the series which
leads to (see Appendix D for details) resonant scattering
(ωk = ν) into single-phonon states |0ν, 1k〉 at perturbative rate
αkt as well as off-resonant scattering (ωk �= ν) into states
|0ν, 1k〉 with probability inversely proportional to the detun-
ing ωk − ν. We note that for ν > ωmax, only off-resonant
transitions are possible. The next order of perturbation the-
ory, however, leads to multiphonon processes where resonant
transitions to states containing three phonons |0ν, 1 j1 , 1 j2 , 1 j3〉
become possible. The resonance condition reads ω j1 + ω j2 +
ω j3 = ν for j1 �= j2 �= j3, and its amplitude is a sum over
terms α j1α j2α j3t/(ω j2 + ω j3 )(ω j3 − ν). These terms are small
with respect to the rates of the resonances starting in the
first order for ν � ωmax and in total are comparable to the
single-phonon scattering off-resonant terms.

B. Effective Brownian noise model

Formal elimination of the phonon modes (see Appendix B
for details) leads to an effective Brownian motion equation for
the momentum of the vibrational mode

Ṗ = −ν̃Q − � ∗ P + ξ, (6)

while the displacement follows the unmodified equation Q̇ =
νP. The effect of the phonon bath is twofold: (i) it can
shift the vibrational frequency to ν̃ = ν − νs and (ii) it leads
to a generally non-Markovian decay kernel expressed as a
convolution � ∗ P = ∫∞

0 dt ′�(t − t ′)P(t ′). For the particular
case considered in Appendix B, the crystal-induced frequency
shift is expressed as

νs = ν
(�k)2

2k0kM
, (7)

where k0 denotes the spring constant of the host crystal, kM

represents the spring constant of the vibron, and �k is a
measure for the coupling of the molecule’s relative motion to
the bulk. For a discrete system, the expression for the damping
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FIG. 2. Markovian vs non-Markovian vibrational relaxation. (a) Real and imaginary part of the frequency-dependent non-Markovian
response function �(ω). The dotted horizontal lines �r (ω) = �m and �i(ω) = 0 show the Markovian limit ωmax → ∞. (b) Logarithmic plot of
the mechanical susceptibility |χ (ω)|2 in the Markovian regime ωmax � ν (dashed curve) and for a finite cutoff ωmax = 1.4ν (solid curve). In the
latter case, the cutoff at ±ωmax is indicated by the vertical dotted lines. (c) Relaxation of molecular vibrational energy Eν (t ) due to coupling to
N = 500 phonon modes (simulation of classical equations of motion) in the Markovian limit ωmax = 7ν for �m = ν/20 and comparison with
Brownian motion theory (red dashed curve). (d) Vibrational relaxation for identical �m but in the non-Markovian regime ωmax = ν. Exponential
decay with �m (dashed red curve) then fails to predict the behavior. In both cases, we assumed a finite phonon lifetime with constant Q-factor
Q = ωk/γ

ph
k = 50.

kernel �(t ) =∑k α2
k ν/ωk cos(ωkt )�(t ) involves a sum over

all phonon modes which can be turned into the following
expression in the continuum limit (N → ∞)

�(t − t ′) = �m
J1(ωmax|t − t ′|)

|t − t ′| �(t − t ′). (8)

Here, Jn(x) denotes the nth order Bessel function of the
first kind, �(t ) stands for the Heaviside function and �m =
2ννs/ωmax is the decay rate in the Markovian limit. A
similar expression is known from the Rubin model [46],
where one considers the damping of a single mass de-
fect in a 1D harmonic crystal. The zero-average Langevin
noise term ξ is determined by the initial conditions of the
phonon bath and can be expressed in discrete form as ξ (t ) =∑

k αk (qk (0) cos(ωkt ) + pk (0) sin(ωkt )). We can treat Eq. (6)
more easily in the Fourier space where the convolution be-
comes a product

−iωP(ω) = −ν̃Q(ω) − �(ω)P(ω) + ξ (ω), (9)

and the Fourier transform of the non-Markovian decay kernel
�(ω) generally contains a real and imaginary part �(ω) =
�r (ω) + i�i(ω). Figure 2(a) shows a plot of �r (ω) and �i(ω)
where we can interpret the imaginary part as a frequency
shift which is largest around ω = ±ωmax. Together with the
transformed equation for the position quadrature −iωQ(ω) =
νP(ω) we then obtain an algebraic set of equations which
allows us to calculate any kind of correlations for the molec-
ular vibration, both in time and frequency domains. This will
be needed later on for computing the optical response of the
molecule.

C. Markovian versus non-Markovian regimes

The Markovian limit is achieved when the vibrational
frequency lies well within the phonon spectrum ωmax � ν

and �(ω) becomes flat in frequency space: �(ω) = �m. In
this case, the memory kernel tends to a δ-function: �(t ) =
2�mδ(t )�(t ) with the convention �(0) = 1/2. In the contin-
uum limit, the correlations at different times are

〈ξ (t )ξ (t ′)〉 = 1

2π

∫ ∞

−∞
dωe−iω(t−t ′ )Sth(ω), (10)

where the noise spectrum is expressed similarly to the case
of a standard thermal spectrum for a harmonic oscillator in
thermal equilibrium Sth(ω) = �r (ω)ω/ν[coth (βω/2) + 1] in
terms of the inverse temperature β = (kBT )−1. The difference
lies in the frequency-dependence of the real part of the decay
rate function

�r (ω) = �m

√
ω2

max − ω2

ωmax
�(ωmax−ω)�(ωmax+ω), (11)

where the Heaviside functions provide a natural cutoff of the
spectrum at ±ωmax. While in the time domain, the noise is
only δ-correlated at high temperatures and ωmax → ∞, the
noise is always δ-correlated (yet colored) in the frequency do-
main 〈ξ (ω)ξ (ω′)〉 = Sth(ω)δ(ω + ω′). This property is help-
ful for analytical estimation of the molecular absorption and
emission in the presence of non-Markovian vibrational re-
laxation. In frequency space, the response of the vibron to
the input noise of the phonon bath is characterized by the
susceptibility χ (ω) = −iω[ν2 − ω2 − i�(ω)ω]−1 defined by
P(ω) = χ (ω)ξ (ω) (for simplicity, we assumed ν̃ ≈ ν).

In Fig. 2(b), we plot |χ (ω)|2 for the two cases ωmax �
ν (Markovian limit) and ωmax ≈ ν (non-Markovian regime)
for identical �m. While in the Markovian regime, the sus-
ceptibility has two approximately Lorentzian sidebands with
linewidth �m centered around ±ν, the finite frequency cutoff
in the non-Markovian case leads to an unconventional line-
shape with reduced linewidth and slight frequency shift. In
the time domain, we can simulate the microscopic classical
equations of motion for a large number of phonon modes and
compare the results to the standard Markovian limit obtained
from Brownian motion theory. This is illustrated in Figs. 2(c)
and 2(d) where we simulate the average energy of the vi-
bron mode Eν (t ) = (P̄(t )2 + Q̄(t )2)/2 for classical observ-
ables {P̄, Q̄} interacting with N = 500 phonon modes in the
Markovian and non-Markovian regimes, respectively. While
one obtains an exponential decay with �m in the Markovian
regime [Fig. 2(c)], in the non-Markovian case [Fig. 2(d)] one
finds a slower nonexponential decay (for identical �m) which
does not reach zero for long times.
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FIG. 3. Collective vibrational effects. (a) Collective interaction kernel �12(τ ) = �21(τ ) as a function of time delay τ and separation j. In
the crystal, only integer values of j are permitted (dashed vertical lines). (b) Comparison between individual decay [dashed curve, assuming
two identical molecules �1(τ ) = �2(τ )] and collective interaction for increasing distance j (as indicated by the numbers above the curves).
(c) Real and (d) imaginary part of �12(ω) between −ωmax and +ωmax for j = 1 (solid), 2 (dashed), and 3 (dotted).

The time domain correlations can be easily computed from
the thermal spectrum convoluted with the modified mechani-
cal susceptibility in the Fourier domain

〈P(t )P(t ′)〉 = 1

2π

∫ ∞

−∞
dωe−iω(t−t ′ )|χ (ω)|2Sth(ω), (12)

which also includes the non-Markovian regime. At low
temperatures β−1 
 ν the sideband at −ν is suppressed
and the thermal spectrum can be approximated as Sth(ω) =
[2�r (ω)ω/ν]�(ω). This two-time correlation function of the
momentum quadrature will be required later in the calculation
of molecular spectra in Sec. IV.

D. Collective vibrational effects

A collection of impurity molecules sitting close to each
other within the same crystal will see the same phonon
bath and can, therefore, undergo a collective vibrational
relaxation process. This is similar to the phenomenon of
subradiance/super-radiance of quantum emitters commonly
coupled to an electromagnetic environment, where the rate
of photon emission from the whole system can be smaller or
larger than that of an individual isolated emitter. In order to
elucidate this aspect, we follow the approach sketched above,
i.e., we eliminate the phonon modes to obtain a set of coupled
Langevin equations for two molecules situated 2 j sites apart
from each other:

Ṗ1 = −ν̃1Q1 − �Q2 − �1 ∗ P1 − �12 ∗ P2 + ξ1, (13a)

Ṗ2 = −ν̃2Q2 − �Q1 − �2 ∗ P2 − �21 ∗ P1 + ξ2. (13b)

The mutually induced (small) energy shift � =∑
k αk,1αk,2/ωk and the mutual damping kernels

�12 = ν2
∑

k αk,1αk,2/ωk cos(ωkt )�(t ) and �21 =
ν1
∑

k αk,1αk,2/ωk cos(ωkt )�(t ) are strongly dependent
on the intermolecular separation 2 j (see Appendix C for
full expression), whereas the individual decay terms �1

and �2 are given by the expressions derived previously.
Importantly, now also the noise terms ξ1 and ξ2 are not
independent of each other but correlated according to a
separation-dependent expression specified in Appendix C.
In the continuum limit N → ∞, the collective interaction
kernels can be approximated with the aid of higher-order
Bessel functions (assuming identical molecules ν1 = ν2 and

consequently �12(t ) = �21(t )):

�12(t − t ′) = �m
4 jJ4 j (ωmax|t − t ′|)

|t − t ′| �(t − t ′). (14)

In Fig. 3(a), we plot the collective decay kernel as a function
of time and intermolecular separations 2 j. The collective
effects do not occur instantaneously but in a highly time-
delayed fashion [cf. Fig 3(b)]. We can interpret the collective
interaction as an exchange of phonon wave packets between
the two molecules, where the wave packets are traveling with
the group velocity vg = dω/dq of the crystal (lattice constant
a) at a maximum speed vmax

g ≈ aωmax/2 (the high-frequency
components towards the band edge are slower). This leads to
an approximate time of τ = 4 jω−1

max for the wave packet to
propagate from one molecule to the other.

The collective interaction will also lead to a modification
of the vibrational lifetimes of the molecules which we want to
describe in the following. To this end, one can again proceed
with a Fourier analysis of Eqs. (13). The expression for
the non-Markovian collective interaction kernel in frequency
space (between −ωmax and +ωmax) reads

�12(ω) = i�mU4 j−1

(
ω

ωmax

)√
ω2

max − ω2

ωmax
(15)

+ �mT4 j

(
ω

ωmax

)
,

where we introduced the Chebychev polynomials of first (Tn)
and second kind (Un). We are interested in the real part of the
above expression which will give rise to a collectively induced
modification of the vibrational lifetime while the imaginary
part corresponds again to a frequency shift. In Figs. 3(c) and
3(d), we plot the real and imaginary parts of �12(ω) for small
distances j, respectively.

In the Markovian limit ωmax � ν, everything becomes
flat in frequency space and one can approximate �12(ω) =
�12(0) = �m and consequently (�12 ∗ Pi ) ≈ �mPi with i =
{1, 2}. A diagonalization can be performed by moving into
collective quadratures P+ = P1 + P2 and P− = P1 − P2 (and
identically for the positions) for which the equations of motion
decouple

Ṗ+ ≈ −(ν̃ + �)Q+ − 2�mP+ + ξ1 + ξ2, (16a)

Ṗ− ≈ −(ν̃ − �)Q− + ξ1 − ξ2. (16b)
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While one of the collective modes undergoes relaxation at
an increased rate 2�m, the orthogonal collective mode can
be eventually decoupled from the phononic environment. Of
course, as the derivation we have performed is restricted to
one-dimensional crystals, it would be interesting to explore
this effect in three dimensional scenarios where both longi-
tudinal and transverse phonon modes have to be considered
with effects stemming from the molecular orientation as well
as the influence of anharmonic potentials. A recent theoret-
ical work also discusses phonon-bath mediated interactions
between two molecular impurities immersed in nanodroplets
with respect to the rotational degrees of freedom of the
molecules [47].

IV. FUNDAMENTAL SPECTRAL FEATURES

Let us now consider a molecule driven by a coherent light
field. We will make use of and extend the formalism used
in Ref. [15] to compare the effect of Markovian versus non-
Markovian vibrational relaxation, phonon imprint on spectra
and temperature effects. To derive the absorption profile of
a laser-driven molecule, one can compute the steady-state
excited state population Pe = 〈σ †σ 〉 = η�[〈σ 〉 + 〈σ 〉∗]/(2γ ).
The average steady-state dipole moment can formally be
written as (note that we are assuming weak driving conditions
η� 
 γ such that the laser drive only probes the linear re-
sponse of the dipole):

〈σ 〉 = η�

∫ t

−∞
dt ′e−[γ−i(ω�−ω0 )](t−t ′ ) 〈B(t )B†(t ′)〉 . (17)

The important quantity to be estimated is the correlation func-
tion for the displacement operators of the molecular vibration
〈B(t )B†(t ′)〉, which is fully characterized by the Huang-Rhys
factor λ2 and the second-order momentum correlation func-
tions:

〈B(t )B†(t ′)〉 = e−2λ2(〈P2〉−〈P(t )P(t ′ )〉). (18)

The stationary correlation 〈P(t )2〉 = 〈P2〉 = 1/2 + n̄ includes
the temperature of the environment and does not depend on
the details of the decay process. The two-time correlations
〈P(t )P(t ′)〉 (and consequently the vibrational linewidths of
the resulting optical spectrum) are crucially determined by the
details of the dissipation model derived in Sec. III. In order to
capture the non-Markovian character of the vibrational relax-
ation, we extend the method used in Ref. [15] by computing
correlations in the Fourier domain and then transforming to
the time domain.

A. The non-Markovian vibrational relaxation regime

Let us first consider the imprint of the particularities of
the vibrational relaxation process onto the absorption and
emission spectra when molecule-light interactions are taken
into account. For the calculation of the momentum correla-
tion function 〈P(t )P(t ′)〉, one has to evaluate the integral in
Eq. (12), where the susceptibility weighted with the thermal
spectrum is given by the general expression

|χ (ω)|2Sth(ω) = �r (ω)ω3
[

coth
(

βω

2

)+ 1
]
/ν

(ν2−ω2+ �i(ω)ω)2+�r (ω)2ω2
, (19)

FIG. 4. Molecular spectroscopy. (a) Real part of the correla-
tion function 〈P(t )P(t ′)〉 for Markovian decay (dashed) vs non-
Markovian decay (solid, cutoff at ωmax = 1.3ν) for �m = 0.1ν and
at zero temperature n̄ = 0. (b) Comparison between the resulting
absorption spectra (steady-state population Pe normalized by steady-
state population of resonantly driven two-level system P0) in the
Markovian and non-Markovian regimes for the same parameters as
in (a) and λ = 1, γ = �m/4. (c) Effect of thermal occupation n̄ on
absorption spectra (λ = 1) without vibrational relaxation �m = 0 and
(d) including vibrational relaxation �m = 8γ (assuming Markovian
decay).

with �i(ω) = �mω/ωmax between −ωmax and +ωmax. As
discussed in the previous section, the real part of �(ω) de-
termines the decay rate, while the imaginary part leads to
a frequency shift. Generally, performing the integral over
the expression in Eq. (19) is difficult since the line shapes
can be very far from simple Lorentzians. However, assum-
ing a good oscillator (�m 
 ν) and consequently a sharply
peaked susceptibility that only picks frequencies around the
vibrational resonance, we can obtain an effective modified
frequency ν ′ and decay rate �′ in the non-Markovian regime
(however assuming ωmax > ν) with ν ′ = [ν2 + �i(ν)ν]1/2 and
�′ = �r (ν ′). By expanding Eq. (19) around the poles of the
denominator ω = ±ν ′ + δ and assuming |δ| 
 |ν ′|, one can
then calculate the temperature-dependent momentum correla-
tion function in the non-Markovian regime:

〈P(t )P(t ′)〉=
[(

n̄+ 1

2

)
cos(ν ′τ )− i

2
sin(ν ′τ )

]
e− �′

2 |τ |, (20)

with time delay τ = t − t ′. This allows for an analytical
evaluation of the integral in Eq. (17) (see Appendix G for
detailed calculation) and leads to a steady-state excited-state
population of

Pe

η2
�

=
∞∑

n=0

n∑
l=0

L(n)B(n, l )
(
γ +n �′

2

)
/γ

(γ +n �′
2 )2 + [(ω�−ω0) − (n−2l )ν ′]2

, (21)

where we introduced L(n) = e−λ2(1+2n̄) λ2n

n! and B(n, l ) =(n
l

)
(n̄ + 1)n−l n̄l . One can immediately obtain the result for

the Markovian limit by replacing ν ′ → ν and �′ → �m. Fig-
ures 4(a) and 4(b) show a comparison between the momentum
correlation function and the resulting steady-state population
(normalized by the steady-state population of a resonantly
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driven two-level system P0 = η2
�/γ

2) in the Markovian and
non-Markovian regimes (for fixed �m). We can see that
non-Markovianity leads to modified spectral positions and
linewidths of the vibronic sidebands while the ZPL is not af-
fected by the dissipation process. The denominator of Eq. (21)
contains a sum over Lorentzians with a series of blue-shifted
lines with index n arising from the electron-vibration interac-
tion which are weighted by a Poissonian distribution. Thermal
occupation of the vibrational states can counteract this effect
however by leading to redshifted lines in absorption [see
Fig. 4(c)] with index l and weighted by a binomial distri-
bution. However, as shown in Fig. 4(d), for large vibrational
relaxation rates �m � γ the sidebands will be suppressed and
absorption and emission of the molecule will mostly occur on
the ZPL transitions |g, mν〉 ↔ |e, mν〉. While in the case of
zero temperature the ZPL is solely determined by n = 0, for
finite temperatures all terms with n = 2l can contribute to it.

An important quantity is the Franck-Condon factor fFC

which measures the reduction of the ZPL intensity due to
coupling to internal vibrations. This factor is given by the
average displacement squared fFC = 〈B†〉2 = e−λ2(1+2n̄) and
does not depend on the vibrational relaxation of the molecule.
Using the fact that (n̄ + 1)/n̄ = eβν , one can express Eq. (21)
as a sum over just a single index in the limit 2λ2√n̄(n̄ + 1) 

1 (see Appendix G for derivation) as

Pe

η2
�

=
∞∑

n=−∞

fFC
(

n̄+1
n̄

) n
2 In(2λ2N̄ )

(
γ +|n|�′

2

)
/γ(

γ + |n|�′
2

)2 + (ω� − ω0 − nν ′)2
, (22)

with In(x) denoting the modified Bessel functions of the
first kind and N̄ = √

n̄(n̄ + 1). This expression is similar to
the result known from the standard Huang-Rhys theory for
emission and absorption [48], but it now additionally includes
vibrational relaxations �′. The ZPL contribution (n = 0) at
resonance is thus simply given by Pe = η2

� fFC/γ 2. The emis-
sion spectrum can be calculated from the Fourier transform
of two-time correlations 〈σ †(τ )σ (0)〉. Considering the decay
of an initially excited molecule, one finds that the emission
spectrum is simply given as the mirror image (with respect to
the ZPL) of the absorption spectrum which is why we restrict
ourselves to the calculation of the absorption profile.

B. Phonon imprint on spectra

So far, we have considered the phonons only as a bath that
can provide vibrational relaxation for the molecule and have
neglected the effect of electron-phonon coupling. However,
this can become a dominant mechanism at larger temperatures
where all acoustic and optical phonon modes are thermally ac-
tivated (>50 K) and the probability of a ZPL transition is very
small. To include electron-phonon coupling, the expression
for the steady-state dipole moment [cf. Eq. (17)] has to also
account for the displacement of the electronic excited state
caused by the phonons

〈σ 〉 = η�

∫ t

−∞
dt ′e−[γ−i(ω�−ω̃0 )](t−t ′ )〈B(t )B†(t ′)〉 〈D(t )D†(t ′)〉 .

(23)

Here, the coupling to phonons additionally leads to a renor-
malization of the electronic transition frequency ω̃0 = ω0 −

∑
k λ2

kωk (polaron shift). The expression in Eq. (23) now
jointly contains all of the effects: electron-phonon cou-
pling, electron-vibron coupling and vibrational relaxation
(through the correlation function 〈B(t )B†(t ′)〉). Since we
consider phonon modes to be independent of each other,
their displacement correlation function of the phonons can be
factorized 〈D(t )D†(t ′)〉 =∏k 〈Dk (t )D†

k (t ′)〉 where the cor-
relation for each single mode is given by 〈Dk (t )D†

k (t ′)〉 =
exp[2λ2

k (〈p2
k〉 − 〈pk (t )pk (t ′)〉)]. When replacing the sum over

k with an integral over ω in the continuum limit, this yields
(neglecting phonon decay as it will not influence the spectra
in the continuum limit):

〈D(t )D†(t ′)〉 = e
∫∞

0 dω
J (ω)
ω2 [coth( βω

2 )(cos(ωτ )−1)−i sin(ωτ )]
. (24)

Here, we have introduced the spectral density of the
electron-phonon coupling J (ω) =∑k |λkωk|2δ(ω − ωk ) =
n(ω)λ(ω)2ω2, where n(ω) denotes the density of states. In the
one-dimensional derivation considered here, we obtain for the
spectral density

J1D(ω) = λ1D
e-ph ω

√
ω2

max − ω2

ωmax
�(ωmax − ω). (25)

The electron-phonon coupling constant λ1D
e-ph is derived in

Appendix E and depends, among other things, on the displace-
ment of the crystal atoms upon excitation of the molecule
as well as on the spring constants between the molecule’s
atoms and the neighboring crystal atoms. Again, the cutoff at
ωmax arises naturally from the dispersion of the crystal. In the
continuum limit considered here, this spectral density would
lead to a divergence of the integral in Eq. (24) due to the high
density of low-frequency phonons, which is a well known
problem for 1D crystals [49,50]. This issue can be addressed
by considering only a finite-sized 1D crystal with a minimum
phonon frequency cutoff ωmin > 0. However, one can instead
also consider a spectral density stemming from a 3D density
of states:

J3D(ω) = λ3D
e-ph · ω3

√
ω2

max − ω2

ωmax
�(ωmax − ω), (26)

where the electron-phonon coupling constant λ3D
e-ph now has

units s2. In Figs. 5(a) and 5(b). we plot the resulting absorption
spectrum of the ZPL for 1D and 3D densities of states,
whereby the exact shape of the phonon wing is determined
by the spectral density function J (ω). While analytical ex-
pressions for the integral in Eq. (24) are difficult to obtain in
the continuum case, we can express the absorption spectrum
of the ZPL including phonon sideband in terms of discrete
lines as

Pe

η2
�

=
∞∑
{nk}

{nk}∑
{lk}

∏N
k=1 Lk (nk )Bk (nk, lk )

γ 2 + [ω� − ω̃0−
∑N

k=1(nk − 2lk )ωk
]2 . (27)

Here the sum runs over all {nk} = n1, . . . , nN and {lk} =
l1, . . . , lN . This can be seen as a generalization of the result
in Eq. (21) for many modes where the N phonon modes
are indexed by k and the function Lk (nk ) accounts for the
displacement of the excited state while the binomial dis-
tribution Bk (nk, lk ) accounts for the thermal occupation of
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FIG. 5. Phonon imprint on absorption. Absorption spectra (logarithmic scale) of zero-phonon line including phonon wing at different
temperatures for (a) 1D density of states and λ1D

e-ph = 0.03 and (b) 3D density of states and λ3D
e-ph = 0.02 ps2 with ωmax = 3 THz in both cases.

Insets show schematic of total molecular absorption spectrum with vibrational sidebands accompanied by phonon wings. (c) Debye-Waller
factor fDW for a 3D density of states as a function of temperature with increasing coupling strength λ3D

e-ph (as indicated by arrow) in equidistant
steps from λ3D

e-ph = 0.01 ps2 to λ3D
e-ph = 0.1 ps2 and cutoff frequency of ωmax = 3 THz.

each mode. As one can see in Figs. 5(a) and 5(b), ther-
mal occupation of the phonons leads to red-shifted phonon
sidebands in absorption and eventually to a symmetric ab-
sorption spectrum around the zero-phonon line in the limit
of large temperatures. Note that here we did not explicitly
include phonon decay γ

ph
k as it does not influence the ab-

sorption spectra in the continuum limit (the phonon peaks
overlap and are not resolved). However, one can easily ac-
count for a finite phonon lifetime by including it in the mo-
mentum correlations 〈pk (t )pk (t ′)〉 = 1

2 [(1+2n̄k ) cos(ωkτ )−
i sin(ωkτ )]e−γ

ph
k |τ |. Similarly to the Franck-Condon factor for

vibrons, one defines the Debye-Waller factor fDW = 〈D†〉2 =
exp[− ∫∞

0 dωJ (ω)ω−2 coth(βω/2)] which measures the re-
duction of the ZPL intensity due to the scattering of light
into phonons. In Fig. 5(c), we show the behavior of the
fDW in the 3D case for different coupling strengths at low
temperatures, revealing a stronger temperature-dependence
for larger couplings. The total reduction of the ZPL intensity
as compared to the two-level system case is then given by the
product fFC · fDW.

C. Dephasing

Within the model we consider, where all interactions stem
from a harmonic treatment of both intramolecular vibra-
tions and crystal motion, the zero-phonon linewidth of the
electronic transitions is largely independent of temperature.
In reality, to account for higher temperature effects one needs
contributions quadratic in the phononic displacements which
has been theoretically pointed out and experimentally ob-
served [51,52]. However, even in the linear regime, the fact
that vibronic and electron-phonon couplings do not lead to
significant dephasing is a nontrivial result. One could, e.g., ex-
pect that the Holstein-Hamiltonian for electron-phonon cou-
pling HH = [ω0 −∑k

√
2λkωkqk]σ †σ +∑k ωkc†

kck , which
sees a stochastic shift of the excited electronic level should
lead to a dephasing of the ground-excited coherence 〈σ 〉. One
reason is the similarity to the pure dephasing of a two-level
transition subjected to a noisy laser undergoing evolution with
the Hamiltonian [ω0 + φ̇(t )]σ †σ where the frequency is con-
tinuously shaken by a white noise stochastic term of zero av-

erage and obeying 〈φ̇(t )φ̇(t ′)〉 = γdephδ(t − t ′). It is straight-
foward to show that the time evolution of the coherence in
this case becomes 〈σ (t )〉 = 〈σ (0)〉 e−iω0t e−γdepht such that the
correlations of the noise indicate the increase in the linewidth
of the transition [53]. Similarly, one could expect that the
zero-averaged quantum noise stemming from the shaking of
the electronic transition in the Holstein-Hamiltonian would
lead to the same kind of effect. However, computing the exact
time evolution of the coherence in the interaction picture [with
Hamiltonian H̃H(t )] one obtains

〈σ (t )〉 = 〈σ (0)〉 T {e−i
∫ t

0 dt ′H̃H(t ′ )}e−γ t

= 〈σ (0)〉 e−(γ+iω̃0 )t 〈D(t )D†(0)〉 , (28)

where the time-ordered integral can be resolved by
a second-order Magnus expansion, confirming the
result already known from the polaron picture. The
correlation 〈D(t )D†(0)〉 = e−λ2

k (2n̄k+1)eϕ(t ) with ϕ(t ) =
λ2

k[(2n̄k + 1) cos(ωkt ) − i sin(ωkt )] (for a single mode ωk)
shows a cosine term similar to the dephasing but which does
not continuously increase in time. For small times t 
 ω−1

k ,
the cosine term can be expanded and the dephasing rate can
be approximated by γdeph = λ2

k (n̄k + 1/2)ω2
k t while for larger

times the rate goes to zero (the timescale is set by γ −1).
In the continuum limit, the time-dependent dephasing rate
γdeph(t ) = −�[ϕ̇(t )] expresses as

γdeph(t ) =
∫ ∞

0
dω

J (ω)

ω
coth

(
βω

2

)
sin(ωt ). (29)

In accordance with Figs. 5(a) and 5(b), we can see that linear
Holstein coupling can consequently lead to a temperature-
dependent zero-phonon line if there is a large density of
low frequency (long wavelength) phonon modes with ωk < γ

which is the case in 1D but not in higher dimensions. This
peculiarity of dephasing in 1D has already been discussed in
the literature [49,50,54]. It is however also well established
within the literature that the major contribution of the exper-
imentally observed temperature-dependent broadening of the
zero-phonon line is caused by a higher-order electron-phonon
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interaction of the form [51,54–56]

Hquad
el-phon =

∑
k,k′

βkk′qkqk′σ †σ, (30)

with the coupling constant of the quadratic interaction βkk′ .
This form of the interaction can stem either, within the har-
monic assumption, from a difference in curvatures between
the ground and excited state potential surfaces or from anhar-
monic potentials.

V. MOLECULAR POLARITONICS

It is currently of great interest to investigate the behavior
of hybrid platforms containing organic molecules interact-
ing with confined light modes such as provided by opti-
cal cavities [16,57,58] or plasmonic nanostructures [59,60].
Such light-dressed platforms have been studied both at the
single- and few-molecule level [12,16,59] as well as in the
mesoscopic, collective strong-coupling limit [61–63]. In these
cases, the strong light-matter coupling leads to the forma-
tion of polaritonic hybrid states with both light and matter
components. Experimental and theoretical works are currently
exploring fascinating enhanced properties such as exciton and
charge transport [64–68], superconductive behavior [69,70],
and modified chemical reactivity [71–75]. There is also re-
cent interest in the modification of nonadiabatic light-matter
dynamics at so-called conical intersections leading to fast
nonradiative decay of electronic excited states [76,77]. It
has been recently shown that the Purcell regime of cavity
QED can result in a strong modification of the branching
ratio of a single molecule and suppress undesired Stokes
lines [12]. Recent theoretical works account for the vibronic
coupling of molecules by solving a Holstein-Tavis-Cummings

Hamiltonian which leads to the occurence of polaron-
polariton states, i.e., light-matter states where the hybridized
states between the bare electronic transition and the light field
additionally get dressed by the vibrations of the molecules
[15,78–84]. Many models rely on numerical simulations and
are based on following the evolution of state vectors under
simplified assumptions assuming only vibronic interactions
and finite temperature effects. We employ here the approach
of the last section and add a Jaynes-Cummings interaction of a
molecule in the phononic environment with a localized cavity
mode. A weak laser drive maps the intracavity molecular po-
laritonics effects to the cavity transmission profile, identifying
polariton cross-talk effects at any temperature. Furthermore,
we map the combined effect of vibronic and electron-phonon
interactions onto the cavity output field.

A. Cavity transmission

We will consider a cavity mode which is driven with
amplitude ηc and start with a set of coupled Lagevin equations
for the electric field operator a as well as the polaron oper-
ator σ̃ (t ) = D†(t )B†(t )σ (t ) in a rotating frame at the laser
frequency ω�:

ȧ = −[κ − i(ω� − ωc)]a − igσ +
√

2κAin, (31a)

˙̃σ = −(γ + iω̃0)σ̃ − igD†B†a +
√

2γD†B†σin, (31b)

where we defined the effective cavity input Ain = ηc/
√

2κ +
ain with zero-average input noise ain but nonvanishing cor-
relation 〈ain(t )a†

in(t ′)〉 = δ(t − t ′). The electronic transition is
also affected by a white noise input σin with nonzero cor-
relation 〈σin(t )σ †

in(t ′)〉 = δ(t − t ′). We can formally integrate
Eq. (31b) and substitute it in Eq. (31a):

〈ȧ〉 = −[κ − i(ω� − ωc)] 〈a〉 − g2
∫ ∞

−∞
dt ′e−(γ+iω̃0 )(t−t ′ )�(t − t ′) 〈D(t )D†(t ′)〉 〈B(t )B†(t ′)〉 〈a(t ′)〉 + ηc , (32)

where we took the averages and assume factorizability be-
tween optical and vibronic/phononic degrees of freedom
which is valid if the timescales of vibrational relaxation and
cavity decay are separated, e.g., �m � κ . We notice that
the second term in Eq. (32) represents a convolution since
the correlation functions 〈D(t )D†(t ′)〉 and 〈B(t )B†(t ′)〉 only
depend on the time difference |t − t ′|. Denoting H (t − t ′) =
e−(γ+iω̃0 )(t−t ′ )�(t − t ′) 〈D(t )D†(t ′)〉 〈B(t )B†(t ′)〉, the normal-
ized cavity transmission amplitude T (ω) = 〈Aout (ω)〉

〈Ain (ω)〉 can be
derived from input-output relations as

T (ω) = κ

g2H (ω) − iω + [κ − i(ω� − ωc)]
, (33)

where H (ω) is the Fourier transform of H (t ) and describes
the optical response of the molecule to the light field in-
cluding electron-phonon, electron-vibron, and vibron-phonon
coupling. If we neglect electron-phonon interactions (λe-ph =
0) and assume, for the sake of simplicity, Markovian decay for
the vibration (this can also be extended to the non-Markovian

regime, see Sec. IV), H (ω) acquires the form

H (ω) =
∞∑

n=0

n∑
l=0

L(n)B(n, l )(
γ + n �m

2

)− i[(ω−ω0) − (n−2l )ν]
. (34)

Again, the above expression indicates a series of sidebands
with strength determined by the Huang-Rhys factor λ2 and
dependent on the thermal occupation n̄. In the case of large
vibrational relaxation �m � γ (corresponds to typical exper-
imental situation), however, those sidebands are suppressed
and the cavity will mostly couple to the ZPL transition. We
can then define an effective Rabi coupling for the ZPL

geff = g
√

fFC · fDW , (35)

which takes into account the reduction of the oscillator
strength due to Franck-Condon and Debye-Waller factors.
In Figs. 6(a) and 6(b), we plot the cavity transmission at
resonance ωc = ω� for increasing thermal occupation with
and without the influence of phonons and find that the splitting
of the polariton modes is well described by Eq. (35). This
also manifests itself in the transmission signal in the Purcell
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FIG. 6. Cavity-molecule spectroscopy. Normalized cavity transmission |T (ω)|2 at resonance ωc = ω� in strong coupling as a function of
frequency and thermal occupation n̄ for (a) neglecting electron-phonon coupling (b) including electron-phonon coupling (using 3D density of
states) for λ = 0.8, λ3D

e-ph = 0.03 ps2. The white lines show cross sections of the transmission profile for different thermal occupations n̄. The
dashed red lines show the effective Rabi splitting 2geff. Other parameters: ν = 6 THz, ωmax = 3 THz, g = ν/2, �m = 0.08ν, and κ = 1 THz.
(c) Comparison of transmission in the Purcell regime between a pure two-level system (TLS) and a molecule subject to electron-phonon and
electron-vibron coupling for λ = 0.8, λ3D

e-ph = 0.2 ps2 at a temperature of T = 10 K. Other parameters: ωmax = 3 THz = 1.5κ , ν = 6 THz = 3κ ,
and g = 0.35κ .

regime characterized by weak coupling g< |κ − γ |/2, but
large cooperativity C = g2/(κγ ) � 1, which is a more realis-
tic regime in currently available single-molecule experiments
[12,16]. In Fig. 6(c), we compare the transmission of a pure
two-level system (obtained by setting λ = 0, λe-ph = 0) with a
molecule in a solid-state environment. Here the ZPL appears
as a dip in the transmission profile with an increase in width
γ̃ = γ (1 + Ceff ) proportional to the effective cooperativity
Ceff = g2

eff/(κγ ). As compared to the two-level system case,
the coupling to vibrons and phonons leads to a reduction
in both width and depth of the antiresonance. If the cavity
bandwidth is comparable to the maximum phonon frequency
ωmax, the imprint of the phonon wing can also be detected
in the transmission signal of the cavity, which is relevant
for plasmonic scenarios characterized by large bandwidths
[59] [see Fig. 6(c)]. The sidebands of vibrons typically lie at
frequencies outside the bandwidth of the cavity ν � κ and are
consequently unmodified.

B. Vibrationally mediated polariton cross-talk

As shown in the previous sections, vibronic and electron-
phonon couplings reduce the oscillator strength of the
molecule and lead to decoherence and are consequently con-
sidered as detrimental. However such couplings can also lead
to interesting new physics. In Ref. [15], it was already shown
that vibrations can couple upper and lower polaritonic states
in a dissipative fashion, resulting in an effective transfer of
population from upper to lower polariton and consequently
an asymmetric cavity transmission profile with a suppressed
upper polaritonic peak (at zero temperature n̄ = 0) and dom-
inant emission occuring from the lower polariton [this can
also be seen in Figs. 6(a) and 6(b)]. We derive here a more
general expression for the population transfer between po-
laritons showing that for finite thermal occupations of the
vibrational mode n̄ also a transfer from lower to upper po-
lariton can be activated. Diagonalizing the Jaynes-Cummings
part of the Hamiltonian at resonance ωc = ω0 by introducing
annihilation operators for upper and lower polariton, U =

(a + σ )/
√

2 and L = (a − σ )/
√

2, the Holstein part of the
Hamiltonian [Eq. (1)] gives rise to a vibration-mediated in-
teraction between upper and lower polariton

Hint = λν

2
(U †L + L†U )(b† + b). (36)

This can be interpreted as an exchange interaction which is
mediated by either the destruction or creation of a vibrational
quantum. From this one can derive equations of motion for the
populations of upper and lower polaritonic states:

ṖU = −2γ+PU + λν� 〈U †L(b† + b)〉 , (37a)

ṖL = −2γ−PL + λν� 〈L†U (b† + b)〉 , (37b)

with the hybridized decay rates of upper and lower polaritonic
state γ± = (κ + γ )/2. In the limit of fast textcolorbluevibra-
tional relaxation �m � κ this can be turned into a set of
rate equations with an effective excitatation transfer from the
upper polariton to the lower polariton κ+ and a transfer from
the lower polariton to the upper polariton κ− (for detailed
calculation see Appendix J):

ṖU = −(2γ+ + κ+)PU + κ−PL, (38a)

ṖL = −(2γ− + κ−)PL + κ+PU . (38b)

Under the assumption of weak vibronic coupling as com-
pared to the splitting between upper and lower polaritonic
state λν 
 2g, the rates can be calculated to first order as
(again we assume Markovian decay for the vibration for that
sake of simplicity):

κ+ = 1

4

λ2ν2�m(n̄ + 1)

(�m/2)2 + (ω+ − ω− − ν)2 , (39a)

κ− = 1

4

λ2ν2�mn̄

(�m/2)2 + (ω+ − ω− − ν)2 . (39b)

Energy transfer between the polaritons can consequently
occur if the Rabi splitting ω+ − ω− ≈ 2g is roughly equal
to the vibrational frequency. In the case of zero temperature
(n̄ = 0), the above equations reduces to the results presented
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in Ref. [15] using a Lindblad decay model for the vibration in-
stead of a Brownian noise model. The ratio κ−/κ+ = n̄/(n̄ +
1) which can be inferred from the polariton heights (for
normalized Lorentzians, the height and width are connected)
and which tends to unity in the limit n̄ � 1 can be seen as a
direct measure for temperature as it does not depend on any
other parameters. While for single molecules, the condition
ω+ − ω− ≈ ν is difficult to achieve for vibrational modes in
the THz range, this can be achieved in the collective strong
coupling regime for many molecules where the coupling
grows as g

√
N or for single molecules with phononic modes

in the GHz regime. We also note that, in a similar fashion
to the linear coupling, also quadratic electron-phonon and
vibronic coupling gives rise to a vibrationally mediated po-
lariton cross-talk with coupling Hquad

int = β(U †L + L†U )Q2/2
(for a single vibrational mode). To this end, one could again
derive effective rate equations for the quadratically mediated
population transfer between the polaritons in a similar fashion
as for the linear coupling case.

VI. DISCUSSIONS AND CONCLUSIONS

We have provided a new approach based on quantum
Langevin equations for the analysis of the fundamental quan-
tum states of molecules and their coupling to their surround-
ings. These features, which lie at the heart of molecular
polaritonics, go well beyond the electronic degrees of freedom
and address phenomena such as electron-vibron and electron-
phonon couplings as well as vibron-phonon interactions re-
sulting in the relaxation of molecular vibrations. In particular,
we have provided analytical expressions for spectroscopic
quantities such as molecular absorption and emission inside
and outside optical cavities in the presence of vibrations and
phonons at any temperature. Moreover, we have presented
a model of vibrational relaxation that takes into account
the structure of the surrounding phonon bath and makes a
distinction between Markovian and non-Markovian regimes.
We have demonstrated that the vibrational relaxation of a
molecule is crucially determined by the structure of the bath,
especially by the maximum phonon frequency ωmax. For two
molecules embedded in the same crystalline environment,
we have shown that the vibrational modes of the spatially
separated molecules can interact with each other, resulting in
collective dissipative processes that allow for weaker relax-
ation of collective vibrations. In the strong coupling regime of
cavity QED, we have derived temperature-dependent transfer
rates for vibrationally mediated cross-talk between upper and
lower polaritonic states, i.e., hybrid light-matter states that
are normally uncoupled in cavity QED studies of atomic
systems. In this work, we based our model on first-principles
derivations of the relevant coupling strengths between a single
nuclear coordinate of a molecule embedded in a 1D chain.
However, the calculations could be readily extended to 3D
scenarios and compared with ab-initio calculations for real
materials. We point out that our theory could also be relevant
for vacancy centers in diamond where similar interactions
between electronic degrees of freedom and both localized and
delocalized phonon modes occur [85,86]. In the future, we
want to address the influence of higher-order interactions such
as quadratic electron-phonon and vibron-phonon couplings,

which are known to play an important role at elevated tem-
peratures. It could also be interesting to consider the cavity
modification of the nonradiative relaxation of molecules at
conical intersections [76]. We also plan to investigate the
collective radiation states of dense molecular ensembles in
confined electromagnetic environments such as, e.g., occuring
in organic semiconductor microcavities.

Note added. Recently, we became aware of a related study
[87].
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APPENDIX A: DERIVATION OF COUPLING TERMS

We want to derive the coupling terms for electron-phonon,
electron-vibron and vibron-phonon coupling. To this end, we
consider a diatomic molecule (single vibrational mode) with
reduced mass μ = mLmR

mL+mR
, which is embedded in a 1D chain

with lattice constant a (see Fig. 7) and 2N + 1 unit cells
(we assume the molecule to be at position N + 1). Excitation
of the molecule will reconfigure the electronic orbitals and
bond length of the molecule and will consequently lead to
a modified potential between the molecule and the crystal
atoms. Therefore, the equilibrium positions of the lattice will
depend on the electronic state of the molecule and will be
shifted in the excited state by �x� = xe

� − xg
�. This interaction

can be described by the general Hamiltonian

Hbulk-mol =
∑

�

[
σσ †
(
W g

L� +W g
R�

)+ σ †σ
(
W e

L� +W e
R�

)]
, (A1)

where W g/e
L� and W g/e

R� are the potentials in ground and excited
state between the left and right nuclei of the dopant and
a lattice site �. Assuming harmonic potentials between the
guest and host atoms, we can expand around the equilibrium
positions in the excited state (assuming that the vibrational
frequencies in ground and excited state are identical)

W e
L�(|xL − x�|) = h̄ω0 + 1

2 kL�(xL − x� − �xL�)2, (A2a)

W e
R�(|xR − x�|) = h̄ω0 + 1

2 kR�(xR − x� − �xR�)2, (A2b)

where �xL� = �xL − �x� and �xR� = �xR − �x� account
for the displaced equilibrium positions in the excited state
and the spring constants kL�, kR� are given as the second
derivatives of the potentials evaluated at the excited state
equilibrium positions. Kinetic and potential energy of the bare
molecule is described by

Hmol = p2
L

2mL
+ p2

R

2mR
+V g(|xR − xL|)σσ †+V e(|xR−xL|)σ †σ,

(A3)

and Taylor expansion leads to

V e(|xR − xL|) = h̄ω0 + 1
2 kM(xR − xL − �x)2, (A4)
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FIG. 7. Derivation of coupling terms. Electronic excitation of a diatomic molecule will lead to a modified bond length and consequently to
a push of the surrounding host crystal.

with �x = �xR − �xL. For the molecular two-body system,
it is convenient to go into center-of-mass and relative motion
coordinates with xcm = mLxL+mRxR

mL+mR
, xrm = xR − xL. Center-of-

mass and relative-motion momenta are given by

pcm = pL + pR, (A5a)

prm = μ(vR − vL) = mL pR − mR pL

mL + mR
, (A5b)

and the inverse transformations are given as pR =
mR

mR+mL
pcm + prm and pL = mL

mR+mL
pcm − prm. With this

we obtain for the molecule term (defining M = mL + mR):

Hmol = h̄ω0σ
†σ + p2

cm

2M
+ p2

rm

2μ
+ 1

2
kMx2

rm

+
(

1

2
kM�x2 − kMxrm�x

)
σ †σ, (A6)

from which we see that an electronic excitation couples to the
relative motion of the nuclei:

Hel-vib = −kMxrm�xσ †σ, (A7)

and leads to additional energy shift of 1
2 kM�x2σ †σ . We can

now re-express the potentials from Eqs. (A2) in terms of
center-of-mass and relative motion of the molecule (defining
WL� = σσ †W g

L� + σ †σW e
L�, WR� = σσ †W g

R� + σ †σW e
R�),

WL� = 1

2
kL�

(
xcm − mR

M
xrm − x�

)2
− kL�

(
xcm − mR

M
xrm − x�

)
�xL�σ

†σ + 1

2
kL��x2

L�σ
†σ, (A8a)

WR� = 1

2
kR�

(
xcm + mL

M
xrm − x�

)2
− kR�

(
xcm + mL

M
xrm − x�

)
�xR�σ

†σ + 1

2
kR��x2

R�σ
†σ. (A8b)

We are mostly interested in the coupling between the
phonons and the relative motion of the molecule (which
will give rise to vibrational relaxation) as well as the cou-
pling between the electronic excitation and the phonons.
In the expanded equations above, we can see that the first
term couples couples the relative motion of the molecule
xrm to the motion of the lattice atoms x�, while the sec-
ond term couples x� to the electronic excitation σ †σ and
the last term is a constant energy shift. For left and
right atoms together, we then arrive at the interaction
Hamiltonians

Hvib-phon = −1

2

∑
�

(kR� − kL�)x�xrm, (A9a)

Hel-phon = −
∑

�

�x�(kR� + kL�)x�σ
†σ, (A9b)

where for simplicity we assumed equal masses mL = mR and
used that for symmetric molecules �xL = −�xR.

1. Bulk solution

The contribution of the bulk adds as (just considering
nearest-neighbor interactions)

Hbulk =
∑

�

(
p2

�

2m
+ 1

2
k0(x� − x�+1)2

)
, (A10)

with the main assumption that the presence of the molecule
does not significantly change the bulk modes. Newton’s equa-
tions of motion for the displacements of the lattice atoms can
be arranged in matrix form as

ẍ = −Mx, (A11)

where x = (x1, . . . , x2N+1) and

M = 1

m

⎛
⎜⎜⎜⎜⎝

2k0 −k0 0

−k0 2k0
. . .

. . .
. . . −k0

0 −k0 2k0

⎞
⎟⎟⎟⎟⎠, (A12)
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where we assume a periodic lattice and neglect the edge
modes in our analysis. This is a trigonal Toeplitz matrix
which can be easily diagonalized (D = T−1MT), where the
kth eigenvalue is given by

ω2
k = 4k0

m
sin2

(
πk

2(2N + 2)

)
= ω2

max sin2

(
πk

2(2N + 2)

)
,

(A13)

with k ∈ [1, 2N + 1] and the associated normalized eigenvec-
tors read

vk =
√

1

N + 1

(
sin

(
πk

2N + 2

)
, . . . , sin

(
(2N + 1)πk

2N + 2

))
,

(A14)

such that in the diagonal basis (u = T−1x) the equation of
motion for the kth mode is given by

ük = −ω2
k uk . (A15)

We can now express the couplings from Eqs. (A9) in terms
of the normal modes of the crystal. Further more we will
consider only nearest-neighbor coupling for the molecule,
i.e. kR�, kL� = 0 for � �= {N, N + 2}. We obtain with x� =∑2N+2

k=1 (T�k )uk

xN =
√

1

N + 1

∑
k

sin

(
πkN

2N + 2

)
uk, (A16a)

xN+2 =
√

1

N + 1

∑
k

sin

(
πk(N + 2)

2N + 2

)
uk, (A16b)

and consequently

Hvib-phon = −1

2
�k(xN+2 − xN )xrm

= −�kxrm

√
1

N + 1

∑
k

cos

(
πk

2

)
sin

(
πk

2N + 2

)
uk,

(A17a)

Hel-phon = −�xN+2ktot(xN+2 − xN )σ †σ

= −2�xN+2ktot

√
1

N + 1

∑
k

cos

(
πk

2

)

× sin

(
πk

2N + 2

)
ukσ

†σ, (A17b)

where we used that �xN+2 = −�xN and defined �k =
kR(N+2) − kL(N+2) = kLN − kRN , ktot = kR(N+2) + kL(N+2) =
kRN + kLN . We now quantize the Hamiltonians by
introducing the position operators (and analog momentum
operators) xrm = xzpm(b† + b), uk = u(k)

zpm(c†
k + ck ) with

xzpm = √
1/(2μν), u(k)

zpm = √
1/(2m0ωk ). We obtain

Hel-vib = −λν
√

2Qσ †σ, (A18a)

Hvib-phon = −
∑

k

αkqkQ, (A18b)

Hel-phon = −
∑

k

λkωk

√
2qkσ

†σ, (A18c)

FIG. 8. Finite-sized crystal. (a) Dispersion relation ωk .
(b) Vibration-phonon coupling αk (the electron-phonon coupling λk

shows a similar behavior).

where we have introduced the couplings

λ = μνQzpm�x, (A19a)

αk = 2�k

√
1

N + 1
cos

(
πk

2

)
sin

(
πk

2N + 2

)
u(k)

zpmxzpm,

(A19b)

λk = 2
ktot

ωk

√
1

N + 1
cos

(
πk

2

)
sin

(
πk

2N + 2

)
u(k)

zpm�xN+2.

(A19c)

We have further more introduced the dimensionless quadra-
tures Q = (b† + b)/

√
2, P = i(b† − b)/

√
2 as well as qk =

(c†
k + ck )/

√
2, pk = i(c†

k − ck )/
√

2 such that the following
commutation relations hold: [Q, P] = i, [qk, pk′ ] = iδkk′ and
the Hamiltonian of the bulk can be expressed as Hbulk =∑

k ωk (p2
k + q2

k )/2 =∑k ωkc†
kck . Figure 8 shows a plot of the

dispersion ωk as well as the vibron-phonon coupling αk (the
electron-vibron coupling shows a similar behavior).

2. Quadratic interaction

In the previous sections, we always assumed identical
curvatures of electronic ground and excited states. Here we
show that nonidentical curvatures give rise to a quadratic
electron-vibron interaction (similar for the electron-phonon
interaction). Assuming different vibrational frequencies of
electronic ground (ν) and excited state (ν̄) the molecular
Hamiltonian [Eq. (A6)] becomes

Hmol = ω0σ
†σ + p2

cm

2M
+ p2

rm

2μ
+ 1

2
μν2x2

rmσσ †

+
(

1

2
μν̄2�x2+ 1

2
μν̄2x2

rm− μν̄2xrm�x

)
σ †σ. (A20)

Quantizing with xrm = √
1/(2μν)(b† + b) and prm =

i
√

(μν)/2(b† − b), this gives rise to an electron-vibron
interaction of the form

Hel-vib = [−λν̄
√

2Q + βQ2]σ †σ, (A21)

where the second part accounts for the squeezing of the
vibrational wavepacket when going from ground to excited
state with coupling strength β = (ν̄2 − ν2)/(2ν).
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APPENDIX B: VIBRATIONAL RELAXATION

The evolution of the molecule’s vibrational mode can be
calculated from Hamilton’s equations of motion

Q̇ = νP, (B1a)

Ṗ = −νQ +
∑

k

αkqk . (B1b)

The evolution of the phonon bath degrees of freedom is
goverend by

q̇k = ωk pk, (B2a)

ṗk = −ωkqk + αkQ. (B2b)

We can derive an effective equation of motion for Q and
P by eliminating the bath degrees of freedom. We can write

Eqs. (B2) in matrix form v̇ = Mv + vinhom with v = (qk, pk )T

and vinhom = (0, αkQ)T. The solution is given by

v(t ) = Te�t T−1v(0) +
∫ t

0
dt ′Te�(t−t ′ )T−1vinhom(t ′), (B3)

with M = T�T−1, � = diag(iωk,−iωk ), and

T = 1√
2

[−i i
1 1

]
, T−1 = 1√

2

[
i 1

−i 1

]
. (B4)

With this we can derive the solution for qk (t )

qk (t ) = qk (0) cos(ωkt ) + pk (0) sin(ωkt )

+ αk

∫ t

0
dt ′ sin(ωk (t − t ′))Q(t ′), (B5)

and subsequently for Ṗ (after integration by parts):

Ṗ = −νQ(t ) +
∑

k

(
α2

k

ωk
Q(t ) − α2

k

ωk
cos(ωkt )Q(0) − α2

k ν

ωk

∫ t

0
dt ′ cos(ωk (t − t ′))P(t ′)

)
+ ξ (t ), (B6)

where we introduced the fluctuating force ξ (t ) =∑k (αkqk (0) cos(ωkt ) + αk pk (0) sin(ωkt )). One can easily check that the
second term in the sum above sums to zero in the continuum limit while the first term is a renormalization of the vibrational
frequency with ν̃ = ν − νs. Using the expression for αk derived in the previous section, we can calculate

νs = 4�k2

ω2
maxμνm0

1

N + 1

∑
k

cos2

(
πk

2

)
cos2

(
πk

4(N + 1)

)
= 2�k2

ω2
maxμνm0

= �k2

2k0μν
= ν

�k2

2k0kM
(B7)

(for N � 1). All together the vibrational relaxation can be written as

Ṗ = −ν̃Q + ξ (t ) − (� ∗ P)(t ), (B8)

where ∗ denotes the convolution (� ∗ P)(t ) = ∫∞
0 dt ′�(t − t ′)P(t ′) and

�(t ) =
∑

k

α2
k ν

ωk
cos(ωkt )�(t ) = 2ννs

[
1

N + 1

∑
k

cos2

(
πk

2

)
cos2

(
πk

4(N + 1)

)
cos(ωkt )�(t )

]
. (B9)

In the continuum limit, this can be approximated by

�(t ) = 2ννs

ωmax

J1(ωmax|t |)
|t | �(t ), (B10)

where Jn(x) are the Bessel functions of first kind. The random force has zero average but nonvanishing correlations

〈ξ (t )ξ (t ′)〉 =
∑

k

α2
k

2

(
coth

(
βωk

2

)
cos(ωk (t − t ′)) − i sin(ωk (t − t ′))

)
, (B11)

where we denote by 〈•〉 = Tr[• ρth] the thermal average. The commutator reads

[ξ (t ), ξ (t ′)] = −i
∑

k

α2
k sin(ωk (t − t ′)). (B12)

In the continuum limit N → ∞ (using the prescription
∑

k → L
π

∫
dq → ∫ dωn(ω), where πk

2N+1 = qL
2N+1 = qa), we can rewrite

the correlation function as

〈ξ (t )ξ (t ′)〉 =
∫ ωmax

0
dωn(ω)

α(ω)2

2

[
coth

(
βω

2

)
cos
(
ω(t − t ′)

)− i sin
(
ω(t − t ′)

)]

=
∫ ωmax

−ωmax

dωn(ω)
α(ω)2

4

[
coth

(
βω

2

)
+ 1

]
e−iω(t−t ′ ). (B13)

The density of states in 1D is given by

n(ω) = L

π

1

dω/dq
= 2L

πa
√

ω2
max − ω2

. (B14)
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Multiplying this with the vibron-phonon coupling in frequency domain gives

n(ω)α(ω)2 = 4ωνs

πω2
max

√
ω2

max − ω2. (B15)

Using this we can write the correlation function as

〈ξ (t )ξ (t ′)〉 = 1

2π

∫ ∞

−∞
dω

√
ω2

max − ω2

ωmax
�(ωmax − ω)�(ωmax + ω)

�mω

ν

(
coth

(
βω

2

)
+ 1

)
e−iω(t−t ′ ), (B16)

where we denote by �m the Markovian decay rate �m = 2ννs
ωmax

. We note that �m actually increases with ωmax (in our derivation

we assumed the reduced mass of the molecule to be equal to the lattice atoms μ ≈ m0): �m = �k2

4k2
0
ωmax. We can see that we

obtain an effective frequency-dependent decay rate �r (ω) = �m

√
ω2

max−ω2

ωmax
�(ωmax − ω)�(ωmax + ω) [the real part of the Fourier

transform of �(t )]. In the limit ωmax → ∞, this becomes the standard result for a harmonic oscillator in a thermal bath

〈ξ (t )ξ (t ′)〉 = 1

2π

∫ ∞

−∞
dω

�mω

ν

(
coth

(
βω

2

)
+ 1

)
e−iω(t−t ′ ). (B17)

APPENDIX C: COLLECTIVE VIBRATIONAL RELAXATION

We now consider two molecular impurities inside the 1D chain located at positions N + 1 + j and N + 1 − j (distance 2 j).
Again we assume that the presence of the two molecules does not significantly change the bulk modes. The Hamiltonian reads

H = ν1P2
1

2
+ ν1Q2

1

2
+ ν2P2

2

2
+ ν2Q2

2

2
+
∑

k

(ωk

2
p2

k + ωk

2
q2

k − αk,1qkQ1 − αk,2qkQ2

)
. (C1)

From this, we can calculate equations of motion for the molecular coordinates

Q̇1 = ν1P1, (C2)

Q̇2 = ν2P2, (C3)

Ṗ1 = −ν1Q1 +
∑

k

αk,1qk, (C4)

Ṗ2 = −ν2Q2 +
∑

k

αk,2qk, (C5)

as well as for the bath degrees of freedom

q̇k = ωk pk, (C6)

ṗk = −ωkqk + αk,1Q1 + αk,2Q2. (C7)

Following the same procedure as in Appendix B, we can solve for qk to obtain

qk (t ) = cos(ωkt )qk (0) + sin(ωkt )pk (0) +
∫ t

0
dt ′ sin(ωk (t − t ′))αk,1Q1 +

∫ t

0
dt ′ sin(ωk (t − t ′))αk,2Q2. (C8)

Plugging this into the equations of motion for the system variables, we obtain

Ṗ1 = −ν1Q1 + ξ1(t ) +
∑

k

[∫ t

0
dt ′α2

k,1 sin(ωk (t − t ′))Q1 +
∫ t

0
dt ′αk,1αk,2 sin(ωk (t − t ′))Q2

]
, (C9)

Ṗ2 = −ν2Q2 + ξ2(t ) +
∑

k

[∫ t

0
dt ′αk,1αk,2 sin(ωk (t − t ′))Q1 +

∫ t

0
dt ′α2

k,2 sin(ωk (t − t ′))Q2

]
, (C10)

where we introduced the input noises ξ1/2(t ) =∑k αk,1/2(cos(ωkt )qk (0) + sin(ωkt )pk (0)). Again integrating by parts we find

Ṗ1 = −ν1Q1(t ) + ξ1(t ) +
∑

k

[α2
k,1

ωk
Q1(t ) − α2

k,1

ωk
cos(ωkt )Q1(0) −

∫ t

0
dt ′ α

2
k,1

ωk
cos(ωk (t − t ′))ν1P1

+αk,1αk,2

ωk
Q2(t ) − αk,1αk,2

ωk
cos(ωkt )Q2(0) −

∫ t

0
dt ′ αk,1αk,2

ωk
cos(ωk (t − t ′))ν2P2

]
, (C11a)

Ṗ2 = −ν2Q2(t ) + ξ2(t ) +
∑

k

[α2
k,2

ωk
Q2(t ) − α2

k,2

ωk
cos(ωkt )Q2(0) −

∫ t

0
dt ′ α

2
k,2

ωk
cos(ωk (t − t ′))ν2P2

+αk,1αk,2

ωk
Q1(t ) − αk,1αk,2

ωk
cos(ωkt )Q1(0) −

∫ t

0
dt ′ αk,1αk,2

ωk
cos(ωk (t − t ′))ν1P1

]
. (C11b)
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The two noise terms are correlated according to

〈ξ1(t )ξ2(t ′)〉 =
∑

k

αk,1αk,2

2

[
coth

(
βωk

2

)
cos(ωk (t − t ′)) − i sin(ωk (t − t ′))

]
. (C12)

We now still have to determine the coupling coefficients αk,1 and αk,2. Assuming that the two molecules are placed at qN+1− j

and qN+1+ j , the couplings are then determined by the neighboring atoms qN+1− j±1 and qN+1+ j±1:

q±1 =
√

1

N + 1

∑
k

sin

(
πk(N + 1 − j ± 1)

2N + 2

)
qk, q±2 =

√
1

N + 1

∑
k

sin

(−πk(N + 1 + j ± 1)

2N + 2

)
qk, (C13)

where we denote the neighboring couplings for the first molecule by ±1 and for the second molecule by ±2. With this we can
calculate the coupling coefficients (using that sin α − sin β = 2 cos( α+β

2 ) sin( α−β

2 )):

αk,1 = 2�k1xzpm,1u(k)
zpm

√
1

N + 1
cos

(
πk(N + 1 − j)

2N + 2

)
sin

(
πk

2N + 2

)
, (C14)

αk,2 = 2�k2xzpm,2u(k)
zpm

√
1

N + 1
cos

(
πk(N + 1 + j)

2N + 2

)
sin

(
πk

2N + 2

)
. (C15)

With this we obtain for the product αk,1αk,1 (using that cos(α) cos(β ) = [cos(α + β ) + cos(α − β )]/2):

αk,1αk,2 = 2�k1�k2xzpm,1xzpm,2
(
u(k)

zpm

)2( 1

N + 1

)(
cos

(
πk j

N + 1

)
+ cos (πk)

)
sin2

(
πk

2N + 2

)
=

= 2

k0

√
νs,1νs,2

(
u(k)

zpm

)2( 1

N + 1

)(
cos

(
πk j

N + 1

)
+ cos (πk)

)
sin2

(
πk

2N + 2

)
. (C16)

We can finally write Eqs. (C11) as (neglecting the terms that sum to zero in the continuum limit)

Ṗ1 = −ṽ1Q1 − �Q2 − (�1 ∗ P1) − (�12 ∗ P2) + ξ1, (C17a)

Ṗ2 = −ṽ2Q2 − �Q1 − (�2 ∗ P2) − (�21 ∗ P1) + ξ2, (C17b)

where we defined � =∑k
αk,1αk,2

ωk
, �12(t ) =∑k

αk,1αk,2

ωk
ν2 cos(ωkt )�(t ), �21(t ) =∑k

αk,1αk,2

ωk
ν1 cos(ωkt )�(t ). Let us for simplic-

ity assume two identical molecules ν1 = ν2. We can write the collective decay as

�12(t ) = �21(t ) = 2ννs

N + 1

∑
k

cos

(
πk(N + 1 − j)

2(N + 1)

)
cos

(
πk(N + 1 + j)

2(N + 1)

)
cos2

(
πk

4(N + 1)

)
cos(ωkt )�(t ). (C18)

In the continuum limit, this can be approximated by

�12(t ) = �21(t ) = �m4 j
J4 j (ωmax|t |)

|t | �(t ). (C19)

Taking the Fourier transform of Eqs. (C17), we obtain a set of algebraic equations (again assuming identical molecules)

−iωP1(ω) = −ν̃Q1(ω) − �Q2(ω) −
√

2π�1(ω)P1(ω) −
√

2π�12(ω)P2(ω) + ξ1(ω), (C20a)

−iωP2(ω) = −ν̃Q2(ω) − �Q1(ω) −
√

2π�2(ω)P2(ω) −
√

2π�12(ω)P1(ω) + ξ2(ω). (C20b)

The Fourier transform of �12 can be obtained in two steps. The Fourier transform of the product f̃4 j (t )�(t ) where f̃4 j (t ) =
f4 j (ωmaxt ) = ωmax(J4 j (ωmaxt )/(ωmaxt )), is given by

F ( f̃4 j (t )�(t ))(ω) = F ( f̃4 j )(ω)

2
− 1

2

∫ ∞

−∞
dω′ F ( f̃4 j )(ω′)

iπ (ω′ − ω)
= F ( f4 j )

(
ω

ωmax

)
2ωmax

+ i

2πωmax

∫ ∞

−∞
dω′F ( f4 j )

(
ω′

ωmax

)
(ω′ − ω)

, (C21a)

where we have used that F ( f̃4 j )(ω) = (1/ωmax)F ( f4 j )(ω/ωmax). Since the Fourier transform of the term containing the Bessel
function results in

F
(

Jn(t )

t

)
(ω) =

√
2

π

i(−i)n

4 j
Un−1(ω)

√
1 − ω2rect

(ω
2

)
, (C21b)

where Un−1 is a Chebyshev polynomial of the second kind, we obtain for the collective decay component

F (�12)(ω) = 1√
2π

[
i�mU4 j−1

(
ω

ωmax

)√
ω2

max − ω2

ωmax
rect

(
ω

2ωmax

)
− �m

π

∫ 1

−1
dyU4 j−1(y)

√
1 − y2

y − x

]
, (C21c)
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where y = ω′/ωmax and x = ω/ωmax. For −1 < x < 1 meaning that −ωmax < ω < ωmax, we have∫ 1

−1
dyU4 j−1(y)

√
1 − y2

y − x
= −πT4 j (y), (C22a)

with Tn being a Chebyshev polynomial of the first kind [88], we obtain

F (�12)(ω) = 1√
2π

[
i�mU4 j−1

(
ω

ωmax

)√
ω2

max − ω2

ωmax
rect

(
ω

2ωmax

)
+ �mT4 j

(
ω

ωmax

)]
, (C22b)

and with it

F (�12 ∗ Pi )(ω) =
[

i�mU4 j−1

(
ω

ωmax

)√
ω2

max − ω2

ωmax
rect

(
ω

2ωmax

)
+ �mT4 j

(
ω

ωmax

)]
Pi(ω). (C22c)

In the case ωmax → ∞, we obtain F (�12 ∗ Pi )(ω) ≈ �mPi(ω), which results in the equations of motion

Ṗ1 ≈ −ν̃Q1 − �Q2 − �mP1 − �mP2 + ξ1, (C23a)

Ṗ2 ≈ −ν̃Q2 − �Q1 − �mP2 − �mP1 + ξ2. (C23b)

Considering the coordinates Q+ = Q1 + Q2, P+ = P1 + P2 and Q− = Q1 − Q2, P− = P1 − P2, we obtain equations of motion
for two independent oscillators

Q̇− = ν̃P−, (C24a)

Ṗ− ≈ −(ν̃ − �)Q− + ξ1 − ξ2, (C24b)

Q̇+ = ν̃P+, (C24c)

Ṗ+ ≈ −(ν̃ + �)Q+ − 2�mP+ + ξ1 + ξ2, (C24d)

where the first one is protected from vibrational decay.

APPENDIX D: FUNDAMENTAL VIBRON-PHONON PROCESSES

To investigate the evolution of a single vibron state, we have to develop an optimal framework first. Starting with the
Hamiltonian

H = νb†b +
N∑

k=1

ωkc†
kck −

N∑
k=1

αk (b + b†)(ck + c†
k ), (D1)

we go to the interaction picture following

H̃ = UHU † − iU∂tU
† = −

N∑
k=1

αk (e−iνt b + eiνt b†)(e−iωkt ck + eiωkt c†
k ), (D2)

where U = eiH0t and H0 = νb†b +∑N
k=1 ωkc†

kck . With the initial state in the Schrödinger picture given by |1ν, vacph〉, we obtain
|φ〉 = U |1ν, vacph〉 = eiνt |1ν, vacph〉. Following the Schrödinger equation i∂t |φ〉 = H̃ |φ〉, we acquire the Dyson series

|φ(t )〉 = |φ(0)〉 − i
∫ t

0
dt1H̃ (t1) |φ(0)〉 −

∫ t

0
dt1

∫ t1

0
dt2H̃ (t1)H̃ (t2) |φ(0)〉 + . . .

=
∞∑
j=0

(i) j
∫ t

0

∫ t1

0
· · ·
∫ t j−1

0
dt1 . . . dt jH̃ (t1) . . . H̃ (t j ) |φ(0)〉 = T e−i

∫ t
0 dτ H̃ (τ ) |1ν, vacph〉 . (D3)

Evaluating the first order of the Dyson series, we obtain

−i
∫ t

0
dt1H̃ (t1) |1ν, vacph〉 =

N∑
k=1

αk

[(
ei(ωk−ν)t−1

ωk − ν

)
|0ν, 1k〉 +

√
2

(
ei(ωk+ν)t−1

ωk + ν

)
|2ν, 1k〉

]
. (D4)

In the case where we have a resonant component ω j = ν with j ∈ {1, . . . , N} and since limω→0(eiωt − 1)/ω = it , we obtain

−i
∫ t

0
dt1H̃ (t1) |1ν, vacph〉 = iα jt |0ν, 1 j〉 +

∑
k �= j

αk

(
ei(ωk−ν)t−1

ωk − ν

)
|0ν, 1k〉 +

N∑
k=1

αk

√
2

(
ei(ωk+ν)t−1

ωk + ν

)
|2ν, 1k〉 , (D5)

033270-18



MOLECULE-PHOTON INTERACTIONS IN PHONONIC … PHYSICAL REVIEW RESEARCH 2, 033270 (2020)

which can emerge in the case where ν ∈ {0, . . . , ωmax}. No resonance condition can be fulfilled in the case where ν > ωmax and
the off resonant terms of Eq. (D4) describe the dynamics. Besides the single phonon resonances in the case ν � ωmax also weak
multiphonon resonances can be found. For our initial state with one excitation in the vibrational state these terms can be found
starting from the third order term of the Dyson expansion. For example, for ω j1 + ω j2 + ω j3 − ν = 0 where j1 �= j2 �= j3, we
obtain

− i
∫ t

0

∫ t1

0

∫ t2

0
dt1dt2dt3α j1α j2α j3 ei[(ω j1 −ν)t1+(ω j2 +ν)t2+(ω j3 −ν)t3] |0ν, 1 j1 , 1 j2 , 1 j3〉

= −iα j1α j2α j3

[
i(ei(ω j1 +ω j2 +ω j3 −ν)t − 1)

(ω j1 + ω j2 + ω j3 − ν)(ω j2 + ω j3 )(ω j3 − ν)
− i(ei(ω j1 −ν)t − 1)

(ω j1 − ν)(ω j2 + ω j3 )(ω j3 − ν)

− i(ei(ω j1 +ω j2 )t − 1)

(ω j1 + ω j2 )(ω j2 + ν)(ω j3 − ν)
+ i(ei(ω j1 −ν)t − 1)

(ω j1 − ν)(ω j2 + ν)(ω j3 − ν)

]
|0ν, 1 j1 , 1 j2 , 1 j3〉

= iα j1α j2α j3t

(ω j2 + ω j3 )(ω j3 − ν)
|0ν, 1 j1 , 1 j2 , 1 j3〉 + . . . (D6)

These terms are small with respect to the resonances starting in the first order in the case where ν � ωmax and in total are
comparable to the off resonant terms.

APPENDIX E: ELECTRON-PHONON COUPLING

The electron-phonon interaction can be diagonalized by means of the polaron transformation U = |g〉 〈g| + D† |e〉 〈e|
(additionally leads to a renormalization of the electronic transition frequency ω0 −∑k λ2

kωk). This is a collective transformation

where D† =∏k D
†
k = e−∑k λk (c†

k−ck ) is the (adjoint) displacement operator for all lattice modes. Most of the relevant physics is
contained in the expectation values of 〈D†

k 〉 = 〈Dk〉 = e−(λ2
k/2) coth (βωk/2) as well as in the correlation function

〈Dk (t )D†
k (t ′)〉 = 〈e−i

√
2λk pk (t )ei

√
2λk pk (t ′ )〉

= 〈e−i
√

2λk (pk (t )−pk (t ′ ))〉 eλ2
k 〈[pk (t ),pk (t ′ )]〉

= e−λ2
k 〈(pk (t )−pk (t ′ ))2〉eλ2

k 〈[pk (t ),pk (t ′ )]〉

= e−2λ2
k (〈p2

k〉−〈pk (t )pk (t ′ )〉)

= e−λ2
k (1+2n̄k )eλ2

k [(1+2n̄k ) cos(ωk (t−t ′ ))−i sin(ωk (t−t ′ ))], (E1)

where we made use of the fact that Gaussian states are fully characterized by their second-order moments (and odd moments are
vanishing) and pk (t ) = pk (0) cos(ωkt ) − qk (0) sin(ωkt ) with 〈q2

k (0)〉 = 〈p2
k (0)〉 = n̄ + 1

2 and 〈qk (0)pk (0)〉 = − 〈pk (0)qk (0)〉 =
i
2 . We also notice that 〈Dk (t )D†

k (t ′)〉 = 〈D†
k (t )Dk (t ′)〉. In the continuum limit, we have (using that 1 + 2n̄k = coth (βkωk/2)):

〈D†〉 =
∏

k

〈D†
k 〉 = e− 1

2

∫ ωmax
0 dωn(ω)λ(ω)2 coth( βω

2 ), (E2a)

〈D(t )D†(t ′)〉 = 〈D†(t )D(t ′)〉 =
∏

k

〈Dk (t )D†
k (t ′)〉

= e
∫ ωmax

0 dωn(ω)λ(ω)2[coth( βω

2 )(cos(ω(t−t ′ ))−1)−i sin(ω(t−t ′ ))]. (E2b)

We denote by J (ω) = n(ω)λ(ω)2ω2 =∑k |λkωk|2δ(ω − ωk )
the spectral density of the electron-phonon coupling. From
Eq. (A19c), we can derive for the 1D case:

n1D(ω)λ(ω)2 = 8k2
tot�x2

N+2

πm0ω3
max

1

ω

√
ω2

max − ω2

ωmax
, (E3)

which leads to a divergence of the integral at small frequencies
due to the 1/ω term (in 1D the spectral density will always
be proportional to ω for low frequencies). Considering a 3D

density of states instead:

n3D(ω) = V

(2π )3

4π |q(ω)|2
vg(ω)

, (E4)

with group velocity vg = dω/dq and q(ω) the inverted dis-
persion relation in 3D (we make the Debye assumption and
assume a linear dependence between wave vector and fre-
quency). With this we obtain for the spectral density

J3D(ω) = λ3D
e-phω

3

√
ω2

max − ω2

ωmax
, (E5)
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FIG. 9. Spectral densities for electron-phonon coupling. Com-
parison between spectral densities J (ω) in (a) 1D and (b) 3D.

where we introduced the 3D electron-phonon coupling con-

stant λ3D
e-ph = 16

π2

k2
tot�x2

N+2

m0ω5
max

which has units [s2]. Figure 9 shows
the schematic behavior of the spectral densities in 1D and 3D.

APPENDIX F: CALCULATION OF MOMENTUM
CORRELATION FUNCTION

In the case of non-Markovian decay, the time evolution
of the momentum operator for the molecular vibration is
given by

Ṗ(t ) = −ν̃Q(t ) − (� ∗ P)(t ) + ξ (t ). (F1)

For the calculation of the momentum correlation function
〈P(t )P(t ′)〉, it is convenient to go to Fourier space
〈P(t )P(t ′)〉 = 1

2π

∫
dω
∫

dω′e−iωt e−iω′t ′ 〈P(ω)P(ω′)〉. The
equations of motion for Q and P in Fourier space read

−iωQ(ω) = νP(ω), (F2a)

−iωP(ω) = −ν̃Q(ω) − �(ω)P(ω) + ξ (ω), (F2b)

where �(ω) denotes the Fourier transform of the damping
kernel �(t ) and is given by

�(ω) =�m

[√
ω2

max − ω2

ωmax

]
�(ωmax − ω)�(ωmax + ω) + i�m

[√
ω2 − ω2

max

ωmax

]
(�(−ω − ωmax) − �(ω − ωmax)) + i

�mω

ωmax

=:�r (ω) + i�i(ω). (F3)

From Eqs. (F2), one can derive Q(ω) = ε(ω)ξ (ω) and P(ω) = χ (ω)ξ (ω), with the mechanical susceptibility χ (ω) =
−i ω

ν
ε(ω) = −iω[νν̃ − ω2 − i�(ω)ω]−1. The correlations of the input noise in time domain read

〈ξ (t )ξ (t ′)〉 = 1

2π

∫ ωmax

−ωmax

dω
�r (ω)ω

ν

(
coth

(
βω

2

)
+ 1

)
e−iω(t−t ′ ) = 1

2π

∫ ∞

−∞
dωSth(ω)e−iω(t−t ′ ), (F4)

where we defined the thermal spectrum Sth(ω) = �r (ω)ω(coth ( βω

2 ) + 1)/ν. With this we obtain for the noise correlation in
frequency space

〈ξ (ω)ξ (ω′)〉 = 1

(2π )2

∫ ∞

−∞
dt
∫ ∞

−∞
dt ′
∫ ∞

−∞
dω′′e−iω′′(t−t ′ )Sth(ω′′)eiωt eiω′t ′ = Sth(ω)δ(ω + ω′), (F5)

from which we see that the noise is always δ-correlated in frequency domain but colored according to the thermal spectrum
Sth(ω). Using that χ (−ω) = χ∗(ω) we obtain (assuming ν ≈ ν̃):

〈P(t )P(t ′)〉 = 1

2π

∫ ∞

−∞
dωe−iω(t−t ′ )|χ (ω)|2Sth(ω) = 1

2πν

∫ ∞

−∞
dωe−iω(t−t ′ ) �r (ω)ω3

[
coth
(

βω

2

)+ 1
]

(ν2 − ω2 + �i(ω)ω)2 + �r (ω)2ω2
, (F6)

and similarly for the position correlation

〈Q(t )Q(t ′)〉 = 1

2π

∫ ∞

−∞
dωe−iω(t−t ′ ) �r (ω)νω

[
coth
(

βω

2

)+ 1
]

(ν2 − ω2 + �i(ω)ω)2 + �r (ω)2ω2
. (F7)

Let us consider these integrals for the simplest case of Markovian decay �r (ω) = �m, �i(ω) = 0 and zero temperature. If the
susceptibility is sharply peaked �m 
 ν, we can solve these integrals by expanding around the pole ω = ν + δ, where δ is a
small frequency shift (valid as long as � 
 ν and we only have a cooling sideband). We obtain

〈Q(t )Q(t ′)〉 = 〈P(t )P(t ′)〉 = 1

2π

∫ ∞

−∞
dδe−iν(t−t ′ )e−iδ(t−t ′ ) 2�mν2

(−2δν)2 + �2
mν2

= 1√
2π

e−iν(t−t ′ )
∫ ∞

−∞
dδ

1√
2π

e−iδ(t−t ′ ) 2�m

4δ2 + �2
m

= 1

2
e−( �m

2 +iν)|t−t ′ |, (F8)

where we used that F ( a
a2+ω2 ) = √π

2 e−a|t |. In case of a nonzero temperature we now have two sidebands, a cooling sideband at
ν (proportional to n̄ + 1) and a heating sideband at −ν (proportional to n̄). We thus have to expand around both poles ω = ν + δ
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and ω = −ν + δ. This gives the general temperature-dependent momentum correlation function

〈P(t )P(t ′)〉 = 1

2π

[∫ ∞

−∞
dδe−iν(t−t ′ )e−iδ(t−t ′ ) �mν2(2 + 2n̄)

(−2δν)2 + �2
mν2

+
∫ ∞

−∞
dδe+iν(t−t ′ )e−iδ(t−t ′ ) �mν2(2n̄)

(2δν)2 + �2
mν2

]

=
(

n̄ + 1

2

)
e−( �m

2 +iν)(t−t ′ ) + n̄

2
e−( �m

2 −iν)(t−t ′ ) =
[(

n̄ + 1

2

)
cos(ν(t − t ′)) − i

2
sin(ν(t − t ′))

]
e− �m

2 |t−t ′|. (F9)

APPENDIX G: CALCULATION OF ABSORPTION SPECTRUM

For the calculation of the absorption spectrum, we follow the time dynamics of the polaron operator σ̃ = D†(t )B†(t )σ (t )
(assuming Markovian relaxation for the vibrational mode):

˙̃σ = −[γ − i(ω� − ω̃0)]σ̃ + η�D†B† +
√

2γ σ̃in − iλ
√

2�mσ̃P + iλ
√

2σ̃ ξ , (G1)

where we defined ω̃0 −∑k λ2
kωk and used that ˙̃σ = Ḋ†(t )B†(t )σ (t ) + D†(t )Ḃ†(t )σ (t ) + D†(t )B†(t )σ̇ (t ). When calculating the

time derivative of the displacement operators one has to be careful and use Feynman’s rule for exponential operators [89,90],
e.g., Ḃ†(t ) = √

2iλB†
∫ 1

0 dse−is
√

2λPṖ(t )eis
√

2λP, since [P(t ), Ṗ(t )] �= 0. As shown in Ref. [15], the last two terms in Eq. (G1)
cancel out when taking the average over the vibrational degree of freedom and do not contribute. The expectation value of 〈σ 〉
in steady state can then be derived from

〈σ 〉 = η�

∫ t

−∞
dt ′e−[γ−i(ω�−ω̃0 )](t−t ′ ) 〈D(t )D†(t ′)〉 〈B(t )B†(t ′)〉 , (G2)

where the correlation function for the molecular displacement operators is given by (assuming Markovian vibrational relaxation):

〈B(t )B†(t ′)〉 = 〈e−i
√

2λP(t )ei
√

2λP(t ′ )〉 = e−2λ2(〈P2〉−〈P(t )P(t ′ )〉)

= e−λ2(1+2n̄)eλ2[(2n̄+1) cos(ν(t−t ′ ))−i sin(ν(t−t ′ ))]e− �m
2 (t−t ′ )

. (G3)

Let us first consider the purely vibrational part and ignore the electron-phonon part (corresponds to setting all λk = 0). We can
rewrite

eλ2[(2n̄+1) cos(ντ )−i sin(ντ )]e− �m
2 τ = eλ2[e−iντ +2n̄ cos(ντ )]e− �m

2 τ =
∞∑

n=0

λ2n

n!
e−n �m

2 τ (e−iντ + 2n̄ cos(ντ ))n

=
∞∑

n=0

λ2n

n!
e−n �m

2 τ

n∑
k=0

(
n

k

)
e−iν(n−k)τ (2n̄)k cosk (ντ ) =

∞∑
n=0

λ2n

n!
e−n( �m

2 +iν)τ
n∑

k=0

k∑
l=0

(
n

k

)(
k

l

)
n̄ke2liντ .

(G4)

The expectation value of the coherence in steady state becomes

〈σ 〉 = η�

∫ t

−∞
dt ′e−[γ−i(ω�−ω0 )](t−t ′ ) 〈B(t )B†(t ′)〉

= η�

∫ t

−∞
dt ′e−[γ−i(ω�−ω0 )](t−t ′ )e−λ2(1+2n̄)

∞∑
n=0

λ2n

n!
e−n( �m

2 +iν)(t−t ′ )
n∑

k=0

k∑
l=0

(
n

k

)(
k

l

)
n̄kei2lν(t−t ′ )

= η�

∞∑
n=0

λ2n

n!

n∑
l=0

e−λ2(1+2n̄)∑n
k=l

(n
k

)(k
l

)
n̄k(

γ + n �m
2

)− i[(ω� − ω0) − (n − 2l )ν]
= η�

∞∑
n=0

λ2n

n!

n∑
l=0

e−λ2(1+2n̄)
(n

l

)
(n̄ + 1)n−l n̄l(

γ + n �m
2

)− i[(ω� − ω0) − (n − 2l )ν]
, (G5)

where we made use of the summation rule
∑n

k=0

∑k
l=0 ak,l =∑n

l=0

∑n
k=l ak,l and of the binomial identity

∑n
k=l

(n
k

)(k
l

)
xk =

xl (1 + x)n−l
(n

l

)
. The steady-state excited state population (extinction spectrum) in thermal equilibrium with the environment

then follows from Pe = 〈σ †σ 〉 = η�

2γ
(〈σ 〉 + 〈σ 〉∗):

Pe = η2
�

γ

∞∑
n=0

λ2n

n!

n∑
l=0

(
n

l

)
e−λ2(1+2n̄)(n̄ + 1)n−l n̄l

(
γ + n �m

2

)
(γ + n �m

2 )2 + [(ω� − ω0) − (n − 2l )ν]2 . (G6)

Using (n̄ + 1)/n̄ = eβν , we can also rewrite the displacement correlation function Eq. (G3) as

〈B(t )B†(t ′)〉 = e−λ2(1+2n̄)eλ2e−�m (t−t ′ )√n̄(n̄+1)[e−iν(t−t ′ )eβν/2+eiν(t−t ′ )e−βν/2]. (G7)
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The generating function of the modified Bessel functions In(x) is given by e
1
2 x(a+1/a) =∑∞

n=−∞ In(x)an. This yields

〈B(t )B†(t ′)〉 = e−λ2(1+2n̄)
∞∑

n=−∞
In(2λ2
√

n̄(n̄ + 1)e−�m(t−t ′ ) )e−niν(t−t ′ )
(

n̄ + 1

n̄

)n/2

. (G8)

For |x| 
 1, one can approximate In(ax) = In(x)a|n|. With this the integral over time can be performed, resulting in the following
expression for the absorption spectrum:

Pe = η2
�

∞∑
n=−∞

fFC( n̄+1
n̄ )n/2In

(
2λ2√n̄(n̄ + 1)

)(
γ + |n|�m

2

)
/γ(

γ + |n|�m
2

)2 + (ω� − ω0 − nν ′)2
, (G9)

which is similar to the expression known from Huang-Rhys theory [48]. Including the phonon modes, the collective phonon
mode displacement correlation for N phonon modes can be expressed as (neglecting phonon decay):

〈D(t )D†(t ′)〉 =
∞∑

n1,...,nN

n1,...,nN∑
l1,...,lN

e−i
∑N

k=1 [(nk−2lk )ωk ](t−t ′ )
N∏

k=1

[
λnk

nk!
e−λ2

k (1+2n̄k )

(
nk

lk

)
(n̄k + 1)nk−lk n̄lk

k

]
. (G10)

Together with the vibrational modes, the total absorption spectrum can then be expressed in terms of discrete lines as

Pe = η2
�

γ

∞∑
n=0

n∑
l=0

λ2n

n!
e−λ2(1+2n̄)

(
n

l

)
(n̄ + 1)n−l n̄l

∞∑
n1,...,nN

n1,...,nN∑
l1,...,lN

∏N
k=1 Lk (nk )Bk (nk, lk )

(
γ + n �m

2

)
(
γ + n �m

2

)2 + [(ω� − ω̃0) − (n − 2l )ν −∑k (nk − 2lk )ωk]2
,

(G11)

where we introduced Lk (nk ) = λ2nk

nk ! e−λ2
k (1+2n̄k ) and Bk (nk, lk ) = (nk

lk

)
(n̄k + 1)nk−lk n̄lk

k .

APPENDIX H: OFF-DIAGONAL ELECTRON-VIBRON COUPLING

We want to discuss briefly how on can include off-diagonal electron-vibration coupling (e.g., proportional to σx) with coupling
constant λx into the equations of motion for the polaron operator. Such terms can become relevant in the case of nonadiabatic
molecular dynamics and can in the simplest form be described by

Hσx = λx(b† + b)σx = λx(b† + b)(σ † + σ ). (H1)

The Langevin equation of motion for the vibronic polaron operator σ̃ = σB† is then given by

˙̃σ = −(γ − i��)σ̃ + η�B† +
√

2γ σ̃in − iλx(b† + b)B†(1 − 2σ †σ ) − 2iλλxB†σσ †. (H2)

Under the assumption of weak driving (〈σσ †〉 ≈ 1), this equation can be formally integrated as

〈σ 〉 = (η� − 2iλλx )
∫ t

−∞
dt ′e−(γ−i�� )(t−t ′ ) 〈B(t )B†(t ′)〉 − iλx

∫ t

−∞
dt ′e−(γ−i�� )(t−t ′ ) 〈B(t )(b†(t ′) + b(t ′))B†(t ′)〉 , (H3)

which requires the correlation function 〈B(t )(b†(t ′) + b(t ′))B†(t ′)〉. From Eq. (H2), one can however already estimate the
amplitude of the ZPL line transition (other amplitudes can be estimated in a similar way) by expanding the displacement
operator as B†(t ) = e−λ2/2∑

k,l
(−λ)k

k!
λl

l! b†(t )kb(t )l and averaging over the vibrational ground state |0v〉. This gives rise to an
effective additional driving of the ZPL line transition with η� − iλλx.

APPENDIX I: CAVITY SPECTROSCOPY

We now consider additional coupling to a cavity mode described by the Jaynes-Cummings Hamiltonian HJC = g(a†σ + aσ †).
We now consider a driving of the cavity mode instead of the molecule. The equations of motion for a and the polaron operator
σ̃ read

ȧ = −[κ − i(ω� − ωc)]a − igσ +
√

2κAin, (I1)

˙̃σ = −(γ + iω̃0)σ̃ − igD†B†a +
√

2γ σ̃in, (I2)

where we defined Ain = (ηc/
√

2κ + ain). We can formally integrate the equation for the polaron operator:

σ (t ) = −ig
∫ t

−∞
dt ′e−(γ+iω̃0 )(t−t ′ )

[
D(t )D†(t ′)B(t )B†(t ′)a(t ′) −

√
2γ

ig
D(t )B(t )σ̃in(t ′)

]
. (I3)
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We can now plug this into the equation for a (additionally we average over the vibrational as well as electronic degrees of
freedom):

ȧ = −[κ − i(ω� − ωc)]a − g2
∫ t

−∞
dt ′e−(γ+iω̃0 )(t−t ′ )[〈D(t )D†(t ′)〉 〈B(t )B†(t ′)〉 a(t ′)] +

√
2κAin. (I4)

Taking the average over the cavity field, we obtain

〈ȧ〉 = −[κ − i(ω� − ωc)] 〈a〉 − g2
∫ ∞

−∞
dt ′e−(γ+iω̃0 )(t−t ′ )�(t − t ′) 〈D(t )D†(t ′)〉 〈B(t )B†(t ′)〉 〈a(t ′)〉 + ηc, (I5)

where we assumed factorizability between vibrational, phononic, and optical degrees of freedom. We notice that the second
term represents a convolution since 〈D(t )D†(t ′)〉 〈B(t )B†(t ′)〉 just depends on the time difference t − t ′. Making the notation
H (t − t ′) = e−(γ+iω̃0 )(t−t ′ )�(t − t ′) 〈D(t )D†(t ′)〉 〈B(t )B†(t ′)〉, we obtain in Fourier space

−iω 〈a(ω)〉 = −[κ − i(ω� − ωc)] 〈a(ω)〉 − g2H (ω) 〈a(ω)〉 + ηcδ(ω). (I6)

The electric field amplitude in Fourier space can therefore be expressed as

〈a(ω)〉 = ηcδ(ω)

g2H (ω) − iω + [κ − i(ω� − ωc)]
(I7)

and is related to the normalized cavity transmission T (ω) via T (ω) = 〈Aout (ω)〉
〈Ain (ω)〉 . This gives

T (ω) = κ

g2H (ω) − iω + [κ − i(ω� − ωc)]
. (I8)

Let us focus on the purely vibrational part, i.e., H (t − t ′) = e−(γ+iω0 )(t−t ′ )�(t − t ′) 〈B(t )B†(t ′)〉. We then obtain for a molecule
in thermal equilibrium (assuming Markovian decay)

H (ω) =
∞∑

n=0

λ2n

n!

n∑
l=0

(
n

l

)
e−λ2(1+2n̄)(n̄ + 1)n−l n̄l(

γ + n �
2

)− i[(ω − ω0) − (n − 2l )ν]
, (I9)

which simplifies to

H (ω) =
∞∑

n=0

λ2n

n!

e−λ2(
γ + n �

2

)− i[(ω − ω0) − nν]
, (I10)

in the case of zero temperature n̄ = 0.

APPENDIX J: POLARITON CROSS-TALK

Let us start with the resonant Holstein-Cummings Hamiltonian for a single vibrational or phononic mode

H = (ω0 + λ2ν)σ †σ + ω0a†a + νb†b − λν(b† + b)σ †σ + g(a†σ + aσ †), (J1)

where the cavity is resonant to the bare electronic transition energy ω0. We diagonalize the Jaynes-Cummings part in the single-
excitation subspace by introducing annihilation operators for upper and lower polariton.

U = 1√
2

(a + σ ), (J2a)

L = 1√
2

(a − σ ). (J2b)

Inserting this into the Hamiltonian gives

H = (ω0 + g + λ2ν

2

)
U †U + (ω0 − g + λ2ν

2

)
L†L + νb†b − λν

2
(b† + b)(U †U + L†L) + λν

2
(U †L + L†U )(b† + b). (J3)

We can interpret this as two vibrationally dressed polaritons where the last term describes a coupling between upper and lower
polariton. We can perform a polaron transform for both upper UU = |g〉 〈g| + B†

pol |U 〉 〈U | and lower polaritonic state UL =
|g〉 〈g| + B†

pol |L〉 〈L| where we introduce the displacement operator B†
pol = e− λ

2 (b†−b). Using that UUbU†
U = b + λ

2U †U (similarly
for UL), this gives the transformed Hamiltonian

Hpol = ω+U †U + ω−L†L + νb†b + λν

2
(U †L + L†U )(b† + b) + λ2ν

2
(U †L + L†U ), (J4)
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with ω± = ω0 ± g + λ2ν
4 . We notice the additional last term which describes a direct polariton-polariton coupling, which is

however negligible in the case of large Rabi splitting 2g � λ2ν. We start with the equations of motion for the individual
polaritons

dU

dt
= −(γ+ + iω+)U − i

λν

2
L(b† + b) + √

κain + √
γ σin, (J5a)

dL

dt
= −(γ− + iω−)L − i

λν

2
U (b† + b) + √

κain − √
γ σin, (J5b)

as well as the populations

dPU

dt
= −2γ+PU + λν� 〈U †L(b† + b)〉 , (J6a)

dPL

dt
= −2γ−PL + λν� 〈L†U (b† + b)〉 , (J6b)

with the hybridized decay rates γ± = κ+γ

2 . We will calculate the energy transfer rate from upper to lower polariton κ+ in a
perturbative approach (the transfer from lower to upper polariton is then calculated analogously). To this end, one can assume
initial excitation of the upper polariton U †U (0) = PU (0) and consider the transfer to the lower polariton. If the decay rate of
the upper polariton γ+ is much larger than the transfer rate κ+ one can assume that the population of the upper polariton is not
modified due to the transfer PU ≈ −2γ+PU but the population of the lower polariton sees an increase ṖL = −2γ−PL + κ+PU .
We have to calculate

〈L†U (b†(t ) + b(t ))〉 = i
λν

2

∫ t

−∞
dt ′PU (0) 〈(b(t ′) + b†(t ′))(b(t ) + b†(t ))〉 e−(γ−−iω− )(t−t ′ )e−(γ+−iω+ )t ′

e−(γ++iω+ )t

= i
λν

2

[
n̄ + 1

�m/2 + i(ω+ − ω− − ν)
+ n̄

�m/2 + i(ω+ − ω− + ν)

]
PU (t ), (J7)

where we assumed Markovian decay for the vibration and assumed fast vibrational relaxation �m � γ±. This leads to an energy
transfer rate of

κ+ = λ2ν2

4
�m

[
n̄ + 1

(�m/2)2 + (ω+ − ω− − ν)2 + n̄

(�m/2)2 + (ω+ − ω− + ν)2

]
. (J8)

The transfer from lower to upper polariton can then be calculated by assuming initial occupation of the lower polariton from
〈U †L(b† + b)〉 as

κ− = λ2ν2

4
�m

[
n̄ + 1

(�m/2)2 + (ω+ − ω− + ν)2 + n̄

(�m/2)2 + (ω+ − ω− − ν)2

]
. (J9)
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