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In flat-band systems, destructive interference leads to the localization of noninteracting particles and forbids
their motion through the lattice. However, in the presence of interactions the overlap between neighboring
single-particle localized eigenstates may enable the propagation of bound pairs of particles. In this work, we
show how these interaction-induced hoppings can be tuned to obtain a variety of two-body topological states.
In particular, we consider two interacting bosons loaded into the orbital angular momentum l = 1 states of a
diamond-chain lattice, wherein an effective π flux may yield a completely flat single-particle energy landscape.
In the weakly interacting limit, we derive effective single-particle models for the two-boson quasiparticles which
provide an intuitive picture of how the topological states arise. By means of exact diagonalization calculations,
we benchmark these states and we show that they are also present for strong interactions and away from the strict
flat-band limit. Furthermore, we identify a set of doubly localized two-boson flat-band states that give rise to a
special instance of Aharonov-Bohm cages for arbitrary interactions.
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I. INTRODUCTION

The study of topological materials is a prominent topic
in condensed matter physics. One of the main features of
these exotic systems is the existence of a bulk-boundary corre-
spondence, which correlates the nontrivial topological indices
of the bulk energy bands with the presence of robust edge
modes [1]. At the single-particle level, topological phases
are well understood and can be systematically classified in
terms of their symmetries and dimensionality [2,3]. However,
many questions regarding the characterization of interacting
topological systems remain open. While it is known that
interactions are responsible for the appearance of strongly
correlated many-body topological phases such as fractional
quantum Hall states [4] or symmetry-protected topological
phases [5], topological invariants are in general difficult to
define even in few-body systems, making the systematic study
of interaction-driven topological effects elusive.

Over the last years, a number of topological models have
been successfully implemented with ultracold atoms in optical
lattices [6] and photonic systems [7]. Due to their high degree
of tunability and control, these synthetic platforms offer excit-
ing perspectives for exploring interacting topological phases
[8]. A remarkable example of this is the possibility of realizing
long-lived bound pairs of interacting particles, also known as
doublons. These two-body states, which are stable even for
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repulsive interactions due to the finite bandwidth of the single-
particle kinetic energy [9], have been observed [10–13] and
extensively analyzed [14–25] in optical lattices, and have also
been emulated in photonic systems [26,27] and in topolectri-
cal circuits [28]. Motivated in part by these advances, several
recent works have focused on the topological properties of
two-body states [13,29–44], with the long-term aim of paving
the path to a better comprehension of topological phases in
a full many-body interacting scenario. A distinctive advan-
tage that these small-sized systems offer is that it is often
possible to map the problem of two interacting particles in
a lattice into a single-particle model defined in a different lat-
tice, the topological characterization of which can then be per-
formed with well-established techniques [31–33,36,40,41].

In this paper, we study the topological properties of two-
boson states in a system that is topologically nontrivial at
the single-particle level. Specifically, we consider a diamond-
chain lattice filled with ultracold atoms loaded into orbital
angular momentum (OAM) l = 1 states. In this geometry,
the OAM degree of freedom induces an effective π flux
which yields a single-particle spectrum composed entirely
of flat bands upon a proper tuning of the tunneling param-
eters [45,46]. In this situation, quantum interference leads
to a strong localization of noninteracting particles and for-
bids their propagation through the chain. This phenomenon,
known as Aharonov-Bohm caging [45–50], has been recently
generalized to non-Abelian systems, where it is expected to
yield intriguing state-dependent dynamics [51]. This single-
particle localization effect is a general characteristic of flat-
band systems [52], wherein the role of the kinetic energy
becomes irrelevant and particle motion can only originate
from interaction-mediated collective processes. This peculiar
feature is responsible for the appearance in such systems of
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a number of exotic quantum states determined solely by the
interactions and the geometry of the lattice [53–65], including
topologically nontrivial phases [66–70].

In this work, we focus on the limit of weak attractive inter-
actions, in which the low-energy properties of the system can
be studied by projecting the Hamiltonian into the lowest flat
bands [54–57]. By mapping the subspaces of lowest-energy
two-boson states into single-particle models, we show that
the system has a topologically nontrivial phase. In contrast
with other realizations of two-body topological states [13,29–
41], in this case the topological character is controlled through
effective two-boson tunneling amplitudes that depend on the
interaction strength. In a diamond chain with open boundaries,
this topological phase is benchmarked by the presence of
robust in-gap states localized at the edges, which are in
turn composed of bound pairs of bosons, each occupying
a localized single-particle eigenstate. We provide numerical
evidence that these edge states are also present for interaction
strengths capable of introducing mixing with higher bands and
in the case where the bands are not completely flat. Moreover,
we find that the system displays doubly localized flat bands of
two-boson states that give rise to Aharonov-Bohm caging also
for interacting particles prepared in specific states.

The rest of the paper is organized as follows. In Sec. II
we discuss the single-particle properties of the system and
we provide a qualitative description of the effect of attractive
on-site interactions on the properties of two-boson states in
the flat-band limit. In Sec. III we derive effective tight-binding
models for the lowest-energy sector of the two-boson spec-
trum by projecting the interacting part of the Hamiltonian
into the lowest flat bands. We find that these effective models
can be rendered topologically nontrivial by selectively tuning
the strength of the interactions on the different sites of the
lattice. We also use the models to identify the doubly localized
two-boson flat-band states. In Sec. IV we provide exact diago-
nalization results that confirm the analytical predictions of the
previous section. We also examine numerically the robustness
of the two-boson topological phases upon deviations from
the weakly interacting and flat-band conditions. In Sec. V we
address some aspects of the possible experimental realization.
Finally, in Sec. VI we summarize the main conclusions of this
work.

II. MODEL

We consider a gas of cold bosonic atoms trapped in a
diamond-chain optical lattice. As shown in Fig. 1, the unit
cells of the lattice, which we label with the index i, consist
of a spinal site Ai and two sites Bi and Ci equally separated
from Ai by a distance d and forming a relative angle � = π/2.
Each of the sites corresponds to the center of a cylindrically
symmetric potential of radial frequency ω, which naturally
supports OAM states. The atoms are loaded into the manifold
formed by the two degenerate OAM l = 1 states with positive
and negative circulation localized at each site, | ji,±〉, the
wave functions of which are given by

φ ji
α (r ji , ϕ ji ) = 〈�r| ji,±〉 = ψ (r ji )e

±i(ϕ ji −ϕ0 ), (1)

where j ∈ {A, B,C}, (r ji , ϕ ji ) are the polar coordinates with
origin at site ji, and ϕ0 is an arbitrary phase origin. Let

FIG. 1. Schematic representation of the diamond-chain optical
lattice considered in this work. The J3 couplings of Eq. (2) are
real and positive along the directions marked by solid blue arrows,
whereas they acquire a relative π phase along the directions marked
by dotted red arrows. The J2 are real and positive along all directions.
The on-site interaction strength is UA at the A sites of each unit cell
and U1 (U2) at the B and C sites of odd (even) unit cells.

us first briefly recall the noninteracting description of this
system, which was analyzed in detail in [45,46]. In general,
the single-particle dynamics of ultracold atoms carrying OAM
in arrays of side-coupled potentials are governed by three
coupling amplitudes [71], which we denote as J1, J2, and
J3. Specifically, J1 accounts for the coupling between the
two OAM states with opposite circulation within one site,
while J2 and J3 correspond to tunneling processes between
OAM states localized at neighboring sites with equal and
opposite circulations, respectively. For the particular case of
the diamond-chain geometry, the self-coupling J1 vanishes ev-
erywhere except at the edges of the chain, so its effect can be
neglected [45]. Following the same criterion as in [45,46], we
fix ϕ0 along the line that connects the sites Ci ↔ Ai ↔ Bi+1,
indicated with solid blue arrows in Fig. 1. With this choice of
the phase origin, the J3 amplitudes along the line connecting
the sites Bi ↔ Ai ↔ Ci+1, indicated with dotted red arrows in
Fig. 1, acquire a relative π phase. Thus, taking J2 and J3 as
positive quantities [45], the noninteracting Hamiltonian of the
system reads

Ĥ0 = J2

Nc−1∑
i=1

∑
α=±

[
âi†

α

(
b̂i

α + b̂i+1
α + ĉi

α + ĉi+1
α

)]

+ J3

Nc−1∑
i=1

∑
α=±

[
âi†

α

( − b̂i
−α + b̂i+1

−α + ĉi
−α − ĉi+1

−α

)]
+ H.c., (2)

where, âi
α , b̂i

α , and ĉi
α are the bosonic annihilation operators

associated with the OAM states |Ai, α〉, |Bi, α〉, and |Ci, α〉,
respectively, and Nc is the total number of unit cells forming
the chain. For reasons that we explain below, we do not
consider the A site of the last unit cell of the chain.

In the present study we also consider the effect of on-site
interactions between the bosons. As shown in Fig. 1, we let
the interaction strength take the value UA in the A sites of
each unit cell and U1 and U2 in the B and C sites of odd and
even unit cells, respectively. As we will explain in Sec. III,
tuning independently these different interaction parameters
allows us to explore distinct topological regimes of two-boson
states. Such modulation of the on-site interactions could be
achieved either by creating a lattice with slightly different
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trapping frequencies at each site or by means of magnetic [72]
or optical [73] Feshbach resonances induced by a spatially
modulated field. Assuming that the interactions occur only
through low-energy collisions between bosons in OAM l = 1
states occupying the same site, we can write the part of the
Hamiltonian describing the interactions as [74]

Ĥint = UA

2

Nc∑
i=1

n̂ai+(n̂ai+ − 1) + n̂ai−(n̂ai− − 1) + 4n̂ai+n̂ai−

+ U1

2

∑
i,odd

∑
j=b,c

n̂ ji
+(n̂ ji

+ − 1) + n̂ ji
−(n̂ ji

− − 1) + 4n̂ ji
+n̂ ji

−

+ U2

2

∑
i,even

∑
j=b,c

n̂ ji
+(n̂ ji

+ − 1) + n̂ ji
−(n̂ ji

− − 1) + 4n̂ ji
+n̂ ji

−,

(3)

where we have defined the number operators n̂ ji
± ≡ ĵ i†

± ĵ i
±.

Finally, the total Hamiltonian reads

Ĥ = Ĥ0 + Ĥint. (4)

Let us start by addressing the single-particle properties of
the system. In a chain with periodic boundary conditions, the
spectrum of the noninteracting Hamiltonian (2) is composed
of three twofold-degenerate bands [45,46]

E1
−(k) = E2

−(k) = −2
√(

J2
2 + J2

3

) + (
J2

2 − J2
3

)
cos k, (5a)

E1
0 (k) = E2

0 (k) = 0, (5b)

E1
+(k) = E2

+(k) = 2
√(

J2
2 + J2

3

) + (
J2

2 − J2
3

)
cos k, (5c)

where we set the lattice spacing to a = 1 here and throughout
the paper. We focus on the J2 = J3 limit, which can be ap-
proximately realized by setting a large value of the separation
between sites d [45,46]. In this limit, all the bands become
flat with energies E1,2

− = −2
√

2J2, E1,2
0 = 0, E1,2

+ = 2
√

2J2.
For these values of the tunneling parameters, a diamond chain
with open boundaries also displays in-gap states with energies
E = ±2J2 localized at the right edge. Nevertheless, these
states can be removed from the single-particle spectrum by
cutting the A site of the last unit cell, ANc , in such a way
that the left and right ends of the chain are symmetric, as
shown in Fig. 1. From now on, we will assume that there
are no single-particle edge states of this kind in the lattice.
The eigenstates belonging to each of the flat bands can be
expressed as compact modes that are completely localized in
two consecutive unit cells. Specifically, the bosonic creation
operators associated with the flat-band modes localized in the
i and i + 1 unit cells can be written in terms of the original
OAM creation operators as [45,46]

Ŵ 1†
−,i = 1

4

(
− 4√

2
âi†

+ + b̂i†
+ − b̂i†

− + ĉi†
+ + ĉi†

−

+ b̂i+1†
+ + b̂i+1†

− + ĉi+1†
+ − ĉi+1†

−

)
, (6a)

Ŵ 2†
−,i = 1

4

(
− 4√

2
âi†

− − b̂i†
+ + b̂i†

− + ĉi†
+ + ĉi†

−

+ b̂i+1†
+ + b̂i+1†

− − ĉi+1†
+ + ĉi+1†

−

)
, (6b)

FIG. 2. Sketches of the maximally localized flat-band eigenstates
created by the operators given in Eqs. (6)–(10) indicating the relative
weights of each of the OAM states at the different sites.

for the states in the lower bands, leading to

Ĥ0(J2 = J3)
(
Ŵ 1/2†

−,i |0〉) = −2
√

2J2
(
Ŵ 1/2†

−,i |0〉). (7)

For the states in the middle bands we have

Ŵ 1†
0,i = 1

2
√

2
(−b̂i†

+ + b̂i†
− + ĉi†

+ + ĉi†
−

− b̂i+1†
+ − b̂i+1†

− + ĉi+1†
+ − ĉi+1†

− ), (8a)

Ŵ 2†
0,i = 1

2
√

2
(b̂i†

+ − b̂i†
− + ĉi†

+ + ĉi†
−

− b̂i+1†
+ − b̂i+1†

− − ĉi+1†
+ + ĉi+1†

− ), (8b)

leading to

Ĥ0(J2 = J3)
(
Ŵ 1/2†

0,i |0〉) = 0. (9)

Finally, for the states in the upper bands we have

Ŵ 1†
+,i = 1

4

(
4√
2

âi†
+ + b̂i†

+ − b̂i†
− + ĉi†

+ + ĉi†
−

+ b̂i+1†
+ + b̂i+1†

− + ĉi+1†
+ − ĉi+1†

−

)
, (10a)

Ŵ 2†
+,i = 1

4

(
4√
2

âi†
− − b̂i†

+ + b̂i†
− + ĉi†

+ + ĉi†
−

+ b̂i+1†
+ + b̂i+1†

− − ĉi+1†
+ + ĉi+1†

−

)
, (10b)

leading to

Ĥ0(J2 = J3)
(
Ŵ 1/2†

+,i |0〉) = 2
√

2J2
(
Ŵ 1/2†

+,i |0〉). (11)

In Fig. 2(b) we sketch the different states created by the lower-
band, zero-energy-band, and upper-band operators, given by
Eqs. (6), (8), and (10), respectively. Since each of these states
spans a plaquette formed by the sites {Ai, Bi,Ci, Bi+1,Ci+1},
a diamond chain with Nc unit cells has Nc − 1 compact
localized modes of each type. Note that even though states
localized at consecutive plaquettes share a B and a C site, the
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total overlap is always zero; that is, these states form an or-
thogonal basis. As discussed in [45,46], a direct consequence
of the fact that the single-particle spectrum consists entirely of
highly localized eigenmodes is the appearance of Aharonov-
Bohm caging [47], i.e., the confinement of noninteracting
wave packets in small regions of the lattice due to quantum
interference.

After examining the single-particle eigenstates of the sys-
tem in the flat-band limit, we are now in a position to include
the effect of the on-site interactions, described by Eq. (3).
For concreteness, we will focus on the case of attractive
interactions, UA,U1,U2 < 0, and analyze their effect on the
low-energy properties of the two-boson states. However, we
note that the procedure that we present below for the lowest
flat bands can be carried out in an analogous way for states
belonging to higher bands and for attractive or repulsive
interactions.

In the absence of interactions there are many degenerate
ground states of energy E = −4

√
2J2, which consist of the

two bosons occupying any of the localized modes belonging
to the lowest flat bands. However, the introduction of an
attractive interaction changes this scenario. From Eq. (3), it is
clear that whenever two or more bosons occupy the same site
an interaction term arises. Therefore, Ĥint yields nonzero ma-
trix elements between two-boson states formed by localized
modes which overlap to some extent. We concentrate on the
case in which the interaction strength is much smaller than the
size of the band gap, |UA|, |U1|, |U2| 	 2

√
2J2, in such a way

that the bands do not mix and the low-energy properties of the
system can be examined by projecting the total Hamiltonian
(4) to the lowest flat bands. If the lattice hosted edge states, the
weakly interacting condition would be slightly more stringent
and would read |UA|, |U1|, |U2| 	 4

√
2J2 − 2(1 + √

2)J2 ≈
0.8J2.

Due to the effect of the on-site interactions, the total set
of states with the two bosons in the lowest single-particle
energy bands, which we denote as H, can be divided into
the following 4 subspaces according to the values of the
self-energy:

(i) H1 ≡ {Ŵ n†
−,iŴ

m†
−,k|0〉}, with n, m = 1, 2; i =

1, . . . , Nc − 1 and |k − i| � 2. This is the subspace of states
where the two bosons occupy localized modes separated
by two unit cells or more. In these configurations there
is no overlap between the two particles, and therefore the
interaction energy is zero,

〈0|Ŵ n
−,iŴ

m
−,kĤintŴ

n†
−,iŴ

m†
−,k|0〉 = 0. (12)

(ii) H2 ≡ {Ŵ n†
−,iŴ

m†
−,i+1|0〉}, with n, m = 1, 2 and i =

1, . . . , Nc − 2. This is the set of states in which the localized
modes of the two atoms are localized in two consecutive unit
cells, in such a way that they share the sites Bi+1 and Ci+1.
Using Eqs. (6), we find that their self-energy is

〈0|Ŵ n
−,iŴ

m
−,i+1ĤintŴ

n†
−,iŴ

m†
−,i+1|0〉 =

{
U1
32 if i is even,
U2
32 if i is odd.

(13)

(iii) H3 ≡ { 1√
2
Ŵ n†

−,iŴ
n†
−,i|0〉}, with n = 1, 2 and

i = 1, . . . , Nc − 2. This subspace is formed by the two-boson
states in which both bosons occupy the same single-particle

state. Since the localized modes overlap completely, there
are interaction terms coming from the contributions of the
Ai, Bi,Ci, Bi+1, and Ci+1 sites. Using again the expansions (6)
we find that the self-energy of these states is

〈0| 1√
2

Ŵ n
−,iŴ

n
−,iĤint

1√
2

Ŵ n†
−,iŴ

n†
−,i|0〉 = UA

4
+ 3(U1 + U2)

64
.

(14)

(iv) H4 ≡ {Ŵ 1†
−,iŴ

2†
−,i|0〉}, with i = 1, . . . , Nc − 2. This

subspace is formed by two-boson states in which the two
atoms are localized in the same plaquette but occupy orthogo-
nal states, each belonging to one of the two degenerate bands.
As in the case of the H3 subspace, the two particles share 5
different sites. The self-energy of these states is

〈0|Ŵ 1
−,iŴ

2
−,iĤintŴ

1†
−,iŴ

2†
−,i|0〉 = UA

2
+ 3(U1 + U2)

32
. (15)

Comparing Eqs. (12)–(15), we find that the subspace in
which the states have a lowest self-energy is H4, followed
by H3. In the next section, we derive effective models for
these subspaces and we discuss their topological properties.
Since the states of H2 have double occupancy only on the two
common sites of two consecutive plaquettes, the spectrum of
this subspace consists of flat bands formed by combinations
of states localized in two neighboring plaquettes.

III. EFFECTIVE MODELS FOR THE
LOWEST-ENERGY SUBSPACES

We can obtain effective models for the H3 and H4 sub-
spaces by projecting the Hamiltonian (4) into the two lowest
flat bands. In order to do so, we invert the relations of Eqs. (6),
(8), and (10), and remove from the resulting expressions
the contributions from higher bands [57]. This procedure
yields the following nonorthonormal set of restricted OAM
operators:

ˆ̄ai†
+ = − 1√

2
Ŵ 1†

−,i, (16a)

ˆ̄ai†
− = − 1√

2
Ŵ 2†

−,i, (16b)

ˆ̄bi†
+ = 1

4

(
Ŵ 1†

−,i−1 + Ŵ 2†
−,i−1 + Ŵ 1†

−,i − Ŵ 2†
−,i

)
, (16c)

ˆ̄bi†
− = 1

4

(
Ŵ 1†

−,i−1 + Ŵ 2†
−,i−1 − Ŵ 1†

−,i + Ŵ 2†
−,i

)
, (16d)

ˆ̄ci†
+ = 1

4

(
Ŵ 1†

−,i−1 − Ŵ 2†
−,i−1 + Ŵ 1†

−,i + Ŵ 2†
−,i

)
, (16e)

ˆ̄ci†
− = 1

4

( − Ŵ 1†
−,i−1 + Ŵ 2†

−,i−1 + Ŵ 1†
−,i + Ŵ 2†

−,i

)
. (16f)

Inserting in Eq. (4) the projected OAM operators (16)
instead of the original ones, we obtain a Hamiltonian ˆ̄H
expressed in the basis of the single-particle localized eigen-
states and restricted to the two degenerate flat bands of lowest
energy. In this basis, the noninteracting part of the projected
Hamiltonian is diagonal and reads

ˆ̄Hkin = −2
√

2J2

Nc−1∑
i=1

Ŵ 1†
−,iŴ

1
−,i + Ŵ 2†

−,iŴ
2
−,i. (17)
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The interacting part of the projected Hamiltonian, ˆ̄Hint, con-
tains products of the type ˆ̄ji†

α
ˆ̄ji†
α

ˆ̄ji
α

ˆ̄ji
α and ˆ̄ji†

α
ˆ̄ji†
α

ˆ̄ji
−α

ˆ̄ji
−α , with

j = {a, b, c} and α = ±. Therefore, insertion of Eqs. (16)
yields terms that involve products of operators that belong to
the H2, H3, and H4 subspaces. Nevertheless, it can be shown
that all the terms that couple states belonging to different
subspaces cancel out. This fact greatly simplifies calculations,
allowing us to derive a separate projected Hamiltonian for
each of the subspaces without making any further approx-
imations. Moreover, the decoupling of the different low-
energy subspaces is advantageous with regard to addressing
them separately in an experimental implementation. Next, we
present the effective models that are obtained for the two
lowest-energy subspaces, H4 and H3.

A. H4 subspace

The projected interaction Hamiltonian contains the follow-
ing terms consisting of products of operators associated with
the H4 subspace:

ˆ̄HH4
int =

(
UA

2
+ 3(U1 + U2)

32

) Nc−1∑
i=1

Ŵ 1†
−,iŴ

2†
−,iŴ

1
−,iŴ

2
−,i

+ U1

32

[Nc/2]−2∑
i=1

(
Ŵ 1†

−,2iŴ
2†
−,2iŴ

1
−,2i+1Ŵ

2
−,2i+1 + H.c.

)

+ U2

32

[Nc/2]−1∑
i=1

(
Ŵ 1†

−,2i−1Ŵ
2†
−,2i−1Ŵ

1
−,2iŴ

2
−,2i + H.c.

)
.

(18)

The first term of Eq. (18) is associated with the self-energy
of the states of the H4 subspace, Eq. (15), whereas the
other two terms correspond to hoppings between two-boson
states belonging to neighboring plaquettes induced by the
overlap between the localized modes, as shown in Fig. 3(a).
By mapping the two-body states of H4 into single-particle
states according to the definition |i〉 ≡ Ŵ 1†

−,iŴ
2†
−,i|0〉, we can

compute all the matrix elements of Eqs. (17) and (18) over the
two-boson states of H4 and write an effective single-particle
tight-binding model for this subspace,

HH4
eff =VH4

Nc−1∑
i=1

|i〉〈i|

+ t1

Nc/2−2∑
i=1

(|2i〉〈2i + 1| + H.c.)

+ t2

Nc/2−1∑
i=1

(|2i − 1〉〈2i| + H.c.), (19)

where we have defined t1 ≡ U1
32 , t2 ≡ U2

32 , and VH4 ≡
(−4

√
2J2 + UA

2 + 3(U1+U2 )
32 ). As illustrated in Fig. 3(b),

Eq. (19) describes a Su-Schrieffer-Heeger (SSH) chain [75]
with a unit cell formed by two sites that correspond to neigh-
boring plaquettes of the original diamond chain. The intra-
and intercell hoppings of this chain are given by t2 and t1,
respectively, and the energy of all sites is shifted by a uniform

FIG. 3. Effective model for the H4 subspace. (a) Original
states of H4 in the diamond chain. The blue squares framed
in dashed lines indicate the plaquettes where the states are
localized. In the sites with a darker blue shade, neighboring
states overlap and interact with a strength U1 or U2. (b) Effective
SSH chain describing the H4 subspace. The blue shaded area
indicates the unit cell, which is formed by two neighboring
plaquettes of the original diamond chain. (c) Band structure
of the SSH chain for values of the interaction parameters
{UA/J2 = −0.2,U1/J2 = −0.2,U2/J2 = −0.2} (left plot),
{UA/J2 = −0.2,U1/J2 = −0.2(0),U2/J2 = 0(−0.2)} (middle plot),
and {UA/J2 = −0.2,U1/J2 = −0.2(−0.1),U2/J2 = −0.1(−0.2)}
(right plot). In the middle and right plots, we also indicate the value
of the Zak phases of the bands for each case.

potential VH4 . By Fourier-transforming the Hamiltonian (19),
we find that the two energy bands of this model are given by

E1
H4

(k) = VH4 −
√

t2
1 + t2

2 + 2t1t2 cos k, (20a)

E2
H4

(k) = VH4 +
√

t2
1 + t2

2 + 2t1t2 cos k. (20b)

The shape of the band structure (20) is shown in Fig. 3(c)
for different values of the hopping parameters. As shown in
the left plot, for the particular case t1 = t2 the gap closes at
k = ±π . As can be seen in the middle plot, for t1 = 0 or t2 =
0 the bands are flat and separated by a gap. In the general case
t1 �= t2, which is illustrated in the right plot, both bands are
dispersive and the gap remains open. In the situations where
there is an energy gap, the relative value of the hopping pa-
rameters determines the topological properties of the system.
If |t1| < |t2| (i.e., if |U1| < |U2|), the Zak phases [76] of the
bands are γ 1

H4
= γ 2

H4
= 0 and the system is in a topologically

trivial phase. On the other hand, if the values of the hoppings
are such that |t1| > |t2| (i.e., if |U1| > |U2|), the Zak phases
are γ 1

H4
= γ 2

H4
= π and the system is in a topological phase.

Thus, by introducing the different interaction strengths U1 and
U2 at B and C sites of odd and even unit cells, respectively,

033267-5



G. PELEGRÍ et al. PHYSICAL REVIEW RESEARCH 2, 033267 (2020)

we are able to control the shape of the band structure and
to render the H4 subspace topologically nontrivial. Accord-
ing to the bulk-boundary correspondence, in the topological
phase we expect a chain with open boundaries to display two
edge states of energy VH4 in its spectrum. Remarkably, these
edge states consist of bound pairs of bosons and are induced
by the interplay between the strength of different on-site
interactions in a system where the kinetic energy plays no role
due to the fact that all the bands are flat.

B. H3 subspace

The part of the interaction Hamiltonian projected to the two
lowest flat bands containing products of operators associated
with the H3 subspace reads

¯̂HH3
int =

(
UA

4
+ 3(U1 + U2)

64

) Nc−1∑
i=1

∑
n=1,2

Ŵ n†
−,iŴ

n†
−,i√

2

Ŵ n
−,iŴ

n
−,i√

2

+ 3(U1 + U2)

64

Nc∑
i=1

Ŵ 1†
−,iŴ

1†
−,i√

2

Ŵ 2
−,iŴ

2
−,i√

2
+ H.c.

−U1

64

[Nc/2]−2∑
i=1

∑
n,m=1,2

Ŵ n†
−,2iŴ

n†
−,2i√

2

Ŵ m
−,2i+1Ŵ

m
−,2i+1√

2
+ H.c.

−U2

64

[Nc/2]−1∑
i=1

∑
n,m=1,2

Ŵ n†
−,2i−1Ŵ

n†
−,2i−1√

2

Ŵ m
−,2iŴ

m
−,2i√

2
+ H.c.

(21)

The first term of Eq. (21) corresponds to the self-energy of the
states belonging to H3, Eq. (14), and the other ones can be
regarded as pair-tunneling terms induced by the interactions
at the sites where the single-particle localized modes interact.
More specifically, the second term corresponds to a coupling
between two-boson states localized at the same plaquette but
belonging to different bands, and the third and fourth terms
to hoppings between states, either in the same or differ-
ent bands, localized in neighboring plaquettes, respectively.
By mapping the two-body states of H3 into single-particle
states according to the definitions |i, 1〉 ≡ 1√

2
Ŵ 1†

−,iŴ
1†
−,i|0〉 and

|i, 2〉 ≡ 1√
2
Ŵ 2†

−,iŴ
2†
−,i|0〉, we can combine all the nonzero ma-

trix elements of the Hamiltonians (21) and (17) over two-
boson states of H3 and write an effective single-particle model
for this subspace

ĤH3
eff = VH3

Nc∑
i=1

(|i, 1〉〈i, 1| + |i, 2〉〈i, 2|)

+ 3(t1 + t2)

2

Nc∑
i=1

(|i, 1〉〈i, 2| + H.c.)

− t1
2

[Nc/2]−2∑
i=1

∑
n,m=1,2

(|2i, n〉〈2i + 1, m| + H.c.)

− t2
2

[Nc/2]−1∑
i=1

∑
n,m=1,2

(|2i − 1, n〉〈2i, m| + H.c.), (22)

where VH3 ≡ (−4
√

2J2 + UA
4 + 3(U1+U2 )

64 ) and t1, t2 are defined
in the same way as in Eq. (19). As illustrated in Fig. 4(a),

FIG. 4. (a) Effective Creutz ladder describing the H3 subspace.
The area framed in dashed lines indicates the unit cell, which is
formed by two neighboring legs that are in turn composed of the
two states of the original diamond chain localized in each plaquette.
(b) Collection of isolated states (upper sketch) and SSH chain (lower
sketch) formed respectively by the sets of antisymmetric and sym-
metric combinations of states of each leg of the ladder. (c) Schematic
representation of the closed system formed by the three doubly
localized flat-band states of each plaquette.

Eq. (22) describes a Creutz ladder [77] with a unit cell formed
by two legs, each of which corresponds to the two states of
H3 localized in each plaquette, |i, 1〉 and |i, 2〉. The intraleg
coupling is given by 3(t1+t2 )

2 , and the interleg hoppings are − t1
2

or − t2
2 depending on the parity of the unit cell. Additionally,

the energy of all sites is shifted by a uniform potential VH3 .
By Fourier-transforming the Hamiltonian (22), we find the
following energy bands:

E1
H3

(k) = 3(t1 + t2)

2
+ VH3 −

√
t2
1 + t2

2 + 2t1t2 cos k, (23a)

E2
H3

(k) = 3(t1 + t2)

2
+ VH3 +

√
t2
1 + t2

2 + 2t1t2 cos k, (23b)

E3
H3

(k) = E4
H3

(k) = −3(t1 + t2)

2
+ VH3 = −4

√
2J2 + UA

4
.

(23c)
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Additional insight into the properties of the effective
Hamiltonian (22) can be gained by performing a basis ro-
tation into the symmetric and antisymmetric combinations
of the two states forming each leg of the ladder, |S, i〉 =

1√
2
(|i, 1〉 + |i, 2〉) and |A, i〉 = 1√

2
(|i, 1〉 − |i, 2〉). As illus-

trated in Fig. 4(b), in this basis the effective Hamiltonian
of the H3 subspace gets decoupled into two different terms
containing only symmetric and antisymmetric states

ĤH3
eff = ĤH3

eff (S) + ĤH3
eff (A), (24)

ĤH3
eff (S) =

(
VH3 + 3(t1 + t2)

2

) Nc−1∑
i=1

|S, i〉〈S, i|

− t1

Nc/2−2∑
i=1

(|S, 2i〉〈S, 2i + 1| + H.c.)

− t2

Nc/2−1∑
i=1

(|S, 2i − 1〉〈S, 2i| + H.c.), (25)

ĤH3
eff (A) =

(
VH3 − 3(t1 + t2)

2

) Nc−1∑
i=1

|A, i〉〈A, i|. (26)

On one hand, the term corresponding to the symmetric states,
ĤH3

eff (S), is formally equivalent to the SSH model effectively
describing the H4 subspace, Eq. (19), except for a difference
in the constant energy offset and a global change of sign in the
effective couplings. Accordingly, this part of the Hamiltonian
yields the energy bands E1

H3
(k) and E2

H3
(k), which follow the

same dispersion law as the ones from the the H4 subspace,
Eqs. (20), and share the same topological phases. On the other
hand, the term corresponding to the antisymmetric states,
ĤH3

eff (A), describes a set of decoupled states with a constant
energy offset VH3 − 3(t1+t2 )

2 = −4
√

2J2 + UA
4 . Therefore, the

|A, i〉 states form the flat bands E3
H3

(k) and E4
H3

(k), which
are topologically trivial. These flat-band states feature two
simultaneous localization effects, due to the fact that they
are localized states with finite weight on a set of two-boson
basis states which are, themselves, combinations of single-
particle localized states. Another interesting property of this
subspace of H3 is that each doubly localized state |A, i〉 =
1
2 (Ŵ 1†

−,iŴ
1†
−,i − Ŵ 2†

−,iŴ
2†
−,i )|0〉 is only coupled to two doubly lo-

calized states of an analogous form belonging to higher bands,
1√
2
(Ŵ 1†

+,iŴ
1†
−,i − Ŵ 2†

+,iŴ
2†
−,i )|0〉 and 1

2 (Ŵ 1†
+,iŴ

1†
+,i − Ŵ 2†

+,iŴ
2†
+,i )|0〉,

through the terms of Eq. (3) proportional to UA alone. Thus, at
each plaquette i these states form a closed three-level system
for any value of the interaction parameters. Expressing the
two-boson flat-band states in terms of the original OAM states
and computing the corresponding matrix elements with the
total Hamiltonian (4), we find that the three-state Hamiltonian
describing each of these sets of decoupled states is given by

H3L =

⎛
⎜⎝

−4
√

2J2 + UA
4 −√

2UA
4

UA
4

−√
2UA

4
UA
2 −√

2UA
4

UA
4 −√

2UA
4 −4

√
2J2 + UA

4

⎞
⎟⎠. (27)

A sketch of the three-level system described by Eq. (27) is
shown in Fig. 4(c). As we will show in the next section, the
existence of this collection of closed three-level systems gives

rise to a special type of two-boson Aharonov-Bohm caging
effect for any value of the on-site interaction strengths.

IV. EXACT DIAGONALIZATION RESULTS

In this section, we present exact diagonalization results that
support the analysis of the lowest-energy subspaces discussed
above. We also explore numerically the effects of devia-
tions from the weakly interacting and flat-band limits. All
the calculations have been performed considering a diamond
chain formed by Nc = 21 unit cells (and therefore 3Nc − 1 =
62 sites) and filled with N = 2 bosons. We focus on the first
3(Nc − 1) states of the spectrum, of which the Nc − 1 states
of lowest energy correspond to the H4 subspace, and the
remaining 2(Nc − 1) states to the H3 subspace.

In Fig. 5(a) we show the spectrum obtained by diagonaliz-
ing the full Hamiltonian of the system, Eq. (4), as a function of
the difference between the interaction strengths at the B and C
sites of odd and even unit cells, |U1| − |U2|. The tunneling pa-
rameters are set in the flat-band limit, J2 = J3, and the on-site
interaction strengths are UA = −0.02J2,U1 + U2 = −0.03J2,
fulfilling the weakly interacting condition |UA|, |U1|, |U2| 	
2
√

2J2. As predicted by the analysis of the band structures of
the effective models describing the H4 and H3 subspaces, for
|U1| − |U2| > 0 the system is in a topological phase charac-
terized by the presence of in-gap edge states in the spectrum,
which correspond to the red lines of Fig. 5(a). In Fig. 5(b) we
compare the energy spectra obtained by exact diagonalization
of the full Hamiltonian (red empty dots), the effective Hamil-
tonian of the H4 subspace, Eq. (19) (green dots), and the ef-
fective Hamiltonian of the H3 subspace, Eq. (22) (blue dots).
The plot (i) displays the spectra corresponding to the inter-
action parameters {UA/J2 = −0.02,U1/J2 = −0.01,U2/J2 =
−0.02} (nontopological phase), while (ii) displays the spectra
corresponding to the parameters {UA/J2 = −0.02,U1/J2 =
−0.02,U2/J2 = −0.01} (topological phase). In both cases we
observe that the effective models fit very well with the results
obtained by tackling the full system. In Fig. 5(c) we plot
the total density profiles (i.e., the sum of the populations
of the two OAM states at each site) of the in-gap states
of the H4 and H3 subspaces that appear in the exact two-
boson spectrum of Fig. 5(b) (ii). The sites of the chain have
been assigned a number according to the correspondence
Ai = 3i, Bi = 3i − 1,Ci = 3i − 2. As one expects because of
their topological origin, these states are strongly localized at
the edges of the diamond chain, with the population peaks
occurring at the first and last A sites of the diamond chain,
A1 and ANc−1. The localization in these specific sites is due
to the fact that the compact localized modes corresponding to
the lowest bands, Eqs. (6), have four times more population
on the A sites than on the B and C sites. Accordingly, the
edge states of Fig. 5, which are formed of bound pairs of
these modes, also concentrate their population on these sites.
The similarity between the population distributions of the
edge states corresponding to the two different subspaces is
a consequence of the underlying equivalence between the
SSH model describing the H4 subspace, Eq. (19), and the
term of the Creutz ladder describing H3 given by (25),
which corresponds to the symmetric combinations of orbitals
at each leg.
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FIG. 5. (a) Low-energy sector of the exact diagonalization spectrum of a diamond chain formed by Nc = 21 unit cells with open boundaries
as a function of the difference between the interaction strengths at odd and even unit cells, |U1| − |U2|. Blue (red) curves represent bulk (edge)
states. The parameters of the system fulfill the relations J2 = J3, UA = −0.02J2,U1 + U2 = −0.03J2. (b) Exact diagonalization spectrum (red
empty dots) for the (i) and (ii) cases given by the vertical dashed lines in (a), compared against the spectra of the SSH model describing
the H4 subspace (green dots) and the Creutz ladder describing the H3 subspace (blue dots). The parameters of the system are {UA/J2 =
−0.02,U1/J2 = −0.01,U2/J2 = −0.02} (upper plot) and {UA/J2 = −0.02,U1/J2 = −0.02,U2/J2 = −0.01} (lower plot). (c) Density profiles
of the in-gap states that appear in the exact diagonalization spectrum of the lower plot of (b). The sites have been assigned a number j according
to the correspondence Ai = 3i, Bi = 3i − 1,Ci = 3i − 2, where i labels the unit cell.

A. Two-boson Aharonov-Bohm caging

The impact of interactions on the Aharonov-Bohm caging
effect has been studied in different scenarios [78–81]. At
the two-body level, it has been found that interactions break
the cages and enable the spreading of the particles through
the entire lattice [78,80,81]. However, in the system consid-
ered here the OAM degree of freedom gives rise to robust
Aharonov-Bohm caging for a particular instance of two-boson
states. Specifically, this phenomenon stems from the existence
at each plaquette of the chain of a three-level system formed
by doubly localized states (each constructed by a different
combination of single-particle localized states of the upper
and lower bands) described by the Hamiltonian (27). Since
each of these subsystems is decoupled from the rest of two-
boson states, any combination of states of a given three-level
system evolves coherently between the three different doubly
localized states. As an example, let us consider a state in
which one boson is loaded into a symmetric combination of
OAM states (px-like orbital) and the other in antisymmetric
combination (py-like orbital) at the site Ai. Such a state can be
expressed in terms of doubly localized two-boson states as

(
âi†

+ + âi†
−√

2

)(
âi†

+ − âi†
−√

2

)
|0〉 = 1

2
[(âi†

+ )2 − (âi†
− )2]|0〉

=
[

1

2

(
Ŵ 1†

−,iŴ
1†
−,i

2
− Ŵ 2†

−,iŴ
2†
−,i

2

)

+1

2

(
Ŵ 1†

+,iŴ
1†
+,i

2
− Ŵ 2†

+,iŴ
2†
+,i

2

)

− 1√
2

(
Ŵ 1†

+,iŴ
1†
−,i√

2
− Ŵ 2†

+,iŴ
2†
−,i√

2

)]
|0〉.

Therefore, if one prepares the system in this initial state,
its time evolution takes place within the three-level sys-
tem formed by the doubly localized flat-band states of
the plaquette i. Thus, the total population of the time-
evolved state remains inside the cage formed by the sites
{Ai, Bi,Ci, Bi+1,Ci+1} regardless of the strength of the on-site
interactions. This fact is illustrated in Fig. 6(a), where we plot,
for a chain of Nc = 8 unit cells and with interaction parame-
ters UA = U1 = 2U2 = −2J2, the time evolution of the total
population in site A4 (black line) and in the corresponding
Aharonov-Bohm cage (red line) after injecting the initial state
1
2 [(â4†

+ )2 − (â4†
− )2]|0〉. In contrast, in Fig. 6(b), where we plot

the same quantities for the initial state (â4†
+ )2|0〉, we observe

a population leakage from the cage due to the coupling to
neighboring plaquettes induced by the on-site interactions.
Nevertheless, since this state has a 1/

√
2 projection to the

perfectly caged state, there is an upper bound of 1 boson to the
total population that can escape the Aharonov-Bohm cage.

B. Deviations from the weakly interacting regime

By means of exact diagonalization calculations, we can
examine to which extent the effective models reproduce the
features of the low-energy sector of the full spectrum when
the interactions are strong enough to introduce couplings with
higher bands. In Fig. 7(a) we show the energy spectrum for
J2 = J3 as a function of |UA| (with UA < 0). The interaction
strengths fulfill the relation UA = U1 = 2U2, for which the
system is in the topological phase in the weakly interacting
regime. In the main plot, the energies are expressed in units
of the ground state energy E0, whose dependence on |UA| is
shown on the inset. We observe that the edge states predicted
by the effective models (signaled with red lines) remain in the
middle of the energy gaps even for values of |UA| significantly
larger than the single-particle energy gap, 2

√
2J2. Therefore,
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FIG. 6. Time evolution of the total population in site A4

(black lines) and the sum over the cage formed by the sites
{A4, B4,C4, B5,C5} (red lines) in a chain formed by 8 unit cells and
with on-site interactions UA = U1 = 2U2 = −2J2. The initial state is
1
2 [(â4†

+ )2 − (â4†
− )2]|0〉 in (a) and (â4†

+ )2|0〉 in (b).

the topological properties of the system remain unaltered
throughout the considered interaction strength sweep. For
|UA| � 3, the highest-energy states displayed in the main plot
start to couple significantly with other states belonging to
higher bands, giving rise to multiple energy crossings. In
Fig. 7(b) we show, for UA = U1 = 2U2 = −2J2, a comparison
between the exact two-boson spectrum (red empty dots) and
the effective models of the H4 (green dots) and H3 (blue
dots) subspaces. Due to the mixing with higher bands, the
energies obtained by exact diagonalization are shifted with
respect to the ones predicted by the effective models. For the
doubly localized flat-band states, the exact energies can be
computed as the lowest eigenvalue of the three-level Hamil-
tonian describing the coupling to higher-energetic two-boson
flat bands, Eq. (27).

Although quantitatively the effective models do not agree
perfectly with the exact diagonalization results away from the
limit of small interactions, they still provide a good qual-
itative description of the lowest-energetic two-boson states.
In particular, in the exact spectrum of Fig. 7(b), the H4

and H3 subspaces are well separated in energy, the bands
of each subspace maintain the shape predicted by the cor-
responding effective models, and, since the system is in the
topological phase, there are in-gap states. In Fig. 7(c) we plot
the density profiles of the lowest-energetic edge states that
appear in Fig. 7(a) for |UA|/J2 = 2, 4, 6. We observe that the

FIG. 7. (a) Low-energy sector of the exact diagonalization spec-
trum of a diamond chain formed Nc = 21 unit cells with open
boundaries as a function of the interaction strength at odd and even
unit cells at the A sites. Blue (red) curves represent bulk (edge) states.
The inset shows the dependence on |UA| of the ground-state energy
E0, which sets the energy scale for each point of the main plot. The
parameters of the system fulfill the relations J2 = J3, UA = U1 =
2U2, with UA < 0. (b) Exact diagonalization spectrum (red empty
dots), compared against the spectra of the SSH model describing
the H4 subspace (green dots) and the Creutz ladder describing the
H3 subspace (blue dots) for the interaction parameters UA = U1 =
2U2 = −2J2. (c) Density profile of the lowest-energy edge states,
belonging to the H4 subspace, for different values of UA.

localization of the states at the edge of the chain is more
pronounced for higher interaction strengths, confirming the
fact that the coupling to higher bands does not affect the
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topological properties of the system. From an experimental
point of view, the sharpening of the localization of the two-
boson edge states with the increase of the interaction strengths
is advantageous for their detection, since it ensures that these
states are recognizable for values of the interaction strength
ranging from a small fraction of the tunneling energy to
|U |/J2 ∼ 10.

C. Deviations from the flat-band limit

So far, we have assumed that the system is in the flat-band
limit, which occurs for J2 = J3. However, as discussed in
[45,46], in a real system J3 is always slightly larger than
J2 even for large values of the intersite separation d . Thus,
it is relevant to examine the effect of deviations from the
J2 = J3 limit on the low-energy properties of the two-boson
spectrum. For J2 �= J3, the noninteracting part of the projected
Hamiltonian reads as

ˆ̄H0 = −
√

2(J2 + J3)
Nc−1∑
i=1

Ŵ 1†
−,iŴ

1
−,i + Ŵ 2†

−,iŴ
2
−,i

+ (J3 − J2)√
2

Nc−1∑
i=1

(
Ŵ 1†

−,iŴ
1
−,i+1 + Ŵ 2†

−,iŴ
2
−,i+1 + H.c.

)
.

(28)

Due to the second term of Eq. (28), which corresponds to
single-particle hoppings between adjacent localized eigen-
modes, the flat bands become dispersive. Note that the set of
all localized states forms a complete orthonormal basis, and
one can always choose this basis to represent the Hamiltonian,
regardless of the parameters. What Eq. (28) shows is that,
when J2 �= J3, this basis is no longer simultaneously the
eigenbasis of the model, and it is no longer possible to derive
effective single-particle models for the different subspaces of
two-boson states. However, we can perform exact diagonal-
ization calculations over the full Hamiltonian (4) to examine
numerically to which extent the features of the system that
we observe in the flat-band limit survive. In Fig. 8(a) we plot
the energy spectrum of the system as a function of the J3/J2

ratio for UA = U1 = 2U2 = −2J2 (upper plot) and UA = U1 =
2U2 = −4J2 (lower plot). In the upper plot we observe that for
J3/J2 � 1.2 the separation between H4 and H3 is still clear
and each of the subspaces preserves its in-gap states, signaled
with red lines. As the J3/J2 ratio is increased, the energy
separation between the two subspaces is lost and the edge
states of H3 merge into the bulk. In the lower plot of Fig. 8(a),
which corresponds to higher values of |U |, these effects are
less pronounced and the edge states of both subspaces remain
inside the energy gaps. Therefore, the topological two-boson
states are more robust against deviations from the flat-band
limit for stronger on-site interactions. In Fig. 8(b) we plot
the total density profiles of the lowest-energy edge states for
UA = U1 = 2U2 = −2J2 and several values of the J3/J2 ratio,
observing longer decays into the bulk as it is increased. From
this brief analysis of the effects of deviations from the flat-
band limit, we can conclude that for sufficiently low values
of the difference between the J3 and J2 couplings (compared
to the interaction strength |U |), the main characteristics of the
low-energy sector of the spectrum, i.e., the separation between

FIG. 8. (a) Low-energy sector of the exact diagonalization spec-
trum of a diamond chain formed Nc = 21 unit cells with open bound-
aries as a function of the ratio between the two tunneling amplitudes
between OAM states, J3/J2. Blue (red) curves represent bulk (edge)
states. The parameters of the system fulfill the relations UA = U1 =
2U2 = −2J2 (upper plot) and UA = U1 = 2U2 = −4J2 (lower plot).
(b) Density profile of the lowest-energy edge states, belonging to
the H4 subspace, for UA = U1 = 2U2 = −2J2 and different values
of J3/J2.

the H4 and H3 subspaces and the presence of topological edge
states in the |U1| > |U2| regime, are preserved. Thus, in a
real experimental implementation, for which the J3/J2 ratio
takes values 1.05 � J3/J2 < 2 [45,46], the main features of
the flat-band limit could in principle be observed.

V. EXPERIMENTAL CONSIDERATIONS

A diamond-chain filled with ultracold atoms in OAM l = 1
states could be realized in different ways. On one hand, one

033267-10



INTERACTION-INDUCED TOPOLOGICAL PROPERTIES OF … PHYSICAL REVIEW RESEARCH 2, 033267 (2020)

could construct a lattice made up of ring potentials. In these
trapping geometries, which have been experimentally realized
over the last years by means of a variety of techniques such as
optically plugged magnetic traps [82], static Laguerre-Gauss
beams [83], painting [84,85] and time-averaged potentials
[86–90], or conical refraction [91], OAM can be transferred
to the atoms using light beams [92,93], through temperature
quenches [94], or by rotating a weak link [95,96]. In order
to create the desired geometrical arrangement of ring traps,
one could adapt existing schemes for engineering arbitrary
potential landscapes based on time-averaged adiabatic poten-
tials or digital micromirror devices [97], which have already
been used to implement a double ring trap [98]. Alternatively,
since the OAM l = 1 states are equivalent to the px and py

orbitals of the first excited Bloch band of a deep optical
lattice [99], one could implement the considered model by
creating an optical lattice with a diamond-chain shape and
exciting the atoms to the p band [100–102]. In such systems,
the two-body bound states discussed in the previous sections
could be imaged making use of high-resolution quantum gas
microscopes [13,103–108].

Once the atoms are loaded into the OAM l = 1 states, loss
of population could be induced by two-body collisions taking
one atom to the ground state and the other to an OAM l = 2
state. However, this effect could be greatly suppressed by
tuning the system in the weakly interacting regime, which, as
discussed in the previous sections, is well suited for observing
the predicted properties of the OAM l = 1 bound states.
Furthermore, in ring potentials the anharmonicity between
the energies of the different OAM states ensures that these
collisional processes are off-resonant, enhancing the stability
of the interacting OAM l = 1 states [74].

VI. CONCLUSIONS

We have proposed a mechanism based on the manipulation
of interactions to obtain two-body topological states in sys-
tems with single-particle flat bands. As an example, we have
studied a diamond-chain optical lattice filled with ultracold
bosons in OAM l = 1 states, wherein a proper adjustment
of the tunneling parameters may lead to a band structure
consisting of three twofold-degenerate flat bands formed by
highly localized eigenstates. In order to gain analytical in-
sight into the properties of the two-boson states, we have
first focused on the regime of small attractive interactions
compared with the gap between the flat bands. By projecting
the Hamiltonian into the lowest bands, we have analyzed the
lowest-energy sector of the spectrum, which is composed of
bound pairs of atoms occupying highly localized eigenmodes.
Although the single-particle transport is suppressed because
of the flatness of the bands, these composite objects can move

through the lattice due to interaction-induced couplings. We
have found that the effective models describing this motion
can be rendered topologically nontrivial by tuning separately
the strength of the interactions on different sites of the chain,
with the appearance of the corresponding two-boson protected
edge states. Furthermore, we have identified doubly localized
flat-band states that give rise to robust Aharonov-Bohm cages
for a particular set of two-boson states.

By means of exact diagonalization calculations, we have
benchmarked our analytical predictions and we have tested the
robustness of the topological two-boson states against devia-
tions from the weakly interacting and flat-band limits. In the
former case, we have found that interaction strengths capable
of introducing mixing between the bands do not destroy the
topological phases and actually enhance the localization of
the edge states at the ends of the chain. In the latter case, we
have found that by going sufficiently away from the flat-band
limit the edge states can merge into the bulk. However, this
effect can be strongly mitigated by increasing the interaction
strength, in such a way that the growth of the gaps between
the two-boson bands outgains the curvature of the single-
particle bands. Although in an actual experimental imple-
mentation the completely flat-band limit cannot be reached,
by introducing moderate interaction strengths the two-boson
topological states should be observable in a feasible range of
parameters. The procedure presented in this work could be
readily adapted to study similar topological states of bound
particles in other models featuring flat bands in one or higher
dimensions, expanding the toolbox for the engineering of
few-body topological systems.
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