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Improved effective equation for the Rashba spin-orbit coupling in semiconductor nanowires
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Semiconductor Rashba nanowires are quasi-one-dimensional systems that have large spin-orbit (SO) coupling
arising from a broken inversion symmetry due to an external electric field. There exist parametrized multiband
models that can describe accurately this effect. However, simplified single band models are highly desirable
to study geometries of recent experimental interest, since they may allow to incorporate the effects of the
low dimensionality and the nanowire electrostatic environment at a reduced computational cost. Commonly
used conduction band approximations, valid for bulk materials, greatly underestimate the SO coupling in
zinc-blende crystal structures and overestimate it for wurtzite ones when applied to finite cross-section wires,
where confinement effects turn out to play an important role. We demonstrate here that an effective equation
for the linear Rashba SO coupling of the semiconductor conduction band can reproduce the behavior of more
sophisticated eight-band k · p model calculations. This is achieved by adjusting a single effective parameter that
depends on the nanowire crystal structure and its chemical composition. We further compare our results to the
Rashba coupling extracted from magnetoconductance measurements in several experiments on InAs and InSb
nanowires, finding excellent agreement. This approach may be relevant in systems where Rashba coupling is
known to play a major role, such as in spintronic devices or Majorana nanowires.
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I. INTRODUCTION

The spin-orbit (SO) interaction is a relativistic effect that
couples the electron’s spin and momentum in the presence
of an electric field. Among crystalline solids it is particularly
strong in some semiconductors [1] and, although it is typically
small compared to other characteristic energies, it produces
a splitting of otherwise degenerate energy bands around the
Fermi level [2]. This can have tremendous consequences in
the transport of electrons, as is manifested in the field of
spintronics [3] and, more recently, in spin-orbitronics [4]. In
particular, the SO interaction is the driving mechanism behind
the existence of topological insulators [5,6] through the so-
called quantum spin Hall effect [7]. It is also essential in the
search of Majorana zero modes in topological superconduc-
tors [8–13], such as the ones based on hybrid superconductor-
semiconductor nanowires [14,15]. In these wires, the SO
term contributes to create nondegenerate bands with spin-
momentum locking, a key ingredient behind the topological
phase transition. Moreover, in the topological phase of the
wire, the minigap that protects the Majorana modes from
decoherence increases with the SO coupling [16].

For their connection to Majorana physics as well as
for other spin-related mechanisms, semiconductor nanowires
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with strong SO coupling have come to the forefront of
condensed-matter research [17–19]. There are several good
reasons for their choice. They can be grown to a high de-
gree of perfection, almost at the atomic scale [20–22]. They
can be proximitized [23] both by depositing superconduc-
tors on top of them as well as by growing them epitaxially
on the nanowire, forming well controlled and sophisticated
heterostructures [24]. They can also be easily contacted with
metallic leads to an external circuit, and their properties are
highly tunable through gate electrodes and external fields.
In particular, this permits to tune them to enhance their SO
coupling [25–27].

Inside these nanowires, electrons are subject to nonuniform
electrostatic potentials. When a charged particle moves in an
electric field, it experiences an effective magnetic field that
couples to the particle’s spin through the Zeeman effect [2].
The corresponding Hamiltonian is usually written as

HSO = �α · (�σ × �k), (1)

where �k is the electron’s wave vector, �σ is the vector of Pauli
matrices in spin space and �α is the so-called SO coupling. This
coefficient determines the strength of the coupling between
the spin and the momentum of the electron and is related to the
effective electric field felt by the electrons inside the wire [1].
Because the phenomena and applications mentioned before
are very sensitive to the precise value of this coupling [4], a
proper description of this mechanism is crucial to predict the
actual properties of these nanowires.

There are two ways in which an electric field can arise in
semiconductor nanowires [1]. On the one hand, the crystal
itself creates an intrinsic electric field when there is a lack
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of an inversion center (i.e., a bulk inversion asymmetry). This
gives rise to the Dresselhaus SO coupling �αD [28]. On the
other hand, an electric field arises when there is a lack of
inversion symmetry due to an external confining potential
(structural inversion asymmetry), due to, e.g., crystal inter-
faces or metallic gates. This case corresponds to the Rashba
coupling �αR [29].

Depending on the source of the SO interaction, some
theoretical methods may be more advantageous to describe it.
Dresselhaus couplings, being an intrinsic interaction depend-
ing only on the crystal’s unit cell structure and composition,
are usually computed using ab initio calculations [30,31].
Instead, Rashba couplings that depend on the electrostatic
environment and/or interfaces with other materials are less
amenable to ab initio methods and tend to be described using
effective models. In particular, multiband k · p theory has been
successfully used to compute the energy bands of Rashba
semiconductors including several conduction and hole bands
[1,32–37].

Multiband effective models are specially suited for three-
dimensional infinite systems whose bands depend on a single
momentum h̄�k. However, when treating low-dimensional sys-
tems (such as 2DEGs or nanowires), multiband models can
be computationally challenging due to the extra degrees of
freedom introduced by the transverse momentum subbands
[34]. This is because, for each transverse subband, one has
to take into account several valence and conduction bands.
This is further aggravated when treating heterojunctions with
other materials [34]. In this situation, it is very desirable to
have a simplified effective theory that only takes into account
the energy band of interest, typically the first conduction
band, and that can incorporate the interaction with other less
influential bands (such as heavy and light hole bands) through
effective parameters.

For III-V binary compound semiconductors, which are
broadly used in experiments, there exists an effective equa-
tion for the Rashba SO coupling based on a (spinful) single
conduction band approximation, as we will show in Eq. (5).
This equation is derived from the so-called eight-band (8B)
k · p model, described in detail in Appendixes A and B.
Specifically, this equation takes into account the dependence
of �αR with (i) the electric field generated by a spatially
dependent electrostatic potential φ(�r), (ii) the electron energy
E , and (iii) the crystal structure and atomic composition
through three effective parameters. One of these is known
as the Kane parameter P [1], which represents the effective
coupling between valence and conduction bands of the semi-
conductor. This equation, commonly used in the literature for
its relative simplicity, is nevertheless the result of a lowest
order expansion on the coupling between valence bands.
This is a good approximation for bulk materials, but it fails
considerably for structures where confinement is key, such
as the nanowires that we study here. As a result, the SO
coupling obtained with this equation substantially differs from
8B model calculations for specific crystal structures. In this
work we make the ansatz that the conduction band effective
equation can accurately take into account different crystal
structures and atomic compositions for quasi-1D nanowires
if the Kane parameter is substituted by an improved one,
which we call Pfit. We calculate this parameter by fitting

TABLE I. Parameter Pfit (in meV nm units) to be used in the
improved equation for the Rashba SO coupling, Eq. (8), within
the conduction band approximation. This parameter is extracted
by fitting Eq. (8) to numerical eight-band model calculations. For
comparison, we show the value of the original Kane parameter P.

zinc-blende (111) wurtzite (0001) Kane P

InAs 1252 ± 12 723.0 ± 0.1 919.7
InSb 1082 ± 7 − 940.2
GaAs 1912 ± 18 − 1047.5
GaSb 1657 ± 35 − 971.3

the SO coupling to 8B model results and provide its value
in Table I for InAs, InSb, GaAs, and GaSb, both for zinc-
blende and wurtzite structures. The improved equation for the
Rashba SO coupling constitutes the central result of this work
and is given in Eq. (8), together with Table I. It retains the
simple functional form of the conduction band approximation,
while incorporating the complexity of the crystal structure
that appears due to confinement effects through one single
parameter, Pfit. We test its efficacy for different nanowire
widths, different transverse subbands and for various electro-
static environments, with good results. We compare it with
other popular simplified approximations which cannot capture
the crystal structure complexity. Finally, we demonstrate the
reliability of our approach by contrasting our predictions with
several experimental measurements of the Rashba coupling
in InAs and InSb nanowires subject to different electrostatic
environments, finding excellent agreement.

This paper is organized as follows. In Sec. II, we describe
the type of materials of interest and the models and meth-
ods that we use. These comprise the 8B k · p Kane model
(Sec. II A), the conduction band approximation (Sec. II B)
including the improved effective equation for the SO coupling
that we derive (Sec. II C), and the description of the electro-
static environment through the Schrödinger-Poisson equation
and the Thomas-Fermi approximation (Sec. II D). In Sec. III,
we obtain the fitting Pfit parameter for various semiconduc-
tor compounds and crystal structures, collected in Table I,
and compare the SO coupling resulting from the different
models and levels of approximation introduced before. In
Sec. IV we compare our theoretical results with the Rashba
coupling extracted from magnetoconductance measurements
in five experiments on InAs and InSb nanowires, discussing
the experiments in detail. Finally, in Sec. V, we present
the conclusions of our work. This paper is complemented
with several comprehensive Appendixes on the 8B k · p Kane
model for zinc-blende and wurtzite crystals (A), the deriva-
tion of the conduction band approximation (B), numerical
methods (C and D), the comparison of the SO coupling
between different semiconductor compounds (E), the inde-
pendence of Pfit with the electrostatic environment (F) and the
reliability of the conduction band approximation for the
effective mass (G).

II. MODELS AND METHODS

As mentioned in the introduction, in this work we focus on
III-V binary compound semiconductors such as InAs, InSb,
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FIG. 1. (a) Sketch of the type of systems studied in this work:
an infinite semiconductor nanowire with hexagonal cross section
of width Wwire (green) is placed over a dielectric substrate (purple)
and may be covered by a metal (grey) on one or several of its
facets. A back gate (black) allows to tune the chemical potential
inside the wire. At its facets, the nanowire may develop a charge
accumulation layer that we simulate with a surface charge density
ρsurf . This charge layer may be present or absent at the interfaces with
metals, depending on the chemical details of the heterojunction. All
these elements contribute to create an electrostatic profile inside the
wire that in turn influences the Rashba spin-orbit (SO) coupling of its
energy bands. (b) Schematics of the eight lowest-energy bands of III-
V semiconductors around the � point where these compounds exhibit
a direct gap. These are grouped into four quasidegenerate pairs
that comprise the conduction band, the light-hole, heavy-hole, and
split-off valence bands. Their corresponding states, |C↑,↓〉, |HH↑,↓〉,
|LH↑,↓〉, |SO↑,↓〉, serve as a truncated basis for the k · p Kane model.
�g is the semiconductor gap between conduction and valence bands,
�soff is the gap between valence and split-off bands, P is the coupling
between conduction and valence bands, and γi are the intravalence
band couplings, see Appendix A.

GaAs, or GaSb, which typically exhibit a large Rashba SO
coupling [38]. We consider semiconductor nanowires with
crystal structures of zinc-blende (111) or wurtzite (0001),
since they are the most commonly used in experiments due to
their fabrication with low impurity concentrations [20,21,39].
We assume that the nanowires are infinite in the specific
growth direction but with a finite hexagonal cross-section
[24,40] of width Wwire as depicted in Fig. 1.

A. Eight-band k · p Kane model

Multiband k · p models are known to successfully repro-
duce the energy-band structure of III-V compound semicon-
ductors [1,32–37]. The SO coupling can then be directly
extracted from the shape of the energy spectrum [37,41–43].
We summarize here this procedure. These effective mod-
els, broadly explained and used in the literature (see, e.g.,
Refs. [1,44]), assume that the electron movement through
the crystal is well described by a single-particle Hamilto-
nian. This Hamiltonian includes relativistic SO effects as
well as an effective potential, which arises due to electron-
nuclei interactions and thus has the same periodicity than
the Bravais lattice. This allows to use the Bloch theorem
and to expand the periodic (Bloch) part of the wavefunction
around a reciprocal-space point of interest. For the case of
III-V semiconductors, the natural expansion is around the
� point where these compounds exhibit a direct gap [38].
The resulting Hamiltonian is then projected over a truncated
basis set that includes explicitly the main bands of interest,
while their couplings to the remaining bands are included
perturbatively using Löwdin perturbation theory [45]. Some
of the transition matrix elements are forbidden by crystal

symmetries. Using group theory arguments, the remaining
couplings are substituted by effective parameters. These pa-
rameters are called Kane or Luttinger parameters and can
be extracted from ab initio calculations or experimental data
for a particular material with a specific crystal structure. In
the 8B model that concerns us, only the four (doubly quasi-
degenerate) energy bands closer to the semiconductor gap are
included in the basis set: the lowest-energy conduction band,
and the heavy-hole, light-hole and split-off valence bands, see
Fig. 1(b). These eight bands are typically sufficient to account
for the Rashba SO effects of these materials [44,46,47]. For
a detailed derivation of this multiband k · p Kane theory and
the resulting 8B Hamiltonians for zinc-blende and wurtzite
crystals, we refer the reader to Appendix A and references
therein [1,48,49]. We note that these Hamiltonians are only
accurate for the reciprocal space range in which they are fitted
to ab initio calculations. For the particular Kane parameters
provided in Appendix A, this implies k ∈ [−1, 1] (nm)−1.
Hence, when the Fermi wavevector is outside this range, the
assumptions made for the k · p approximation break down and
this model is no longer reliable.

For finite cross-section nanowires that are infinite along
the z direction, the band structure is then calculated by di-
agonalizing the k · p Hamiltonian for different kz values. To
do so, we first replace the momentum operator components
across the wire’s section by their corresponding derivatives,
i.e., kx → −i∂x and ky → −i∂y, while considering kz as a good
quantum number due to the translational invariance along this
direction. Then, the operators are discretized using the finite
difference method in a rectangular mesh for the nanowire
section. Special treatment is required in this step in order to
avoid spurious solutions in the energy spectrum [50,51]. For
an extended explanation of the numerical methods used in this
work, see Appendix C.

Once the band structure is obtained, the SO coupling can be
extracted by fitting each subband j by the following effective
dispersion relation:

E ( j)
± (kz ) = h̄2k2

z

2m( j)
eff

+ E ( j)
T ±

√(
α

( j)
eff kz

)2 + (
β

( j)
eff k2

z

)2
, (2)

where j and ± are the subband and spin indexes, m( j)
eff is

the effective mass and E ( j)
T is the transverse subband energy

at kz = 0. The other two parameters, α
( j)
eff and β

( j)
eff , take

into account possible Rashba and/or Dresselhaus SO effects.
While the Rashba contribution to the SO coupling is known to
be mainly linear in kz irrespective of the crystal structure, the
Dresselhaus one can be both linear and quadratic for wurtzite
crystals, and only linear for zinc-blende (111) crystals [37].
Hence, it is not possible, in principle, to separate the contribu-
tions of the Rashba and Dresselhaus coefficients in the linear
term of the SO coupling. In practice, the linear Dresselhaus
contribution turns out to be zero for zinc-blende (111) crystals
and negligible or zero for wurtzite (0001) ones [31,44].1 Thus

1Notice that zinc-blende (111) crystals are almost symmetric in
the three directions and wurtzite (0001) ones are almost symmetric
around the z axis. Therefore, since there is no bulk inversion asym-
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we assume that the linear coefficient of the SO coupling α
( j)
eff

is dominated by the Rashba contribution.

B. Conduction band approximation

We just outlined how to extract the SO coupling of a partic-
ular band starting from the 8B Hamiltonian that describes the
crystal band structure and then applying a fitting procedure.
This is certainly an indirect way that can become laborious
and computationally expensive under certain circumstances,
such as when dealing with low-dimensional systems and,
especially, when they form heterostructures with other materi-
als. For this reason, we look for a simplified model that takes
into account the band of interest, the conduction band in our
case, but still captures the main SO effects as described by
the 8B model. This is a standard procedure in the literature
that leads to analytical expressions for the SO coupling under
certain approximations (see Appendix B for a full derivation).

Our starting point is thus the 8B Hamiltonian of a specific
crystal, which we consider describes the system faithfully. We
want to find an effective Hamiltonian within the conduction
band, HCB, by integrating out the valence bands. Since this
folding-down procedure cannot however be done exactly with
a nonuniform electrostatic potential φ(�r), it is customary
[1,48] to ignore the couplings among the valence bands, γi

(see Fig. 1). This allows to describe the conduction band with
the following analytical reduced Hamiltonian

H (0)
CB = �k h̄2

2m(0)(�r)
�k − eφ(�r)

+ 1

2

[
�α(0)

R (�r) · (�σ × �k) + (�σ × �k) · �α(0)
R (�r)

]
, (3)

where �r = (x, y, z) and we have chosen the conduction band
edge at φ = 0 as the reference energy. This Hamiltonian is the
zeroth-order term in an expansion of HCB in h̄2�k2γi/(2me�i ),
where me is the bare electron mass and �i represents the
different energy gaps involved in the 8B Hamiltonian, see
Appendix B. In the previous expression, the effective mass
coefficient is given by

1

m(0)(�r)
= 1

me
+ 2P2

3h̄2

[
2

�g + eφ(�r) + E

+ 1

�soff + �g + eφ(�r) + E

]
, (4)

and the linear Rashba SO coupling by

�α(0)
R (�r) = eP2

3

[
1

(�g + eφ(�r) + E )2

− 1

(�soff + �g + eφ(�r) + E )2

]
�∇φ(�r). (5)

Here, �g and �soff are the semiconductor and split-off gaps,
respectively, and P is one of the Kane parameters of the
8B model that accounts for the coupling between conduction

metry in these directions, there cannot be a SO interaction either.
Only higher-order asymmetries, i.e., the ones accounted for by cubic
terms in k (although quadratic in kz), can contribute to Dresselhaus
terms. These terms are taken into account through the parameter βeff

in Eq. (2).

and valence bands, see Fig. 1(b). To find its expectation
value, we need to project over the electron’s wave function
|�〉, �α(0)

R = 〈�|�α(0)
R (�r)|�〉. Notice that, in the notation we are

following, the gradient in Eq. (5) only acts on the electrostatic
potential, i.e., it must not be applied on |�〉. We further point
out that Eqs. (3)–(5) are only applicable within the range
�g > −(eφ(�r) + E ). This is because, outside this range, the
conduction band and the first valence band at different spatial
points in the wire can overlap in energy. Consequently, the
system can no longer be described using just the conduction
band approximation.

The previous expressions depend on the electron energy
E , which is itself the solution to the eigenvalue problem of
Hamiltonian of Eq. (3). To remove this dependence, which
requires a self-consistent solution for the Hamiltonian eigen-
values, it is frequently assumed in the literature [1,48,52]
the more restrictive condition �g 
 |eφ(�r) + E |. Expand-
ing the expressions above and truncating them to lowest order,
the effective mass gets

1

m(0)
� 1

me
+ 2P2

3h̄2

(
2

�g
+ 1

�soff + �g

)
, (6)

and the SO coupling

�α(0)
R (�r) � eP2

3

[
1

�2
g

− 1

(�soff + �g)2

]
�∇φ(�r). (7)

This last (simplified) equation has been used in previous works
[52–54] to describe the Rashba SO coupling in nanowires,
in an attempt to go beyond the use of a rough constant
coefficient. Nevertheless, as we will show in Sec. III, both this
equation and the more general one Eq. (5) fail to predict the
behavior of nanowires with specific zinc-blende or wurtzite
crystal structures. The reason is that the intra-valence band
couplings that have been ignored in the reduced Hamiltonian,
although negligible for bulk crystals, turn out to be essential
in low-dimensional structures where confinement effects are
important.

C. Improved SO coupling equation

Going beyond the zeroth order in the conduction band ex-
pansion of the SO coupling operator leads to complicated ex-
pressions, especially as the order increases, see Appendix B.
One can check numerically that summation over several terms
is needed to approach the correct SO coupling. Since sum-
ming up the infinite series is not better than solving the 8B
Hamiltonian, and since in this work we are looking for a
manageable expression for the SO coupling, we resort to the
following ansatz. We propose to use an expression for the SO
coupling with the same functional form of Eq. (5), which is
the dominant term in the expansion, but where the parameter
P is substituted by an improved one, that we call Pfit, chosen
so as to reproduce the Rashba SO coupling extracted from
the 8B model of zinc-blende or wurtzite nanowires. In this
way, we are conjecturing that the lost information about the
intravalence band couplings γi can be recovered, at least
partially, by one fitting parameter. This parameter is going
to depend on the semiconductor compound (InAs, InSb, etc.)
and crystallography (zinc-blende or wurtzite). However, we
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assume that Pfit can be taken as independent of φ(�r) and
the electron’s energy (or equivalently, Wwire). Remarkably,
as we will show in the rest of the paper, these assump-
tions turn out to be pretty accurate for realistic experimental
conditions.

We are interested in finite cross-section nanowires that are
moreover translationally invariant along the z direction. If the
SO length is larger than the wire’s diameter, i.e., lSO � Wwire,
we can write the total energy as E = E ( j)

T + E (kz ), where E ( j)
T

is the transverse subband energy and E (kz ) the longitudinal
part. For the small kz-range for which the 8B model applies,
the condition |E ( j)

T | 
 |E (kz )| is satisfied. Therefore, project-
ing over the transverse part of the Hamiltonian’s eigenstates,
see Appendix C, we posit that we can write the jth subband
effective Rashba SO coupling as

�α( j)
R,improved = 〈

�
( j)
T

∣∣eP2
fit

3

[
1(

�g + eφ(x, y) + E ( j)
T

)2

− 1(
�soff + �g + eφ(x, y) + E ( j)

T

)2

]

× �∇φ(x, y)
∣∣� ( j)

T

〉
, (8)

where Pfit is extracted by fitting this equation to the Rashba
coupling obtained with the 8B Kane model. Note that in the
previous expression the Rashba z component is zero since
the electrostatic potential depends only on the transverse
coordinates. As before, the gradient only acts on φ and
not on the wave function. This equation has to be solved
self-consistently since E ( j)

T is the energy associated to the
transverse eigenstate |� ( j)

T 〉. We will show in Sec. III that
this improved equation produces results in good agreement
with those of 8B model calculations at a considerably reduced
computational cost.

A similar improved equation could be proposed for
the effective mass. However, this is not necessary as the
zeroth-order conduction band approximation, Eq. (4), already
produces very similar results to the 8B model ones (see
Appendixes B and G).

To finish this section, it should be noticed that the effects
of confinement were also analyzed in Ref. [1], in particular
for 2DEGs. Following a standard perturbative approach, the
8B Hamiltonian is first projected over a particular subband
basis and then a folding-down procedure is performed. In this
way, Winkler et al. [1] arrive at an expression for the Rashba
SO coupling [Eq. (6.23) in Ref. [1]] written in terms of a
sum over all conduction-valence subbands matrix elements.
In our work, we follow a different approach and propose a
heuristic expression for the SO coupling operator where the
complexity introduced by the valence subbands is taken into
account (approximately) through the parameter Pfit, resulting
in a significant reduction in computational cost. To obtain
the magnitude of the resulting SO coupling, we just need to
project over the desired conduction subband. Our improved
equation is not the result of a perturbative calculation, but
an ansatz for the resummation of all intersubband processes.
We will show in Sec. III that it produces results in very good
agreement with those of 8B model calculations under rather
general conditions. Moreover, thanks to this approach, we

arrive to a practical/simple equation for the SO coupling in
terms of the gradient of the electrostatic potential (instead of
a long and system-specific sum of matrix elements), which
is both manageable and helps to intuitively understand the
physical origin of the SO interaction.

D. Electrostatic environment

The Rashba SO coupling given in Eq. (8) depends on the
gradient of the electrostatic potential. This is a direct mani-
festation that only when there is a structural inversion asym-
metry, i.e., an inhomogeneous electrostatic potential, there is
a nonzero Rashba SO coupling. Hence, the SO coupling is
sensitive to the precise electrostatic environment, as well as
to electron-electron interactions. To compute the electrostatic
potential corresponding to an arbitrary environment we use
the Poisson equation given by

�∇ · [ε(�r) �∇φ(�r)] = ρT (�r), (9)

Here, ε(�r) is the inhomogeneous dielectric permittivity, which
we take as constant inside each material and with abrupt
changes at the interfaces (therefore, it encodes the geometry
information of the environment), φ(�r) is the electrostatic
potential in the entire system and ρT is the total charge of the
wire. This source term includes two parts [53],

ρT (�r) = ρmobile(�r) + ρsurf (�r). (10)

The first one represents the mobile charge inside the wire that
can be changed using gates. The second one represents the
surface charge that is typically present at the boundaries of
these semiconducting wires [55]. This surface charge cannot
be removed using gates and it thus gives an intrinsic contri-
bution to the electrostatic potential. In this work, we choose
ρsurf = 5 × 10−3( e

nm3 ), similarly to previous theoretical works
[53,54,56], and in agreement with experimental evidence
[39,57]. This value however does not play any fundamental
role but simply results in a small particular contribution to
the intrinsic doping of the wire and its SO coupling [54].
The numerical methods used to solve Eq. (9) are described
in Appendix D.

We note that the solution of the coupled Schrödinger-
Poisson equation typically possess a rather demanding numer-
ical problem, as explained in Appendix D. However, it can
be simplified by relying on the Thomas-Fermi approximation,
as shown in previous works for semiconducting nanowires
[52,54,58]. This approximation allows to decouple both equa-
tions by assuming that the charge density of the wire is indeed
very similar to that of a 3D free electron gas,

ρmobile(�r) � ρ
(TF)
mobile(�r)

= − e

3π2

[
2m∗|eφ(�r) + EF | f (−(eφ(�r) + EF ))

h̄2

] 3
2

(11)

where EF is the Fermi energy of the wire and f (E ) is the
Fermi-Dirac distribution for a given temperature. In the next
section we compare the results provided by both approaches
in some specific cases, showing that the Thomas-Fermi ap-
proximation predicts roughly the same Rashba coupling as
Schrödinger-Poisson.
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III. RESULTS

We first discuss how to obtain the improved parameter Pfit

of Eq. (8) for zinc-blende (111) and wurtzite (0001) III-V
compound semiconductors. Specifically, we focus on InAs,
GaAs, InSb, and GaSb. To do so, as already mentioned, we
fit Eq. (8) to calculations based on the 8B model. We consider
the geometry depicted in Fig. 1(a), where an infinite semi-
conductor nanowire with hexagonal cross section is placed
on top of a dielectric substrate, particularly Hf2O. Below the
substrate, there is a bottom gate, which allows to tune the
chemical potential inside the wire. To increase the gradient
of the electrostatic potential, and therefore enhance the SO
coupling, the upper facet of the wire is covered by a grounded
metallic layer. The motivation for considering this particular
environment is that this kind of geometries are typically
used in experimental setups for spintronics [25,26,59] and
Majorana nanowire devices [41,42]. Since our sole concern
in this subsection is to obtain Pfit, we ignore for the moment
the electron-electron interactions by fixing ρmobile = 0.

The modulus2 of the Rashba coupling obtained from the 8B
model through Eq. (2) is plotted with dots in Fig. 2 for the case
of InAs nanowires. The first four transverse subbands are con-
sidered in (a)–(d), represented versus the back gate voltage.
Red (blue) dots correspond to a zinc-blende (wurtzite) crystal
structure. The corresponding 8B Hamiltonians used for the
calculation are provided in Appendix A, together with the val-
ues of their parameters, displayed in Tables II and III. We can
see that the SO coupling exhibits a minimum around −0.04 V,
independently of the transverse mode. This is because, at this
gate voltage value, the electric field inside the wire is basically
zero. It occurs at Vgate = 0 due to the surface charge present at
the nanowire facets, which introduces a small pinned electro-
static field [57]. As was noticed in previous works [44], the
SO coupling is larger for the zinc-blende crystal than for the
wurtzite one, approximately a factor of four.

Now we proceed to fit the previous 8B model results
with those obtained with the improved Eq. (8). We use the
values for �g and �soff provided in Ref. [38] and shown in
Appendix A. The resulting Pfit values for zinc-blende and
wurtzite InAs crystals are collected in Table I. We represent
|�α( j)

R,improved| with solid red and blue lines in Fig. 2. Notice that
we can use the same fitting parameter, calculated for the first
mode, for all the different transverse modes since Pfit depends
only very slightly on the subband energy. This is not a priori
obvious since the intravalence band corrections depend, in
principle, on the specific subband. Fortunately, as shown in
Fig. 2, the fit is very good also for higher transverse modes.
We further note that the SO coupling decreases with the
number of the transverse mode, i.e., it is larger for the lowest
energy subband. This can be directly deduced from Eq. (8)
since it is inversely proportional to the subband energy E ( j)

T .
We have performed equivalent calculations for zinc-blende

(111) InSb, GaAs, and GaSb nanowires. These can be found
in Appendix E and the corresponding values of Pfit in Table I.

2In our setup, the Rashba SO coupling has only x and y compo-
nents. The z component is zero due to translational invariance in that
direction.
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FIG. 2. Rashba SO coupling modulus versus gate voltage for
an InAs nanowire in an electrostatic environment like the one of
Fig. 1(a). Different transverse subbands within the first conduction
band of the wire are considered [(a)–(d)]. Dots correspond to αR

obtained from the eight-band (8B) k · p Kane model of Appendix A
using Eq. (2). Solid lines correspond to αR obtained from the effec-
tive conduction band (CB) approximation discussed in this work. In
red (blue), the result for a zinc-blende (wurtzite) crystal using the
improved Eq. (8) with the corresponding parameter Pfit displayed
in Table I. In green the result using the original Kane parameter P.
In black the Rashba coupling obtained in the approximation �g 

|eφ(�r) + E |, i.e., using the simplified Eq. (7). Parameters are: Wwire =
80 nm, Wsubstrate = 20 nm, Wlayer = 10 nm, εwire = εInAs = 15.15,
εsubstrate = εHfO2 = 25, Vlayer = 0V and ρsurf = 5 × 10−3( e

nm3 ). The
charge density of the wire ρmobile has been neglected for simplicity.
The 8B model parameters are given in Tables II and III.

We now compare the previous results for specific crystal
structures with the ones that one would obtain directly from
the reduced Hamiltonian. In Fig. 2, we show with a solid
green line the SO coupling obtained with the zeroth-order
Eq. (5) (projecting over |� ( j)

T 〉 and with E replaced by E ( j)
T ).

We observe that α
(0)
R underestimates the SO coupling for

zinc-blende crystals and overestimates it for wurtzite ones,
approximately by a 50%. This means that the effects of the
specific crystal structure are lost in the zeroth-order conduc-
tion band approximation.

Finally, the black solid lines in Fig. 2 correspond to sim-
ulations using the simplified zeroth-order Rashba coupling,
Eq. (7), frequently used in the literature. We observe that this
equation provides not only different quantitative results, but
also qualitative ones, since it cannot capture the variation of
αR with different transverse modes when E ( j)

T is not negligible
with respect to �g, which is the common experimental situa-
tion. Hence, we conclude that both zeroth-order equations do
not describe accurately the Rashba SO coupling in type III-V
semiconductors.

To carry out the comparison between the different methods
described above we needed to consider a specific electrostatic
environment. However, the value of Pfit should be independent
of it for the applicability of Eq. (8) in arbitrary conditions.
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We have performed equivalent fittings for very different
environments, see Appendix F, finding that Pfit varies only
within a 2% with respect to the value presented in Table I.
This means that Pfit is reasonably independent of φ(�r)
for typical experimental conditions. The reason is that the
main dependence of the SO coupling with the electrostatic
potential comes from the gradient of φ(�r). The prefactor
within brackets in Eq. (8) [or in Eq. (5) for that matter]
depends on φ(�r) through the quantity E + eφ(�r). Ignoring
terms proportional to ( �∇φ)2, ( �∇φ)3, etc., higher-order terms
in the series expansion of the conduction band approximation
satisfy a similar dependence with φ(�r) but with more
complicated prefactors, see for instance an approximation to
the first-order correction in Appendix B, Eq. (B19). The key
observation is that all these prefactors depend on the quantity
E + eφ(�r). On the other hand, the energy is the solution to
the eigenvalue problem of the conduction band Hamiltonian,
E ∼ EK − e〈φ(�r)〉 + ESO, where EK stands for the kinetic
energy and ESO for the Rashba one. Thus the electrostatic
potential gets roughly canceled in all those prefactors. Since
Pfit is an approximation to the sum of these series terms, its
dependence with φ(�r) should be small as well.

A. Schrödinger-Poisson versus Thomas-Fermi

The previous simulations were performed ignoring the
charge density of the wire, ρmobile. Including it requires a
self-consistent solution of the coupled Schrödinger-Poisson
equations. Especially for the 8B model, this is a difficult task
due to the large number of bands involved [34]. As explained
in Sec. II D, the Thomas-Fermi approximation helps to reduce
the computational cost of these simulations.

In order to test the validity of the Thomas-Fermi approx-
imation for the determination of of the SO coupling and
whether the electron-electron interaction plays a relevant role,
we have performed the same simulations as before in the con-
duction band approximation but including ρmobile.3 In Fig. 3,
we show the SO coupling as a function of gate voltage in the
absence of mobile charge (dashed line), including it in the
Thomas-Fermi approximation (solid line) and using the full
Schrödinger-Poisson approach (dots). We find that Thomas-
Fermi provides an excellent approximation that matches the
Schrödinger-Poisson results for zinc-blende, wurtzite, as well
as simplified structures. Moreover, we see that taking into ac-
count the charge density of the wire is essential to describe the
behavior of αR for large positive Vgate values (large doping).
This is due to the inhomogeneous electrostatic potential pro-
file created by the charge, which contributes to the structural
inversion asymmetry that in turn leads to the Rashba coupling.
Once again, we note that the quantitative results predicted by
the simplified equation (black curves) deviate considerably
from the ones predicted for specific crystal structures (red or
blue curves).

3We ignore here for simplicity the contribution to ρmobile coming
from the valence band. Its inclusion would only affect the value of
αR at very negative gate voltages.
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FIG. 3. Rashba coupling modulus versus gate voltage for the
lowest energy subband within the conduction band approximation.
(a) In green the results obtained using the improved Eq. (8) but with
the original Kane parameter P. (b) In black, using the simplified
Eq. (7). [(c) and (d)] In red and blue the results of the improved
equation using the corresponding Pfit parameter displayed in Table I
for a zinc-blende and a wurtzite crystal, respectively. Dots are used
for full Schrödinger-Poisson simulations, solid lines for the Thomas-
Fermi approximation and dotted lines for ρmobile = 0, i.e., ignoring
the mobile charge density. Same parameters as the ones of Fig. 2
(except ρmobile). Temperature T = 10 mK.

B. Confinement effects

As explained in Appendix B, the terms that correct the
zeroth-order Rashba coefficient of Eq. (5) in the conduc-
tion band approximation are proportional to ∼h̄2�k2γi/(2me),
where me is the electron mass and γi are the intravalence band
couplings. Since these terms are proportional to the transverse
momenta, kx, ky, they produce SO corrections coming from
each transverse subband in finite-width nanowires.

To quantify this effect in Fig. 4, we consider wires of
different width Wwire in an electrostatic environment like the
one of Fig. 1(a). By using the improved Eq. (8) and by
fitting it to 8B model calculations, we plot the value of the
resulting Pfit parameter as a function of Wwire. This is done
for zinc-blende/wurtzite InAs (a), and zinc-blende InSb (b),
GaAs (c), and GaSb (d). We observe that the fitting parameter
for zinc-blende structures increases for small diameters, has a
maximum around 100–150 nm (depending on the crystal) and
then slowly decreases as Wwire → ∞, approaching the original
Kane parameter P depicted with a solid line (the opposite
happens for wurtzite structures, with a minimum instead of
a maximum). The value of Pfit is nevertheless pretty constant
for a wide range of wire’s widths, which correspond to the
common experimental values. This justifies our approxima-
tion of using a simple width-independent Pfit parameter in our
ansatz for an improved SO coupling equation. In particular,
we consider Pfit (Wwire ) = 80 nm, represented with a dashed
line in Figs. 4(a)–4(d), which is a good approximation of
Pfit (Wwire ) for diameters between ∼50 nm and ∼200 nm.

In conclusion, in finite-width nanowires with non-
negligible transverse momenta kx, ky ∼ 1/Wwire, the higher
order terms neglected in the zeroth-order conduction band
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FIG. 4. Fitting parameter Pfit of Eq. (8) as a function of the
nanowire’s width Wwire (curve with dots) for different semiconduc-
tors and crystal structures (a)–(d). This parameter is extracted by
fitting Eq. (8) to 8B model results. The electrostatic environment
corresponds to the one of Fig. 1(a) with parameters as in Fig. 2, but
changing the dielectric permittivity of the wires to their correspond-
ing ones, particularly εInAs = 15.15, εInSb = 16.8, εGaAs = 12.9, and
εGaSb = 15.7, extracted from Ref. [60]. For comparison, with a
dashed line we show Pfit for a specific diameter, Wwire = 80 nm,
which is the tabulated value given in Table I, and with a solid line
we show the original Kane parameter P.

approximation turn out to be important to predict the correct
SO coupling. The reason is that different transverse subbands
acquire modified gaps proportional to γi at the � point.
Moreover, the dependence with γi produces dramatic differ-
ences between distinct crystal structures (zinc-blende versus
wurtzite). These confinement effects disappear as Wfit → ∞,
rendering the zeroth-order approximation correct for bulk
crystals.

IV. COMPARISON TO EXPERIMENTS

In order to test the validity of our approach to predict
the SO coupling in realistic situations, we compare the re-
sults that it provides with the ones obtained in several re-
cent experiments. During the last decade, there has been an
increasing interest in measuring the SO coupling in semi-
conductor nanowires due to their potential applications as
spin-FETs [25–27,61–63] or Majorana qubit devices [41,42].
In most cases, these nanowires were made of InAs due
to its large semiconductor band gap and Rashba coupling,
although some of them used InSb nanowires [59,64] and
other mixed heterostructures [65–72] involving type III-V
compound semiconductors. For the comparison, we focus on
the works done by Dhara et al. [62], Liang et al. [25], Takase
et al. [27], and Scherübl et al. [26], carried out on zinc-blende
InAs nanowires; and by Takase et al. [64] on zinc-blende
InSb nanowires. We choose these experiments because they
measure a representative number of SO coupling points versus
a wide range of gate potentials.

In all of these experiments, the SO coupling is determined
in an indirect way from magnetotransport measurements

[73–75], which permit to access relevant length scales that
affect the electron coherence. In particular, the SO coupling
can be extracted from the spin-relaxation length lSO as αeff =

h̄2

2meff lSO
. Hence, to extract the SO coupling, it is necessary

to know the electron’s effective mass. In all the experiments
that we analyze here, the authors use the same values, meff =
0.023me for InAs and meff = 0.014me for InSb. These are
precisely the values one gets from the zeroth-order simplified
Eq. (6) with the original Kane P parameter. One could argue
that, the same way we need to improve the zeroth-order
equation for the SO coupling, as we demonstrate in this work,
one would also need to correct the effective mass m(0) to
match the 8B model results. In Appendix G we show that this
is indeed not necessary. The zeroth order is already a very
good approximation to the results provided by the 8B model
Hamiltonians. This is further true as a function of the wire’s
width, as we analyze in Fig. 6(b) of Appendix B. Therefore
the wide spread use of the previous values for the effective
masses, as well as the equivalent ones for other semiconductor
compounds, is completely justified.

On the other hand, since this kind of measurements in-
volves the collective transport of electrons around the Fermi
energy, the SO coupling extracted from lSO does not corre-
spond to one particular subband but it is instead a weighted
sum of all the subbands that contribute to the current. To
compute numerically this averaged Rashba coupling in the
conduction band approximation, we take the expected value
of the SO coefficient

�α(EV)
eff =

∑
j

〈
�α( j)

R (�r)
〉
n( j)∑

j n( j)
, (12)

where n( j) is the occupation of transverse subband j (see
Appendix C for further details). In Fig. 5, we compare the
experimental data (dots) with the numerical results obtained
with the improved Eq. (8) and the Pfit values of Table I
(red curves). The electrostatic potential is calculated using
the Thomas-Fermi approximation. For completeness, we also
show the results provided by the simplified Eq. (7) (blue
curves).

Figure 5(a) refers to the experiment performed by Dhara
et al. [62]. This is one of the first works that used magneto-
transport measurements to determine the Rashba coupling in
InAs nanowires. The device is quite simple (see sketch on the
left): an 80-nm-wide InAs nanowire is placed on top of a SiO2

substrate and 300 nm below the substrate there is a bottom
gate that is used to tune the electrostatic potential inside the
wire. The large Vgate range explored in this experiment with
a relatively small variation of the SO coupling, see right
panel, is due to the rather large thickness of the substrate.
Both theoretical curves predict the same qualitative behavior
but, although they are quantitatively similar, our approach
gives a somewhat better agreement with the experimental
values. For this particular setup, the simplified equation works
reasonably well because the electrostatic potential created by
the gate is small. Thus the condition �g 
 |eφ(�r) + E | is
almost fulfilled.

Figure 5(b) refers to the experiment carried out by Liang
et al. [25]. They prove that it is possible to enhance the Rashba
coupling by using an appropriate electrostatic environment.
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FIG. 5. Electrostatic environment modeling of some experimen-
tal setups (left), and corresponding effective Rashba couplings (right)
obtained with magnetoconductance measurements (dots) and with
conduction band (CB) numerical simulations (solid lines). In red we
present results using the improved Eq. (8) for zinc-blende crystals,
while in blue using the simplified Eq. (7). The shown experimental
data corresponds to (a) Dhara et al. [62], (b) Liang et al. [25],
(c) Takase et al. [27], (d) Scherübl et al. [26], and (e) Takase
et al. [64]. The charge density of the wire is taken into account in
the Thomas-Fermi approximation and the surface charge is ρsurf =
5 × 10−3( e

nm3 ). The geometrical parameters used in the simulations
can be found in the main text. The dielectric constants, extracted
from Refs. [60,76,77], are εInAs = 15.15, εInSb = 16.8, εSiO2 = 3.9,
εHfO2 = 25, εAl2O3 = 9, and εPEO = 104. In agreement with the ex-
periments, in our simulations we fix the temperature to T = 1.7 K
in (a), T = 4 K and the back gate to 0 in (b), T = 1.5 K in (c),
T = 4.2 K and the back gate to 15 V in (d), and T = 1.7 K in (e).

To do so, a 40-nm-wide InAs nanowire is suspended inside
the (ionic) dielectric PEO+LiClO4. At 50 nm below, the
wire there is a SiO2 substrate of thickness 250 nm sitting
on a grounded gate. On top of the device, 500 nm above

the wire, there is another gate in contact with the dielec-
tric. The PEO+LiClO4 dielectric is characterized by a large
permittivity, which allows to subject the wire boundaries to
almost the same potential as it is applied to the top gate. It is
thus possible to significantly increase the wire’s doping with
a small gate voltage. The origin of the SO coupling in this
setup is the inhomogeneous distribution of the charge along
the radius of the wire, which is sometimes called pair SO
coupling in the literature [78]. In the right pane, we can see
that the red curve is in good agreement with the experimental
data, whereas the blue one deviates, especially at large Vgate,
due to the large electrostatic potentials involved.

Figure 5(c) deals with the experiment done by Takase et al.
[27]. This work follows the same spirit than the previous
one, but they look for a long-lived device that could be used
as a spin-FET for spintronic applications. To this end, they
fabricate a gated-all-around (GAA) device in which a 100-nm-
wide nanowire is covered with a 2-nm-thick Al2O3 dielectric,
a 4-nm-thick HfO2 dielectric and a potential gate (see sketch
on the left). Due to the small distance between the gate and the
wire, the potential applied to the gate and at the boundary of
the wire is almost the same. As in the previous example, the
theoretical prediction resulting from our improved equation
exhibits an excellent agreement with the experimental data,
while the simplified one largely deviates from it. In this
case, and motivated by their transport measurements, we have
chosen the Fermi level at EF = −100 meV, as if the wire was
initially doped with holes.

Figure 5(d) shows the last case with InAs. It was performed
by Scherübl et al. [26] to prove that it is possible to tune the
Rashba coupling without changing the electron occupation
inside the nanowire. To that end, they use a bottom gate
together with two side ones. As shown in the sketch, a
77-nm-wide nanowire is placed over a SiO2 substrate, a
bottom gate is 1 μm below the substrate and the two side gates
are placed at 70 nm from the corners of the wire. The main
origin of the strong SO coupling in this device is the structural
inversion symmetry created by the difference between the gate
potentials applied to the side gates. In the right panel, the SO
coupling is plotted versus one side gate, while the other side
gate is changed accordingly to keep the total charge inside
the wire constant (see Ref. [26] for further information). We
find here that both theoretical methods give a good match,
although our improved equation produces a better agreement
with the data. Actually, in order to explain the discrepancy
between the prediction of the simplified equation and the
experimental data, in Ref. [26] the authors add ad hoc a
built-in intrinsic SO coupling of ∼5 meV × nm, which is not
necessary using our effective equation.

Finally, Fig. 5(e) refers to the experiment realized by
Takase et al. [64] in InSb nanowires. This work proves that
the SO coupling of InSb nanowires is much larger than that
of InAs ones. Their device consists of a 182-nm-wide wire
covered by a 6-nm-thick Al2O3 dielectric, placed directly over
a metallic gate. The small thickness of the dielectric allows to
tune (almost) perfectly the wire. In this last case, we also find
a good agreement between the red curve and the experimental
measurements, while the simplified equation fails to predict
the proper behavior. Deviations at small Vgate may arise due to
the small length of the wire in this experiment (500 nm). This
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may cause that the leads used for the transport measurements
have an impact on the electrostatic potential profile at the wire
edges [79], changing unintentionally the precise SO coupling
value.

V. SUMMARY AND CONCLUSIONS

Multiband k · p effective models are successfully used to
indirectly extract the SO coupling of semiconductors from
their band structure, but they can be computationally demand-
ing in low-dimensional heterostructures of current interest,
subject to arbitrary electrostatic environments. In this work,
we perform a single band approximation and introduce a
heuristic analytical expression that accurately describes the
conduction band Rashba SO coupling of III-V semiconduc-
tor nanowires, Eq. (8). This equation takes into account
not only the dependence of �αR with the spatially-dependent
electrostatic potential, which accounts for possible structural
inversion asymmetries, but also with the transverse subband
energy. It further depends on two semiconductor parameters,
the band gap and the split-off gap between valence bands.
Additionally, it approximately takes into account the crystal
structure of the compound semiconductor, partially lost in
the usual the zeroth-order conduction band approximation,
through one improved effective parameter that we call Pfit.
This parameter substitutes the original Kane parameter P in
order to account, in a simple and manageable way, for sizable
SO coupling contributions originating from transverse sub-
bands in finite-width nanowires. We compute this parameter
by fitting the SO coupling given by Eq. (8) to results pro-
vided by realistic 8B k · p calculations. The results for zinc-
blende (111) InAs, InSb, GaAs, and GaSb nanowires, and for
wurtzite (0001) InAs nanowires are collected in Table I. Using
these numbers, we find that the magnitude of the SO coupling
of nanowires based on zinc-blende InAs is roughly four times
stronger than on wurtzite InAs, whereas the SO coupling of
InSb nanowires is three times larger than that of InAs ones.

We compare the results provided by Eq. (8) with those
obtained with other approximations and with exact 8B model
calculations. Our improved equation works well regardless of
the transverse mode, the particular electrostatic environment
surrounding the wire and its chemical composition, consider-
ing its specific Pfit value given in Table I. It also works well
for wire widths ranging form ∼50 nm to ∼200 nm, which
are the typical experimental values. In particular, for this
range, we find that the usual zeroth-order approximation for
the SO coupling underestimates its magnitude for zinc-blende
nanowires and overestimates it for wurtzite ones, by as much
as ∼50%.

As a final proof of the validity of our approach, we simu-
late the experimental conditions of five magnetoconductance
experiments on InAs and InSb nanowires realized in recent
years. We find that the Rashba SO coupling resulting from
Eq. (8) is in excellent agreement with the experimental data
over wide ranges of external gate potentials.

We believe that our work may be useful for reducing the
computational cost of accurate Rashba SO coupling compu-
tations in realistic low-dimensional semiconductors of current
interest, where confinement effects turn out to be essential for
the correct prediction of αR. It may also help to understand

and design better devices where the Rashba SO coupling is
key, e.g., by tuning appropriately the wire’s diameter and in
this way maximizing the SO interaction.

The dataset and scripts required to plot the figures of this
manuscript can be found in the Zenodo repository [80].
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APPENDIX A: EIGHT-BAND k · p KANE MODEL

1. Derivation of the model

We provide here an introduction to the multiband k · p the-
ory extracted from several references [1,81,82]. This theory
can be derived starting from the single-electron Hamiltonian

H = �p2

2me
+ h̄

4m2
ec2

[ �∇φ(�r) × �p] · �σ − eφ(�r) → H� = E�,

(A1)

where �p = −ih̄ �∇ is the momentum operator, me the (bare)
electron mass, c the speed of light and �σ = (σx, σy, σz ) the
vector of Pauli matrices for the spin degree of freedom.
The first term of this Hamiltonian corresponds to the kinetic
energy of the electron, the second one takes into account
relativistic SO effects, and the last one corresponds to the
effective electrostatic potential energy experienced by the
electron inside some material. If the crystal is translational
invariant, this potential can be described using a periodic func-
tion. As a consequence, the electron wave function satisfies
the Bloch’s theorem, i.e.,

�n,k = un,k (�r)ei�k·�r, (A2)

where �k is the wave vector restricted to the first Brillouin zone
(and h̄�k is the so-called crystal momentum for a periodic sys-
tem), n the quantum number that labels the different possible
energy bands, and un,k (�r) is the so-called envelope function
that encodes the periodic part of the wave function. Hence,
the electron wave function satisfies the condition �p�n,k =
ei�k·�r (h̄�k + �p)un,k (�r), what allows to write a Hamiltonian Hkp

for the envelope function

H� = E� → Hkpun,k = En,kun,k

→ Hkp = �p2

2me
− eφ(�r) + h̄

4m2
ec2

[ �∇φ(�r) × �p] · �σ

+ h̄
�k · �p
me

+ h̄2�k2

2me
+ h̄2

4m2
ec2

[ �∇φ(�r) × �k] · �σ . (A3)
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This Hamiltonian is known as the k · p Hamiltonian (because
it includes a �k · �p term). It describes the motion of an electron
inside a periodic crystal.

In general, the k · p Hamiltonian has no analytical solution,
so it is usually solved perturbatively. The most common way
to do so is to expand the Hamiltonian around a point �k0

in reciprocal space, whose solution is known, and then use
Löwdin perturbation theory [45] to perform the expansion
over a reduced basis set. Within this technique, the states
are separated into two classes A and B. Class A includes the
truncated basis set elements that describe the main aspects of
the crystal. In principle, this basis set could include all the
orbitals on each atom of the unit cell, but this would not help
to decrease the complexity of the problem. Because of that,
the less influential states not included in A are collected in
class B. The couplings between class B and A states are the
ones treated perturbatively.

In this representation, the envelope function (in Dirac
notation) is written as a superposition of both kind of states

|n, k〉 =
∑

α

cα,n(k)|α〉 +
∑

β

cβ,n(k)|β〉, (A4)

where |α〉 and |β〉 are the states in class A and B, respectively.
The projection of the Hamiltonian onto the class A basis gives
rise to the matrix elements

〈α|Hkp|α′〉

=
[

Eα (�k0) + h̄2
(�k2 − �k2

0

)
2me

]
δαα′ + 〈α| h̄

me
(�k − �k0) · �p|α′〉

+ 〈α| h̄

4m2
e c2

[ �∇φ(�r) × �p] · �σ |α′〉

+
∑

β

〈α| h̄
me

(�k − �k0) · �p|β〉〈β| h̄
me

(�k − �k0) · �p|α′〉
Eα − Eβ

. (A5)

Unfortunately, these matrix elements cannot be evaluated
analytically in general because one would need to know
all the dipole terms 〈α|k · p|β〉 of all the transitions among
the different states, as well as their corresponding transition
energies Eα,β . For this reason, one firstly invokes symmetry
arguments (related to the crystal symmetries) to know which
matrix elements are forbidden and, secondly, one substitutes
the remaining expressions by parameters, whose functional
forms can be determined using group theory arguments. These
parameters are called Luttinger or Kane parameters, and can
be extracted from experimental data or ab initio calculations.

In this work, we have applied this technique to compute the
electronic band structure of III-V binary compound semicon-
ductors, specifically InAs, InSb, GaAs, and GaSb. These are
known to have a large Rashba coupling. As the unperturbed
Hamiltonian, we choose the one at the � point (k0 = 0). This
is because this kind of semiconductors are known to have a
direct band gap [38] at that point, with the minimum of the
conduction band taking place there. For our representation
basis, we have considered as class A the topmost six electronic
states in the valence band (usually referred to as p-like states),
given by the heavy hole |HH〉, light hole |LH〉, and split-
off |SO〉 bands, and the first two states at the conduction
band (usually referred to as s-like states), given by |C〉. Note
that all these bands are doubly degenerate at the � point,
this is why there are eight in total. For these tetravalence
semiconductor materials, it has been shown [44,46,47] that
these eight bands are enough to describe the main electronic
properties and, specifically, the Rashba SO interaction. The
relation between these band eigenstates and the (s-type and
p-type) atomic orbitals depends on the particular crystal struc-
ture of the selected material. In the following subsections, we
provide these relations together with the matrix elements of
the Hamiltonian for zinc-blende and wurtzite crystals, which
are the most common crystal structures for these kind of
semiconductors.

2. Eight-band zinc-blende Hamiltonian

The eight-band (8B) k · p Kane Hamiltonian for zinc-blende crystals has been derived and described in previous works
[36,47]. The basis for zinc-blende-type semiconductors is given by

|C↑〉 = |S↑〉, |C↓〉 = |S↓〉,

|LH↑〉 = i√
6
|(X + iY )↓ − 2Z↑〉, |LH↓〉 = 1√

6
|(X − iY )↑ + 2Z↓〉,

|HH↑〉 = 1√
2
|(X + iY )↑〉, |HH↓〉 = i√

2
|(X − iY )↓〉,

|SO↑〉 = 1√
3
|(X + iY )↓ + Z↑〉, |SO↓〉 = i√

3
| − (X − iY )↑ + Z↓〉,

(A6)

where S, X , Y, and Z denote the type of symmetry (s-function, or x, y or z p-function) that the orbital has under the
tetrahedral group transformation, and {↑,↓} denotes the spin projection. In this basis, the z direction corresponds to the (111)
crystallographic orientation. The Hamiltonian in the � = (�c,↑, �c,↓, �lh,↑, �hh,↑, �hh,↓, �lh,↓, �soff,↑, �soff,↓) basis is given
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by

Hkp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Tc 0 1√
6
Pk+ 0 1√

2
Pk− −

√
2
3 Pkz − 1√

3
Pkz

1√
3
Pk+

0 Tc −
√

2
3 Pkz − 1√

2
Pk+ 0 − 1√

6
Pk− 1√

3
Pk− 1√

3
Pkz

1√
6
Pk− −

√
2
3 Pkz Tlh −�

†
2 �1 0

√
3
2�2 −√

2�3

0 − 1√
2
Pk− −�2 Thh 0 �1 −√

2�
†
1

1√
2
�2

1√
2
Pk+ 0 �

†
1 0 Thh �

†
2

1√
2
�

†
2

√
2�

†
1

−
√

2
3 Pkz − 1√

6
Pk+ 0 �

†
1 �2 Tlh

√
2�3

√
3
2�

†
2

− 1√
3
Pkz

1√
3
Pk+

√
3
2�

†
2 −√

2�1
1√
2
�2

√
2�3 Tsoff 0

1√
3
Pk− 1√

3
Pkz −√

2�3
1√
2
�

†
2

√
2�1

√
2
3�2 0 Tsoff

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A7)

where the diagonal terms are

Tc = Ec + h̄2�k2

2me
− eφ(�r), (A8)

Tlh = Eh + �lh
0 − eφ(�r), �lh

0 = h̄2

2me

[(
k2

x + k2
y

)
(γ3 − γ1) − k2

z (2γ3 + γ1)
]
, (A9)

Thh = Eh + �hh
0 − eφ(�r), �hh

0 = h̄2

2me

[−(
k2

x + k2
y

)
(γ3 + γ1) + k2

z (2γ3 − γ1)
]
, (A10)

Tsoff = Esoff + �soff
0 − eφ(�r), �soff

0 = −γ1
h̄2�k2

2me
, (A11)

and the off-diagonal ones are

�1 = − 1√
3

h̄2

2me
(γ2 + 2γ3)k2

−, (A12)

�2 = − 2√
3

h̄2

2me
(2γ2 + γ3)kzk−, (A13)

�3 = h̄2

2me
γ3

(
k2

x + k2
y − 2k2

z

)
. (A14)

Here, Ec, Eh = Ec − �g, and Esoff = Ec − �g − �soff are the
band edges of the conduction, hole and split-off bands, respec-
tively; �g and �soff are the gaps between the conduction/hole
and hole/split-off bands at the � point; φ(�r) is the electrostatic
potential; k± ≡ kx ± iky and {γi} and P are Kane parameters.
In this work, we choose the conduction band edge as the ref-
erence energy, i.e., we fix Ec = 0. The Hamiltonian elements
whose functional form has been substituted by phenomeno-
logical parameters are

P ≡ − ih̄

me
〈S|px|X 〉 = − ih̄

me
〈S|py|Y 〉 = − ih̄

me
〈S|pz|Z〉,

(A15)

�soff ≡ 3h̄i

4m2
ec2

〈X |∂φ

∂x
py − ∂φ

∂y
px|Y 〉

= 3h̄i

4m2
ec2

〈Y |∂φ

∂y
pz − ∂φ

∂z
py|Z〉 = 3h̄i

4m2
ec2

〈Z|∂φ

∂z
px

− ∂φ

∂x
pz|X 〉. (A16)

In order to avoid the spurious solutions coming from the loss
of ellipticity of the Schrödinger equation [83–85], the Kane
parameters {γi} are renormalized from the Luttinger ones
{γ (L)

i },
γ1 = γ

(L)
1 − Ep

3�g

γ2 = γ
(L)

2 − Ep

6�g

γ3 = γ
(L)

3 − Ep

6�g
, (A17)

TABLE II. Band and Kane/Luttinger parameters for eight-band
zinc-blende Hamiltonians, extracted from Ref. [38].

Parameter InAs InSb GaAs GaSb

�g (meV) 417 235 1519 812
�soff (meV) 390 810 341 760
P (meV nm) 919.7 940.2 1047.5 971.3

γ
(L)

1 20.0 34.8 6.98 13.4

γ
(L)

2 8.5 15.5 2.06 4.7

γ
(L)

3 9.2 16.5 2.93 6.0
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where Ep = 2me

h̄2 P2 is the Kane energy. The specific values
that we have used for the Kane parameters are extracted from
Ref. [38] and shown in Table II.

3. Eight-band wurtzite Hamiltonian

The 8B k · p Kane Hamiltonian for wurtzite crystals has
been derived and described in previous works [44]. The basis
for wurtzite-type semiconductors is given by

|C↑〉 = i|S↑〉, |C↓〉 = i|S↓〉,

|LH↑〉 = 1√
2
|(X − iY )↑〉, |LH↓〉 = − 1√

2
|(X + iY )↓〉,

|HH↑〉 = − 1√
2
|(X + iY )↓〉, |HH↓〉 = 1√

2
|(X − iY )↑〉,

|SO↑〉 = |Z↑〉, |SO↓〉 = |Z↓〉,

(A18)

where the z direction is taken along the (0001) crystallographic orientation. Its corresponding Hamiltonian in the � =
(�hh,↑, �lh,↑, �soff,↑, �hh,↓, �lh,↓, �soff,↓, �c,↑, �c,↓) basis is

Hkp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1 + �2 + λ + θ + Eh − eφ −K† i
(
α4 − α1√

2

)
k− − H† 0

−K �1 − �2 + λ + θ + Eh − eφ −i
(
α4 + α1√

2

)
k+ + H −iα2k−

−i
(
α4 − α1√

2

)
k+ − H i

(
α4 + α1√

2

)
k− + H† λ + Eh − eφ 0

0 − 1√
2
Pk− 0 �1 + �2 + λ + θ + Eh − eφ

iα2k+ 0
√

2�3 + i
√

2α1kz −K†

0
√

2�3 − i
√

2α1kz iα3k+ i
(
α4 − α1√

2

)
k− + H†

−( P2√
2

− P3√
2

)
k+ + T

( P2√
2

+ P3√
2

)
k− + T † P1kz + U † 0

0 −i
√

2�4 − √
2P3kz P4k+

( P2√
2

− P3√
2

)
k− + T †

... −iα2k− 0 −( P2√
2

− P3√
2

)
k− + T † 0

... 0
√

2�3 + i
√

2α1kz
( P2√

2
+ P3√

2

)
k+ + T i

√
2�4 − √

2P3kz

...
√

2�3 − i
√

2α1kz −iα3k− P1kz + U P4k−

... −K −i
(
α4 − α1√

2

)
k+ + H 0

( P2√
2

− P3√
2

)
k+ + T

... �1 − �2 + λ + θ + Eh − eφ i
(
α4 + α1√

2

)
k− − H† i

√
2�4 − √

2P3kz −( P2√
2

+ P3√
2

)
k− + T †

... i
(
α4 + α1√

2

)
k+ − H λ + Eh − eφ −P4k+ P1kz + U

... −i
√

2�4 − √
2P3kz −P4k− Ec + V − eφ −iα5k−

... −( P2√
2

+ P3√
2

)
k+ + T P1kz + U † iα5k+ Ec + V − eφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A19)

where

λ ≡ γ1k2
z + γ2

(
k2

x + k2
y

)
, (A20)

θ ≡ γ3k2
z + γ4

(
k2

x + k2
y

)
, (A21)

K = γ5k2
+, (A22)

H = γ6k+kz, (A23)

U ≡ i
[
P̃1k2

z + P̃2
(
k2

x + k2
y

)]
, (A24)

T ≡ iP̃3k+kz, (A25)

V ≡ e1k2
z + e2

(
k2

x + k2
y

)
. (A26)

�i, ei, αi, Pi, P̃i, and γi are the band and Kane paremeters.
As before, Eh and Ec are the hole and conduction band edges.
The explicit form of these parameters is provided in Ref. [44].
The specific values we use are extracted from Ref. [44] and
shown in Table III. We choose the conduction band edge as
the reference energy, fixing Ec = 0.

APPENDIX B: DERIVATION OF THE CONDUCTION
BAND APPROXIMATION

The multiband Hamiltonians presented before correctly
describe the band shape of III-V semiconductors around the
� point [1,32–37]. However, dealing with these Hamiltonians
in certain situations is a difficult task due to the large number
of bands involved [34]. When one is interested only on the
properties of one specific band, the conduction band in this

033264-13



ESCRIBANO, YEYATI, AND PRADA PHYSICAL REVIEW RESEARCH 2, 033264 (2020)

TABLE III. Band and Kane parameters for the eight-band wurtzite InAs Hamiltonian, extracted from Ref. [44]. The parameters �g and
�soff are obtained as a combination of �i and Ec, Eh, see Ref. [44].

InAs

Energy splittings Linear parameters Second-order parameters
(meV) (meV nm) (in units of h̄2/2me)

�1 100.3 P1 838.6 γ1 1.5726
�2 102.3 P2 689.87 γ2 −1.6521
�3 104.1 P3 −6.95 γ3 −2.6301
�4 38.8 P4 −21.71 γ4 0.5126
Ec 0 α1 −1.89 γ5 0.1172
Eh −664.9 α2 −28.92 γ6 1.3103

α3 −51.17 P̃1 −2.3925
�g 467 α4 −49.04 P̃2 2.3155
�soff 325.7 α5 53.06 P̃3 −1.7231

e1 −3.2005
e2 0.6363

case, it is customary to look for an effective Hamiltonian
within that band by integrating out the rest of them. To do this,
we start from the 8 × 8 zinc-blende Hamiltonian of Eq. (A7),
which can be written as

Hkp =
(

Hc Hcv

H†
cv Hv

)
, (B1)

where Hc is a 2 × 2 Hamiltonian corresponding to the (spin-
ful) conduction band, Hv is a 6 × 6 Hamiltonian correspond-
ing to the three (spinful) valence bands, and Hcv is a 2 × 6
Hamiltonian that represents the coupling between conduc-
tion and valence bands. Following a standard folding-down
procedure, we can write an effective 2 × 2 conduction band
Hamiltonian as

HCB = Hc + �v, �v = HcvGvH†
cv,

Gv = (E − Hv)−1 → HCB�c = E�c, (B2)

where �v is the self-energy of the valence bands
and Gv their corresponding Green’s function
(resolvent).

The valence bands self-energy cannot be found exactly,
since it is not possible to invert a matrix that has noncommut-
ing terms such as the position-dependent electrostatic poten-
tial, φ(�r), and the momentum operators �k. We can nevertheless
expand Gv in terms of the small parameter ∼�i/�i, where
�i = h̄2�k2γi/(2me) represents the energy associated to the
valence band couplings, and �i are the different band gap
energies at the � point. In particular, γi represents different
combinations of γ1,2,3, see Eqs. (A9)–(A14). On the other
hand, �i represents either �g or �g + �soff . The quantitative
values of these Kane couplings and band gaps can be found in
Table II.

Defining

H (0)
v =

⎛
⎜⎜⎜⎜⎜⎝

Eh − eφ(�r) 0 0 0 0 0
0 Eh − eφ(�r) 0 0 0 0
0 0 Eh − eφ(�r) 0 0 0
0 0 0 Eh − eφ(�r) 0 0
0 0 0 0 Esoff − eφ(�r) 0
0 0 0 0 0 Esoff − eφ(�r)

⎞
⎟⎟⎟⎟⎟⎠ (B3)

and

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�lh
0 −�

†
2 �1 0

√
3
2�2 −√

2�3

−�2 �hh
0 0 �1 −√

2�
†
1

1√
2
�2

�
†
1 0 �hh

0 �
†
2

1√
2
�

†
2

√
2�

†
1

0 �
†
1 �2 �lh

0

√
2�3

√
3
2�

†
2√

3
2�

†
2 −√

2�1
1√
2
�2

√
2�3 �soff

0 0

−√
2�3

1√
2
�

†
2

√
2�1

√
2
3�2 0 �soff

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B4)

we can write the zeroth-order valence bands Green’s function as G(0)
v = (E − H (0)

v )−1, and the Dyson expansion of the full
Green’s function as

Gv = G(0)
v + G(0)

v V G(0)
v + G(0)

v V G(0)
v V G(0)

v + . . . (B5)
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Ignoring the couplings between the valence bands (while still retaining the couplings between the conduction and valence
bands), i.e., to zeroth-order in �i/�i, the zeroth-order conduction band Hamiltonian

H (0)
CB = Hc + HcvG(0)

v H†
cv → H (0)

CB� (0)
c = E� (0)

c , (B6)

has been found [1,48,52] to be

H (0)
CB =

[
h̄2�k2

2me
+ Ec − eφ(�r)

]
σ0 + (�0σ0 + �xσx + �yσy + �zσz ), (B7)

where σi are the spin Pauli matrices (and σ0 the identity), and

�0 = −
∑

j={x,y,z}

P2

3
k j

[
2

Eh − eφ(�r) − E
+ 1

Esoff − eφ(�r) − E

]
k j, (B8)

�x = i
P2

3

{
kz

[
1

Eh − eφ(�r) − E
− 1

Esoff − eφ(�r) − E

]
ky − ky

[
1

Eh − eφ(�r) − E
− 1

Esoff − eφ(�r) − E

]
kz

}
, (B9)

�y = i
P2

3

{
kx

[
1

Eh − eφ(�r) − E
− 1

Esoff − eφ(�r) − E

]
kz − kz

[
1

Eh − eφ(�r) − E
− 1

Esoff − eφ(�r) − E

]
kx

}
, (B10)

�z = i
P2

3

{
ky

[
1

Eh − eφ(�r) − E
− 1

Esoff − eφ(�r) − E

]
kx − kx

[
1

Eh − eφ(�r) − E
− 1

Esoff − eφ(�r) − E

]
ky

}
. (B11)

This Hamiltonian can be recasted in the form

H (0)
CB =

[
�k h̄2

2m(0)(�r)
�k + Ec − eφ(�r)

]
σ0 + 1

2

[
�α(0)

R (�r) · (�σ × �k) + (�σ × �k) · �α(0)
R (�r)

]
. (B12)

The first term corresponds to the kinetic energy, but the
electron has now an effective mass given by

1

m(0)(�r)
= 1

me
− 2P2

3h̄2

[
2

Eh − eφ(�r) − E

+ 1

Esoff − eφ(�r) − E

]
. (B13)

This term has to be written between the two momentum
operators �k in the kinetic energy part of (B12) because the
effective mass depends in general on position through φ(�r).
The other term corresponds to the Rashba SO interaction,
whose Rashba coefficients �α(0)

R (�r) are

�α(0)
R (�r) = P2

3
�∇
[

1

Eh − eφ(�r) − E
− 1

Esoff − eφ(�r) − E

]
.

(B14)

Note that, in this notation, the nabla operator inside �α(0)
R (�r)

only acts on the expression inside the square brackets, i.e., it
is not to be applied on the electron wave function.

Equation (B12) is equivalent to Eq. (3) of the main text,
but taking the conduction band edge Ec as the reference en-
ergy, i.e., Ec = 0. It describes the Hamiltonian of an electron
quasiparticle in the conduction band, and therefore, it is only
valid as far as conduction and valence bands do not overlap in
energy, what means that its applicability range is for −Eh =
�g − Ec > −eφ(r) − E . We have thus reached a Hamiltonian
that involves a smaller number of bands (i.e., only one spinful
conduction band), and that allows us to directly introduce ad-
ditional terms whose functional form we know, as for instance
a Zeeman field or a superconducting pairing term. We note
that this simplified Hamiltonian is equivalent to that of the

bare electron,4 Eq. (A1), but with a spatial-dependent effective
mass m(0)(�r) and an effective Rashba coupling �α(0)

R (�r) that
depends not only on �∇φ(�r), but whose prefactor, like that
of the effective mass, depends on E + φ(�r), where E is the
quasiparticle’s energy. Due to the energy dependence of these
effective quantities, the conduction band Hamiltonian has to
be solved self-consistently.

To avoid this complication, a further simplification is usu-
ally performed in the literature [1,48,52]. If �g and �soff are
the largest energies in the conduction band approximation,
then it is possible to expand in Taylor series assuming |Eh| 

|eφ(�r) + E |,

1

Eh−eφ(�r)−E
= (−Eh)

1 − eφ(�r)+E
Eh

=
∞∑

n=0

(−1)(n+1) (eφ(�r) + E )n

(Eh)n+1
.

(B15)

Truncating up to n = 0 in the above equation, it is possible to
obtain an energy and position-independent effective mass

1

m(0)
� 1

me
− 2P2

3h̄2

(
2

Eh
+ 1

Esoff

)
, (B16)

which is equivalent to Eq. (6) of the main text. Similarly,
truncating up to n = 1, we get the Rashba coupling

�α(0)
R (�r) � −e

P2

3

(
1

E2
h

− 1

E2
soff

)
�∇φ(�r), (B17)

which we have called simplified in the main text, see Eq. (7).
Equation (B16) is commonly used to estimate the effective

4Using the properties of the triple product, we can equate ( �∇φ ×
�k) · �σ = −�∇φ · (�σ × �k).
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masses of typical semiconductors, leading to the widely used
values [38] of m � 0.023me for InAs and m � 0.014me for
InSb semiconductors, see Appendix G for a more profound
discussion.

If we apply the previous expressions to a semiconductor
with the form of a nanowire that is translational invariant
along the z direction, as in the main text, we can take kz as a
good quantum number and thus φ(�r) depends only on x, y. In
this particular case, αR,z = 0 (to all orders), and we can write
the Rashba term in the conduction band Hamiltonian H (0)

CB as

H (0)
R = 1

2

[
α

(0)
R,x (x, y)(σykz − σzky) + α

(0)
R,y(x, y)(σzkx − σxkz )

+ (σykz−σzky)α(0)
R,x(x, y) + (σzkx − σxkz )α(0)

R,y(x, y)
]
.

(B18)

The SO coupling modulus thus involves only the x and y
components: |αR| =

√
α2

R,x + α2
R,y.

All the previous analysis of the conduction band approxi-
mation has been carried out starting from the 8B zinc-blende
Hamiltonian of Eq. (A7). A similar derivation could be per-
formed starting from the wurtzite Hamiltonian of Eq. (A19)
for the particular case of InAs semiconductors, but this deriva-
tion would certainly be more involved due to the presence
of more coupling parameters. In practice, the zinc-blende
zeroth-order results for the effective mass and SO coupling
derived above are also used for wurtzite InAs, but taking the
values of �g and �soff of Table III instead of those of Table II,
and taking the zinc-blende P parameter. In any case, as we
discuss in the main text, the zeroth-order SO coupling cannot
account for the specific crystal structure, be it zinc-blende or
wurtzite, when confinement effects are important, since the
neglected terms proportional to γi are essential.

We could go to higher orders in the Dyson expansion of
the valence bands Green’s function of Eq. (B5). To find ana-
lytical manageable expressions is nevertheless cumbersome,
especially as the series order increases. For example, for a
zinc-blende nanowire along the z direction, we have found an
approximation for the SO coupling to first order given by

�α(1)
R (�r) ≈ e

2P2

3

[
γ1 − γ3

(�g + eφ(�r) + E )3

− γ1

(�g+�soff+eφ(�r) + E )3

]
�∇φ(�r)

h̄2

2me

(
∂2

x + ∂2
y

)
,

(B19)

where Ec is taken zero like in the main text. This coupling
gives a Rashba correction H (1)

R = [�α(1)
R (�r) · (�σ × �k) + (�σ ×

�k) · �α(1)
R (�r)]/2 to the zeroth-order reduced Hamiltonian of

Eq. (B12). To get to this analytical expression we’ve per-
formed a couple of approximations. On the one hand, we have
realized that in the Hamiltonian of V , Eq. (B4), the relevant
terms are the ones in the diagonal, �i

0, while we can neglect
the off-diagonal couplings �i={1,2,3}. We have checked this
numerically (not shown). The reason is that when �i

0 are
different from zero at the � point, i.e., for transverse subbands

with kx = 0 and/or ky = 0, they modify the positions of the
different valence subbands at � and thus the value of the effec-
tive gaps between them. This in turn contributes significantly
to the SO coupling. On the other hand, in Eq. (B19) we have
ignored terms proportional to k2

z and higher orders in �∇φ(�r).
Note that to such order, �α(1)

R is Hermitian.
The SO coupling to first order in Eq. (B19) is then propor-

tional to the transverse energy h̄2(k2
x + k2

y )/(2me). This term
is zero for an energy subband with zero transverse momen-
tum. However, in a finite-width nanowire with many finite
kx,y ∼ 1/Wwire momenta, the contribution given by Eq. (B19)
or higher order terms can be non-negligible, as we show now.

Let us consider, for instance, a zinc-blende InAs nanowire
subject, for simplicity, to a position-independent electric field
in the y direction, particularly �E = (0, 2, 0) meV nm. We
want to compare the SO coupling calculated to different
orders in �i/�i. In Fig. 6(a), we plot the modulus of the
SO coupling as a function of the nanowire’s width Wwire. In
red we show the result found with the 8B Hamiltonian of
Eq. (A7), which is a computationally demanding calculation,
especially as Wwire increases. We consider the red curve—the
one provided by the 8B model—as the exact or correct result
in our work. One could get more accurate results by going
to higher orders in the Löwdin perturbation theory explained
in Appendix A or by going away from the k · p theory, but
that is beyond the scope of this paper. We see that the SO
coupling rapidly increases for small wire widths and then
approximately plateaus from Wwire ≈ 25 nm to Wwire ≈ 175
nm. From that moment on it decreases. In green we have the
zeroth-order conduction band approximation calculated from
Eq. (B14) or, equivalently, from Eq. (5) of the main text. It
also increases for small widths, for approximately the same
Wwire range as the 8B model result, but then it remains constant
and about half the value of the 8B model. In particular, for
Wwire = 80 nm, it is a 54% of the exact value. We have also
worked out numerically the SO coupling to first order, cyan
curve, and to second order, pink curve. At Wwire = 80 nm
again, the cyan curve provides the 75% of the 8B model
result, and the pink one the 85%. We observe that, in order to
approach the red value, we need to sum many orders (if not all)
in the Dyson expansion for the realistic wire widths presented
in this figure, something that is neither easy nor practical.

In Fig. 6, we only get to wire widths of 200 nm, but as
Wwire → ∞, the red curve should approach the green one,
the zeroth-order. Note that the first and second orders also
decrease with width. This can be understood because, as the
width increases, the transverse momenta kx,y ∼ 1/Wwire go to
zero and so does �i = h̄2�k2γi/(2me). This means that for bulk
semiconductors, the zeroth-order SO coupling commonly
found in the literature is a very good approximation. More-
over, for Wwire → ∞, the SO coupling of zinc-blende and
wurtzite InAs are very similar. However, when confinement
effects are important, α

(0)
R cannot provide the quantitative and

the qualitative behavior of the SO coupling, nor distinguish
between different crystal structures.

Notice that, although the 8B model SO coupling has a
pretty constant value from Wwire ≈ 25 nm to 175 nm, as
mentioned above, it has a maximum at Wwire = 130 nm. This
maximum value depends on the band and Kane parameters
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FIG. 6. (a) Modulus of the SO coupling as a function of the wire’s width Wwire for a zinc-blende InAs nanowire in a homogeneous electric
field �E = (0, 2, 0) meV nm. Different degrees of approximation are compared in this figure. In red we show the SO coupling found with the 8B
model Hamiltonian of Eq. (A7), considered as the exact result in this work. The result to zeroth-order in the conduction band approximation is
shown in green, to first order in cyan and to second order in pink. Dots mark the maximum of each curve. The dashed black curve corresponds
to the improved SO Eq. (8), which considers a constant Pfit parameter fixed to Wwire = 80 nm. (b) Effective electron mass m over bare electron
mass me versus Wwire. In red the 8B model result and in green the value of the zeroth-order conduction band approximation.

in an intricate way. The cyan and pink curves have also a
maximum, but for smaller Wwire. Knowing the wire’s width
for which the SO coupling is maximum can help design
semiconductor nanowires with stronger SO effects.

In Fig. 6(b), we study the conduction band effective mass
as a function of Wwire. As before, the red curve corresponds
to the zinc-blende InAs 8B model result, whereas the green
one to the zeroth-order approximation of Eq. (B13) or, equiv-
alently, Eq. (4) of the main text. Strikingly, we observe that
m(0) provides an excellent approximation to the exact red
result for basically all wire widths, except for the smallest
ones, where, in any case, the k · p model is not valid. This
means that, while higher corrections in the conduction band
approximation are necessary to correctly account for the SO
coupling of semiconducting nanowires, the effective mass can
be accurately captured with the common zeroth-order limit.
The ultimate reason comes from the relative signs between
the 1/�i terms in Eqs. (B13) and (B14). For the effective
mass these terms are added, while for the SO coupling they
are subtracted.

APPENDIX C: NUMERICAL METHODS

In order to solve numerically the eigenvalue problem
with the previous Hamiltonians, we use the finite difference
method (FDM). For a nanowire that is infinite in the z di-
rection (the growth direction) but finite in the x-y plane, this
method consists in discretizing the transverse coordinates with
a finite mesh of points ({xi}, {y j}). The momentum operator
is substituted by its corresponding derivative, which is then
discretized using the central difference method

kx → −i
∂

∂x
→ −i

c†
i+1ci − c†

i−1ci

2(xi+1 − xi−1)
, (C1)

k2
x → − ∂2

∂x2
→ −c†

i+1ci − 2c†
i ci + c†

i−1ci

(xi+1 − xi )(xi − xi−1)
. (C2)

In the z direction, no discretization is needed because kz is a
good quantum number due to translational symmetry.

Notice that the FDM method has been shown [50,86]
to introduce spurious solutions into the energy spectrum of

multiband Hamiltonians. In order to alleviate the impact of
these spurious states, some mechanisms have been proposed.
We follow here Refs. [87,88] and [88], where we use a
staggered grid with a finer discretization close to the wire
boundaries to suppress the spurious states. However, if the
discretization is not homogeneous, the FDM generates non-
Hermitian matrices. For instance, for two consecutive points
xi and xi+1,

∂ f (xi )
∂x → f (xi+1 )− f (xi−1 )

xi+1−xi−1
∂ f (xi+1 )

∂x → f (xi+2 )− f (xi )
xi+2−xi

}
→ f (xi+1)

xi+1 − xi−1
= f (xi )

xi+2 − xi
, (C3)

since, in general, for an arbitrary mesh (xi+1 − xi−1) =
(xi+2 − xi ). To correct this problem, we follow the ideas of
Refs. [88,89] and we symmetrize the discretization operator,
defined here as ξi j ≡ h/|xi − x j | where h ≡ 〈xi+1 − xi〉. This
is needed because the mesh spacing |xi+1 − xi| is not just
a number but a position-dependent operator. With this sym-
metrization, the derivatives can be written as

kx → −i
∂

∂x
→ − i

4h
{(ξi+1,i + ξi−1,i )c

†
i+1ci

− (ξi+1,i + ξi−1,i )c
†
i−1ci}, (C4)

k2
x → − ∂2

∂x2
→ − 1

2h2
{(ξi+1,i + ξi,i )c

†
i+1ci

− (2ξi,i + ξi+1,i + ξi−1,i )c
†
i ci + (ξi,i + ξi−1,i )c

†
i−1ci},

(C5)

which are symmetric operators now.
Once the Hamiltonian is discretized in the transverse cross-

section (taking h = 1 nm in this work), it is diagonalized for
each kz value in order to obtain the band structure E ( j)

± (kz ),
with the corresponding eigenfunction spinors denoted by
�

( j)
± (x, y, kz ). Here, j denotes a transverse subband index and

± the two associated spin textures related by time-reversal
symmetry at kz = 0. To obtain these we use the standard
ARPACK tools provided by the PYTHON package SCIPY.

For the conduction band model, we can split the
Hamiltonian of Eq. (B12) into transverse and longitudinal
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parts,

H (0)
CB = HT (x, y) + HL(kz ), (C6)

HT (x, y)

=
[
−∂x

h̄2

2m(0)(x, y)
∂x−∂y

h̄2

2m(0)(x, y)
∂y+Ec−eφ(x, y)

]
σ0

+ 1

2

[
α

(0)
R,y(x, y)kx − α

(0)
R,x (x, y)ky + kxα

(0)
R,y(x, y)

− kyα
(0)
R,x(x, y)

]
σz, (C7)

HL(x, y, kz ) = h̄2k2
z

2m(0)(x, y)
+ [

α
(0)
R,x (x, y)σy − α

(0)
R,y(x, y)σx

]
kz,

(C8)

where α
(0)
R,z = 0 because the nanowire is translationally invari-

ant along the z direction. Now, we assume that the SO length is
larger or comparable to the wire’s diameter, i.e., lSO � Wwire,
as is the case of every experiment analyzed in this work.
This assumption allows us to write the total wave function as
�

( j)
± (x, y, kz ) ≈ �

( j)
±,T (x, y)eikzz, which amounts to neglecting

the inter-subband SO coupling [90–92]. Hence, we can write
the total energy for each transverse subband j as a function of
kz as

E ( j)
± (kz ) = E ( j)

T + h̄2k2
z

2m( j)
eff

± ∣∣α( j)
eff kz

∣∣, (C9)

where E ( j)
T = 〈� ( j)

±,T |HT (x, y)|� ( j)
±,T 〉 are the Kramers-

degenerate eigenvalues of the transverse subband Hamiltonian
(which are found numerically by diagonalizing it), and

±α
( j)
eff = 〈

�
( j)
±,T

∣∣(α(0)
R,x(x, y)σy − α

(0)
R,y(x, y)σx )

∣∣� ( j)
±,T

〉
(C10)

is the projection of the Rashba coupling onto the transverse
basis. Note that in the main text we omit the ± spin quantum
number in |� ( j)

±,T 〉 for simplicity, as there we are only inter-

ested in the magnitude of α
( j)
eff and not its sign.

The charge density for the conduction band approximation
is simply given by

ρ(x, y) = e
∑
j,±

∫
dkz

2π

∣∣� ( j)
± (x, y, kz )

∣∣2
f [E ( j)

± (kz )]

= e
∑
j,±

∣∣� ( j)
±,T (x, y)

∣∣2
∫ ∞

−∞
dE f (E )D( j)

± (E )

= e
∑
j,±

∣∣� ( j)
±,T (x, y)

∣∣2
n( j), (C11)

where f (E ) is the Fermi-Dirac distribution, n( j) is the occupa-
tion of subbands �

( j)
± and D( j)

± is the corresponding 1D density
of states,

D( j)
± (E ) = 1

π

(
dk( j)

z,±(E )

dE

)
, (C12)

expressed in terms of the fixed-energy k( j)
z,±(E ) of each mode

that satisfies E ( j)
± (k( j)

z,±) = E .

APPENDIX D: ELECTROSTATIC POTENTIAL AND ITS
NUMERICAL SOLUTION

The electrostatic potential is given by the solution of the
Poisson equation

�∇ · (ε(�r) �∇φ(�r)) = ρ(�r), (D1)

where ε(�r) is the dielectric permittivity, φ(�r) is the elec-
trostatic potential and ρ(�r) is the charge density inside the
wire. The precise experimental setups considered in this work
are taken into account through the inhomogeneous dielectric
permittivity ε(�r), which we model as a piecewise function
that is constant inside each material and has abrupt changes at
the interfaces. To find the potential φ(�r) throughout all space,
we fix as boundary conditions the potentials created by the
surrounding gates at the gate boundaries, and we use periodic
boundary conditions along the z axis. Due to the surface
chemistry, there is typically an electron accumulation layer
close to the surface of the wire. We model it by introducing an
additional source term ρsurf to the Poisson equation, consisting
in a 1-nm-thick positive charge density layer. We solve the
Poisson equation with all these ingredients using the PYHTON

package FENICS [93,94] with a mesh discretization of 1 nm.
We note that, since the charge density of the wire ρ(�r)

depends on the wavefunction of the Hamiltonian, which in
turn depends on the electrostatic potential, the Poisson and
Schrödinger equations must be solved self-consistently. For
this purpose, to obtain the charge density we employ an
iterative method that makes use of the so-called Anderson
mixing

ρ (n) = βρ̃ (n) + (1 − β )ρ (n−1), (D2)

where n is a certain iteration step and β is the Anderson coef-
ficient. In the first step of this procedure (i.e., n = 0) we take
ρ (0) = 0 and compute the electrostatic potential of the system.
At any other arbitrary step n, we compute the charge density
ρ̃ (n) using the electrostatic potential found in the previous
iteration n − 1. Then, we compute the electrostatic potential
at the n-th step using ρ (n), given by the Anderson mixing of
Eq. (D2). This charge density mixing between the step n and
n − 1 ensures the convergence to the solution. We keep this
iterative procedure until the cumulative error is bellow the 1%.
As Anderson coefficient β, we take a self-adaptive one,

β = β (max) exp

(
max (||ρ (n)| − |ρ (n−1)||)

max(|ρ (n)|, |ρ (n−1)|)
)

, (D3)

where β (max) is the maximum value the Anderson coefficient
can take while ensuring converge. This value depends on the
particular system considered.

APPENDIX E: IMPROVED Pfit PARAMETER FOR
ZINC-BLENDE InAs, InSb, GaAs AND GaSb NANOWIRES

The conduction band approximation and the improved
Eq. (8), whose validity has been proved for InAs in the
main text, works also for any other III-V binary compound
semiconductor. Among these compounds, InAs, InSb, GaAs,
and GaSb have the largest Rashba SO coupling because they
present the smallest band gap energies. Therefore we calculate
the improved Pfit parameter for these materials. In particular,
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FIG. 7. Rashba SO coupling modulus versus gate voltage for different zinc-blende (ZB) (111) nanowires (rows) and different transverse
modes (columns). Dots correspond to αR obtained from the 8B k · p Kane model of Appendix A using Eq. (2). Solid lines correspond to
αR obtained from the improved Eq. (8) within the conduction band approximation discussed in Sec. II B. The corresponding Pfit parameters
are given in Table I. Dashed lines correspond to αR obtained in the approximation �g 
 |eφ(�r) + E |, i.e., using the simplified Eq. (7). The
simulations have been performed using the same electrostatic environment and parameters as in Fig. 2 of the main text, but changing the
dielectric permittivity of the wires to their corresponding ones, εInAs = 15.15, εInSb = 16.8, εGaAs = 12.9, or εGaSb = 15.7. These values are
extracted from Ref. [60].

we focus on zinc-blende structures since they have larger SO
couplings than the wurtzite counterparts.

In Fig. 7, we show the magnitude of the SO Rashba
coefficients as a function of the back gate potential. Dots are
used for the 8B k · p simulations. Solid lines correspond to αR

obtained from the improved Eq. (8) discussed in Sec. II B. The
corresponding Pfit parameters are presented in Table I. These
values are extracted by fitting Eq. (8) to the lowest-energy
mode of the 8B model simulations, as we do in the main
text for InAs. With dashed lines we also plot the result of the
simplified Eq. (7), for comparison purposes. As can be seen,
the improved equation works equally well for every type of
semiconductor. However, the simplified equation is a good
approximation only for GaAs and GaSb, since these com-
pounds present a large semiconducting gap �g, and therefore
the condition �g 
 |eφ(�r) + E | is fulfilled for a wide range
of gate potentials.

We note that the material with the largest SO coupling is
InSb, which is roughly twice that of InAs, as it was pointed
out in previous works [37,64]. This is due to the small band
gap and large split-off gap that characterizes InSb. In contrast,
GaAs exhibits the smallest SO coupling of these materials.
This is due to its large band gap and small split-off gap.

APPENDIX F: DEPENDENCE OF THE IMPROVED Pfit

PARAMETER ON THE ELECTROSTATIC ENVIRONMENT

One of the core assumptions of our work is that the
improved Kane parameter Pfit depends weakly on the elec-
trostatic potential. This allows us to use the improved SO
coupling equation [Eq. (8)] regardless of the precise elec-
trostatic environment surrounding the wire. To illustrate fur-
ther this point, we follow the same procedure as the one
explained in Sec. III to extract Pfit from four different
devices/environments. Their sketches are depicted to the left
of each figure in Fig. 8. To the right, we show the SO coupling
of the lowest-energy subband extracted from 8B model sim-
ulations (blue dots) versus gate voltage, taking into account
the electrostatic environment of its corresponding sketch. We
obtain Pfit by fitting Eq. (8) to these values. The fitting curves
are shown with solid red lines, and the resulting Pfit values are
shown in their respective legends. The geometries considered
here are significantly different between them. Simulations for
(a) and (b) have two gates (back and top ones), but with
different applied voltages and covering different number of
wire’s facets. In (c), we consider a device with three gates (one
back-gate and two side-gates), and we explore the dependence
of the SO coupling with one of the side gates, similarly to
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FIG. 8. Rashba SO coupling modulus versus gate voltage for a zinc-blende (111) InAs nanowire with different geometries and located in
different electrostatic environments, sketched to the left of each sub-figure. Dots correspond to αR of the lowest-energy subband obtained from
the 8B model Hamiltonian using Eq. (2). Solid red curves correspond to the conduction band SO coupling obtained from the improved Eq. (8),
by fitting Pfit in each case to the 8B model result. The resulting Pfit values are shown in each figure legend. Parameters: (a) same as in Fig. 2 of
the main text; (b) Wwire = 80 nm, Wsubstrate = 50 nm, Wlayer = 10 nm, εwire = εInAs = 15.15, εsubstrate = εHfO2 = 25, Vlayer = 0.2 V and ρsurf = 0;
(c) Wwire = 60 nm, Wsubstrate = 400 nm, the separation between side gates and the nanowire is 70 nm, εwire = εInAs = 15.15, εsubstrate = εSiO2 =
3.9, Vbg = 0 V, VL = 0 V and ρsurf = 5 × 10−3( e

nm3 ); (d) Wwire = 40 nm, Wsubstrate = 40 nm, εwire = εInAs = 15.15, εsubstrate = εSiO2 = 3.9 and
ρsurf = 5 × 10−3( e

nm3 ). Notice that in this last case the nanowire has a square section instead of hexagonal. The charge density inside the
wire ρmobile has been neglected for simplicity in (a)–(c), while it has been included in the Thomas-Fermi approximation in (d). The 8B model
parameters are given in Table II.
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FIG. 9. Conduction band effective mass m versus gate voltage for different zinc-blende (ZB) (111) semiconductor nanowires (rows) and
different transverse modes (columns). Dots correspond to m obtained from the 8B k · p Kane model of Appendix A using Eq. (2). Solid lines
correspond to m obtained from the improved effective mass Eq. (G1). The corresponding Pmfit parameters are collected in Table IV. Dashed
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in Fig. 7.
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the device of Ref. [26]. Finally, in (d), we consider only one
gate (a back one), but we include the charge density of the
wire ρmobile in the Thomas-Fermi approximation, as the device
of Ref. [62]. We also consider different charge accumulation
layers ρsurf [in (b) is zero], different substrate widths and
materials, and a square cross-section for the nanowire in (d).
Despite all these differences, the discrepancy of Pfit between
these setups is below 2%. This implies that the corrections
of the electrostatic potential to Pfit are small (for the range of
gate potentials studied in this work) and that, in practice, we
can neglect the dependence of Pfit with φ(�r).

APPENDIX G: IMPROVED Pmfit PARAMETER FOR THE
EFFECTIVE MASS OF ZINC-BLENDE InAa, InSb, GaAs,

AND GaSb NANOWIRES

In the main text, Sec. IV, we have stated that the conduction
band effective mass is properly described using Eq. (4), given
in terms of the original Kane parameter P. However, the
intra-valence band couplings ignored in the conduction band
approximation that are essential for the SO coupling could
also have had an impact on the effective mass. To demonstrate
that this is actually not the case, we follow the same reasoning
as in Sec. II B for the SO coupling, Eq. (8), and propose an
improved equation for the effective mass, where the original
P parameter is substituted by an improved one, Pmfit,

1

m( j)
improved

= 1

me
+ 〈

�
( j)
T

∣∣2P2
mfit

3h̄2

(
2

�g + eφ(�r) + E ( j)
T

+ 1

�soff + �g + eφ(�r) + E ( j)
T

)∣∣� ( j)
T

〉
. (G1)

Notice that the improved parameter for the effective mass,
Pmfit, is not the same as the one for the Rashba SO coupling,
Pfit, in the same way that the quantity between square brackets
in Eq. (4) is different from the one in Eq. (5). This can readily
be understood by following the conduction band approxima-
tion in terms of the Green’s function Dyson series explained
in Appendix B.

Following the same procedure as in Sec. III for the Rashba
SO coupling, we first compute the 8B model band structure
for a particular electrostatic environment. We consider here
the same one as in Fig. 7. From the conduction band shape,
we can extract the value of the effective mass by fitting Eq. (2)
to the energy subband j. In Fig. 9, we show these 8B model
results with dots for the first four transverse modes (columns)
and for different zinc-blende (111) semiconductor nanowires
(rows). Secondly, we fit Eq. (G1) to the 8B model results
of the lowest-energy subband (first column) in order to get
Pmfit for each material. The resulting fitting parameters are

TABLE IV. Parameter Pmfit (in meV nm units) to be used in
the improved equation for the effective mass, Eq. (G1), within
the conduction band approximation. This parameter is extracted by
fitting Eq. (G1) to numerical eight-band model calculations. For
comparison, we show the value of the original Kane parameter P.

Pmfit P

InAs (111) 921 ± 7 919.7
InSb (111) 950 ± 15 940.2
GaAs (111) 1039 ± 5 1047.5
GaSb (111) 977 ± 12 971.3

shown in Table IV. We then use these values to compute the
improved effective mass with Eq. (G1), shown with solid lines
in Fig. 9.

Note that the Pmfit values collected in Table IV turn out to
be essentially identical to their corresponding original Kane
parameter P. This means that the inter-valence band couplings
γi ignored in the zeroth-order conduction band approximation
have a minor impact on the effective mass of the conduction
band. Only the coupling between conduction and valence
bands, accounted by P, has a significant contribution to the
effective mass. This was further confirmed as a function of the
wire’s diameter Wwire in Fig. 6(b) at the end of Appendix B.
Thereforewe conclude that, even for low-dimensional systems
like the finite-width nanowires analyzed here, we can use the
original Kane parameter P in the zeroth-order effective mass
equation, Eq. (4), to a very good approximation. This is very
different from what happens to the SO coupling, as we argue
in depth in this paper.

Finally, we point out that the values generally used in
the literature for the different semiconductor effective masses
correspond to those obtained with the simplified version of the
zeroth-order conduction band approximation, Eq. (6). In par-
ticular, for the experiments analyzed in Sec. IV [25–27,62,64],
these masses are meff = 0.023me for InAs and meff = 0.014me

for InSb. In the simplified equation, the assumption �g 

|eφ(�r) + E | has been made, and thus the effective mass does
not depend on the electrostatic potential. Therefore there
could be a deviation between theory and experiments for large
gate voltages. To check this, in Fig. 9, we show the effective
mass provided by the simplified equation with dashed lines.
The difference between this approximation and the exact
results is always below 5% for the gate voltage range analyzed
here. For larger potential values, the effective mass seems to
converge to a constant value, so we expect that the error keeps
in the same order of magnitude.
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Peeters, J. Phys.: Condens. Matter 24, 135302 (2012).
[34] M. Ehrhardt and T. Koprucki, Multi-Band Effective Mass Ap-

proximations (Springer International Publishing, Switzerland,
2014), Vol. 94.

[35] A. A. Soluyanov, D. Gresch, M. Troyer, R. M. Lutchyn, B.
Bauer, and C. Nayak, Phys. Rev. B 93, 115317 (2016).

[36] N. Luo, G. Liao, and H. Q. Xu, AIP Adv. 6, 125109 (2016).
[37] T. Campos, P. E. Faria Junior, M. Gmitra, G. M. Sipahi, and J.

Fabian, Phys. Rev. B 97, 245402 (2018).
[38] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl.

Phys. 89, 5815 (2001).

[39] C. Thelander, K. A. Dick, M. T. Borgström, L. E. Fröberg, P.
Caroff, H. A. Nilsson, and L. Samuelson, Nanotechnology 21,
205703 (2010).

[40] S. A. Fortuna and X. Li, Semicond. Sci. Technol. 25, 024005
(2010).

[41] M. W. A. de Moor, J. D. S. Bommer, D. Xu, G. W. Winkler,
A. E. Antipov, A. Bargerbos, G. Wang, and N. van Loo, New J.
Phys. 20, 103049 (2018).

[42] J. D. S. Bommer, H. Zhang, O. Gül, B. Nijholt, M. Wimmer,
F. N. Rybakov, J. Garaud, D. Rodic, E. Babaev, M. Troyer,
D. Car, S. R. Plissard, E. P. A. M. Bakkers, K. Watanabe,
T. Taniguchi, and L. P. Kouwenhoven, Phys. Rev. Lett. 122,
187702 (2019).

[43] B. D. Woods, S. Das Sarma, and T. D. Stanescu, Phys. Rev. B
99, 161118(R) (2019).

[44] P. E. Faria Junior, T. Campos, C. M. O. Bastos, M. Gmitra,
J. Fabian, and G. M. Sipahi, Phys. Rev. B 93, 235204
(2016).

[45] P. Löwdin, J. Chem. Phys. 19, 1396 (1951).
[46] J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).
[47] E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957).
[48] T. Darnhofer and U. Rössler, Phys. Rev. B 47, 16020 (1993).
[49] T. B. Bahder, Phys. Rev. B 41, 11992 (1990).
[50] X. Cartoixà, D. Z.-Y. Ting, and T. C. McGill, J. Appl. Phys. 93,

3974 (2003).
[51] Y. Jiang, X. Ma, Y. Xu, and G. Song, J. Appl. Phys. 116, 173702

(2014).
[52] P. Wójcik, A. Bertoni, and G. Goldoni, Phys. Rev. B 97, 165401

(2018).
[53] G. W. Winkler, A. E. Antipov, B. van Heck, A. A. Soluyanov,

L. I. Glazman, M. Wimmer, and R. M. Lutchyn, Phys. Rev. B
99, 245408 (2019).

[54] S. D. Escribano, A. Levy Yeyati, Y. Oreg, and E. Prada, Phys.
Rev. B 100, 045301 (2019).

[55] L. O. Olsson, C. B. M. Andersson, M. C. Håkansson, J. Kanski,
L. Ilver, and U. O. Karlsson, Phys. Rev. Lett. 76, 3626 (1996).

[56] B. D. Woods, S. Das Sarma, and T. D. Stanescu, Phys. Rev. B
101, 045405 (2020).

[57] J. Reiner, A. K. Nayak, A. Tulchinsky, A. Steinbok, T. Koren,
N. Morali, R. Batabyal, J.-H. Kang, N. Avraham, Y. Oreg,
H. Shtrikman, and H. Beidenkopf, Phys. Rev. X 10, 011002
(2020).

[58] A. E. G. Mikkelsen, P. Kotetes, P. Krogstrup, and K. Flensberg,
Phys. Rev. X 8, 031040 (2018).

[59] I. van Weperen, B. Tarasinski, D. Eeltink, V. S. Pribiag, S. R.
Plissard, E. P. A. M. Bakkers, L. P. Kouwenhoven, and M.
Wimmer, Phys. Rev. B 91, 201413(R) (2015).

[60] M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series
on Semiconductor Parameters (World Scientific, Singapore,
2000), Vol. 1.

[61] A. E. Hansen, M. T. Björk, C. Fasth, I. C. Thelander, and L.
Samuelson, Phys. Rev. B 71, 205328(R) (2005).

[62] S. Dhara, H. S. Solanki, V. Singh, A. Narayanan, P. Chaudhari,
M. Gokhale, A. Bhattacharya, and M. M. Deshmukh, Phys. Rev.
B 79, 121311(R) (2009).

[63] A. Iorio, M. Rocci, L. Bours, M. Carrega, V. Zannier, L. Sorba,
S. Roddaro, F. Giazotto, and E. Strambini, Nano Lett. 19, 652
(2019).

[64] K. Takase, K. Tateno, and S. Sasaki, Appl. Phys. Express 12,
117002 (2019).

033264-22

https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1088/0268-1242/27/12/124003
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.7566/JPSJ.85.072001
https://doi.org/10.1393/ncr/i2017-10141-9
https://doi.org/10.1088/1361-6633/aa6ac7
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevB.86.085408
https://doi.org/10.1088/0953-8984/25/23/233201
https://doi.org/10.1038/s41578-018-0003-1
http://arxiv.org/abs/arXiv:1911.04512
https://doi.org/10.1088/0022-3727/46/31/313001
https://doi.org/10.1002/adma.201305929
https://doi.org/10.1021/acs.chemrev.9b00075
https://doi.org/10.1038/nnano.2014.306
https://doi.org/10.1038/nmat4176
https://doi.org/10.1021/nl301325h
https://doi.org/10.1103/PhysRevB.94.035444
https://doi.org/10.1038/s41598-017-01960-5
https://doi.org/10.1103/PhysRev.100.580
https://doi.org/10.1103/PhysRevLett.96.086405
https://doi.org/10.1103/PhysRevB.94.165202
https://doi.org/10.1103/PhysRevB.73.165319
https://doi.org/10.1088/0953-8984/24/13/135302
https://doi.org/10.1103/PhysRevB.93.115317
https://doi.org/10.1063/1.4972987
https://doi.org/10.1103/PhysRevB.97.245402
https://doi.org/10.1063/1.1368156
https://doi.org/10.1088/0957-4484/21/20/205703
https://doi.org/10.1088/0268-1242/25/2/024005
https://doi.org/10.1088/1367-2630/aae61d
https://doi.org/10.1103/PhysRevLett.122.187702
https://doi.org/10.1103/PhysRevB.99.161118
https://doi.org/10.1103/PhysRevB.93.235204
https://doi.org/10.1063/1.1748067
https://doi.org/10.1103/PhysRev.97.869
https://doi.org/10.1016/0022-3697(57)90013-6
https://doi.org/10.1103/PhysRevB.47.16020
https://doi.org/10.1103/PhysRevB.41.11992
https://doi.org/10.1063/1.1555833
https://doi.org/10.1063/1.4899247
https://doi.org/10.1103/PhysRevB.97.165401
https://doi.org/10.1103/PhysRevB.99.245408
https://doi.org/10.1103/PhysRevB.100.045301
https://doi.org/10.1103/PhysRevLett.76.3626
https://doi.org/10.1103/PhysRevB.101.045405
https://doi.org/10.1103/PhysRevX.10.011002
https://doi.org/10.1103/PhysRevX.8.031040
https://doi.org/10.1103/PhysRevB.91.201413
https://doi.org/10.1103/PhysRevB.71.205328
https://doi.org/10.1103/PhysRevB.79.121311
https://doi.org/10.1021/acs.nanolett.8b02828
https://doi.org/10.7567/1882-0786/ab460f


IMPROVED EFFECTIVE EQUATION FOR THE RASHBA … PHYSICAL REVIEW RESEARCH 2, 033264 (2020)

[65] J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev.
Lett. 78, 1335 (1997).

[66] D. M. Zumbühl, J. B. Miller, C. M. Marcus, K.
Campman, and A. C. Gossard, Phys. Rev. Lett. 89, 276803
(2002).

[67] S. A. Studenikin, P. T. Coleridge, N. Ahmed, P. J. Poole, and A.
Sachrajda, Phys. Rev. B 68, 035317 (2003).

[68] T. Schäpers, J. Knobbe, and V. A. Guzenko, Phys. Rev. B 69,
235323 (2004).

[69] H. C. Koo, J. H. Kwon, J. Eom, J. Chang, S. H. Han, and M.
Johnson, Science 325, 1515 (2009).

[70] R. L. Kallaher, J. J. Heremans, N. Goel, S. J. Chung, and M. B.
Santos, Phys. Rev. B 81, 075303 (2010).

[71] S. Nadj-Perge, V. S. Pribiag, J. W. G. van den Berg, K.
Zuo, S. R. Plissard, E. P. A. M. Bakkers, S. M. Frolov,
and L. P. Kouwenhoven, Phys. Rev. Lett. 108, 166801
(2012).

[72] P. Zellekens, N. Demarina, J. Janßen, T. Rieger, M. I. Lepsa, P.
Perla, G. Panaitov, H. Lüth, D. Grützmacher, and T. Schäpers,
Semicond. Sci. Technol. 35, 085003 (2020).

[73] S. Chakravarty and A. Schmid, Phys. Rep. 140, 193 (1986).
[74] C. W. J. Beenakker and H. van Houten, Phys. Rev. B 38, 3232

(1988).
[75] C. Kurdak, A. M. Chang, A. Chin, and T. Y. Chang, Phys. Rev.

B 46, 6846 (1992).
[76] J. Robertson, Eur. Phys. J. Appl. Phys. 28, 265 (2004).
[77] S. Das and A. Ghosh, AIP Adv. 5, 027125 (2015).
[78] Y. Gindikin and V. A. Sablikov, Eur. Phys. J.: Spec. Top. 229,

503 (2020).
[79] S. D. Escribano, A. L. Yeyati, and E. Prada, Beilstein J.

Nanotechnol. 9, 2171 (2018).

[80] S. D. Escribano, A. Levy Yeyati, and E. Prada, Improved
effective equation for the Rashba spin-orbit coupling in
semiconductor nanowires, Zenodo repository (2020), doi:
10.5281/zenodo.3955688.

[81] M. Willatzen and L. C. L. Y. Voon, The k·p Method (Springer,
Berlin, Heidelberg, 2009).

[82] C. M. O. Bastos, F. P. Sabino, P. E. F. Junior, T. Campos,
J. L. F. D. Silva, and G. M. Sipahi, Semicond. Sci. Technol.
31, 105002 (2016).

[83] M. G. Burt, J. Phys.: Condens. Matter 4, 6651 (1992).
[84] B. A. Foreman, Phys. Rev. B 56, R12748 (1997).
[85] R. G. Veprek, S. Steiger, and B. Witzigmann, Phys. Rev. B 76,

165320 (2007).
[86] W. Yang and K. Chang, Phys. Rev. B 72, 233309

(2005).
[87] H.-B. Wu, S. J. Xu, and J. Wang, Phys. Rev. B 74, 205329

(2006).
[88] I. Tan, G. L. Snider, L. D. Chang, and E. L. Hu, J. Appl. Phys.

68, 4071 (1990).
[89] C. E. Pryor and M.-E. Pistol, J. Appl. Phys. 118, 225702 (2015).
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