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Three identical bosons: Properties in noninteger dimensions and in external fields
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Three-body systems that are continuously squeezed from a three-dimensional space into a two-dimensional
space are investigated. Such squeezing can be obtained by means of an external confining potential acting
along a single axis. However, this procedure can be numerically demanding, or even undoable, especially for
large squeezed scenarios. An alternative is provided by use of the dimension d as a parameter that changes
continuously within the range 2 � d � 3. The simplicity of the d calculations is exploited to investigate the
evolution of three-body states after progressive confinement. The case of three identical spinless bosons with
relative s waves in three dimensions and a harmonic oscillator squeezing potential is considered. We compare
results from the two methods and provide a translation between them, relating dimension, squeezing length, and
wave functions from both methods. All calculations are then possible entirely within the simpler d method, but
simultaneously providing the equivalent geometry with the external potential.
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I. INTRODUCTION

Specific cold atomic or molecular gases can be controlled
by external fields to previously unprecedented accuracy [1,2].
This manipulation consists of two relevant ingredients, i.e.,
(i) the two-body effective interactions can be varied contin-
uously between strong attraction and strong repulsion, while
the system is still confined by an external trap, and (ii) the
geometric space allowed by the particles can be designed at
will and restricted to large volumes in three dimensions, flat or
curved surfaces in two dimensions, linearity in one dimension,
or anything between these geometries. The properties of the
systems differ substantially depending on the confinement,
which in practice can be varied by use of an external deformed
potential, where one or more dimensions can be squeezed
down to vanishing size.

Together with the dimension, d , the properties depend also
on the number of particles [3]. However, so far only the d
dependence of the relative motion of the simplest systems
has been studied by various methods [4–6]. Two particles
squeezed between integer dimensions are obviously the sim-
plest case, but beside its inherent interest, it is also necessary
in investigations of three particles. One advantage is that the
two masses only enter in the relative motion as the reduced
mass, and only as a factor in the overall scale parameter. This
is reported in previous papers using both momentum-space
coordinates [6,7] and ordinary space coordinates [8–10].

*e.garrido@iem.cfmac.csic.es

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Recently, a d-dependent formulation has been presented
and applied to two-body systems [9,10]. The basic assumption
is to use d as a parameter that can take noninteger values,
in such a way that the external squeezing potential does not
appear at all but, instead, is substituted by the correspondingly
modified Schrödinger equation depending on d and the parti-
cle number, N [11,12]. The required numerical effort is similar
to a standard calculation for an integer dimension, but where
the external potential has disappeared. In these works, [9,10],
the equivalence between the d-dependent method and the
more direct procedure working in three dimensions, including
explicitly the external squeezing potential, was investigated.
In the case of a squeezing harmonic oscillator potential a
connection between the oscillator length and the equivalent
dimension d was found.

In this work we extend the method presented in
Refs. [9,10] to three-body systems. First, we describe in
Sec. II how the hyperspherical adiabatic expansion method
can be implemented to study three-body systems in a d-
dimensional space. In Sec. III we then describe how the adia-
batic expansion can be used as well to treat the same problem
in a direct way, i.e., describing the system in three dimensions,
but introducing explicitly the external squeezing potential.
This procedure, although formally not very complicated, often
leads to calculations that, especially for large squeezing, are
out of numerical reach. The connection between the dimen-
sion and the external field, and the interpretation of the d-
dimensional wave function are described in Secs. IV and V,
respectively.

The two methods are applied to systems made of three
identical spinless bosons and relative s waves in three dimen-
sions. In Sec. VI we specify the applied two-body potentials
giving rise to different three-body scenarios. In Secs. VII
and VIII the evolution of the three-body bound states after
progressive squeezing is investigated for each of the two
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methods. A translation between the parameter, d , and the
squeezing potential is investigated in Sec. IX, where the wave
function in d dimensions is interpreted as a deformed wave
function in the ordinary three-dimensional (3D) space. We
close in Sec. X with a summary and the conclusions.

II. THREE BOSONS IN d DIMENSIONS

From a general perspective, the description of a given N-
body system requires solving the Schrödinger equation⎡

⎣−
N∑

i=1

h̄2

2mi
�ri + h̄2

2M
�Rcm +

∑
i< j

Vk (ri j ) − ENb

⎤
⎦� = 0,

(1)
where mi and ri are the mass and position vector of parti-
cle i, respectively, M = ∑

mi is the total mass, and Rcm is
the N-body center-of-mass coordinate. The kinetic energy
due to the center-of-mass motion is then explicitly removed.
The potential Vk (ri j ) is the interaction between particle i and
particle j, which is assumed to depend on the relative vector,
ri j , between the two particles. Finally, ENb is the total N-body
energy.

The one-body kinetic energy operator for N particles can
be expressed in terms of the hyperradius, ρ, and all the
remaining necessary angles, the hyperangles, related to the
relative degrees of freedom [12]. The square, ρ2, of the
hyperradius is defined in terms of the particle coordinates and
the arbitrary normalization mass, m, as

ρ2 = 1

m

N∑
i=1

mi(ri − Rcm )2 =
∑
i< j

mimj

mM
(ri − r j )

2, (2)

which can be separated into the Cartesian coordinate contri-
butions, i.e.,

ρ2 = ρ2
x + ρ2

y + ρ2
z . (3)

The hyperradial part of the reduced equation of motion
has the usual second derivative operator and a centrifugal
term, ( f − 1)( f − 3)/(4ρ2), where f is the number of relative
degrees of freedom. For a given N-body system in a general
d-dimensional space it is then clear that f = d (N − 1), which
results in the equation of motion in d dimensions given in
[12], i.e., [

− ∂2

∂ρ2
+ �d,N (�d,N + 1) + �̂2

d,N (�d,N )

ρ2

+ 2m

h̄2

∑
i< j

Vk (ri j ) − 2mEd,N

h̄2

⎤
⎦ψd,N = 0, (4)

where the generalized angular momentum quantum number,
�d,N , is given by

�d,N = f − 3

2
= 1

2
(d (N − 1) − 3) (5)

and where �̂2
d,N , which depends on the hyperangles �d,N , is

the generalization to N particles and d dimensions of the usual
hypermomentum operator [11]. The energy ENb in Eq. (1) is
now denoted Ed,N , making explicit the dependence on the

dimension. Finally, the phase-space reduced wave function,
ψd,N , is expressed in terms of the total wave function, �d,N ,
as

ψd,N = ρ�d,N +1�d,N . (6)

Once the two-body interaction potentials, Vk , are defined,
different procedures can be used to reduce Eq. (4) to a set
of equations depending only on the hyperradius [13]. The
key in all of them consists in expanding the wave function
in a certain basis set that contains the whole dependence on
the hyperangles (for instance, the eigenfunctions of the �̂2

d,N
operator), in such a way that projection of Eq. (4) on the
different basis terms immediately leads to a coupled set of
differential equations for the radial function coefficients.

A. The three-body case

Being more specific, and focusing on three-body systems,
N = 3, the total three-body wave function in d dimensions
is obtained in this work by solving the Faddeev equations
leading to the Schrödinger equation, (4). In particular, the
wave function is written as

�d = ψd

ρ
2d−1

2

= 1

ρ
2d−1

2

∑
n

f (d )
n (ρ)

3∑
i=1


(d,i)
n (�d ), (7)

where �d ≡ �d,3 and where the angular functions, 
(d,i)
n ,

which form a complete basis set, are the eigenfunctions, with
eigenvalue λ(d )

n (ρ), of the d-dependent angular part of the
Faddeev equations (see [11] for details).

Once the angular part has been solved, projection of Eq. (4)
on these angular functions leads to the following coupled set
of differential equations from which the radial wave functions
f (d )
n in expansion (7) can be obtained:[

− ∂2

∂ρ2
+ 1

ρ2

(
λ(d )

n (ρ)+ (2d−3)(2d−1)

4

)
−2mEd

h̄2

]
f (d )
n (ρ)

=
∑

n′

(
2Pnn′ (ρ)

∂

∂ρ
+ Qnn′ (ρ)

)
f (d )
n′ (ρ), (8)

where the angular eigenvalues λ(d )
n (ρ) enter as effective poten-

tials, the explicit form of the coupling terms Pnn′ and Qnn′ can
be found in Ref. [11], and Ed is the energy of the three-body
system moving in the d-dimensional space (Ed ≡ Ed,3).

The method used is just the hyperspherical adiabatic
expansion method, derived in detail in Ref. [11] for any
arbitrary dimension d . The generalization of the spherical
harmonics to d dimensions can be found, for instance, in
Appendix B of Ref. [11]. They depend on the d − 1 angles
needed to specify the direction of a given vector coordinate in
d dimensions. This of course makes sense for integer values
of d , which leads to an integer number of well-defined angles
(for instance, two angles for d = 3 or one angle for d = 2).
However, when d is allowed to take noninteger values, the
definition of the angles and therefore the definition of the
spherical harmonics is not obvious.

To overcome this problem we restrict ourselves to s waves,
i.e., zero relative orbital angular momenta between the par-
ticles. In this way the angular dependence of the spherical
harmonics disappears (see the Appendix).
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III. HARMONIC CONFINEMENT

The method presented in the previous section appears as
an alternative to the natural way of confining an N-particle
system, which is to put it under the effect of an external
potential that forces the particles to move in a limited region
of space. Therefore, from the theoretical point of view, the
problem to be solved is just the one given in Eq. (1) applied
in three dimensions, but where both the interaction between
particles,

∑
i< j Vk , and the trap potential, Vtrap, have to be

included.
An important point to keep in mind is that the energy ENb

in Eq. (1) is now the total N-body energy, in such a way that
the energy of the squeezed system requires subtraction of the
(diverging for d → 2) zero-point energy of an N-body system
trapped by the potential Vtrap.

In this work we consider an external harmonic oscillator
potential acting along the z direction. The frequency of the
potential is written as

ω = h̄

mωb2
ho

, (9)

where mω is some arbitrary mass, and bho is referred to
as the harmonic oscillator length parameter. Obviously, the
smaller bho, the more confined the particles, and eventually,
for bho = 0 the particles can move only in a two-dimensional
(2D) space.

The relative trap potential (the center-of-mass part is sepa-
rated and omitted) can therefore be written as

Vtrap = 1

2
ω2

N∑
i=1

mi(zi − Zcm )2, (10)

where zi and Zcm are the z components of ri and Rcm, re-
spectively, and where Zcm, together with the kinetic energy
term h̄2�Rcm/2M in Eq. (1), is introduced to remove the
contribution from the center-of-mass motion.

The squeezing potential can be written in a more compact
way as

Vtrap = 1
2 mω2ρ2

z , (11)

where m is the arbitrary normalization mass introduced in
Eq. (2), and ρ2

z refers to the z contribution of the square of
the generalized hyperradius vector size defined in Eqs. (2)
and (3).

For this particular case, and making more specific the
discussion above, the energy of the squeezed system is given
by Eext = ENb − Eho, where Eho = (N − 1)h̄ω/2 is the zero-
point energy in the one-dimensional (1D) squeezed oscillator
for N − 1 relative degrees of freedom.

A. The three-body case

Let us focus now on the three-body case, and let us assume
an external harmonic oscillator one-body squeezing potential
which, as in Eqs. (10) and (11), acts along the z axis. From
the definition of the x and y Jacobi coordinates [11], it is not
difficult to see that the trap potential felt by the three particles

can be written as

1

2
ω2

3∑
i=1

mir
2
i cos2 θi = 1

2
mω2x2 cos2 θx

+1

2
mω2y2 cos2 θy + 1

2
Mω2R2

cm cos2 θcm, (12)

where θx and θy are the polar angles associated with the x and
y Jacobi coordinates, respectively. Therefore, after removal of
the three-body center-of-mass motion the total trap potential
takes the form

Vtrap(x, y, θx, θy) = 1
2 mω2x2 cos2 θx + 1

2 mω2y2 cos2 θy, (13)

which is nothing but the particularization to three particles of
Eq. (11).

A more convenient way of writing the trap potential can
be obtained by working from the beginning in the three-body
center of mass. This means that all coordinates are measured
relative to the center of mass, Rcm. In turn, this implies that the
coordinate ri − Rcm corresponding to particle i is proportional
to the y Jacobi coordinate in the Jacobi set i. Formally, we can
then insert Rcm = 0 and, in the center-of-mass system, arrive
at (see [11])

ri =
√

m

mi

√
mj + mk

mi + mj + mk
yi, (14)

from which the potential in Eqs. (12) or (13), can also be
written as

Vtrap =
3∑

i=1

V (i)
trap = 1

2
mω2

3∑
i=1

mj + mk

mi + mj + mk
y2

i cos2 θyi .

(15)
This last form of the squeezing potential is particularly useful
when, instead of solving directly the Schrödinger equation,
(1), the equation is split into its three Faddeev components.

The numerical procedure will be the same as the one shown
in the previous section, i.e., we solve the Faddeev equations
in coordinate space by means of the hyperspherical adiabatic
expansion method described in Ref. [11]. The full calculation
is now performed in three dimensions, and therefore the three-
body wave function will be written as in Eq. (7) but with d =
3, that is,

�ext = 1

ρ5/2

∑
n

fn(ρ)
3∑

i=1


(i)
n (ρ,�i ), (16)

where ρ is the hyperradius and �i collects the five hyperangles
associated with the Jacobi coordinates {xi, yi}, where i runs
over the three possible Jacobi sets [11].

Again, the angular functions 
(i)
n are obtained as the eigen-

functions of the angular part of the Faddeev equations, and
as in the previous section, the radial wave functions fn(ρ) in
the expansion, Eq. (16), are obtained after solving the coupled
set of radial equations (8), but now particularized for d = 3.
The energy obtained in this way, E3b, is the total energy,
system plus external field, in such a way that the energy of
the confined system will be obtained after subtraction of the
harmonic oscillator energy, i.e., Eext = E3b − Eho, which, in
our case of squeezing two coordinates along one direction [see
Eq. (13)], means Eext = E3b − h̄ω.
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As shown in Ref. [11], the angular functions 
(i)
n are

obtained after expanding them in terms of the hyperspherical
harmonics. Calculation of the ρ-dependent coefficients in this
expansion requires calculation of the matrix elements of the
full potential in between all the hyperspherical harmonics
included in the basis set. Due to the presence of the squeezing
term, (15), the calculation of these matrix elements involves
calculation of the integral

W
�′

x�
′
yL′M ′

�x�yLM =
∫

d�xd�y
[
Y ∗

�x
(�x ) ⊗ Y ∗

�y
(�y)

]LM

× cos2 θy
[
Y�′

x
(�x ) ⊗ Y�′

y
(�y)

]L′M ′
, (17)

where �x and �y are the orbital angular momenta associated
with the Jacobi coordinates x and y, respectively, which
couple to the total angular momentum L. For simplicity in
the notation, we have assumed spinless particles, although
the generalization to particles with nonzero spin is straight-
forward.

The integral in Eq. (17) is analytical, and it takes the form

W
�′

x�
′
yL′M ′

�x�yLM

= δ�x�′
x
δMM ′

∑
L̃

(−1)�x+M (2L̃ + 1)L̂L̂′�̂y�̂′
y

(
1 1 L̃
0 0 0

)2

×
(

�y L̃ �′
y

0 0 0

)(
L L̃ L′

−M 0 M

){
L L̃ L′
�′

y �x �y

}
, (18)

where �̂ means
√

2� + 1.
Therefore, the integral, Eq. (17), or, in other words, the trap

potential, Eq. (15), mixes the relative angular momenta �y and
�′

y and the total angular momenta L and L′, which is then not a
good quantum number (unless the trap potential is equal to 0).
The projections M and M ′ are not mixed, and their conserved
value determines the 2D angular momentum after an infinite
squeezing of the particles along the z axis.

In this work we consider the case of three identical spinless
bosons, and for the case of no squeezing only s waves are
considered. In other words, in three dimensions the system
will have quantum numbers L = 0 and M = 0, which implies
that, throughout the squeezing process, the conserved quan-
tum number M will be equal to 0.

IV. TRAP VERSUS THE d PARAMETER

The practical use of the d formalism described in Sec. II
depends on how to relate to parameters used in the labora-
tory setup. A universal connection was established for any
two-body system squeezed from three to two dimensions by
an external one-body oscillator field [9,10]. The provided
relationship then allows us to use the parameter d in the
calculation and uniquely relate to an oscillator frequency or
length parameter, or, in principle, vice versa.

We would like to generalize to three-body systems, but
the degrees of freedom and related structures are now much
larger. To begin this search we start with the very general
formulation of N two-body interacting particles. As described
in the previous two sections, the controlling equations are
described in terms of hyperspherical coordinates, where the
hyperradius is the most important coordinate in a widely

applicable expression. The reason is that, if the hyperangles
were important, the internal N-body structure would influence
the connection. This in turn can only appear through a com-
plicated interpretation of the “spherical” wave function in the
d calculation.

To understand the relation between d and bho a little better,
we use a simple model with an oscillator as the internal
two-body interaction. Therefore, the sum of the two-body
interactions entering in Eqs. (1) and (4) takes the form

∑
i< j

Vk (ri j ) = ω2
pp

2M

∑
i< j

mimj (ri − r j )
2

= 1

2
mω2

ppρ
2, (19)

where Eq. (2) has been used and where ωpp describes the
strength of the given particle-particle interaction.

Equations (1) and (4) are then pure harmonic oscillator
equations, and the corresponding energy solutions for the d
calculation and the calculation with an external field, respec-
tively, are [3]

Ed = h̄ωpp(�d,N + 3/2) = 1
2 d (N − 1)h̄ωpp, (20)

where Eq. (5) has been used, and

Eext = h̄ωpp(N − 1)

+ (N − 1)

2
h̄
√

ω2
pp + ω2 − h̄ω

(N − 1)

2
, (21)

where the first term is from the two nonsqueezed perpendicu-
lar directions, the second term is from the squeezed direction,
and the last term removes the diverging zero-point energy.
The factor N − 1 in all terms refers to the number of relative
degrees of freedom for N particles. The two limits ω = 0 and
ω = ∞ produce the oscillator results corresponding to d = 3
and d = 2.

If the two procedures are assumed to be equivalent, we then
must have that the expressions in Eqs. (20) and (21) have to
be equal, which, after division throughout by h̄ωpp, results in

d = 2 +
√

1 + ω2/ω2
pp − ω/ωpp (22)

and

ω

ωpp
= b2

pp

b2
ho

= − (d − 1)(d − 3)

2(d − 2)
, (23)

where b2
pp = h̄/(mωpp) and mω in Eq. (9) is taken as mω =

m. This relation is independent of the number of particles,
N , and it is only an average estimate where all structure is
absent. This observation is perhaps enhanced by having three
identical bosons in the ground state.

The relation given in Eq. (23) reveals the correct limit at the
initial and final dimensions, which means that the squeezing
length bho approaches ∞ or 0, respectively, for the cases of
no squeezing (d = 3) and infinite squeezing (d = 2). Also,
these results and conclusions could be achieved from working
directly with the special cases of the present interest, N = 2
and 3.

When using the harmonic oscillator two-body potentials in
Eq. (19), beside the energies, Eqs. (20) and (21), the wave
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functions, solutions of Eqs. (1) and (4), are also available for
the two methods. They are very different in structure, since
one is spherical but in d dimensions, and the other is deformed
in three dimensions. The ground states are Gaussians in both
cases corresponding to oscillators.

In particular, for the d calculation, the N-body ground-state
oscillator wave function, �N,d , is a Gaussian, which is

�d,N ∝ exp

(
− ρ2

2b2
pp

)
, (24)

where bpp, as defined below Eq. (23), is the oscillator length
associated with the two-body interaction, (19).

Similarly, for the case of confinement with an external
field, the ground-state oscillator wave function, �ext, is also
a Gaussian,

�ext ∝ exp

(
− ρ2

⊥
2b2

⊥

)
exp

(
− ρ2

z

2b2
z

)
, (25)

where the oscillator lengths are

b2
z = h̄

m
√

ω2
pp + ω2

, (26)

coming from the combination of the two-body and the squeez-
ing oscillators acting along the z axis, and

b2
⊥ = b2

pp = h̄

mωpp
, (27)

which results from the two-body oscillator acting on the plane
perpendicular to the z axis, and where ρ⊥ and ρz are defined
as

ρ2
⊥ = x2

⊥ + y2
⊥, ρ2

z = x2
z + y2

z , (28)

with {xz, yz} and {x⊥, y⊥} being, respectively, the z and per-
pendicular components of the Jacobi coordinates {x, y}.

Assuming equality between the wave functions in Eqs. (24)
and (25) from the two methods we infer that the perpendicular
length scale should remain unchanged, while the z direction
should change from bpp to bz. This results in a deformation
along the z axis of the d wave function that reproduces the
one of the external field. The deformation obviously depends
on d or confinement as expressed through Eqs. (22), (26), and
(27).

These ground-state wave functions are exact for oscillators,
and the large distance is asymptotically correct as soon as
an oscillator confining trap is used. On the other hand, with
the d method the asymptotic wave function for a bound state
falls off exponentially outside the determining short-range
potential.

A short-range interaction more appropriate than the oscil-
lator could clearly be found, e.g., a Gaussian of finite range.
Instead in the next section we elaborate and improve on the
above approximations.

V. THE d-DIMENSIONAL WAVE FUNCTION

Let us now compare the two three-body wave functions,
�d in Eq. (7) and �ext in Eq. (16), each obtained with their
corresponding methods. The values of the dimension, d , and

the external field parameter, bho, will be such that the ground-
state energy is the same in both calculations.

The comparison between the two wave functions is done
following closely the procedure used in Ref. [10] for two-body
systems. The main idea, as suggested in the previous section
when making Eqs. (24) and (25) equal, is to interpret the d-
dimensional wave function, �d , as a deformed wave function
in the ordinary 3D coordinate space. The Jacobi coordinates,
x and y, in d dimensions are then redefined in the 3D space
as x̃ and ỹ, with ordinary 3D Cartesian components. However,
since the squeezing is assumed to take place along the z axis
the deformation will take place along that axis, and the z
components of the 3D vectors x̃ and ỹ will be deformed. Both
Jacobi coordinates will be deformed in the same way, which
amounts to assuming that all the particles feel the squeezing
equally.

More precisely, the modulus of the Jacobi coordinates is
redefined as

x → x̃ =
√

x2
⊥ + (xz/s)2, (29)

y → ỹ =
√

y2
⊥ + (yz/s)2, (30)

from which it is possible to construct the usual hyperspherical
coordinates in three dimensions, i.e., ρ̃ = (x̃2 + ỹ2)1/2, α̃ =
arctan(x̃/ỹ), and �̃x̃ and �̃ỹ, which are the polar and azimuthal
angles giving the directions of x̃ and ỹ.

The scale parameter, s, controls the deformation of the
wave function, in such a way that for s = 1 the wave function
is not deformed, and for s = 0 only xz = 0 and yz = 0 are
possible, and the system is therefore fully squeezed into a 2D
space. The introduction of the parameter, s, and the interpre-
tation of �d as a deformed wave function in three dimensions
makes it necessary to renormalize the wave function to �̃d =
�d/C(s), where C(s) is given by

C2(s) =
∫

d3xd3y|�d (x⊥, xz, y⊥, yz, s)|2. (31)

As in Ref. [10], the wave functions, �ext and �̃d , are
compared through their overlap, i.e.,

O(s) =
∫

d3xd3y�∗
ext (x, y)�̃d (x⊥, xz, y⊥, yz, s), (32)

which can be used as a measure of the accuracy of the scaling
interpretation of the initially spherical d-dimensional wave
function. The scale parameter could temptingly be extracted
as the value of s maximizing O(s).

The deformation choice described by Eqs. (29) and (30)
is just an estimate of the actual wave-function deformation,
where the scale factor is taken to be constant. Other different
choices are certainly possible, for instance, considering the
scale factor, s, to be a function of xz and yz. In any case
the overlap described in Eq. (32) must be smaller than 1.
As a general rule, the smaller the squeezing, the closer to
1 the overlap, or, in other words, the better the deformation
interpretation as expressed in Eqs. (29) and (30).

It is worth emphasizing that the overlap must be unity in
both limits of three dimensions (no squeezing) and two dimen-
sions (infinite squeezing). In three dimensions it is obvious,
since both wave functions are solutions of the same equation,
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Eq. (4), for N = 3 and d = 3. The maximum overlap between
the two solutions will then obviously be equal to 1, and no
deformation of the d-wave function will be necessary (i.e.,
s = 1). In two dimensions the wave functions from the two
methods must also be identical, since they are solutions to
the same problem in two dimensions no matter how they are
obtained. The maximum overlap is then again equal to 1 but
now corresponding to s = 0. As will be shown, the problem in
this case is the difficulty in reaching this limit with the external
squeezing potential.

The similarity between the two wave functions, �ext and
�̃d , can be visualized by expanding �̃d in terms of the angular
eigenfunctions, 
(i)

n (ρ,�), used to expand �ext in Eq. (16),
i.e.,

�̃d (x⊥, xz, y⊥, yz, s) = 1

ρ5/2

∑
n

f̃ (d )
n (ρ, s)

3∑
i=1


(i)
n (ρ,�i ),

(33)
which, due to the orthogonality of the angular functions, leads
to

f̃ (d )
n (ρ, s) = ρ5/2

∫
d�
∗

n(ρ,�)�̃d (x⊥, xz, y⊥, yz, s), (34)

where 
n = ∑
i 


(i)
n and d� is the usual phase space as-

sociated with the hyperangles for three particles in three
dimensions. The difference between the �ext and �̃d is then
due exclusively to the different behavior of the radial wave
functions fn(ρ) and f̃ (d )

n (ρ).
After this interpretation of the d-dimensional wave func-

tion, based on Eqs. (29) and (30), we have that the wave
function, Eq. (24), obtained for the harmonic oscillator two-
body interaction, Eq. (19), can be understood as an ordinary
3D wave function, which has the large-distance asymptotic
behavior

�̃d,N ∝ exp

(
− ρ̃2

2b2
pp

)
= exp

(
− ρ2

⊥
2b2

pp

)
exp

(
− ρ2

z

2s2b2
pp

)
,

(35)
where ρ⊥ and ρz are given in Eq. (28).

For this wave function to equal that of Eq. (25), obtained
with an external field, and keeping in mind that bpp = b⊥, it is
simple to see that we must have

1

s2
= b2

pp

b2
z

=
√

1 + ω2

ω2
pp

, (36)

where Eqs. (26) and (27) have been used.
Now making use of Eq. (23), we finally obtain a crude

estimate of the relation between the scale parameter, s, the
squeezing harmonic oscillator parameter, bho, and the dimen-
sion, d:

1

s2
= b2

pp

b2
z

=
√

1 + b4
pp

b4
ho

=
√

1 +
(

(d − 1)(d − 3)

2(d − 2)

)2

. (37)

This estimate is clearly very simple but at the same time
independent of any details referring to the squeezing process.
Thus it must necessarily be an approximation when applied to
large squeezing corresponding to distances influenced by the
short-range interaction.

TABLE I. Strengths, S, of the Gaussian (Ag and Bg) and Morse
(Am and Bm) two-body potentials used in this work. For each of them
we list the binding energy of the existing two-body bound states in
two dimensions, E (2bd)

2D , and in three dimensions, E (2bd)
3D , as well as

the corresponding 2D and 3D scattering lengths, a2D and a3D. The
energies and lengths are given in units of h̄2/mb2 and b, respectively,
where m is the mass of each particle and b is the range of the
interaction.

Potential S E (2bd)
2D a2D E (2bd)

3D a3D

Ag −2.86 −0.538 1.883 −3.301 × 10−3 18.122
Bg −14.50 −7.918 3.916 −5.075 −0.201

−0.134
Am 0.95 −0.148 3.536 −3.751 × 10−3 18.122
Bm 3.34 −1.327 19.783 −0.665 −0.201

−3.971 × 10−3

VI. RESULTS: TWO-BODY POTENTIALS

In this work we consider three identical spinless bosons.
This is a particularly simple case, since the three terms of
the confining potential, Eq. (15), are then identical. This fact
has the advantage that with the proper choice of the energy
and length units, the equations of motion become independent
of the mass of the particles. For three different masses the
dependence of the squeezing potential on the mass ratios
becomes unavoidable.

In particular, we take mω in Eq. (9) and the normalization
mass, m, used to construct the Jacobi coordinates equal to
each other and equal to the mass of each of the particles.
The length unit will be some length characterizing the boson-
boson potential, which in our case will be the range, b, of
the short-range interaction acting between them. The energy
unit will be taken equal to h̄2/mb2. When this is done, the
dependence on m of Eqs. (1) and (4), or, equivalently, of
Eq. (8), disappears.

In this work we consider two different shapes for the
two-body potentials, a Gaussian potential and a Morse-like
potential. After choosing the range of the interaction as the
length unit, these two potentials can be written as Se−r2

and
S(e−2r − 2e−r ), respectively. For each shape we have taken
two different potentials, whose corresponding strengths are
given in the second column in Table I. These potentials give
rise to a series of bound two-body states in two and three
dimensions, whose corresponding binding energies, E (2bd)

2D

and E (2bd)
3D , are listed in the third and fifth columns in the table,

respectively. In the fourth and sixth columns we give for each
potential the scattering length in two dimensions, a2D, and in
three dimensions, a3D (see Ref. [11] for definitions).

The Gaussian and Morse potentials are called potentials
Ag, Bg and Am, Bm, respectively. The main difference between
them is the number of two-body bound states in two and three
dimensions. Potentials A have the same number of bound
states, one, in two and three dimensions, whereas potentials
B have one bound state in three dimensions but two in two
dimensions. Note that potentials Ag and Am, and Bg and Bm,
have the same value of the 3D scattering length a3D. Potentials
A have a large value of a3D, which is reflected in the small
binding of the 3D ground state. Potentials B have a quite
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FIG. 1. For the Gaussian potential Ag and an external squeezing
harmonic oscillator field, we show the three-body ground-state bind-
ing energy, Eext = E3b − Eho, as a function of the maximum �y value,
�max, used on each Jacobi set. The results with different values of
the squeezing parameter bho are shown. The lower and higher dashed
horizontal lines indicate the 2D and 3D energies, respectively. The
energy is in units of h̄2/mb2, where m is the mass of each particle
and b is the range of the interaction.

modest and negative value of a3D, which indicates that the
first excited state, although unbound, is not very far from
the threshold. Potential Bm has a positive large value of a2D,
responsible for the little binding of the first excited two-body
state. Potentials A are the ones called potentials II in Ref. [10],
although in this work the length unit is a factor of 2 smaller
than the one used in Ref. [10].

VII. RESULTS: EXTERNAL FIELD CASE

As mentioned several times, the most direct way to inves-
tigate particle confinement consists in including the external
potential in the problem to be solved. In our case this means
solving the three-body problem as described in Sec. III A,
where the squeezing potential enters explicitly.

However, this method presents two main problems. The
first one refers to the fact that, as seen in Eq. (18), although
�x (taken equal to 0 in this work) is conserved all along
the squeezing process, the orbital angular momentum �y and,
therefore, L as well are no longer good quantum numbers.
This mixing of partial waves is introduced by the squeezing
potential, and in fact, the larger the squeezing of the particles
the more partial waves are needed.

This is illustrated in Fig. 1, where we show for the Gaussian
potential Ag in Table I how the ground-state energy, Eext =
E3b − Eho, of the confined three-body system converges as
a function of �max, where �max refers to the maximum value
of �y = L included in each of the Faddeev components. The
lower and higher dashed horizontal lines in the figure indicate
the ground-state energy after a pure 2D and a pure 3D calcu-
lation, respectively. The results are shown for different values
of the squeezing parameter bho.

As we can see, for sufficiently large values of bho the
convergence is very fast and just a few �y components, very
often only one, are enough. Eventually, for very large bho the

0 1 2 3 4 5
ρ

0

1000

2000

3000

λ n(ρ
)

Potential A
g

FIG. 2. Thirty lowest λn functions for potential Ag with a squeez-
ing external harmonic oscillator field of oscillator length bho = 0.2,
and �max = 14.

3D energy is recovered. With decreasing bho we observe that
higher and higher values of �max are needed. For instance,
for bho = 0.5 the components with �y up to at least 14 are
necessary to get convergence. For a sufficiently small value
of bho the converged energy should eventually match the 2D
energy indicated by the lower dashed straight line in the
figure.

However, getting the same kind of curve for smaller values
of bho is not simple. This is due to the second problem to be
faced when solving the three-body equations with an external
potential, which refers to the convergence of the expansion
in Eq. (16). The number of terms needed for convergence
increases with the confinement of the particles. This should
not be a big problem in itself, except for the fact that when
the squeezing of the particles increases (small bho values), the
number of crossings between the different λn functions enter-
ing in Eq. (8) becomes eventually too high, which increases
the computing time dramatically. This problem is actually
enhanced by the fact that, as explained above, the number of
required partial waves increases as well with the confinement.

As an illustration we show in Fig. 2 the 30 lowest λn(ρ)
functions for potential Ag, bho = 0.2, and �max = 14. To deal
with such a huge number of crossings is very time-consuming
and makes this method rather inefficient close to two dimen-
sions. Towards this limit the method of correlated Gaussians
[4] might, for example, be used, although the advantage of
very similar basis functions would then also disappear. The
choice is then between using different methods in the two
limits or the same method with inherent loss of efficiency in
one of the limits.

The conclusion is therefore that to include explicitly the
external potential as described in Sec. III A is not very conve-
nient in the case of large squeezing. To reach convergence for
low values of the squeezing parameter becomes at some point
too troublesome. In Fig. 3 we show the computed converged
energies of the three-body ground state for the four potentials
listed in Table I as a function of bho. In the limit of bho = 0
the 2D energies indicated by the arrows in the figure should
be reached.
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FIG. 3. For the case of squeezing with an external harmonic
oscillator field, the absolute value of the converged three-body
ground-state energies (in units of h̄2/mb2) for the Gaussian potentials
Ag (solid line) and Bg (dashed line) and the Morse potentials Am

(dot-dashed line) and Bm (dotted line), as a function of bho (in units
of the range of the interaction). Arrows indicate the 2D energy that
should be reached for bho = 0.

VIII. RESULTS: THE d CALCULATION

Performing the three-body calculations as described in
Sec. II, where the external potential does not enter and the
dimension d is treated as a parameter, is certainly much sim-
pler than performing the calculations shown in the previous
section. In Table II we give the computed energies and root-
mean-square (rms) radii in two and three dimensions for all
the three-body bound states obtained after solving the coupled
Eqs. (8) with the two-body potentials listed in Table I. The
energies, E2D and E3D, and the rms values, r2D and r3D, refer
to the results obtained with d = 2 and d = 3, respectively. As
we can see, whereas potentials Ag, Am, and Bm have the same
number, two, of bound three-body states in three dimensions

TABLE II. For d = 2 and d = 3, the three-body energies and
root-mean-square radii, r = 〈ρ2/3〉1/2, for all the bound states ob-
tained with the potentials listed in Table I. The subscripts 2D and 3D
refer to the results obtained for d = 2 and d = 3, respectively. As
done throughout the text, the energies are given in units of h̄2/mb2,
where m is the mass of each of the particles (and the normalization
mass used to construct the Jacobi coordinates), and b is the range of
the two-body interaction, which is taken as the length unit.

Potential E2D r2D E3D r3D

Ag –2.373 0.591 −0.354 1.081
−0.556 3.339 −6.109 × 10−3 10.280

Bg −26.871 0.304 −19.426 0.390
−14.622 0.518 −9.050 0.632
−7.990 1.678

Am −0.644 1.145 −0.104 2.201
−0.160 4.695 −4.808 × 10−3 15.744

Bm −4.724 0.613 −2.834 0.848
−2.202 1.220 −1.087 1.628
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FIG. 4. With the d method, the absolute value of the bound-state
three-body energies obtained with potentials (a) Ag, (b) Bg, (c) Am,
and (d) Bm in Table I as a function of (d − 2)/(3 − d ), where d runs
within the range 2 � d � 3. For each of the potentials, the dotted
blue curve is the absolute value of the lowest bound two-body state
energy.

as in two dimensions, potential Bg has one bound state less in
three dimensions, two, than in two dimensions, three.

In Fig. 4 we show the absolute value of the bound three-
body energies obtained with potentials Ag, Bg, Am, and Bm

[Figs. 4(a)–4(d), respectively] as a function of (d − 2)/(3 −
d ), where d is the dimension running within the range 2 �
d � 3. The choice of the abscissa coordinate as (d − 2)/(3 −
d ) has been made to facilitate the comparison with Fig. 3,
since in both figures values of the abscissa coordinate equal
to 0 and ∞ correspond, respectively, to maximum squeezing
of the system into two dimensions and no squeezing (three
dimensions). In the figure the dotted blue curve shows, for
each of the potentials and also as a function of (d − 2)/(3 −
d ), the absolute value of the lowest two-body bound-state
energy.

As a general rule, when squeezing from d = 3 to d = 2
the three-body system becomes progressively more and more
bound. This is clearly seen for all the potentials when moving
from the right part in each panel (d = 3) to the left part (d =
2). This is a reflection of the lower centrifugal barrier in two
dimensions than in three dimensions.

In the case of potentials Ag and Am [Figs. 4(a) and 4(c)],
the red curve corresponding to the excited three-body bound
state approaches the dotted curve representing the bound two-
body energy. In fact, very soon the three-body excited state
is just slightly more bound than the two-body state, therefore
representing a boson very weakly bound with respect to the
two-body bound state.

For potential Bg [Fig. 4(b)] a new bound state shows up for
d ≈ 2.4. It appears from the threshold corresponding to the
bound two-body state and the third boson. From that point
and up to d = 2 the third three-body bound state follows
closely the two-body binding energy (dotted curve). Thus, as
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for potentials A, the last excited state corresponds to a very
weakly bound boson with respect to the two-body bound state.

For potential Bm the situation seems to be different com-
pared to the other potentials, since in this case there is no
three-body bound state approaching the two-body bound-state
curve (dotted curve). However, the behavior of the three-body
spectrum for this potential is actually very similar to that
for potential Bg in Fig. 4(b). The only difference is that
the dimension at which the third bound state appears from
the two-body threshold is d ≈ 1.9, therefore lying out of
the graph limits. It would certainly be possible to extend
the investigation to confinement scenarios up to dimensions
smaller than 2, eventually up to d = 1 or even smaller, but
this is left for a future work.

IX. WAVE FUNCTIONS

In Sec. IV the relation between the harmonic oscillator
parameter, bho, and the dimension, d , was discussed. In par-
ticular, the relation in Eq. (23) was found for the simple
case where the particle-particle interaction is assumed to be a
harmonic oscillator potential with length parameter bpp. This
length, bpp, is also the rms radius of the three-body system in
three dimensions, whereas in two dimensions the rms radius
is r2D = bpp

√
2/3, which permits us to rewrite Eq. (23) as

bho

r2D
=

√
3(d − 2)

(d − 1)(3 − d )
. (38)

Instead of this simple expression, the full numerical so-
lution from the Gaussian and Morse short-range interactions
can be found, and the energies compared. In the same way
that Eq. (23) has been obtained by making Ed and Eext equal
in Eqs. (20) and (21), we can use Figs. 3 and 4 to obtain
numerically the relation between d and bho, at least for the
bho values for which, as shown in Fig. 3, the energy Eext can
be obtained.

The results are shown in Fig. 5 by the solid, dashed,
dot-dashed, and dot-dot-dashed curves for potentials Ag, Bg,
Am, and Bm, respectively. They have been obtained using the
energies of the three-body ground state. The numerical curves
are compared with the analytical expression given by Eq. (38),
which is shown by the dotted curve.

As we can see, the estimate in Eq. (38) agrees reasonably
well with the calculations in those regions where the numer-
ical calculation with the external potential has been possible.
This is especially true for potentials Ag, Bg, and Am, whereas
for potential Bm a somewhat bigger discrepancy is observed
for large squeezing. In any case, for those small values of
the squeezing parameter, bho, the complications inherent to
the numerical calculations with the external potential can be a
source of inaccuracy for Eext. Furthermore, since bho = 0 must
necessarily correspond to d = 2, we can consider expression
(38) a reliable translation to the parameter, d , in relatively
easy calculations from a given small value of the squeezing
parameter, bho.

As shown in Sec. V, the equivalence between the three-
body wave functions with the two calculations can be directly
compared through the overlap in Eq. (32), where �ext is the
wave function obtained with the external squeezing potential,
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FIG. 5. Numerical relation between the dimension d and the
harmonic oscillator parameter bho obtained after making Eext in
Fig. 3 and the ground-state energy Ed in Fig. 4 equal. The oscillator
parameter bho is normalized to the root-mean-square radius of the 2D
three-body calculation. The cases of potentials Ag, Bg, Am, and Bm are
shown by the solid, dashed, dot-dashed, and dot-dot-dashed curves,
respectively. These results are compared with the estimate given in
Eq. (38), which is shown by the dotted curve.

and �̃d is the one obtained with the d calculation after the
transformation in Eqs. (29) and (30), and the subsequent
renormalization. Obviously, the values of bho and d have to be
such that they both give rise to the same ground-state three-
body energy. As discussed in Sec. V, this overlap permits
us to extract the scale parameter, s, in the transformation in
Eqs. (29) and (30) as the value that maximizes the overlap.

In Fig. 6 we show the overlap O(s) as a function of the
scale parameter, s, for the four potentials considered in this
work. Several different values of the squeezing parameter,
bho, have been chosen, and for each of them we determine,
according to Fig. 5, the value of the dimension, d , giving rise
to the same ground-state binding energy. As shown in Fig. 6,
in all cases the curves show a well-defined maximum, which
determines the value of the scale parameter, s, to be used in
the d function �̃d .

Figure 6(a) shows the results for potential Ag. As we can
see, for bho = 1.5, which corresponds to d = 2.783, we obtain
a scale parameter of s = 0.96, which indicates that the de-
formation of the d-calculated wave function produced by the
squeezing is in this case rather modest. For larger squeezing
(smaller values of bho), the scale parameter starts decreasing,
reaching the values of s = 0.91, s = 0.86, and s = 0.78 for
bho = 1.2 (d = 2.704), bho = 1.0 (d = 2.628), and bho = 0.8
(d = 2.523), respectively. These results are collected in the
second column in Table III.

The deformation of the d-calculated wave function pro-
duced by a given squeezing is very sensitive to the size of
the three-body system. For instance, as shown in Table II,
for potential Bg the 3D ground state is about three times
smaller than the one for potential Ag. For this reason one
can intuitively think that a larger squeezing (smaller bho) will
be necessary in order to get a similar deformation of the
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FIG. 6. Overlap O(s) as a function of the scale parameter s for
potentials (a) Ag, (b) Bg, (c) Am, and (d) Bm and different values of the
external potential parameter bho. For each bho the dimension d is the
one giving rise to the same ground-state binding energy. In each case
we indicate the value of s corresponding to the maximum overlap.

wave function. This is actually shown in Fig. 6(b), where the
overlap O(s) for potential Bg is shown (the corresponding
s and d values are given in the third column in Table III).
As we can see, even for a squeezing parameter bho = 0.6
(d = 2.694) the scale parameter is still not too far from 1,
whereas for bho = 0.5 (d = 2.604) and bho = 0.4 (d = 2.489)
the corresponding values of s are similar to those obtained
for potential Ag [Fig. 6(a)] when bho = 1.2 and bho = 1.0,
respectively.

In Figs. 6(c) and 6(d) we show the same results for the
Morse-like potentials Am and Bm, respectively, and the values
of s and d are also listed in the fourth and fifth columns in
Table III. The general behavior is similar to that found for
the Gaussian potentials. The three-body system is again about
three times larger in three dimensions with potential Am than
with potential Bm. The result is therefore that similar defor-
mation, i.e., similar values of the scale parameter s, requires
less squeezing, a larger value of bho, with potential Am than

TABLE III. For each of the potentials and each of the selected
values of bho shown in Fig. 6, the corresponding values of the scale
parameter s that maximizes the overlap in Eq. (32) and the dimension
d giving rise to the same ground-state binding energy.

Potential Ag Potential Bg Potential Am Potential Bm

bho s d s d s d s d

0.4 0.88 2.489 0.52 2.205
0.5 0.94 2.604 0.62 2.318
0.6 0.97 2.694 0.71 2.383
0.8 0.78 2.523 0.51 2.173
1.0 0.86 2.628 0.59 2.289
1.2 0.91 2.704 0.66 2.400
1.5 0.96 2.783 0.75 2.511
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FIG. 7. Scale parameter s as a function of bho/r2D for the four
potentials used in this work. The solid curve shows the estimate given
in Eq. (39).

with potential Bm. The same thing occurs when comparing
potentials Am and Ag and potentials Bm and Bg. Since the
Morse 3D states are clearly larger than the corresponding
Gaussian counterparts, we again find that for equal values
of bho the larger systems, those obtained with potentials Am

and Bm, are more deformed (smaller value of s) than with
potentials Ag and Bg, respectively.

The maximum overlap shown in Fig. 6 is always very
close to 1, always above 0.96 but typically around 0.98 or
even higher. This indicates that the deformation described by
Eqs. (29) and (30) works in general very well, although in
some cases, for instance, potential Am with bho = 1.0 (where
the maximum overlap is about 0.96), a correction could prob-
ably be introduced.

The values of the computed scale parameters are shown
in Fig. 7 as a function of bho/r2D. Together with them we
show the estimate given in Eq. (37). More precisely, again
exploiting the fact that in the case of the harmonic oscillator
two-body potential we have that bpp = r2D

√
3/2, we can then

rewrite Eq. (37) as

1

s2
=

√
1 + 9

4

(
r2D

bho

)4

, (39)

which is shown in Fig. 7 by the solid curve. As we can see,
the estimate given above works very well for potentials Bg

and Bm (squares in the figure), which correspond to the cases
of well-bound 3D three-body states (Table II). In fact, for
potential Bg, for which |E3D| is pretty large, the agreement
is excellent. For the cases where the system is clearly less
bound in three dimensions, potentials Ag and Am (circles in
the figure), the computed results disagree with the estimate in
Eq. (39) in the region of intermediate squeezing. However, it
is interesting to see how, for large squeezing, the computed
curve for potentials Ag and Am and the solid curve clearly
converge. Therefore the estimate, (39), appears to be a very
good way to determine the equivalence between s and bho

also for potentials Ag and Am in the cases of large squeezing,
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FIG. 8. The solid curves show, as a function of ρ, the square
of the dominating radial wave functions, fn(ρ ) in Eq. (16), for the
potentials and external field parameters bho shown in Fig. 6 (except
the cases with bho = 1.5, which, for simplicity in the figure, have
been omitted). Potentials (a) Ag, (b) Bg, (c) Am, and (d) Bm. For each
case, the dashed curve gives, also as a function of ρ, the square of
the radial wave function f̃ (d )

n (ρ, s) shown in Eq. (34), where the
dimension d provides the same ground-state energy as the calculation
with the external field, and the scale parameter s, given in Fig. 6,
maximizes the overlap O(s) in Eq. (32). The length unit is the range
of the two-body interaction.

which, on the other hand, are the cases where the calculations
with the external potential are more problematic.

Finally, let us directly compare the wave functions �ext

and �̃d . This can be done by simple comparison of the radial
wave functions contained in the expansions Eqs. (16) and (33).
Since the angular functions are the same in the two cases, the
difference between the two wave functions will necessarily be
contained in the radial functions fn(ρ) and f̃ (d )

n (ρ, s).
In Fig. 8 we show the squares of the dominating radial

wave functions, fn(ρ) (solid curves) and f̃ (d )
n (ρ, s) (dashed

curves), for some of the cases shown in Fig. 6 (in order
to make the figure simpler cases with bho = 1.5 have been
omitted). In all of them, the dominating term provides more
than 98% of the total norm. Figures 8(a)–8(d) correspond to
the results with potentials Ag, Bg, Am, and Bm, respectively.
The values of the dimension, d , and the scale parameter, s,

are as indicated in Table III, i.e., the dimension, d , is such
that the d calculation gives the same ground-state energy as in
the calculation with the external squeezing potential, and the
scale parameter, s, is such that the overlap, O(s), in Eq. (32)
is maximum.

As we can see in Fig. 8 the agreement is basically very
good for all the cases shown. The largest discrepancy is
observed for the Morse potential Am with bho = 1.0, which,
as shown in Fig. 6, is the case with the smallest value of the
maximum overlap, below 0.97, between the two wave func-
tions. In any case, the good agreement between the two radial
wave functions illustrates how the wave function resulting
from the d calculation, after the appropriate reinterpretation
in the ordinary 3D space, provides a very good description of
the system squeezed by an external potential.

X. SUMMARY AND CONCLUSIONS

In this work the continuous squeezing of three-body sys-
tems from three to two dimensions has been investigated by
means of two procedures: First, a method where the exter-
nal confining potential is explicitly included; and, second,
a method where the external potential does not enter, but
instead, the dimension d is allowed to take any intermediate
value between d = 3 and d = 2.

The case of three identical spinless bosons with relative s
waves between all the particles is considered. For the two-
body potentials we have used Gaussian and Morse radial
forms whose scattering lengths vary from small, with a few
fairly well-bound states, to rather large.

For the three-body calculations with an external field we
have chosen the squeezing potential to be a one-body de-
formed harmonic oscillator acting on each of the three par-
ticles. The oscillator length in one of the dimensions is varied
from ∞ (no squeezing) to a very small value corresponding to
a fraction of the two-body interaction range. The deformation
produced by the squeezing breaks the orbital angular momen-
tum conservation, and the calculations must account for the
resulting mixing of these quantum numbers. The consequence
is that the adiabatic hyperspherical expansion must employ a
large number of partial wave components in the limit where
dimension 2 is approached.

The method with the noninteger dimension, d , as the pa-
rameter is formulated in terms of hyperspherical coordinates
with spherical potentials and s waves. The phase-space and
centrifugal barrier potentials both correspond to the specified
value of d . This method is technically precisely as simple as
the ordinary three-body 3D computations without an external
field.

With the two methods we have investigated how the
ground-state energies vary when squeezing from three to
two dimensions. Both methods show the same qualitative
behavior, although the connection between the 2D and the 3D
limits must be different in the two cases, since the oscillator
lengths of the external potential and the dimension, d , vary
in infinite and finite intervals, respectively. The three-body
bound states do not necessarily have counterparts in the 3D
and the 2D limits.

Comparison of the results from the two methods allows
extraction of the function translating between d and the
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oscillator length of the external squeezing potential. The
knowledge of this function provides a subsequent prediction
of which external field corresponds to a given d value. To
give us some insight, we have used a simplified system where
harmonic oscillators (different to the external field) are used
for the two-body interactions. In this way we have obtained an
analytic expression relating the dimension d and the oscillator
length of the external field. This estimate is then compared
to the results arising from the numerical computations. By
choosing the rms radius of the three-body system in two
dimensions as the length unit, we have found that the transla-
tional functions are remarkably similar to each other, as well
as to the analytic function derived for the two-body oscillator
potential.

To be able to predict any observable property entirely from
d calculations, we must also find a translation or interpretation
providing the wave function corresponding to a 3D calculation
with an external field. We naturally search for a deformed
solution obtained from the spherical wave function in the d
method. This is achieved by scaling the squeezing coordinate
relative to the two other coordinates. The scaling factor must
depend on d , and it is defined such that the overlap between
the two wave functions of equal energy from the two methods
is maximum, preferentially unity.

This interpretation of the d-calculated wave function is
suggested by the exact solution available when using oscil-
lator interactions between the particles as well as for the
external field. This analytic approximation is compared to
the scaling parameter extracted numerically. The computed
values are surprisingly close to the analytic curve for the
potentials with well-bound three-body states in three dimen-
sions, whereas they deviate when the three-body system is
weakly bound in three dimensions. Comparing directly the
wave functions from the two methods we find a remarkable
agreement between them.

In summary, we have investigated in detail a new method
to deal with three-body problems in noninteger dimensions
between 2 and 3. The basis is a d-dimensional phase space,
a corresponding d-dependent generalized centrifugal barrier,
and a spherical computation. The calculations are precisely
as simple as the same three-body calculations in integer
dimensions. We validate the method by comparing it to the
brute force method in the ordinary 3D space. The noninteger
dimension is simulated by a deformed external field, which
effectively reduces movement in one coordinate from being
free (in three dimensions) to zero (in two dimensions) space.

The equivalence of the two methods is shown for identical
bosons by numerical calculations, where we provide a rela-
tively accurate translation between the parameter d and the
external field length. This connection includes a prescription
to obtain the complete deformed wave function from the d
calculation. Since the translation correctly reproduces the two

limits of two and three dimensions, any prediction occurring
for some d value is bound to happen for some external field
strength, which in turn is relatively precisely given by an
analytic expression.

The presented d method can be extended to asymmetric
three-body systems with different mass ratios, to dimensions
smaller than 2 and larger than 3, and perhaps to fermions and
particle numbers larger than three.
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APPENDIX: s-WAVE SPHERICAL AND
HYPERSPHERICAL HARMONICS IN d DIMENSIONS

The angle-independent s-wave spherical harmonic in d
dimensions, Y0, can be obtained by taking into account that
the phase volume in d dimensions is given by [14]∫

d�d = 2πd/2

�
(

d
2

) , (A1)

from which, since
∫

Y ∗
0 Y0d�d = 1, one immediately gets

Y0 =
[

�
(

d
2

)
2πd/2

]1/2

. (A2)

Thus, the angular functions, 
(d,i)
n , in Eq. (7) depend

only on the hyperangle α = arctan(x/y), where x and y are
the usual Jacobi coordinates [11]. Typically, these angular
functions are obtained as an expansion in terms of the hyper-
spherical harmonics, which for d dimensions and relative s
waves, take the form [11]

Y (d )
K (α) = NνP( d−2

2 , d−2
2 )

ν (cos 2α)Y0Y0, (A3)

where K = 2ν is the hypermomentum, Nν is the normalization

constant, and P
( d−2

2 , d−2
2 )

ν is a Jacobi polynomial.
Finally, when solving the three-body problem it is always

necessary at some point to rotate the hyperspherical harmon-
ics, (A3), from one Jacobi set i into a different set j. This is
done by means of the Raynal-Revai coefficients, which for s
waves and d dimensions are given by [11]

〈YK (i)|YK ′ ( j)〉 = δKK ′
P( d−2

2 , d−2
2 )

ν (cos 2γi j )

P( d−2
2 , d−2

2 )
ν (1)

, (A4)

where the angle γi j is given, for instance, in Ref. [11].
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