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Schemes for topological quantum computation with Majorana bound states rely heavily on the ability to
projectively measure products of Majorana operators. Here, we employ Markovian quantum measurement
theory, including the readout device, to analyze such measurements. Specifically, we focus on the readout of
Majorana qubits via continuous charge sensing of a tunnel-coupled quantum dot by a quantum point contact.
We show that projective measurements of Majorana products

∏
i γ̂i can be implemented by continuous charge

sensing under quite general circumstances. Essential requirements are that a combined local parity π̂ , involving
the quantum dot charge along with the Majorana product of interest, be conserved, and that the two eigenspaces
of the combined parity π̂ generate distinguishable measurement signals. We find that qubit readout may have to
rely on measuring noise correlations of the quantum-point-contact current. The average current encodes the qubit
readout only transiently for fine-tuned parameters or in the presence of relaxation processes. We also discuss
the corresponding measurement and decoherence times and consider processes, such as residual Majorana
hybridizations, which are detrimental to the measurement protocol. Finally, we emphasize that the underlying
mechanism—which we term symmetry-protected readout—is quite general and has further implications for both
Majorana and non-Majorana systems.
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I. INTRODUCTION

Qubits based on Majorana bound states promise key ad-
vantages for quantum computing, including long intrinsic
lifetimes deriving from the nonlocal encoding of quantum
information [1–3] and topologically protected single-qubit
gates based on braiding or, alternatively, on exploiting mea-
surements in all Pauli bases. A popular Majorana qubit—
known as Majorana box qubit [4] or tetron and hexon [5]—is
based on semiconductor quantum wires proximity coupled
to a superconductor [6–8]. These qubits are believed to be
within experimental reach [9] and quantum computing ar-
chitectures have been developed on their basis [5,10–13].
Quantum computation with Majorana qubits is expected to
rely heavily on projective qubit measurements, with all Clif-
ford gates implemented using single- and two-qubit mea-
surements [5,13,14]. Indeed, these schemes can be referred
to as measurement-based topological quantum computing
and good readout fidelities are absolutely central to their
performance. This makes it essential to develop a detailed
theoretical understanding of the proposed readout schemes for
Majorana-based topological qubits.

While a blessing for their characteristics as a quantum
memory, the nonlocal nature of topological qubits complicates
the readout of the encoded quantum information. Readout
requires one to make the nonlocally encoded quantum infor-
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mation available locally. This can be achieved by exploiting
interference effects which are sensitive to the Majorana parity
operator of interest [4,5,15]. A schematic Majorana qubit is
shown in Fig. 1 and involves four Majorana bound states
located at the ends of two proximity-coupled semiconductor
quantum wires. The Pauli operators associated with the Majo-
rana qubit are parity operators involving products of two Ma-
jorana operators. Here, we focus on a readout procedure which
measures these Majorana parity operators by tunnel coupling
a quantum dot to the relevant pair of Majoranas as shown in
Fig. 1. Virtual tunneling processes between Majorana qubit
and quantum dot shift the energy levels of the quantum dot
in a manner that depends on the Majorana parity. As a result,
the coupled time evolution of Majorana qubit and quantum
dot entangles the two, and the charge state of the quantum dot
becomes correlated with the Majorana parity. Measurements
of the quantum dot charge, for instance, by a nearby quantum
point contact, can thus be used to read out the Majorana qubit.

In principle, it is possible to design parity-to-charge con-
version procedures which allow for a projective measurement
of the Majorana parity based on a single-shot projective
measurement of the charge n̂ of the quantum dot [4]. However,
these schemes are not robust and require fine tuning and
rapid manipulation of system parameters. More generically,
the charge state of the quantum dot becomes only weakly
correlated with the state of the Majorana qubit, and qubit
readout requires multiple measurements. This can be achieved
by repeatedly coupling and decoupling qubit and quantum
dot, with intervening projective measurements of n̂ and resets
of the qubit charge state.

In practice, this coupling, decoupling, and resetting is
challenging and prone to errors. It would be preferable
and more natural to keep Majorana qubit and quantum dot
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FIG. 1. Setup for readout of Majorana qubit. A quantum dot
(QD) is tunnel coupled to a Majorana qubit consisting of two
topological superconducting wires (dark blue) with four Majorana
bound states γ̂1, . . . , γ̂4. The wires are connected by a conventional
superconducting bridge (SC), allowing charge to move freely be-
tween the wires, so that only the overall charge of the Majorana qubit
is fixed by the charging energy. The Majorana parity Ẑ = −iγ̂1γ̂2

defines the Pauli-Z operator of the Majorana qubit, and can be read
out by tunnel coupling the two Majoranas γ̂1 and γ̂2 to the quantum
dot. The quantum dot charge is measured by capacitively coupling
(with strength k ∝ |χ |2) the dot to a quantum point contact.

coupled during the entire readout procedure and to monitor
the charge of the quantum dot continuously. Here, we show
that a projective readout of the Majorana qubit can indeed
be robustly implemented in this manner. In particular, our
strategy significantly relaxes the requirements on dynamical
control over system parameters, and obviates the need for
resets of the quantum dot charge state.

To describe the dynamics of the quantum measurement,
we include the measurement device in the theoretical descrip-
tion. The continuous measurement decoheres the system in
the basis of the quantum dot charge and outputs the noisy
measurement signal j(t ) of the quantum point contact [16].
The task is then twofold. First, one needs to show that the
system of Majorana qubit and quantum dot decoheres in the
actual basis of interest associated with the parity operator
of the Majorana qubit. Second, one needs to ascertain that
the measurement outcome can be extracted from the signal
j(t ). Both criteria must be satisfied to effectively implement
a projective (Born rule) readout of the Majorana qubit which
can be employed for measurement-based topological quantum
computation.

In Sec. II, we introduce the system under consideration, a
Majorana qubit with two of the four Majorana bound states
tunnel coupled to a quantum dot as illustrated in Fig. 1, and
discuss how under idealized assumptions, quantum dot charge
measurements can be used for single-shot readout of the Ma-
jorana qubit. We then turn to more realistic readout protocols
which rely on continuous monitoring of the quantum dot
charge, collecting our central results in Sec. III. The basic
master-equation formalism describing weak measurements
of the quantum dot charge by a quantum point contact is
described in Sec. III A. As a backdrop, we first illustrate
the formalism in Sec. III B by reviewing charge monitoring
of a quantum dot in the absence of coupling to a Majorana
qubit. We then include the coupling to the Majorana qubit
in Sec. III C and show how a two-Majorana parity (Pauli
operator) of the Majorana qubit can be read out. While it
suffices to monitor the average quantum-point-contact current

for charge readout of an uncoupled quantum dot, we find
that in general, readout of the Majorana qubit requires one
to measure noise correlations of the current. Readout based
on noise correlations can be avoided by tuning to a sweet spot
in parameter space or, as shown in Sec. III D, by including
additional processes which cause relaxation of the coupled
Majorana qubit-quantum dot system to its ground state. In
both of these cases, it suffices in principle to monitor the
average quantum-point-contact current. In Sec. III E, we dis-
cuss various processes which are detrimental to the readout
protocol. Most important, the previous sections assume that
the residual Majorana hybridizations of the qubit are negli-
gible, and we show here how these hybridizations affect the
measurement protocol. Finally, Sec. III closes with a discus-
sion of alternative readout schemes which rely on coupling
the Majorana qubit to double quantum dots; see Sec. III F.
We find that this readout scheme adds flexibility in designing
the coupling between Majorana qubit and quantum dots. We
also discuss readout of Majorana parity operators involving
more than two Majoranas, which represent two-qubit parities
or stabilizer operators of topological quantum error-correcting
codes. While our results are mostly analytical in nature, we
illustrate the various measurement protocols by simulations
of the stochastic master equation. In addition to our analytical
estimates throughout Sec. III, these simulations also illustrate
the required measurement times. Section IV discusses the
measurement protocols from a more general point of view,
not restricted to the readout of Majorana qubits. We finally
summarize and conclude in Sec. V. Throughout the paper,
we focus on the principal arguments and results. Explicit
calculations and background material are relegated to a series
of Appendixes.

II. MAJORANA QUBITS AND QUANTUM DOT READOUT

A. Majorana qubit coupled to quantum dot

Majorana qubits are Coulomb-blockaded islands hosting
2m Majorana bound states γ̂ j as described by the Hamiltonian

ĤM = EC (N̂ − Ng)2 + i
2m∑
i< j

εi j γ̂iγ̂ j . (1)

The first term reflects the charging energy EC of the device,
which depends on the total charge N̂ as well as a gate-
controlled offset Ng. For a fixed charge and well-separated
Majorana bound states, the ground state of the system is
2m−1-fold degenerate. Residual splittings are included in HM

through the εi j . Above-gap excitations of the Majorana wires
are ignored by virtue of a sufficiently large gap.

The minimal number of Majoranas required for a single
qubit is four, in which case the Majorana island realizes a
Majorana box qubit or tetron. Figure 1 shows such a Majorana
qubit assembled from a pair of topological superconducting
quantum wires hosting two Majorana bound states each. The
superconducting bridge between the quantum wires provides
a sufficiently large mutual capacitance so that the charging
energy depends on the charges of the individual wires only via
the total charge of the device [5]. For definiteness, we choose
Ng = 0, so that the ground-state manifold has even fermion
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parity, P̂ = (iγ̂1γ̂4)(iγ̂2γ̂3) = 1. We can then define the Pauli
operators

Ẑ = −iγ̂1γ̂2, (2a)

X̂ = −iγ̂2γ̂3, (2b)

Ŷ = −iγ̂3γ̂1 (2c)

of the qubit. Fermion parity conservation implies that one
can alternatively use the operators Ẑ ′ = P̂Ẑ (with X̂ ′ and Ŷ ′
defined analogously).

Readout of the qubit operators (say, Ẑ for definiteness) can
be effected by connecting the Majorana island to a quantum
dot via tunnel junctions as depicted in Fig. 1 [4,5]. We assume
that the quantum dot has a single nondegenerate level ε, which
is spin resolved due to the magnetic field required for realizing
topological superconductivity (see also Ref. [17]). Then, the
quantum dot is described by the Hamiltonian

ĤQD = εn̂, (3)

where the quantum dot occupation n̂ = d̂†d̂ involves the an-
nihilation operator d̂ of the gate-tunable dot level. We assume
that the quantum dot is unoccupied in the ground state, n = 0.

Tunneling between quantum dot and Majorana qubit is
described by

ĤT = (t1γ̂1 + t2γ̂2)eiφ̂/2d̂ + H.c. (4)

Electrons tunneling into or out of the Majorana island affect
the state of the system within the ground-state manifold and
change its charge. We describe the first effect through the
Majorana operators γ̂ j (which leave the charge state of the
system unchanged, [γ̂i, N̂] = 0), and the second through a
charge shift operator eiφ̂/2 (with [φ̂, N̂] = 2i and [γ̂i, φ̂] = 0).
In this formulation, physical states must satisfy the total parity
constraint (−i)m

∏2m
i=1 γ̂i = (−1)N̂ .

For a topological qubit, we assume that the hybridizations
εi j are negligible, so that the Majorana bound states are true
zero-energy modes of the Majorana island. This implies that
in addition to the fermion parity P̂ of the qubit, also all
two-Majorana parities iγ̂iγ̂ j are good quantum numbers. In
particular, this is the case for the Pauli-Ẑ operator of the
Majorana qubit. The resulting degeneracy is partially lifted
when tunnel coupling the Majorana qubit to the quantum dot.
It is important to notice, however, that unlike the Pauli-Ẑ
operator, the combined fermion parity operator

π̂ = Ẑ (−1)n̂ (5)

remains a conserved quantity [18]. Restricting ourselves to
states which have total fermion parity P(−1)n = 1 and can
thus be reached from the ground state with n = N = 0 by
tunneling, the Hamiltonian Ĥ = ĤM + ĤQD + ĤT becomes
block diagonal in the subspaces of the combined fermion
parity π̂ ,

Ĥ =
(

h+ 0
0 h−

)
. (6)

Here, we choose the basis {|↑, 0〉, |↓, 1〉, |↓, 0〉, |↑, 1〉} with
the first entry distinguishing the eigenstates of Ẑ and the

second entry denoting the occupation of the quantum dot
level; see Appendix A for details. We use lowercase letters
without hats to denote operators within subspaces of fixed
combined parity π̂ . The corresponding 2 × 2 blocks take the
explicit form

hπ =
(

0 t1 − iπt2
t∗
1 + iπt∗

2 ε

)
= ε

2
+ �πhπ · σ, (7)

where σ denotes a vector of Pauli matrices and ε = ε + EC

the detuning (which depends on both, the level energy ε of
the quantum dot and the charging energy EC of the Majorana
island). We also defined a Bloch vector

hπ = (sin θπ cos φπ, sin θπ sin φπ, cos θπ ) (8)

with cos θπ = −ε/2�π and sin θπeiφπ = (t∗
1 + iπt∗

2 )/�π , as
well as the Rabi frequency �2

π = ε2/4 + |t∗
1 + iπt∗

2 |2. The
eigenenergies and Rabi frequencies of the two subspaces are
different provided that Im (t1t∗

2 ) �= 0.

B. Basic measurement protocols

The tunnel couplings entangle the Pauli-Ẑ operator of the
Majorana qubit with the charge of the quantum dot. The
entanglement emerges from processes in which an electron
virtually occupies the Majorana island through one Majorana
involved in Ẑ and leaves it through the other. This makes
the quantum information stored nonlocally in the Majorana
qubit accessible locally in the quantum dot. We first discuss to
which degree a single projective measurement of the charge
of the quantum dot realizes a measurement of Ẑ .

We begin with a protocol in which the tunnel coupling
between dot and Majorana qubit is turned on adiabatically on
the scale of the system dynamics. We assume that prior to
turning on the tunnel couplings, the Majorana qubit is in an
arbitrary qubit state and the quantum dot is initialized in the
n = 0 state,

|ψ〉 = (α|↑〉 + β|↓〉)|0〉. (9)

Adiabatically turning on the tunnel couplings t1 and t2, this
state evolves into the corresponding eigenstate of the coupled
system,

|ψ ′〉 = α|g+〉 + βeiχ |g−〉. (10)

Here, the relative phase χ depends on details of the protocol,
and we defined the exact ground states

|g+〉 = sin
θ+
2

|↑, 0〉 − cos
θ+
2

eiφ+ |↓, 1〉, (11a)

|g−〉 = sin
θ−
2

|↓, 0〉 − cos
θ−
2

eiφ− |↑, 1〉 (11b)

of h±. Notice that θ± = π in the absence of the tunnel
couplings. Then, a subsequent projective measurement of the
charge n of the quantum dot either yields n = 0 and the state

|ψ ′
0〉 = 1√

p′
0

(
α sin

θ+
2

|↑〉 + βeiχ sin
θ−
2

|↓〉
)

|0〉, (12)

with probability

p′
0 = |α|2 sin2 θ+

2
+ |β|2 sin2 θ−

2
, (13)
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or n = 1 and

|ψ ′
1〉 = 1√

p′
1

(
α cos

θ+
2

eiφ+ |↓〉 + βeiχ cos
θ−
2

eiφ− |↑〉
)

|1〉,
(14)

with probability p′
1 = 1 − p′

0.
Unfortunately, such charge measurements provide only

partial information on the qubit state. One can arrange perfect
correlation between the measurement outcome n = 0 and, say,
the |↑〉 state of the qubit by fine tuning sin θ−

2 = 0. However,
one readily proves that∣∣∣∣sin2 θ+

2
− sin2 θ−

2

∣∣∣∣ � 1

2
. (15)

This implies that a measurement outcome of n = 1 remains
compatible with both qubit states even if n = 0 is perfectly
correlated with the |↑〉 state.

In principle, a projective measurement can be implemented
when turning on the quantum dot-Majorana qubit tunneling
instantaneously. In this case, the initial state |ψ〉 is no longer
an eigenstate, and its unitary evolution under the Hamiltonian
Ĥ entangles qubit and quantum dot. Depending on the mea-
surement outcome, a projective charge measurement after a
waiting time T yields the states

|ψ ′′
0 〉 = 1√

p′′
0

[αA+(T )|↑〉 + βA−(T )|↓〉]|0〉, (16a)

|ψ ′′
1 〉 = 1√

p′′
1

[αB+(T )|↓〉 + βB−(T )|↑〉]|1〉 (16b)

with probabilities p′′
0 = |αA+|2 + |βA−|2 and p′′

1 =
1 − p′′

0, respectively. Here, we defined the amplitudes
A±(T ) = cos �±T + i cos θ± sin �±T and B±(T ) =
−i sin θ±eiφ± sin �±T , where |A±|2 + |B±|2 = 1. This
scheme implements a projective measurement of Ẑ , when
these coefficients satisfy, say, |A−|2 = |B+|2 = 0, with the
remaining two coefficients being equal to unity. This can
be realized for t1 = it2, |t1,2|2 	 ε2/4, and T = π/2�−. As
such, the qubit is left in the |↑〉 state for both measurement
outcomes. Thus, for the outcome n = 1, this protocol would
need to be followed by another waiting period to rotate the
state back to |↓〉, before turning off the tunnel couplings.

While in principle this allows for single-shot projective
measurements of Ẑ , the protocol relies on fine-tuned waiting
periods and a hierarchy of timescales which would be chal-
lenging to fulfill in an experiment. Most importantly, we need
to assume that the charge measurement is fast compared to
internal timescales of the coupled Majorana qubit-quantum
dot system. This requirement derives from the fact that the
measurement operator n̂ does not commute with the Hamil-
tonian of the system. Alternatively, we can abruptly turn
off the tunnel couplings after entangling Majorana qubit and
quantum dot state, and measure the quantum dot charge only
subsequently. Then, the charge measurement is quantum non-
demolition. Under realistic circumstances, a single projective
charge measurement would presumably provide only partial
information on Ẑ . This can be remedied by repeating the
above protocol sufficiently many times until the measurement
outcome is certain (see Appendix B).

Implementing this protocol is clearly challenging and re-
quires detailed and fast control. One may also worry that the
fast switching excites the qubit in unwanted ways. It would
be preferable to implement a projective measurement of Ẑ
by monitoring the quantum dot charge while the quantum
dot is coupled to the Majorana qubit. This obviates the need
for repeated switching, ideally without compromising on the
achievable measurement times. We now turn to describe such
continuous measurement procedures.

III. MAJORANA QUBIT READOUT VIA QUANTUM DOT
CHARGE MONITORING

A. Continuous charge measurements

To describe the readout dynamics, we need to include
a measurement device for the quantum dot charge in the
microscopic description. We assume that the quantum dot
is capacitively coupled to a voltage-biased quantum point
contact in such a way that the transmission amplitude T of
the quantum point contact depends on the charge state of the
quantum dot [19,20],

T̂ = τ + χ n̂. (17)

The current through the quantum point contact will then
depend on the quantum dot charge, taking the values I0 ∝ |τ |2
when the quantum dot is empty and I1 ∝ |τ + χ |2 when the
quantum dot is occupied. (For simplicity, we assume that τ

and χ have relative phase π .) Provided that the voltage applied
to the quantum point contact is sufficiently large, eV 	 �π ,
this setup decoheres the system in the quantum dot charge
basis (see Appendix C 1).

When I0 	 |δI| = |I1 − I0|, the fluctuating current through
the quantum point contact becomes a Gaussian random pro-
cess (see Appendix C 3),

I (t ) = I0 + δI〈n̂(t )〉 + √
I0ξ (t ), (18)

involving the Langevin current ξ (t ) with E[ξ (t )] = 0 and
E[ξ (t )ξ (t + τ )] = δ(τ ). Here, E[.] denotes an ensemble av-
erage over many realizations of the measurement procedure. It
will prove useful to work with a dimensionless measurement
signal

j(t ) = I (t ) − I0

δI
= 〈n̂(t )〉 + 1√

4k
ξ (t ) (19)

relative to the measured background current I0, with k ∝ |χ |2.
The first term contains information on the quantum dot charge
and the second is the noise added by the quantum point
contact. Within the Born-Markov approximation, the state of
the system evolves according to the stochastic master equation
[19,20] (see Appendix C for a derivation)

d

dt
ρ̂c(t ) = −i[Ĥ, ρ̂c(t )] + kD[n̂]ρ̂c(t )︸ ︷︷ ︸

≡Lρ̂c (t )

+
√

kξ (t )H[n̂]ρ̂c(t ). (20)

The term involving the superoperator D[L̂]ρ̂ = L̂ρ̂L̂† −
(L̂†L̂ρ̂ + ρ̂L̂†L̂)/2 causes decoherence in the eigenbasis of n̂,
and the term with the superoperator H[L̂]ρ̂ = L̂ρ̂ + ρ̂L̂† −
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〈L̂ + L̂†〉ρ̂ describes the information gain by the measure-
ment. The latter is a Langevin term due to the stochastic
nature of the measurement. The stochastic master equation
(20) describes the state of the system conditioned on the
measurement signal j(t ), as denoted by the subscript c. The
ensemble-averaged—and thus unconditioned—evolution of
the system simply follows by dropping the stochastic term,
d ρ̂(t )/dt = Lρ̂(t ).

B. Quantum dot charge measurement

To recall how this formalism describes standard projective
measurements, consider first a simple quantum dot charge
readout with ĤT = 0. The deterministic terms in Eq. (20)
lead to a decay of the off-diagonal components of the density
matrix ρ̂ in the charge basis, but preserve the diagonal com-
ponents. The action of the stochastic terms can be understood
from the equation of motion for n(t ) ≡ 〈n̂(t )〉 = tr[n̂ρ̂c(t )],

d

dt
n(t ) =

√
4k[n(t ) − n2(t )]ξ (t ). (21)

Its two fixed points n = 0 and n = 1 correspond to the two
possible measurement outcomes. Conservation of the diag-
onal components of the ensemble-averaged density matrix
ensures that these outcomes occur with the correct probabil-
ities. At the fixed point n, the quantum-point-contact current
j(t ) becomes stationary, jn(t ) = n + ξ (t )/

√
4k, and directly

reveals the measurement outcome n after an integration time
τm. The latter is determined by the requirement that the
integrated signal dominate over the integrated noise, which
happens for τm 	 (4k)−1. We note that we use the steady-state
measurement signal when estimating measurement times.
While transients may also provide information in principle,
we assume that in practice typical measurement times will
exceed the timescale on which the system decoheres.

This time-resolved description of a projective measure-
ment of n̂ is illustrated in Fig. 2 based on a numerical solution
of Eq. (20). We show sample trajectories of the expectation
value of the quantum dot charge (experimentally inaccessible)
as well as the corresponding measurement currents through
the quantum point contact. While the instantaneous measure-
ment current fluctuates strongly, its time average reveals the
quantum dot charge.

C. Majorana-qubit readout

Including the tunnel coupling ĤT between quantum dot and
Majorana qubit, the dot occupation is no longer a good quan-
tum number. While the measurement tries to project the state
of the system into charge eigenstates, tunneling continuously
rotates it out of this basis. This can be seen explicitly from the
equation of motion for the charge expectation value,

dn

dt
= i〈[Ĥ, n̂]〉 +

√
4k[n − n2]ξ . (22)

As a result of the nonzero commutator on the right-hand side,
the evolution of n(t ) no longer tends toward fixed points.
Similarly, 〈Ẑ (t )〉 also does not evolve toward fixed points as Ẑ
does not commute with Ĥ , as well. At first sight, this seems to
imply that quantum dot charge measurements will not suffice
to read out the state of the qubit. Remarkably, we find that one

−10

0

10

0

1
2

1
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E[n(t)]1000

4E[n(t) − n2(t)]1000

(a)

0 1 2 3 4
time t [k−1]

−1

0

1
(b)

n1(t)
1
t

t

0 j1(τ )dτ

j1(t)

FIG. 2. Continuous measurement of the quantum dot charge
for HT = 0, with initial state (|↑, 0〉 + |↓, 1〉)/

√
2 corresponding

to n(0) = 1/2. (a) Two sample trajectories n1(t ) (blue) and n2(t )
(orange) corresponding to measurement results n = 0 and n = 1,
respectively. The ensemble averaged evolution of the quantum dot
charge (green, obtained from 1000 trajectories) stays near 1/2. The
ensemble average of 4[n(t ) − n2(t )] (red) equals unity for uncertain
charge and zero when a fixed point has been reached, and therefore
quantifies the advance of the measurement process. (b) Instantaneous
(green, right y-axis labels) and time-averaged (dark red, left y-axis
labels) measurement current for sample trajectory n1(t ) (blue, same
as in top panel).

may still read out Ẑ from a measurement of the quantum dot
charge, but the procedure is more subtle.

The key observation is that the evolution governed by
Eq. (20) implements a quantum nondemolition measure-
ment of the combined local parity π̂ , which is in one-to-
one correspondence with Ẑ for the initial state in Eq. (9).
Under quantum dot charge measurements, the evolution of
π (t ) = 〈π̂ (t )〉 is a bistable process with fixed points π = ±1,
which are reached with the correct probabilities |α|2 and
|β|2, respectively. This does not yet guarantee a projective
measurement of Ẑ . First, as a consequence of the tunneling
Hamiltonian, the measurement does not properly project the
state of the system, but leaves it in an equal mixture of the
two eigenstates with combined local parity π . However, once
the measurement outcome π is determined, the readout device
can be decoupled and the state of the quantum dot-Majorana
qubit system appropriately reset (see Appendix B 2). Second,
one needs to specify how to read out π and thus Z from the
measurement current. Unlike for pure quantum dot charge
measurements, the average measurement current in general no
longer distinguishes between the two measurement outcomes.
Instead, a measurement readout generally requires one to
analyze the frequency-dependent noise of the measurement
current.
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We now discuss these claims in more detail. We first show
that under quantum dot charge measurements, the uncondi-
tioned evolution of the density matrix ρ̂(t ) generically tends
toward

ρ̂∞ = 1
2 diag(|α|2, |α|2, |β|2, |β|2) (23)

for the initial state in Eq. (9). This follows because the evolu-
tion preserves the weight of the two π subspaces and the set of
steady states of L is spanned by ρ̂∞

+ = diag(1, 1, 0, 0)/2 and
ρ̂∞

− = diag(0, 0, 1, 1)/2. To see this, we decompose ρ̂ into
2 × 2 blocks ρπ,π ′ according to the combined parity eigenval-
ues. Since π̂ is a good quantum number and commutes with
the quantum dot charge operator, the evolution equation for ρ̂

decouples into independent equations

ρ̇π,π = −i[hπ , ρπ,π ] + kD[n]ρπ,π

= Lπ,πρπ,π , (24a)

ρ̇+− = −i(h+ρ+− − ρ+−h−) + kD[n]ρ+−
= L+−ρ+− (24b)

for the diagonal and off-diagonal blocks of ρ̂.
The equations for the diagonal blocks have themselves

Lindblad form and preserve the trace. As hπ does not com-
mute with the quantum dot charge n (unless t1 = ±it2, in
which case the tunneling Hamiltonian vanishes for one of
the blocks; we will comment on this case below) and as n
is Hermitian, their only zero mode is the completely mixed
state. Then, preservation of the trace implies that the diagonal
blocks of the density matrix do indeed tend toward the fixed
points

ρ∞
++ = |α|2

2
1 and ρ∞

−− = |β|2
2

1, (25)

respectively. (We analyze the complete set of eigenvalues λπ,n

and eigenmodes of Lπ,π in Appendix D 1.) Anticipating that
the off-diagonal blocks generically decay to zero, we obtain
the correct Born-rule probabilities for Ẑ . The final state has
weight |α|2 in the π = +1 subspace and |β|2 in the π =
−1 subspace, which just corresponds to the probabilities of
finding Z = +1 or Z = −1, as required.

The equation for the off-diagonal block deviates from
Lindblad form since the first term on the right-hand side in-
volves both Hamiltonians h+ and h−. We analyze the eigenval-
ues λ̃n of L+− in Appendix D 2 and find that they generically
correspond to decaying modes. Then, the off-diagonal blocks
decay to zero and the two π subspaces decohere, ρ∞

+− = 0.
The only exception occurs when Im{t1t∗

2 } = 0. In this case,
the off-diagonal block supports a nondecaying mode since
the characteristic frequencies coincide for the π = +1 and
π = −1 eigenspaces and we find ρ∞

+− = α∗β1/2.
Consistent with these results, the conditional evolution of

ρ̂ is a bistable process for π (t ) and a projective measurement
of π̂ . We can readily derive the stochastic evolution equation
for π (t ),

π̇ =
√

4kξ (〈n̂π̂〉 − nπ ). (26)

0 75 150 225 300
time t [k−1]

-1

0

1

E[π(t)]100

E[1 − π2(t)]100

π1(t)

π2(t)

FIG. 3. Continuous readout of Majorana qubit, with initial state
(|↑, 0〉 + |↓, 0〉)/

√
2 corresponding to n(0) = 0. Two sample tra-

jectories π1(t ) (green) and π2(t ) (red) show different measurement
outcomes π = 1 and π = −1, respectively. The ensemble average of
π (t ) (blue, computed for 100 trajectories) remains close to zero for
all times. The ensemble average of 1 − π2(t ) (orange) quantifies the
distance from the fixed points π = ±1. Parameters: ε = 20k, t1 =
e−iϕt2 = 2k with ϕ = π/4.

Clearly, π = ±1 are fixed points of this equation. This is
illustrated in Fig. 3, where we show two representative sample
trajectories of π (t ) for measurement outcomes π = +1 and
π = −1. We find numerically that provided Im{t1t∗

2 } �= 0,
these are the only fixed points, cp. E[1 − π2(t )] → 0 in
Fig. 3. We analyze the stochastic evolution in more detail in
Appendix E.

The decay of the off-diagonal block to zero implies that
π can be extracted from the measurement current j(t ). Once
the measurement current becomes stationary, j(t ) = jπ (t ), the
system explores the full subspace with fixed π in an ergodic
manner. This follows from the fact that the ensemble average
over all trajectories with outcome π yields a completely mixed
state on the subspace. Importantly, this implies that the en-
semble (or time) average of jπ (t ) does not carry information
on π ,

E[ jπ (t )] = tr[n̂E[ρ̂c(t )|π ]] + E[ξ (t )]√
4k

= n∞
π = 1

2
. (27)

In agreement with Eq. (27) and in contrast to the simple
quantum dot charge readout (see Sec. III B), the integrated
measurement currents converge to 1/2 irrespective of the
measurement outcome. This is shown in Fig. 4 (left panel).

Nonetheless, information on π is generically encoded in
the noise correlations of the measurement current,

Sπ (τ ) = E[ jπ (t ) jπ (t + τ )]. (28)

In the stationary (long-time) limit, the corresponding power
spectrum Sπ (ω) can be readily computed for the two values
of π (see Appendix F). In the limit of weak measurements,
k � �π , we find that in addition to a white-noise background,
which is just the shot noise power of the quantum point
contact, the power spectrum exhibits Lorentzian peaks at ω =
0 and ω = ±2�π , which reflect the dynamics of the Majorana
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time t [k−1]

0

0.5
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(b)

95 100

n1(t) n2(t)
1
t

t

0 j1(τ)dτ 1
t

t

0 j2(τ)dτ E[n(t)]

FIG. 4. Continuous readout of Majorana qubit, with initial state (|↑, 0〉 + |↓, 0〉)/
√

2 corresponding to n(0) = 0. The panels show the
(experimentally accessible) time-averaged measurement currents for two different combined-parity outcomes π = 1 (index 1) and π = −1
(index 2) and the (experimentally inaccessible) expectation value of the quantum dot charge. (a) Generic parameters as in Fig. 3 (ϕ = π/4).
Average measurement currents converge to 1/2 for both π = +1 (dark green) and π = −1 (dark red), reflecting E[n(t )] → 1/2 (dash-dotted
line), and the measurement outcome cannot be deduced from the time-averaged measurement current in the long-time limit. The charge
expectation value ni(t ) remains close to the charge eigenvalues, with occasional transitions occurring more frequently for outcome π = +1
(blue trace) than for outcome π = −1 (orange trace), reminiscent of telegraph noise. For suitable parameters, it may be feasible to base readout
on extracting the transition rate between n � 0 and n � 1 from the measurement current. Moreover, the integrated current relaxes more slowly
to 1/2 in the low-frequency sector (here π = −1) which may also help readout in some instances. (b) Same for the sweet spot t1 = −it2

(ϕ = π/2), where the system Hamiltonian hπ commutes with the quantum dot charge n̂ for π = −1. The time-averaged measurement current
now converges to 1/2 for outcome π = +1 (dark green, n̂ not conserved) and to zero for outcome π = −1 (dark red, n̂ conserved), so that
π is accessible from the time-averaged measurement current. This is a limiting case of the readout based on transition rates between n � 0
and n � 1, which become increasing unequal as parameters approach the sweet spot. The ensemble average of n(t ) (dash-dotted line) now
converges to 1/4. The inset shows the coherent charge oscillations at frequency �+.

qubit-quantum dot system. Explicitly, we find

Sπ (ω) = 1

4k
+ cos2 θπ

2

κπ

ω2 + κ2
π

+ sin2 θπ

4

∑
±

κ̃π

(ω ± 2�π )2 + κ̃2
π

, (29)

where we introduced the widths

κπ = sin2 θπ

2
k, (30a)

κ̃π = (1 + cos2 θπ )

4
k (30b)

of the Lorentzians. The measurement result for π can be
read off in particular from the location of the Lorentzians in
frequency. This is illustrated in Fig. 5 which shows the power
spectrum for a numerically generated measurement current
and compares it to Eq. (29).

Physically, the zero-frequency peak in Eq. (29) is associ-
ated with the telegraph noise of the charge expectation value
shown in Fig. 4. In principle, the width of this peak also
encodes the measurement outcome. Indeed, Fig. 4 illustrates
that the dwell time near n = 0 and n = 1 depends on the π

subspace. For suitable parameters, it may also be possible to
monitor the transition rate directly by means of an appropri-
ately smoothed measurement current, or to extract informa-
tion on the measurement outcome from associated transients
in the time-averaged measurement current. The peak at finite
frequency originates from Rabi oscillations, which are seen in
Fig. 4 as the small deviations of the quantum dot charge from
its eigenvalues n = 0 and n = 1 (see inset of right panel). The

measurement pushes the system into a charge eigenstate and
thus a superposition of energy eigenstates, which then leads
to oscillations as a result of the Hamiltonian dynamics.

It is interesting to consider two special parameter choices.
First, for Im{t1t∗

2 } = 0, the off-diagonal block ρ+− of the
density matrix does not decay. Indeed, in this case, not only
the average measurement signal, but also its noise correlations
are independent of π . More generally, the failure to decohere
in the π̂ basis reflects the fact that the measurement signals
for the two subspaces are indistinguishable.

While the measurement fails for Im{t1t∗
2 } = 0, it can be

simplified at the sweet spot t1 = −it2 (t1 = it2 is analogous).
In this case, the Hamiltonian commutes with n̂ in the π =
−1 block and charge conservation in this block makes all
density matrices which are diagonal in the charge basis into
zero modes of L−−. In this fine-tuned situation, it is not
necessary to measure noise correlations. Instead, the measure-
ment outcome for π̂ and hence Ẑ can be extracted from the
ensemble-averaged charge alone, which yields E[n] = 1/2 for
π = +1 and E[n] = 0 for π = −1. For small deviations from
the fine-tuned point, t1 = −it2 + δ with δ � |t1|, charge is no
longer conserved in both blocks and E[n] = 1/2 regardless
of π . However, the relaxation rate to the stationary state
will be smaller in the π = −1 block by a factor |δ|2/|t1|2.
For a sufficiently high measurement efficiency, it might then
be possible to resolve π from transient differences in the
average charge. Figure 4 (right panel) shows corresponding
simulations (with δ = 0), which confirm that in principle,
the integrated measurement signals suffice to identify the
measurement outcome in a measurement time τm ∼ k−1.

An important characteristic of the measurement is the
measurement-induced decoherence time (see Refs. [21–27]
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4k

E[S+(ω) − 1
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FIG. 5. Power spectra of the measurement signal corresponding
to outcomes π = +1 and π = −1. Numerical simulations based
on Eq. (20) (green and red traces) are in excellent agreement with
the analytical expression in Eq. (29) (blue and orange traces). The
numerical power spectra were obtained by generating measurement
signals for long time intervals of T ∼ 107k−1. The long integration
time is necessitated by the small weight of the finite-frequency
Lorentzians when sin θπ � 1. Other parameters as in Fig. 3. The
power spectrum for π = −1 is scaled up by a factor of five for better
visibility.

for discussions of Majorana qubit decoherence unrelated to
measurements). The decoherence time is closely related to
(and in fact upper bounded by) the inverse of the real part
of the slowest decaying eigenvalue λ̃slow of L+−. Figure 6
shows numerical results for Re{λ̃slow}. We focus on weak mea-
surements, k, |t1|, |t2| � ε, and nonzero but possibly small ϕ

FIG. 6. Decoherence rate as characterized by the real part of the
slowest decaying eigenvalue of L+−, Re{λ̃slow} as a function of the
measurement strength k and ϕ defined through t1 = e−iϕt2 = 0.1ε.

defined through t1 = e−iϕt2. We observe that there is no de-
coherence along the line ϕ = 0 where Im{t1t∗

2 } = 0. At fixed
k, Re{λ̃slow} grows quadratically in ϕ up until discontinuous
lines, where λ̃slow and the corresponding eigenmatrix coalesce
with another eigenvalue-eigenmatrix pair. Then, the eigenma-
trices of L+− fail to span the space of 2 × 2 complex matrices
along these exceptional lines emanating from (ϕ, k) = (0, 0).
At fixed ϕ and to leading order in k, we observe a linear
decrease as k increases toward the discontinuity. The mea-
surement is more efficient when tuning to the large-|ϕ| side of
the exceptional lines. In this region, Re{λ̃slow} depends only
weakly on ϕ, which is why we only display the region of
small ϕ in Fig. 6. Note that the discontinuities are regularized
by relaxation terms, such as those discussed in the following
Sec. III D.

D. Majorana qubit readout in the presence of relaxation

The results of the previous section may be surprising in
that the quantum point contact does not detect the dependence
of the ground-state expectation value of the quantum dot
charge on the parity sector π . Instead, the information on
π can generically only be extracted from noise correlations
of the measurement current j(t ). Experimentally, however, it
would be preferable if π could be extracted from the average
measurement signal.

The underlying reason for the insensitivity to the quantum
dot charge in the ground state is that under the continuous
measurement, the density matrix generically becomes propor-
tional to the unit matrix within the subspace with fixed π

[see Eq. (25)]. Then, the expectation value of the quantum dot
charge is just equal to 1/2, independent of the parity π . The
difference in quantum dot charge between the ground states is
compensated by the opposite difference between the excited
states.

It is then natural to expect that the average measurement
current distinguishes between the two subspaces once one
includes additional relaxation processes from the excited state
|eπ 〉 to the ground state |gπ 〉. Unlike the measurement which
leads to relaxation in the basis of the quantum dot charge, this
additional relaxation should operate within the eigenbasis of
hπ . We now show that this expectation is indeed correct.

There are various processes which induce relaxation within
the eigenstate basis. One relevant example is effective mea-
surements of the Majorana-qubit charge by the environment.
For definiteness, we effect relaxation within the eigenstate
basis by coupling to the electromagnetic environment. Within
the Born-Markov approximation and focusing on T = 0 for
simplicity, this leads to an additional dissipation term in
Eq. (20) (see Appendix C 4 for details),

d

dt
ρ̂|relax = �−

∑
π

D
[

sin θπ

2
τ̂ π
−

]
ρ̂ ≡ L′ρ̂. (31)

Here, we defined the lowering operator in the energy ba-
sis for subspace π , τ̂ π

− = |gπ 〉〈eπ | and the zero-temperature
relaxation rate �− = 2πJ (2�π ) governed by the spectral
density J (ω) of the electromagnetic environment. While
�− may depend on π in principle, we assume J (2�+) �
J (2�−) for simplicity. Note that at finite temperatures, there
is an additional dephasing term �0D[cos θπ τ̂ π

z /2]ρ̂ in the
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eigenstate basis, where �0 = 2π limω→0 J (ω)b(ω) with the
Bose distribution b(ω). However, for k, �−, �0 � �π , this
term does not affect the results; cf. Appendix D 1.

Importantly, Eq. (31) also conserves π̂ and the total uncon-
ditioned master equation [obtained by incorporating Eq. (31)
into Eq. (20)] still decouples into blocks. The off-diagonal
block obeys

ρ̇+− = (L+− + L′
+−)ρ+−. (32)

Here, L′
+− = 1

4�− sin θ+ sin θ−D[τ−] has Lindblad form and
a negative semidefinite real part. Since L+− generically has
only decaying eigenvalues, L+− + L′

+− is also decaying. The
only exception occurs when Im{t1t∗

2 } = 0, as in the absence of
relaxation. In this special case, L+− and thus also L+− + L′

+−
as a whole have Lindblad form and preserve the trace. Thus,
the condition for the measurement to work remains unchanged
in the presence of relaxation.

The evolution of the diagonal blocks tends to

ρ∞
π,π = 1

2

(
τπ

0 + Rτπ
z

)
(33)

in the energy basis to leading order in �π 	 k, �−. Here we
defined the ratio

R = �−
�− + 2k

(34)

characterizing the strength of the additional relaxation. The
associated ensemble average of the quantum dot charge be-
comes

n∞
π = 1

2 (1 + R cos θπ ). (35)

When the measurement is stronger than dissipation, we have
R � 1 and the quantum dot charge is close to 1/2, indepen-
dent of π . However, in the opposite limit, when dissipation
is stronger than the measurement and R approaches unity,
the average charge is approximately given by the ground-
state expectation value of the charge in the respective sector,
〈gπ |n̂|gπ 〉 = (1 + cos θπ )/2. In this limit, the time-averaged
measurement signal depends on π , in agreement with the
heuristic arguments given above.

We illustrate these considerations by the numerical simu-
lations shown in Fig. 7. Including the relaxation process in
Eq. (31) in the simulations of the unconditioned master equa-
tion, we compute the time-averaged measurement currents
and find that indeed, they converge toward n∞

π , albeit slowly.
The corresponding measurement time is determined by the

requirement to resolve the difference

|n∞
+ − n∞

− | = 4R

∣∣∣∣ Im{t1t∗
2 }

ε2

∣∣∣∣ (36)

in quantum dot occupations. The time-averaged measurement
current

jint,π (T ) = 1

T

∫ T

0
dt jπ (t ) (37)

fluctuates around n∞
π , with decreasing magnitude of the fluc-

tuations as T grows. The fluctuations can be estimated via the
variance

V [ jint,π (T )] = 1

4kT
+ cot2 θπR2 4k

�2−T
. (38)
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t
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FIG. 7. Continuous readout of Majorana qubit in the presence
of relaxation with rate �− = 5k (other parameters as in Fig. 3).
(a) Ensemble-averaged quantum dot occupations n(t ), restricted to
the subspaces π = +1 (green trace) and π = −1 (red trace), as
obtained from the unconditioned master equation (starting in the
ground state with n = 0). E[n(t )]π converges to distinct expectation
values n∞

π for the two subspaces, so that π can be read out from the
time-averaged measurement current of a quantum dot charge mea-
surement. (b) Time-averaged measurement signals for trajectories in
the π = +1 (cyan trace) and π = −1 (orange) sectors, converging
to n∞

π . Readout requires integration times which are significantly
longer than convergence times of the ensemble-averaged quantum
dot occupations in the top panel. From Eq. (39), the measurement
time can be estimated as τm ∼ 104/k for the given parameters.
This estimate is based on the fluctuations in the π = −1 sector,
where fluctuations are larger since cot θ− 	 cot θ+. We also show
the time average of the charge expectation value (not accessible in
experiment). The similarity of the curves indicates that fluctuations
of the measurement current are dominated by fluctuations of the
charge expectation value.

The first term reflects the white noise background, whereas the
second originates from fluctuations of n(t ). The latter depends
on the sector π . The measurement time can then be estimated
by comparing the variance with the resolution necessary to
distinguish the two possible measurement outcomes. This
gives

τm ∼ ε4

16|Im{t1t∗
2 }|2

(
1

4kR2
+ C

4k

�2−

)
, (39)

where we use the variance of the sector with larger fluctua-
tions, defining

C = max
π

cot2 θπ . (40)

We observe that a large splitting resulting from a large
|Im {t1t∗

2 }| and a small ε are advantageous for a fast measure-
ment. (Note, however, that there is a tradeoff since a small ε
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FIG. 8. Effect of Majorana hybridization ε23 = 0.2k on
Majorana-qubit readout (in the absence of relaxation, �− = 0).
Blue and orange traces: Sample trajectories of π (t ), clearly not
reaching a fixed point. Red and purple traces: Ensemble-averaged
evolution of π (t ) for states initialized in the π = +1 (red) and
π = −1 (purple) sectors. Both curves converge toward E[π ] = 0,
corresponding to an equal mixture of the two sectors, regardless of
initial condition. Similarly, E[1 − π 2(t )] (green) does not approach
0, so that π �= ±1. Other parameters as in Fig. 3.

enhances quasiparticle poisoning rates.) Moreover, the terms
in the brackets have interesting structure. They diverge for
both k → 0 and k → ∞. Thus, at a given �−, there is an op-
timal measurement strength kopt = �−/2

√
1 + 4C to identify

the measurement outcome based on the time-averaged signal.
The corresponding optimal measurement time becomes

τm,opt ∼ ε4(1 + √
1 + 4C)

16�−|Im{t1t∗
2 }|2 . (41)

E. Charge nonconservation and Majorana hybridizations

An essential assumption underlying the readout of the Ma-
jorana qubit is that the combined parity π̂ is a good quantum
number. In practice, there can be processes which do not
conserve π̂ . First, the combined parity does not commute with
the residual Majorana hybridizations εi j in Eq. (1) (except
for ε12). Second, π̂ is no longer conserved in the presence
of leakage of the quantum dot charge, say into additional
reservoirs.

It is natural to expect that these processes spoil the mea-
surement by allowing weight to move between the π sub-
spaces and thereby scrambling the probabilities associated
with the measurement outcomes. We analyze this in more
detail for the Majorana hybridizations. For definiteness, we
focus on ε23 with the corresponding contributions

Ĥ23 = −iε23γ̂2γ̂3 (42)

= ε23

∑
n

(|↑, n〉〈↓, n| + |↓, n〉〈↑, n|) (43)

to the Hamiltonian and L23ρ̂ = −i[Ĥ23, ρ̂] to the Liouvillian.
In the absence of relaxation and for Im{t1t∗

2 } �= 0, the new total
Liouvillian L + L23 has ρ̂∞ = diag(1, 1, 1, 1)/4 as the only
zero mode and, consequently, does not preserve information

0 200 400 600 800 1000
time t [k−1]

-1

0

1

π1(t)

π2(t)

E[1 − π2(t)]

E[π(t)]+

0 20 40 60

time t [103k−1]

0

1
E[π(t)]+

FIG. 9. Effect of a weak Majorana hybridization ε23 = 0.02k on
Majorana-qubit readout. For this hybridization strength, the mea-
surement evolution, which tries to project π onto an eigenvalue of
π̂ , is stronger than the evolution due to Ĥ23. Thus, in contrast to
Fig. 8, individual πi(t ) traces (blue and orange) remain predomi-
nantly near the fixed points π = ±1. This is also reflected in the
fact that E[1 − π 2] (green trace) reaches a steady-state value which
is different from but still close to zero. At short times, individual
trajectories reach the fixed points with a probability reflecting the
initial weights |α|2 and |β|2 associated with the π̂ eigenspaces.
Eventually, hybridization flips π (t ) between 1 to −1, as illustrated by
trajectory π2(t ). These jumps cause a decay of the ensemble average
of π (t ) over trajectories initialized within one fixed point; see the
red trace for E[π ]+ (enlarged in inset). Correspondingly, the initial
weights are lost and in the long-time limit, trajectories are close to
either fixed point with equal probability (as quantified by the decay
of E[π ]+). For good readout fidelity, the measurement outcome must
be identifiable as long as E[π ]+ � 1. Other parameters as in Fig. 3.

on the weights |α|2 and |β|2 of the initial Majorana-qubit state
in the long-time limit (see Appendix G).

This is illustrated in Fig. 8 which shows E[π (t )]±, the
ensemble-averaged evolution of π (t ) for initial states π (0) =
±1. For significant values of ε23, E[π (t )]± relaxes to 0 more
quickly than the measurement can project π̂ , as indicated by
the fact that E[1 − π2(t )] remains large for all times t . This
implies that the system forgets the weights associated with
the π eigensectors too quickly to perform a measurement. In
contrast, Fig. 9 shows data for a much smaller value of ε23.
Here, ε23 � τ−1

m and the information on the weights is re-
tained transiently. Still, in the long-time limit, this information
is lost and Majorana hybridizations set an upper limit for the
time a measurement may take. Including relaxation does not
change this qualitatively. In this case, the steady state will no
longer be completely mixed, but importantly, there is only one
steady state and information on the qubit state is lost in the
long time limit.

F. Readout via double quantum dot

1. Readout of two-Majorana parities

It is interesting to compare the scheme discussed so far
with a modified readout setup which couples the Majorana
qubit to a double quantum dot, such that Majoranas γ̂1 and
γ̂2 entering into Ẑ are coupled to one quantum dot each; see
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1

2

FIG. 10. Majorana qubit readout by means of a double quantum
dot (with interdot tunneling t0), with charge monitoring by a quantum
point contact of one (as shown) or both quantum dots. Symbols as in
Fig. 1.

Fig. 10. In this case, the effective hopping amplitude between
the quantum dots equals

tẐ = t0 + it1t∗
2

Ec
Ẑ. (44)

Here, t0 denotes direct hopping, while the second term orig-
inates from indirect hopping via the Majorana qubit. We
consider the subspace in which a single electron in the double
quantum dot can reside in either of the two quantum dots, with
basis states |1, 0〉 and |0, 1〉. The Hamiltonian of the system,
written in the basis {|1, 0; ↑〉, |0, 1; ↑〉, |1, 0; ↓〉, |0, 1; ↓〉} be-
comes block diagonal,

Ĥ =
(

h↑ 0
0 h↓

)
, (45)

where the 2 × 2 blocks take the form

hZ =
(

ε/2 tZ
t∗
Z −ε/2

)
. (46)

Unlike the single-dot case, the block-diagonal structure is now
directly related to the operator of interest, Ẑ . At first sight, this
may seem to simplify readout based on monitoring the charge
of one of the quantum dots.

However, this is not the case and our analysis of the readout
via a single quantum dot carries over to the present case with
only small changes. In particular, the time-averaged measure-
ment signal of the quantum point contact does not distinguish
between the two Z values, unless there is relaxation in the
energy eigenbasis. This is because the measurement attempts
to project the quantum dot into a charge eigenstate of one of
the quantum dots, which is not an eigenstate, thus causing
Rabi oscillations of the charge between the quantum dots. In
the stationary limit, the system explores both charge states,
|1, 0〉 and |0, 1〉, with equal probability and the ensemble-
averaged charge becomes equal to 1/2, independent of Z .
The similarities with the single-dot setup are, of course,
rooted in the fact that the Hamiltonians (7) and (46) for
the single- and double-dot setups, respectively, are closely
analogous.

Despite these similarities, the present setup may have some
advantages which could compensate for the additional effort.
First, the diagonal elements of the Hamiltonian (46) can now
be tuned by a gate, making a wider parameter range acces-
sible. Second, the double quantum dot presumably couples

1 2

FIG. 11. Four-Majorana readout by charge measurements on a
double quantum dot. The Majorana bound states γ̂2 and γ̂3 are tunnel
coupled directly via the tunneling link t23. Symbols as in Fig. 1.

efficiently to the electromagnetic environment, which induces
relaxation in the energy basis and enables readout of the qubit
via the average measurement current. Third, the setup obviates
the need for resetting the qubit as electrons enter the Majorana
qubit only virtually.

2. Readout of four-Majorana parities

Universal quantum computing requires a gate which entan-
gles qubits such as the controlled NOT. For Majorana qubits,
the entangling gate can be implemented using measurements
of two-qubit Pauli operators [5,13,14], say Ẑ1Ẑ2, where Ẑ1 =
−iγ̂1γ̂2 and Ẑ2 = −iγ̂3γ̂4, cf. Fig. 11. This requires measure-
ments of products of four Majorana operators. Measurements
of Majorana parities with even more operators are required
to read out stabilizer operators of various topological error
correcting codes [3].

Measurements of four-Majorana parities can be imple-
mented using double quantum dots as in Sec. III F, replacing
the tunneling path through a single Majorana qubit in Fig. 10
by a tunneling path through a sequence of two Majorana
qubits, as shown in Fig. 11. If the path involves all four Majo-
ranas included in Ẑ1Ẑ2, the corresponding tunneling amplitude
becomes

tẐ1Ẑ2
= t0 + t1t23t∗

4

E2
c

Ẑ1Ẑ2. (47)

By analogy with our discussion in Sec. III F, the quantum dot
charge measurement leads to decoherence in the eigenbasis of
Ẑ1Ẑ2. At the same time, the density matrix remains unaffected
within the diagonal blocks of fixed two-qubit parity Ẑ1Ẑ2, so
that no information is gained on Ẑ1 or Ẑ2. Clearly, this can,
at least in principle, be extended to the measurement of larger
products of Majorana operators.

IV. SYMMETRY PROTECTED READOUT

We found in Sec. III C that even though Ẑ was not a con-
served quantity and the measurement device was coupled to
n̂, we could read out Ẑ by effectively extracting the combined
local parity π̂ which is a symmetry of both the system and
the measurement Hamiltonian. This is a special case of a
more general result (see, e.g., Refs. [28,29]). If an operator
�̂ commutes with both, the Hamiltonian, [Ĥ, �̂] = 0, and the
full set of jump operators describing the measurement and
decoherence channels, [L̂α, �̂] = 0, the system generically
decoheres in the �̂ basis. In particular, decoherence occurs
as long as the measurement current distinguishes between the
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eigenspaces of �̂ [30]. Before justifying the validity of this
statement, we further illustrate its usefulness by additional
applications to Majorana qubits.

It was shown by Akhmerov [18] that coupling Majorana
zero modes γ̂i to other fermionic quasiparticles α̂i,k localized
in their vicinity is not detrimental to topological protection.
Because of their localized nature, the quasiparticles do not
couple distant Majoranas and the operators

γ̂ ′
i = γ̂i(−1)N̂i (48)

with N̂i = ∑
k α̂

†
i,kα̂i,k are dressed but protected zero modes of

the system which commute with the Hamiltonian. This was
recently studied further for a specific model in Ref. [31].

For these dressed zero modes to be useful for topological
quantum computation, we need to be able to use them in
Majorana qubits and to perform projective measurements of
corresponding qubit operators such as Ẑ ′ = −iγ̂ ′

1γ̂
′
2 [13]. The

general statement mentioned above implies that this is indeed
possible. Consider a measurement of Ẑ by coupling γ̂1 and
γ̂2 to a quantum dot as before. We can define a modified
combined local parity

π̂ ′ = Ẑ (−1)n̂+N̂1+N̂2 = Ẑ ′(−1)n̂, (49)

which includes the localized quasiparticles. Unlike π̂ , the
modified combined parity π̂ ′ is a symmetry of the system in
the absence of processes coupling to other Majorana bound
states or changing the charge n̂ + N̂1 + N̂2. A measurement
which distinguishes between the two eigenspaces of π̂ ′ will
then no longer decohere the system in the eigenbasis of π̂ , but
in the eigenbasis of π̂ ′, as required for a projective readout of
a qubit based on the dressed zero modes. There may, however,
be a reduction in the readout speed, as the coupling to other
localized modes reduces the hybridization of the zero mode
with the quantum dot.

Our description of the measurement process in terms of the
stochastic master equation (20) assumes a large bias applied
to the quantum point contact, which might cause unnecessary
heating of the quantum dot–Majorana qubit system as a con-
sequence of the measurement. The general statement above
implies that this assumption, although technically convenient,
is unnecessary. Inspecting the derivation of the stochastic
master equation in Appendix C, we see that relaxing this
assumption will change the argument of the decoherence
operator D[n̂] in Eq. (20). Nevertheless, π̂ is conserved by
all interactions and thus necessarily by the argument of D, as
well. Then, the system still decoheres in the π̂ eigenbasis. It is
worthwhile noting, however, that for smaller bias voltages the
argument of D will in general no longer be Hermitian and the
associated steady state will not be completely mixed within
each π subspace.

Now we turn to justifying the general statement. If, for
simplicity, the symmetry squares to one, �̂2 = 1, the uncon-
ditional master equation decouples into blocks labeled by the
eigenvalues of �̂ (cf. Sec. III C),

ρ̇ππ = − i[hπ , ρππ ] +
∑

α

kαD
[
lα
π

]
ρππ

= Lππρππ , (50a)

ρ̇+− = − i(h+ρ+− − ρ+−h−) +
∑

α

D̃[lα
+, lα

−]ρ+−

= L+−ρ+−. (50b)

Here, we use the notation D̃[A, B]ρ = AρB† − (A†Aρ +
ρB†B)/2 and decompose L̂α = diag[lα

+, lα
−] as well as Ĥ =

diag[h+, h−]. Just as in Sec. III C, the diagonal blocks have
Lindblad form and the evolution preserves the weights in the
respective blocks.

We then need to understand when L+− leads to a decay
of ρ+−. Baumgartner and Narnhofer [28] show that nontrivial
off-diagonal steady states exist if and only if there is a unitary

Û =
(

0 u†

u 0

)
(51)

connecting the two subspaces, Û P̂+ = P̂−Û †, which com-
mutes with the Hamiltonian and all the L̂α . Here, P̂± denotes
the projectors onto the two eigenspaces of �̂ and u is a unitary
acting on the �̂ eigenspaces. Then, one has

h− = u†h+u , lα
− = u†lα

+u, (52)

so that both the spectra of the Hamiltonians and the algebras
formed by {h±, lα

±} are identical. This implies that the two
sectors are unitarily equivalent and the associated measure-
ment currents are indistinguishable. The existence of such a
unitary U requires finetuning. Generically, the subspaces are
not related in this manner and the measurement signals distin-
guish between the two sectors. Then, decoherence occurs in
the eigenbasis of �̂.

This holds true regardless of the details of the measurement
procedure. For instance, one could alternatively base the
charge measurement on circuit-QED reflectometry, where the
coupling to the quantum dot charge takes the form

ĤcQED = g n̂(â†
0 + â0). (53)

Here, â0 annihilates a bosonic resonator mode and g quantifies
the coupling strength. Since the coupling respects the symme-
try [ĤcQED, π̂ ] = 0, this generically decoheres the system in
the eigenbasis of π̂ . This emphasizes that it is really the sym-
metry that counts, not the details of the measurement, and we
refer to this mechanism as symmetry-protected decoherence
or symmetry-protected readout.

While decoherence generically occurs in the eigenbasis
of π̂ , the decoherence rates depend on the specifics of the
measurement and can be linked to the rate at which it is
possible to distinguish the measurement signals of the two
sectors [30]. In particular, |trρ+−(t )|2 is closely related to
the probability to correctly identify the measurement outcome
from the measurement signal up to time t . Since this assumes
an ideal measurement, the decay of ρ+− generally provides
only bounds on the measurement time.

V. DISCUSSION

Readout of Majorana-based topological qubits is an im-
portant problem and has attracted much attention in the
literature for qubit designs based on Coulomb-blockaded
superconducting islands [4,5,32,33] or alternative settings
[34–40]. Its importance is rooted in the fact that promising
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schemes for Majorana-based quantum computation [3,5,13]
rely on measurements as an integral part of quantum
information processing. This implies that the measure-
ments must not only provide the measurement outcome
but also reliably project the qubit into the corresponding
eigenstate.

A variety of techniques have been proposed to read out Ma-
jorana qubits, including interferometry of transport currents
passed through the Majorana qubit [4,33,40], techniques bor-
rowed from circuit quantum electrodynamics [4,5,32,35,36],
or measurements relying on charge sensing [4,5,34,37,38,41].
Techniques borrowed from circuit quantum electrodynamics
can frequently be treated theoretically in close analogy to
the description for (nontopological) superconducting qubits
[42]. At the same time, these schemes involve a substan-
tial hardware overhead and may significantly increase the
effective dimensions of each qubit. Therefore, we focused
here on readout of Majorana qubits based on coupling to
a quantum dot whose charge is measured by means of a
quantum point contact. This approach combines suitability
to the basic design of Majorana qubits with conceptual sim-
plicity, and thus relevance for near-term devices with acces-
sibility of a thorough theoretical analysis at an analytical
level.

Despite its apparent simplicity, this scheme poses non-
trivial questions. In particular, we discuss charge-based read-
out protocols of parity-protected Majorana qubits which are
distinctly different from charge-based readout protocols of
other types of qubits. Spin qubits (by spin-charge conversion)
[43] or Majorana qubits without parity protection [37] (by
parity-to-charge conversion) can also be effected by charge
measurements. In these cases, the computational basis of
the qubit is robustly brought into one-to-one correspondence
with the charge basis. In contrast, the charge-based readout
of parity-protected Majorana qubits projects in the charge
basis, while the qubit operator enters through a tunneling
Hamiltonian which does not commute with the charge. Gener-
ically, this makes a single projective charge measurement
insufficient to identify the qubit state. Moreover, readout
by repeated charge measurements would necessitate very
high levels of control. Instead, the readout process is a
weak continuous measurement and its theoretical descrip-
tion requires a time-resolved description of the measure-
ment.

A systematic measurement theory of this readout scheme
for (parity-protected) Majorana qubits is the central contri-
bution of this paper. Our theory reveals under which condi-
tions a measurement of the quantum dot charge constitutes a
projective measurement of the Majorana parity of the qubit,
describes the time it takes to decohere the system in the
measurement basis, and includes the noisy measurement sig-
nal which can be analyzed to estimate required measurement
times.

Our central insight is that generically, one does not di-
rectly measure the Majorana parity but rather a combined
parity which includes the quantum dot charge in addition
to the Majorana parity of the qubit. We find that this is
not detrimental to the readout as the combined parity can
eventually be converted into the desired Majorana parity.
Importantly, this observation generalizes and our theory also

applies more generally. In particular, this implies that other
local charges which the Majorana might couple to are not
a hindrance to topological protection. Topological quantum
computation, including qubit readout, can be based on dressed
zero modes which include these additional local charges.
In its general form, the underlying result states that deco-
herence generically occurs in the eigenbasis of operators
which commute with the system and readout Hamiltonians,
which we refer to as symmetry-protected decoherence or
readout.

The theory also describes how to extract the measurement
outcome from the measurement current through the quantum
point contact. We find that generically, the measurement out-
come cannot be reconstructed from the average measurement
current, but only from its noise correlations. This can only
be avoided when including additional dissipative processes,
or by exploiting transient signals in fine-tuned situations. This
surprising result can be traced back to the fact that the quantity
to be read out enters into a tunneling amplitude which does
not commute with the measured quantity, namely the quantum
dot charge. We emphasize that for readout based on a single
quantum dot, the Majorana qubit is in an excited state for
a significant fraction of the measurement time. This may
make the procedure susceptible to qubit errors by uncontrolled
electron tunneling. This can be avoided in a measurement
setup using a double quantum dot, which may thus promise
better readout fidelities.

Finally, the theory naturally provides estimates of the mea-
surement time. We find that the measurement times for Majo-
rana qubit readout based on setups with a single quantum dot
are consistently considerably larger than those for a conven-
tional quantum dot charge readout at the same measurement
strength. The reason for this is twofold. First, the decoherence
rates are no longer simply controlled by the measurement
strength ≈ k but involve the small tunnel couplings between
quantum dot and Majorana qubit, ∼|t |2k/ε2 � k. Second, one
generically cannot access the entire information contained
in the measurement signal. Instead, typical experiments will
only have access to its mean and two-point correlations. Thus,
actual measurement times can be large compared to the deco-
herence time. However, slow readout should not be a generic
feature of Majorana qubit readout. In fact, readout setups with
two quantum dots can access an increased parameter range
and should be less restricted. Investigating the double-dot
setup in greater detail represents an interesting direction for
future work.

Note added. Recently, we became aware of related un-
published work [44], which contains a partly complementary
analysis and reaches similar conclusions where overlapping.
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APPENDIX A: MAJORANA QUBITS AND QUANTUM
DOT – NOTATION AND DEFINITIONS

In this Appendix, we summarize details of our definitions
and conventions for the quantum states of the coupled system
of Majorana qubit and quantum dot.

1. Choice of basis states

A set of 2m Majorana bound states labeled by i =
1, . . . , 2m is described by Hermitian fermionic operators
γ̂i = γ̂

†
i which satisfy {γ̂i, γ̂ j} = 2δi j . The associated 2m-

dimensional Hilbert space is spanned by the Fock occupations
n̂i j = f̂ †

i j f̂i j of complex fermions f̂i j = (γ̂i + iγ̂ j )/2.
The total fermion parity of these basis states is given by the

operator

P̂ = (−i)m
m∏

j=1

γ̂2 j−1γ̂2 j . (A1)

As quantum superpositions exist only for states of the same
fermion parity, a qubit requires at least four Majorana bound
states. States with even and odd fermion parity can be split
energetically by a charging energy, Eq. (1), as they have
different charge N = 2NC + NM , where NC is the number of
Cooper pairs and NM is the charge in the Majorana sector.
For definiteness, we choose the ground (excited) states of the
Majorana qubit to have N = 0 (N = −1). The Hilbert space
is spanned by {|N, n12, n34〉}. Because of the parity constraint

P = (−1)N = (−1)n12+n34 , (A2)

it is sufficient to specify the state as |N, n12〉.
In the main text, we choose a slightly different labeling of

the basis states. First, instead of using the label n12, we specify
n12 via the eigenvalue z ∈ {1,−1} ≡ {↑,↓} of the Pauli-Z
operator

Ẑ = −iγ̂1γ̂2 = 1 − 2n̂12 = (−1)n̂12 .

Second, the Majorana qubit only exchanges charge with the
quantum dot. We always initialize the system to have even
total parity with Majorana-qubit charge N = 0 and quantum
dot charge n = 0, so that these charges are related as n = −N
in general. We then label the basis states by the quantum dot
charge n and the eigenvalue z of the Pauli-Z operator of the
Majorana qubit,

|z, n〉 ≡ |N = −n, n12 = 1 − z

2
, n34 = 1 − z(−1)n

2
〉. (A3)

With this definition, the constraint (A2) is automatically sat-
isfied. Furthermore, with our choices, all participating states
have even total fermion parity Ptot = P(−1)n.

The four basis states |z, n〉 differ in the local parity
π̂ = Ẑ (−1)n̂. We choose a basis {|↑, 0〉, |↓, 1〉, |↓, 0〉, |↑, 1〉},
where the first (last) two states have local parity π = +1 (π =
−1). We can then define Pauli matrices acting in a subspace
of fixed local parity,

σπ
z = |π, 0〉〈π, 0| − |−π, 1〉〈−π, 1|, (A4a)

σπ
x = |π, 0〉〈−π, 1| + |−π, 1〉〈π, 0|, (A4b)

σπ
y = iσπ

x σπ
z . (A4c)

In the main text, we drop the π label whenever this does
not lead to confusion. In terms of these Pauli matrices, the
quantum dot charge is

n = 1
2 (σ0 − σz ). (A5)

2. Coupled Majorana qubit-quantum dot system

In addition, we define a set of Pauli matrices using the
eigenbasis of the Hamiltonian in Eq. (7) which also act within
the subspaces with fixed π ,

τπ
z = |gπ 〉〈gπ | − |eπ 〉〈eπ |, (A6a)

τπ
x = |eπ 〉〈gπ | + |gπ 〉〈eπ | = τπ

+ + τπ
− , (A6b)

τπ
y = iτπ

x τπ
z . (A6c)

Here, the ground states are given by Eq. (11), while the excited
states are

|e+〉 = cos
θ+
2

|↑, 0〉 + sin
θ+
2

eiφ+ |↓, 1〉, (A7a)

|e−〉 = cos
θ−
2

|↓, 0〉 + sin
θ−
2

eiφ− |↑, 1〉. (A7b)

In terms of these Pauli matrices, hπ = �πτπ
z and

n̂ =
∑
z=±1

|z, 1〉〈z, 1|

=
∑

π=±1

[
cos2 θπ

2
|gπ 〉〈gπ | + sin2 θπ

2
|eπ 〉〈eπ |

− 2 cos
θπ

2
sin

θπ

2
(|eπ 〉〈gπ | + |gπ 〉〈eπ |)

]

= 1

2

∑
π=±1

[
τπ

0 + cos θπτπ
z − sin θπτπ

x

]
.

In the Heisenberg picture, the quantum dot charge n̂(t ) =
exp(iĤt ) n̂ exp(−iĤt ) becomes

n̂(t ) =
∑

π=±1

[
τπ

0 + cos θπτπ
z

2

− sin θπ

2

(
e2i�π tτπ

+ + e−2i�π tτπ
−
)]

. (A8)

We find it convenient to define the time-independent part

ĉ =
∑

π=±1

τπ
0 + cos θπτπ

z

2
. (A9)

Finally, since we are performing our simulations in the charge
basis, we need τπ

± in the charge basis. Within a given π block,
it takes the form

τπ
− = 1

2

(
sin θπ (1 − cos θπ )e−iφπ

(−1 − cos θπ )eiφπ − sin θπ ,

)
(A10)

with τπ
+ given by Hermitian conjugation.
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APPENDIX B: STROBOSCOPIC PROTOCOL
FOR Ẑ READOUT

1. Measurement protocol

Section II discusses projective measurements of Ẑ based
on a single projective measurement of n̂. In addition to as-
suming instantaneous charge readout, this requires fine-tuned
parameters. In subsequent sections of the main text, we relax
both of these conditions. Here, we briefly discuss schemes
which assume instantaneous charge readout, but allow for
general system parameters ti and ε. For general parameters,
the measurement outcome for the charge of the quantum dot is
no longer perfectly correlated with eigenstates of Ẑ . However,
unless Im{t1t∗

2 } = 0, the charge measurement still provides
partial information on the qubit state.

Once coupled, quantum dot and Majorana qubit evolve
unitarily from initial state |ψ〉 = (α|↑〉 + β|↓〉)|0〉 into

Û |ψ〉 = α(c↑,0|↑, 0〉 + c↓,1|↓, 1〉)

+ β(c↓,0|↓, 0〉 + c↑,1|↑, 1〉). (B1)

The unitary time evolution Û , entangling Majorana qubit and
quantum dot, satisfies [Û , π̂ ] = 0, but otherwise depends on
details of the protocol. If the charge readout can be effected
instantaneously (on the timescale of the hybridization between
dot and qubit), or more realistically, qubit and quantum dot
are rapidly decoupled following the unitary evolution, the
quantum dot charge becomes a good quantum number during
charge readout. Then, the measurement leaves the system in
the state

|ψ ′
0〉 = 1√

p0
(αc↑,0|↑〉 + βc↓,0|↓〉)|0〉

or

|ψ ′
1〉 = 1√

p1
(αc↓,1|↓〉 + βc↑,1|↑〉)|1〉,

with probabilities p0 = |αc↑0|2 + |βc↓0|2 and p1 = 1 − p0,
respectively. The partial information on Ẑ obtained from the
measurement transfers weight between qubit states. This can
be interpreted in terms of Bayesian inference [19],

p(↑ |n) = p(n| ↑)

pn
p(↑), p(↓ |n) = p(n| ↓)

pn
p(↓),

where we identify the prior probabilities of the qubit
states with p(↑) = |α|2 and p(↓) = |β|2 and p(n|Z ) = |cZn|2
with the conditional probabilities to observe measurement
outcome n.

Repeating this protocol results in a random walk in the
space of qubit and quantum dot states. We find that the random
walk has two distinct steady states corresponding to the π̂

eigensectors. This becomes equivalent to the eigenstates of
Ẑ , if for simplicity, we reset the qubit-quantum dot system in
between steps, |↓, 1〉 → |↑, 0〉 and |↑, 1〉 → |↓, 0〉 after every
charge readout that gave n = 1 (for a scheme implementing
this reset, see Appendix B 2 below). With this reset, we
effectively obtain a random walk in the space of qubit states,
which can be described by the Kraus operators

M̂0 =
(

c↑0 0

0 c↓0

)
, M̂1 = X̂

(
0 c↑1

c↓1 0

)
(B2)
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FIG. 12. Evolution under the stroboscopic measurement protocol
for adiabatic coupling with initial state |ψ〉 = (|↑〉 + |↓〉)|0〉/√2,
as function of time (number of iterations). Sample trajectories of
Z = 〈Ẑ〉 (green and red traces) demonstrate the evolution toward
the fixed points. The evolution tends slowly toward the ↓ state
(corresponding to likely outcomes), interrupted by jumps (unlikely
outcomes) that provide much more information, favoring the ↑ state
and causing greater backaction. The measurement signal for two
trajectories is shown by the blue and orange traces. Jumps in the
trajectory are correlated with n = 1 outcomes. The correct statistics
of the measurement is illustrated by the constant ensemble average of
Z (N ) (brown trace), which we computed for the initial state |ψ2〉 =
(|↑〉 + √

2|↓〉)|0〉/√3. Projection onto the fixed points is indicated
by the decay of E[1 − Z2(N )] (purple trace) to zero. Ensemble
averages are over 104 trajectories. Parameters: t2 = t1eiπ/4, ε = 10t1.

acting on a qubit state |φ〉, so that the qubit state |φ′
n〉 condi-

tioned on the measurement outcome n is given by

|φ′
n〉 = M̂n|φ〉√

pn
, (B3)

with pn = 〈φ|M̂†
n M̂n|φ〉. The Pauli X̂ in the definition of M̂1

makes the reset of the qubit-quantum dot system explicit.
Figure 12 shows numerical simulations of this protocol

for the adiabatic coupling scheme discussed in Sec. II B, so
that Û involves the coefficients cZ,n of the state given in
Eq. (10). The trajectories reach the fixed points Z = ±1 with
the correct probabilities. Moreover, the measurement outcome
can be extracted from the sequence of n outcomes of a single
trajectory by noting that n averages to the ground-state charge
corresponding to the respective fixed point. Thus, this protocol
implements a projective measurement of Ẑ .

We conclude this section with a number of comments.
First, resetting the quantum dot charge is not essential. With-
out intermediate resetting, the protocol projects π̂ = Ẑ (−1)n̂

(see discussion in the main text) and one may reset once the
outcome of the measurement is determined. However, in this
case, the average charge no longer equals the ground-state
charge and a more involved signal analysis (for instance, using
the Bayes theorem) is required. Second, qubit and quantum
dot can also be entangled through evolution with the Hamil-
tonian (7). In this case, decoupling qubit and quantum dot in
between steps is necessary only if charge readout is slower
than tunneling. The resulting evolution is closely related to the
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continuous evolution discussed in the main text, which arises
naturally from sequences of repeated measurements when
gradually relaxing assumptions on the strengths of various
couplings.

2. Resetting the qubit–quantum dot system

When the charge measurement yields n = 1, the Majorana
qubit is in the excited charge state N = −1. To avoid uncon-
trolled charging events, the electron should be swiftly returned
from quantum dot to Majorana qubit.

This can be achieved by adiabatic variations of ε and ti,
transforming

|ψ〉 = (α|↓〉 + β|↑〉)|1〉 (B4)

into

|ψreset〉 = (α|↑〉 + β|↓〉)|0〉 (B5)

for general α and β. We focus on the subspace π = +1 for
definiteness.

Without fine-tuning of the dynamical phase, |↓, 1〉 can
only be transformed into |↑, 0〉 if it is an eigenstate of the
initial Hamiltonian. Consider an initial Hamiltonian h+ given
by θ+ = θ0 and φ+ = φ0, and expand the initial state in
eigenstates of h+,

|↓, 1〉 = e−iφ0

(
sin

θ0

2
|e+〉0 − cos

θ0

2
|g+〉0

)
.

Adiabatically changing θ0, φ0 → θ1, φ1, the eigenstates
evolve as |e+〉0 → eiχe |e+〉1 and |g+〉0 → eiχg|g+〉1, where the
subscripts distinguish eigenstates of the initial (θ0, φ0) and
final (θ1, φ1) Hamiltonians. Then

|↓, 1〉 → e−iφ0

(
eiχe sin

θ0

2
|e+〉1 − eiχg cos

θ0

2
|g+〉1

)
. (B6)

Writing |e+〉1 and |g+〉1 in the basis |↑ 0〉, |↓ 1〉 and setting
the coefficient of |↓ 1〉 to zero yields the condition

eiχg sin
θ0

2
sin

θ1

2
+ eiχe cos

θ0

2
cos

θ1

2
= 0. (B7)

Without fine-tuning, χg and χe are arbitrary phases and the
two terms need to vanish separately. This implies θ0 = 0 and
θ1 = π , or vice versa, so that the state |↓, 1〉 was an eigenstate
of h+(θ0, φ0) to begin with.

The charge state of the quantum dot-Majorana qubit system
may then be reset from the initial state |ψ〉 as follows:

(1) Suddenly decouple quantum dot and Majorana qubit
(ti = 0 and ε > 0 or (θ±)0 = π ). Then, |↓, 1〉 = |e+〉0 and
|↑, 1〉 = |e−〉0 are energy eigenstates. The system state |ψ〉
is now a superposition

|ψ〉 = α|e+〉0 + β|e−〉0.

(2) Adiabatically swap |e±〉 and |g±〉, rotating the Hamil-
tonian h± from the south (θ±)0 = π to the north pole (θ±)1 =
0 of the Bloch sphere,

|ψ〉 → α|e+〉1 + βeiχ |e−〉1 = α|g+〉0 + βeiχ |g−〉0,

= (α|↑〉 + βeiχ |↓〉)|0〉,
where χ is the relative dynamical phase between the π̂

eigensectors introduced in the adiabatic evolution. Although

(i)

(ii)

(iii)

FIG. 13. Spectrum of the quantum dot–Majorana qubit system
as a function of the qubit gate charge Ng. The dashed lines for
N = −1 (orange) and N = 0 (blue) correspond to the energies of
the system without coupling to the quantum dot. (The vertical shift
of the orange curve reflects the energy of the quantum dot.) The
full lines (red, green) refer to the coupled system and exhibit an
avoided crossing. Initially, the Majorana qubit gate is tuned to Ng = 0
and the system is in the charge ground state |ψ〉 ∝ |N = 0, n = 0〉.
(i) A measurement outcome of n = 1 transfers the system into the
excited charge state |ψ ′〉 ∝ |N = −1, n = 1〉. (ii) The charge state
is reset by adiabatically changing Ng → −1. The system state is
now ∝ |N = 0, n = 0〉 again. (iii) Suddenly set Ng → 0, so that the
system state does not change and the initial situation is restored.
Alternatively, one may also decouple the quantum dot and slide down
the dashed green curve adiabatically.

uncontrolled, the relative phase does not affect the readout
evolution as it preserves the weights in the Ẑ eigenbasis. The
step requires ti �= 0 at some point during the evolution to avoid
gap closing, but eventually quantum dot and Majorana qubit
are again decoupled.

(3) Finally, suddenly reset the gates to their initial values,
so that the quantum dot–Majorana qubit system again resides
in a superposition of charge ground states.

This protocol requires a sign flip of ε = EC + ε, which
can be realized by varying the quantum dot energy ε to
compensate for the charging energy EC of the Majorana qubit,
or by also varying the spectrum of Majorana-qubit charge
states by the gate offset Ng; see Fig. 13.

The same procedure can be applied at the end of the
continuous readout discussed in the main text, which may
also require a charge reset once the measurement outcome is
certain.

APPENDIX C: DERIVATION OF THE STOCHASTIC
MASTER EQUATION (20)

For completeness, we include a derivation of the stochastic
master equation (20) which describes the evolution of the
Majorana qubit-quantum dot system under continuous mon-
itoring of the quantum dot charge by a quantum point contact;
see, e.g., Ref. [45].
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The Hamiltonian

Ĥreadout = Ĥleads + Ĥjct + n̂ δĤjct (C1)

of the quantum point contact describes two (left and right)
free-fermion leads,

Ĥleads =
∑

α

(ξLα ĉ†
Lα ĉLα + ξRα ĉ†

Rα ĉRα ),

and a tunneling Hamiltonian

V̂ = Ĥjct + n̂ δĤjct = (τ + χ n̂)ψ̂†
Lψ̂ReieV t + H.c., (C2)

which includes the coupling to the quantum dot charge n̂. The
chemical potentials of the two leads differ by the bias voltage
V applied across the quantum point contact,

eV = μL − μR. (C3)

The factor eieV t in the tunneling Hamiltonian (C2) already
accounts for a time-dependent unitary transformation such
that the single-particle energies of the left and right leads
are measured from the respective chemical potentials, ξLα =
εLα − μ − eV and ξRα = εRα − μ, with α labeling the single-
particle eigenstates with corresponding electron operators cLα

and cRα . The electron operators evaluated at the junction
position are denoted by ψ̂L and ψ̂R. Importantly, there is only
capacitive coupling, but no charge transfer between quantum
dot and quantum point contact.

At zero temperature, the quantum point contact carries an
average current

I0 = 2πνLνR|τ |2eV (C4)

when the quantum dot is unoccupied, and

I1 = 2πνLνR|τ + χ |2eV (C5)

when the quantum dot is occupied. Here, νL/R denotes the
lead density of states. The sensitivity of the detector depends
on δI = I1 − I0. We assume that the quantum dot affects the
current weakly, δI � I0.

1. Unconditional Lindblad master equation

We first derive the unconditional master equation for the
quantum dot state following the standard procedure of tracing
over the leads, assuming factorization of the system-lead
density matrix at all times (Born approximation), and finally
assuming fast decay of the lead correlation functions to obtain
a Markovian equation of motion. We will subsequently use
the Lindblad equation to identify the Kraus operators, which
allows one to derive the conditional master equation which
accounts for the monitoring of the quantum-point-contact
current.

We start in the interaction picture, with operators and
states evolving according to Ĥ0 = Ĥ + Ĥleads and V̂ = Ĥjct +
n̂ δĤjct, respectively. The corresponding density matrix for
system and leads, χ̂ , satisfies the equation of motion

d

dt
χ̂ (t ) = −i [V̂ (t ), χ̂ (t0)]

−
∫ t

t0

dt ′ [V̂ (t ), [V̂ (t ′), χ̂ (t ′)]]. (C6)

Weak coupling between system and quantum point contact
allows for the Born approximation χ̂ (t ) = ρ̂(t ) ⊗ e−βHleads/Z
since the effect on the density matrices of the leads remains
small at all times. We can then trace out the leads, which enter
the resulting equation for the (interaction-picture) density
matrix ρ̂(t ) of the system only through correlation functions.
The first term in (C6) vanishes since cross-lead correlation
functions are assumed zero. The second term gives

d

dt
ρ̂(t ) = −

∫ t

t0

dt ′ {G<
L (t ′ − t )G>

R (t − t ′)eieV (t−t ′ )[m̂(t )m̂†(t ′)ρ̂(t ′) − m̂†(t ′)ρ̂(t ′)m̂(t )]

− G>
L (t ′ − t )G<

R (t − t ′)eieV (t−t ′ )[m̂(t )ρ̂(t ′)m̂†(t ′) − ρ̂(t ′)m̂†(t ′)m̂(t )]

+ G>
L (t − t ′)G<

R (t ′ − t )e−ieV (t−t ′ )[m̂†(t )m̂(t ′)ρ̂(t ′) − m̂(t ′)ρ̂(t ′)m̂†(t )]

− G<
L (t − t ′)G>

R (t ′ − t )e−ieV (t−t ′ )[m̂†(t )ρ̂(t ′)m̂(t ′) − ρ̂(t ′)m̂(t ′)m̂†(t )]}, (C7)

where we defined the shorthand m̂(t ) = τ + χ n̂(t ) as well as
the greater and lesser lead Green’s functions

G>
j (t − t ′) = − i〈ψ̂ j (t )ψ̂†

j (t ′)〉 = −ν j
π/β

sinh π (t−t ′−iη)
β

G<
j (t − t ′) = i〈ψ̂†

j (t ′)ψ̂ j (t )〉 = −ν j
π/β

sinh π (t−t ′+iη)
β

.

Here, β denotes the inverse temperature and η is a positive
infinitesimal.

In the limit of a large bias voltage, the prefactors of
the square brackets in the integrand on the right-hand side

of Eq. (C7) effectively become sharply peaked functions in
t − t ′. Using the Fourier transform of the function

g(E ) = Eb(E ) = −
∫

dt

2π
eiEt

(
π/β

sinh π (t+iη)
β

)2

(C8)

with the Bose distribution b(E ), we can thus approximate

G<
L (t ′ − t )G>

R (t − t ′)eieV (t−t ′ )

� 2πνLνRg(−eV )δ(t − t ′) + imaginary,

G>
L (t ′ − t )G<

R (t − t ′)eieV (t−t ′ )

� 2πνLνRg(eV )δ(t − t ′) + imaginary,
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G>
L (t − t ′)G<

R (t ′ − t )e−ieV (t−t ′ )

� 2πνLνRg(eV )δ(t − t ′) + imaginary,

G<
L (t − t ′)G>

R (t ′ − t )e−ieV (t−t ′ )

� 2πνLνRg(−eV )δ(t − t ′) + imaginary. (C9)

Here, we do not specify the imaginary terms as they corre-
spond to perturbative renormalizations of the system Hamil-
tonian. The approximate δ functions in time have a width of
order 1/eV . We assume that both the density matrix ρ(t ) and
the quantum dot occupation n̂(t ) vary slowly within times of
order 1/eV . In particular, this requires that the applied bias
is large compared to characteristic system frequencies, eV 	
�±. In this limit, the equation of motion for ρ̂(t ) becomes
Markovian, and we obtain

d

dt
ρ̂(t ) = −i[Ĥ, ρ̂] + k

eV |χ |2 {g(−eV )D[τ ∗ + χ∗n̂]

+ g(eV )D[τ + χ n̂]}ρ̂(t ). (C10)

Here, we reverted from the interaction to the Schrödinger
picture and defined the measurement strength k =
2πνLνR|χ |2eV . The (τ ∗ + χ∗n̂) term describes a process
in which electrons tunnel from the left to the right lead. For
positive eV, this happens even at T = 0. The (τ + χ n̂) term
describes a process in which electrons tunnel from the right
to the left lead which cannot occur at T = 0. Absorbing a
shift 2πνLνReV Im[χτ ∗] into the quantum dot energy ε in the
Hamiltonian and taking the limit of zero temperature with
g(−eV ) = eV and g(eV ) = 0, we obtain the unconditional
part of Eq. (20).

2. Stochastic master equation

Since the tunneling amplitude depends only weakly on the
quantum dot occupation, the current measurement constitutes
a weak measurement of the quantum dot–qubit system. The
change of the system state

|ψ〉 → 1√
pi

Mi|ψ〉, (C11)

due to these weak measurements is described by Kraus op-
erators M1 and M0 which can be respectively associated with
transmission or absence of transmission of electrons by the
quantum point contact (still assuming T = 0 so that tunneling
is unidirectional). The change in the density matrix ρ̂c takes
the form

ρ̂c → 1

pi
Miρ̂cM†

i . (C12)

In these expressions,

pi = 〈ψ |M†
i Mi|ψ〉 = tr[M†

i Miρ̂c] (C13)

denotes the probability for outcome i.
The tunneling current through the quantum point contact

can be described as a point process

Ic(t ) = e
dNc(t )

dt
,

where dNc(t ) ∈ {0, 1} is a Poisson element which is not
infinitesimal but has an infinitesimal ensemble average

E[dNc(t )] = tr[M†
1 M1ρ̂c(t )] (C14)

equal to the probability that an electron is transmitted in time
dt . To find the Kraus operator M1, we note that the ensemble
average of the current

E[Ic(t )] = tr[M†
1 M1ρ̂c(t )]

dt
(C15)

has to equal I0 for n = 0 and I1 for n = 1. This is satisfied for

M1 = (τ ∗ + χ∗n̂)
√

dt,

where we rescaled
√

2πνLνReV τ → τ and
√

2πνLνReV χ →
χ for notational simplicity (so that I0 = |τ |2, I1 = |τ + χ |2,
and k = |χ |2, setting e = 1).

To find the Kraus operator M0 = 1 + Âdt , we
equate E[ρ̂c(t + dt )] = M0ρ̂(t )M†

0 + M1ρ̂(t )M†
1 and

E[ρ̂c(t + dt )] = ρ̂(t + dt ) = (1 + Ldt )ρ̂(t ). Reading off
the Liouvillian from Eq. (C10), this yields

M0 = 1 − idtĤ − 1
2 M†

1 M1

and thus Â = −iĤ − (I0 + δIn̂)/2. As mentioned, see
Eq. (C10), we absorb a shift of the quantum dot energy into
the Hamiltonian

Â = −i(Ĥ + Im[τ ∗χ ]n̂) − 1
2 [I0 + (2τχ∗ + k)n̂]. (C16)

Below, we will no longer display this shift of Ĥ explicitly.
The conditional evolution of ρ̂c(t ) takes the form

ρ̂c(t + dt ) = [1 − dNc(t )]
M0ρ̂c(t )M†

0

tr[M0ρ̂c(t )M†
0 ]

+ dNc(t )
M1ρ̂c(t )M†

1

tr[M1ρ̂c(t )M†
1 ]

, (C17)

where the denominators ensure normalization. Expanding to
linear order in dt and neglecting higher order terms of the
form dt dNc(t ), we obtain

d ρ̂c = dt

{
− i[Ĥ, ρ̂c] − 1

2
({I0 + kn̂, ρ̂c} + 2χ∗τ n̂ρ̂

+ 2τ ∗χρ̂n̂) + (I0 + δI〈n̂〉)ρ̂c

}

+ dNc

{
(τ ∗ + χ∗n̂)ρ̂c(τ + χ n̂)

I0 + δI〈n̂〉 − ρ̂c

}
. (C18)

This describes the stochastic evolution of ρ̂c as the quantum
dot is monitored by the quantum point contact. The evolution
of ρ̂c is conditioned on the stochastic measurement current
Ic(t ) of the quantum point contact.

We can alternatively describe the evolution in terms of a
stochastic Schrödinger equation which takes the form

d|ψc〉 = dt

{
−iĤ − 1

2
[I0 + (2χ∗τ + k)n̂] + 1

2
[I0 + δI〈n̂〉]

}

× |ψc〉 + dNc

{
τ ∗ + χ∗n̂√
I0 + δI 〈n̂〉 − 1

}
|ψc〉. (C19)

3. Diffusive approximation

The assumption that the average current I0 is much larger
than the shift δI induced by changes in the quantum-dot
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occupation allows one to approximate the point process by
a Wiener process.

We consider a time interval δt which is short enough
that the changes in the density matrix ρ̂c remain small and
the quantum expectation value of n̂ remains approximately
constant. Then, the probability distribution of the number N
of tunneling events within the time interval δt is given by the
Poisson distribution

P(N ) = [(I0 + δI〈n̂〉)δt]N

N!
e−(I0+δI〈n̂〉)δt (C20)

with ensemble average

E[N] = [I0 + δI〈n̂〉]δt, (C21)

and variance

V [N] � I0δt . (C22)

The expression for the variance uses that δI � I0. Assuming
that I0δt is large, one can approximate the Poisson by a Gauss
distribution with the same average and variance.

Assuming that δI is sufficiently small and the Hamiltonian
dynamics sufficiently slow, we can approximate both the
unitary dynamics and the changes of the density matrix ρ̂c

induced by the weak measurements of the quantum dot charge
to linear order in the time interval δt ,

δρ̂c = δt

{
− i[Ĥ, ρ̂c] − 1

2
({I0 + kn̂, ρ̂c} + 2χ∗τ n̂ρ̂

+ 2τ ∗χρ̂n̂) + (I0 + δI〈n̂〉)ρ̂c

}

+ δNc

{
(τ ∗ + χ∗n̂)ρ̂c(τ + χ n̂)

I0 + δI〈n̂〉 − ρ̂c

}
. (C23)

Here, δNc describes the Wiener process

δNc(t ) = [I0 + δI〈n̂〉]δt + √
I0ξ (t )δt (C24)

with a Gaussian random process ξ (t ) with variance 1/δt .
Writing this in the continuum limit, we find

d

dt
ρ̂c = −i[Ĥeff, ρ̂c] + kD[n̂]ρ̂c +

√
kξ (t )H[n̂eiφ]ρ̂c (C25)

with τ ∗χ = |τχ |eiφ and the δ-function correlator
E[ξ (t )ξ (t ′)] = δ(t − t ′). This simplifies to the evolution
equation (20) in the main text if one fixes φ = π

(corresponding to a decrease in current through the quantum
point contact due to the presence of an electron on the
quantum dot).

The measurement current is obtained by subtracting the
background current I0 and normalizing. For φ = π , this yields

j(t ) = 1

δI

(
δNc(t )

δt
− I0

)
= 〈n̂(t )〉 + 1√

4k
ξ (t ) (C26)

in agreement with Eq. (19) of the main text.

4. Relaxation by the electromagnetic environment

Coupling to the electromagnetic environment leads to re-
laxation in the eigenbasis of the Majorana qubit–quantum dot
system, as described by Eq. (31) in the main text. Here, we
sketch its derivation.

The electrostatic potential of the electromagnetic environ-
ment is described as a free bosonic field

v̂(r) =
∑

q

[
m̃∗

q â†
qeiqr + m̃−qâ−qe−iqr] (C27)

with Hamiltonian

Ĥv =
∑

q

ωqâ†
qâq (C28)

and assumed to be in a thermal state ρ̂v ∝ exp(−Ĥv/T ). The
potential v̂ is an additional contribution to the gate voltages of
Majorana qubit and quantum dot and varies slowly in space
compared to the spatial extent of the system. Majorana qubit
and quantum dot are then subject to the same potential v̂, and
we obtain the interaction

V̂ = −2ECCg

e
N̂ v̂ − 2εCcg

e
n̂v̂ (C29)

= λn̂v̂ (C30)

= n̂
∑

q

[m∗
q â†

q + m−qâ−q], (C31)

where we used N̂ = −n̂ due to charge conservation and
absorbed

λ = 2ECCg

e
− 2εCcg

e
(C32)

into the coefficients mq. (Here, εC and cg are charging energy
and gate capacitance of the quantum dot, and Cg is the gate
capacitance of the Majorana qubit.)

We write the charge operator in the interaction picture with
respect to the system Hamiltonian as given in Eq. (A8). Then,
the coupling Hamiltonian in rotating-wave approximation be-
comes

V̂ (t ) � ĉ[B̂(t ) + B̂†(t )]

− sin θ

2
[e2i�t τ̂+B̂(t ) + e−2i�t τ̂−B̂†(t )], (C33)

where we defined the shorthand

B̂(t ) =
∑

q

mqe−iωqt âq. (C34)

Notice that we suppressed π indices as V̂ (t ) conserves π̂ and
does not mix the two subspaces.

Following the same steps as above, the master equation for
a general system-bath interaction

ĤSB =
∑

i

Ŝi ⊗ B̂i (C35)

with system operators Ŝi, here associated with the Majorana
qubit-quantum dot system, and bath operators B̂i, here asso-
ciated with the electromagnetic environment, can be written
as

d

dt
ρ̂(t ) = −i[Ĥ, ρ̂] −

∑
i

{ŜiŜ+
i ρ̂(t ) − Ŝ+

i ρ̂(t )Ŝi

+ ρ̂(t )Ŝ−
i Ŝi − Ŝiρ̂(t )Ŝ−

i }. (C36)
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Here, we defined the (calligraphic) operators

Ŝ+
i =

∑
j

Ŝ+
i j =

∑
j

∫ ∞

0
dτ Ci j (τ )Ŝ j (−τ ), (C37a)

Ŝ−
i =

∑
j

Ŝ−
i j =

∑
j

∫ ∞

0
dτ Cji(−τ )Ŝ j (−τ ), (C37b)

including the bath correlation functions

Ci j (t − t ′) = 〈B̂i(t )B̂ j (t
′)〉. (C38)

We note that the Ŝi and B̂i are not necessarily Hermitian. If
they are, C∗

i j (τ ) = Cji(−τ ) and thus (Ŝ−
i )† = Ŝ+

i ≡ Ŝi.
Applying this to the problem at hand, we identify

Ŝ1 = ĉ, (C39a)

Ŝ2 = − sin θ exp(2i�t )τ̂+/2, (C39b)

Ŝ3 = − sin θ exp(−2i�t )τ̂−/2, (C39c)

and

B̂1 = B̂ + B̂†, (C40a)

B̂2 = B̂, (C40b)

B̂3 = B̂†. (C40c)

One readily evaluates the basic bath correlation functions
(with τ = t − t ′)

CBB† (τ ) = 〈B̂(t )B̂†(t ′)〉 =
∫ ∞

0
dω J (ω)e−iωτ [1 + b(ω)],

(C41a)

CB†B(τ ) = 〈B̂†(t )B̂(t ′)〉 =
∫ ∞

0
dω J (ω)eiωτ b(ω). (C41b)

Within the rotating-wave approximation, we retain only
terms which are slowly varying on the scale of the system
dynamics. Moreover, we retain only dissipative terms and
drop renormalizations of the system Hamiltonian. This yields
the result

d ρ̂

dt
=
{

cos2 θ

4
�0D[τ̂z] + sin2 θ

4
(�+D[τ̂+] + �−D[τ̂−])

}
︸ ︷︷ ︸

≡L′

ρ̂,

(C42)
where we defined

�0 = π lim
ω→0

J (ω)[1 + 2b(ω)], (C43a)

�+ = 2πJ (2�)b(2�) (C43b)

�− = 2πJ (2�)[1 + b(2�)]. (C43c)

The �0 term causes decoherence in the energy basis, whereas
the �± terms cause transitions between ground and excited
states. At low temperatures, �− 	 �+ with �+ vanishing at
T = 0 and �− remaining finite. For this reason, we neglect
�+ relative to �− in the main text.

APPENDIX D: SPECTRA AND EIGENMODES
OF LIOUVILLIANS

1. Eigenvalues and eigenmatrices of diagonal block
Liouvillian Lπ,π + L′

π,π

This Appendix gives the eigenvalues and eigenvectors of
the diagonal blocks of the full Liouvillian including both mea-
surement and relaxation dynamics, Lπ,π + L′

π,π . To this end,
we vectorize by columns, ρ → |ρ〉 = (ρ11, ρ21, ρ12, ρ22)T . In
this notation, tr[AB] = 〈A†|B〉 for square matrices A and B.
The Liouvillian matrix is then given by

Lπ,π + L′
π,π = − i

(
1 ⊗ hπ − hT

π ⊗ 1
)+ kD[n]

+ cos2 θπ

4
�0D[τz] + sin2 θπ

4
�−D[τ−]

=
∑

n

λπ,n|ψπ,n〉〈φπ,n|, (D1)

where we defined the vectorized decoherence superoperator

D[L] = L∗ ⊗ L − 1
2 [1 ⊗ L†L + (L†L)T ⊗ 1], (D2)

and expanded in terms of left and right eigenvectors |ψπ,n〉 and
|φπ,n〉 to eigenvalue λπ,n. In the following, we work to leading
order in ti, k, �−, �0 � �π and will suppress π subscripts of
θ and �. The eigenvalues are

λ0 = 0, (D3a)

λslow = − sin2 θ

4
(�− + 2k), (D3b)

λfast,± = ±2i� − 1 + cos2 θ

4
k

− sin2 θ

8
�− − cos2 θ

2
�0. (D3c)

The corresponding right eigenvectors, written in the energy
basis, are

|ψ0〉 � 1
2 (1 + R, 0, 0, 1 − R)T , (D4a)

|ψslow〉 � (1, 0, 0,−1)T , (D4b)

|ψfast,+〉 � (0, 0,−1, 0)T , (D4c)

|ψfast,−〉 � (0, 1, 0, 0)T , (D4d)

where R was defined in Eq. (34), and the left eigenvectors are

〈φ0| = (1, 0, 0, 1), (D5a)

〈φslow| �
(

k

�− + 2k
, 0, 0,− �− + k

�− + 2k

)
, (D5b)

〈φfast,+| � (0, 0,−1, 0), (D5c)

〈φfast,−| � (0, 1, 0, 0). (D5d)

Note that |ψ0〉 = |ρ∞〉 and 〈φ0| = 〈12|. We normalized
〈φm|ψn〉 = δmn to leading order.

2. Off-diagonal block Liouvillian L+− in Eq. (24b)

In this Appendix, we analyze the off-diagonal Liouvillian
L+− in Eq. (24b) with h± in Eq. (7) and one decoherence
channel given by the quantum-point-contact coupling (i.e.,
without relaxation).
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a. Steady state of ρ+−

To understand the long-time behavior of the density matrix,
we find the eigenvalues of L+− and show that generically, the
real parts of all eigenvalues are strictly negative. Thus, the
only steady state is ρ+− = 0.

We again write the superoperator L+− in vectorized form
with ρ+− → (ρ11

+−, ρ21
+−, ρ12

+−, ρ22
+−)T , such that (in the charge

basis)

L+− = − i(1 ⊗ h+ − hT
− ⊗ 1)

+ k

[
n ⊗ n − 1

2
(1 ⊗ n + n ⊗ 1)

]

=

⎛
⎜⎝

0 −it1 − t2 it∗
1 + t∗

2 0
−it∗

1 + t∗
2 −iε − k/2 0 it∗

1 + t∗
2

it1 − t2 0 iε − k/2 −it1 − t2
0 it1 − t2 −it∗

1 + t∗
2 0

⎞
⎟⎠.

(D6)

The characteristic polynomial becomes

χ (λ̃) = λ̃4 + kλ̃3 + (ε2 + 4|t1|2 + 4|t2|2 + k2/4)λ̃2

+ 2k(|t1|2 + |t2|2)λ̃ + 16|t1|2|t2|2 sin2 ϕ, (D7)

where ϕ denotes the phase difference between the tunneling
amplitudes t1 and t2.

Evidently, L+− has a zero eigenvalue when sin ϕ = 0 or,
equivalently, Im{t1t∗

2 } = 0. In this case, ρ+− does not de-
cay to zero and neither π̂ nor Ẑ are projectively measured.
Physically, the Rabi frequencies of the π = +1 and the π =
−1 sectors are identical and the steady-state measurement
currents of the two sectors are indistinguishable. Thus, the
measurement reveals no information on the qubit state and
does not decohere the system in the measurement basis.

Conversely, if sin ϕ �= 0, there is no zero eigenvalue. We
now show that in this case, the eigenvalues have strictly
negative real parts. They are nonpositive since L+− + L†

+−
is negative semidefinite. To show that the real parts of the
eigenvalues are strictly negative, consider the characteristic
polynomial. Taking sin ϕ �= 0, we assume that there is an
imaginary eigenvalue λ̃ = iy with y ∈ R. This eigenvalue
satisfies

y4 − iky3 − (ε2 + 4|t1|2 + 4|t2|2 + k2/4)y2

+i2k(|t1|2 + |t2|2)y + 16|t1|2|t2|2 sin2 ϕ = 0. (D8)

The imaginary part of this equation, y3 = 2(|t1|2 + |t2|2)y,
has solutions y = 0 and y = ±[2(|t1|2 + |t2|2)]1/2. For y = 0,
the real part of Eq. (D8) implies sin2 ϕ = 0, contradicting
our assumptions. Similarly, for y = ±[2k(|t1|2 + |t2|2)]1/2, the
real part implies

4|t1|2|t2|2
(|t1|2 + |t2|2)2

sin2 ϕ − 1 = ε2 + k2/4

2(|t1|2 + |t2|2)
. (D9)

While the left-hand side is nonpositive, the right-hand side is
strictly positive, so that there are no solutions. We conclude
that L+− has only eigenvalues with a strictly negative real
part.

b. Decoherence rate

The decoherence rate is governed by the eigenvalue λ̃slow

of L+− with the largest real part (corresponding to the slowest
decay). We perform perturbative analyses for small k as well
for small sin2 ϕ. Beyond the perturbative regime, we investi-
gate the behavior of the eigenvalues numerically; see Fig. 6
in the main text. For simplicity, we specify to t1 = t2e−iϕ with
t1 real. We also define the shorthand ε̃2 = ε2 + 8t2

1 . Then, the
characteristic polynomial takes the form

χ (λ̃) = λ̃4 + kλ̃3 +
(

ε̃2 + k2

4

)
λ̃2 + 4kt2

1 λ̃ + 16t4
1 sin2 ϕ.

(D10)

Small k. For weak coupling between quantum dot and
quantum point contact, we determine the roots of the char-
acteristic polynomial (D7) to first order in k. Expanding λ̃ =
λ̃0 + kλ̃1 + · · · , we obtain

0 = λ̃4
0 + ε̃2λ̃2

0 + 16t4
1 sin2 ϕ, (D11a)

0 = 4λ̃3
0λ̃1 + λ̃3

0 + 2ε̃2λ̃0λ̃1 + 4t2
1 λ̃0, (D11b)

with the solutions

(λ̃±
0 )2 = − ε̃2

2
±
√(

ε̃2

2

)2

− 16t4
1 sin2 ϕ, (D12a)

λ̃±
1 = −1

4

[
1 − ε2

2(λ̃±
0 )2 + ε̃2

]

= −1

4

⎡
⎣1 ± ε2√

ε4 + 16ε2t2
1 + 64t4

1 cos2 ϕ

⎤
⎦. (D12b)

While (λ̃±
0 )2 � 0, so that the λ̃0 are purely imaginary, the first-

order correction kλ̃1 is manifestly real and negative. For the
slowly decaying eigenvalues, we choose the minus sign in the
above expressions. In the limit t1 � ε, the decay of ρ+− is
then controlled by

Re{λ̃slow} � Re{λ̃−
0 + kλ̃−

1 } = −2k
t2
1

ε2
. (D13)

For sin2 ϕ = 0, λ̃−
0 vanishes while λ̃−

1 remains finite. Hence,
perturbation theory breaks down close to sin2 ϕ = 0. Requir-
ing |λ̃−

1 | � k|λ̃−
2 | yields the condition

k

ε
� ||sin ϕ| − 1

4|sin ϕ| |
−1. (D14)

The right side of this inequality vanishes for ϕ = 0; i.e., the
expansion indeed breaks down.

Small sin2 ϕ. The slowest decaying eigenvalue λ̃slow

evolves from the zero eigenvalue for sin2 ϕ = 0. For small
sin2 ϕ, we readily find

λ̃slow = −4t2
1 sin2 ϕ

k
+ · · · . (D15)

Notice that the expansion breaks down for vanishing k.
The fact that a perturbative expansion is impossible for

small k and ϕ is in accordance with the numerical observation
that exceptional lines emanate from this region; see Fig. 6.
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APPENDIX E: STOCHASTIC EVOLUTION OF π(t )

It is instructive to analyze the stochastic evolution of the
expectation value of the combined fermion parity π̂ . For
ĤT = 0, Eq. (21) showed that the evolution of n(t ) ceases
once n = 0 or n = 1. In the presence of tunneling, ĤT �= 0,
this is no longer the case due to the additional term 〈i[ĤT , n̂]〉
in Eq. (22).

To analyze π , we consider the set of coupled stochastic
differential equations obtained from Eq. (20). As a result
of the transfer of weight between the π subspaces due to
measurements, the stochastic term couples ρ++ and ρ−−. At
the same time, these diagonal blocks of ρ̂ remain uncoupled to
ρ+−. (However, the time evolution of ρ+− depends on trρπ,π .)
We write the coupled equations for the diagonal blocks using
the Bloch-vector notation

ρπ,π = pπ

2
+ 1

2

(
σxxπ + σyyπ + σzzπ

)
, (E1)

where pπ = trρπ,π = 〈P̂π 〉 (with the projector P̂π onto the
π subspace). With this parametrization, Eq. (20) yields the
stochastic differential equations:

ṗπ = −
√

kξ (zπ − Z pπ ), (E2a)

żπ = 2�π

(
hx

π yπ − hy
πxπ

)−
√

kξ (pπ − Zzπ ), (E2b)

ẋπ = 2�π

(
hy

π zπ − hz
π yπ

)− k

2
xπ +

√
kξZxπ , (E2c)

ẏπ = 2�π

(
hz

π xπ − hx
π zπ

)− k

2
yπ +

√
kξZyπ , (E2d)

where Z = z+ + z− introduces the coupling between the di-
agonal blocks.

Fixed points of π (t ) = p+ − p− = 2p+ − 1 require that
the right-hand side of Eq. (E2a) vanish, Mπ = zπ − Z pπ = 0.
pπ = 0 implies xπ = yπ = zπ = 0. We then find by direct
evaluation that p+ = 0 (or similarly p− = 0) implies M+ =
M− = 0. We conclude that p+ = 0 and p+ = 1 are fixed
points of the evolution of p+(t ). These correspond to fixed
points π = −1 and π = +1 of π (t ), respectively. We checked
numerically that these are the only fixed points provided
Im{t1t∗

2 } �= 0. (This is indicated, e.g., by the fact that E[1 −
π2] → 0 as shown in Fig. 3.)

Now consider the case Im{t1t∗
2 } = 0. For simplicity, we

make the stronger assumption h+ = h−. To understand this
case, it is easiest to consider the evolution in terms of

l⊥
π = (

hx
π yπ − hy

π xπ

)
, (E3)

l‖
π = (

hx
πxπ + hy

πyπ

)
. (E4)

Then, the evolution equations are

ṗπ = −
√

kξ (zπ − Z pπ ), (E5a)

żπ = 2�π l⊥
π −

√
kξ (pπ − Zzπ ), (E5b)

l̇⊥
π = 2�π

(
hz

π l‖
π − sin2 θπ zπ

)− k

2
l⊥
π +

√
kξZl⊥

π , (E5c)

l̇‖
π = −2�πhz

π l⊥
π − k

2
l‖
π +

√
kξZl‖

π . (E5d)

We also define L⊥ = l⊥
+ + l⊥

− and L‖ = l‖
+ + l‖

−. For h+ =
h− = h = �h · σ, they satisfy a decoupled set of equations

Ż = 2�L⊥ −
√

kξ (1 − Z2), (E6a)

L̇⊥ = 2�(hzL‖ − sin2 θZ ) − k

2
L⊥ +

√
kξZL⊥, (E6b)

L̇‖ = −2�hzL⊥ − k

2
L‖ +

√
kξZL‖. (E6c)

Importantly, the equations for the l and L have identical form.
We now show that the evolution of p+ becomes frozen if the
dynamics of the lowercase variables is locked to that of the
uppercase variables, i.e., if

0 = z+ − p+Z, (E7a)

0 = l⊥
+ − p+L⊥, (E7b)

0 = l‖
+ − p+L‖, (E7c)

independently of the value of p+. If h+ = uh−u† similar
statements hold for linear combinations of these variables. For
the above relations to indeed be fixed points, we need to show
that also their Ito differentials vanish. Consider first the two
lower lines,

d (l+ − p+L) = dl+ − p+dL − d p+(. . .)

= (. . .)[z+ − p+Z] + (. . .)[l⊥
+ − p+L⊥]

+ (. . .)[l‖
+ − p+L‖], (E8)

where we used that the evolution equations for l and L have
identical form. The terms in square brackets vanish at the fixed
point specified by Eq. (E7), so that the detailed form of the
terms in the parentheses does not matter. Similarly,

d (z+ − p+Z ) =
√

kξZ (z+ − p+Z ) + 2�(l⊥
+ − p+L⊥).

(E9)

Thus, Eqs. (E7) indeed describe fixed points with arbitrary
p+. If the system is initialized, the dynamics of the two
sectors will then tend to lock. Once this has happened, p+
remains constant. The ensemble averaged evolution of course
has p+(t ) = p+(0).

APPENDIX F: NOISE SPECTRUM OF THE
MEASUREMENT CURRENT

1. Autocorrelation function of the steady-state
measurement signal

The measurement outcomes π = +1 and π = −1 are dis-
tinguished by the noise spectrum of the steady-state measure-
ment current jπ (t ) for a given π ,

S(τ ) = E[ j(t ) j(t + τ )] − E[ j(t )][ j(t + τ )]

= δ(τ )

4k
+ 1√

4k
{E[n(t )ξ (t + τ )] + E[n(t + τ )ξ (t )]}

+ E[n(t )n(t + τ )] − E[n(t )][n(t + τ )], (F1)
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where we suppress all labels indicating the measurement
outcome and used Eq. (19). Our evaluation of S(ω) follows
Ref. [46] (see Appendix B).

First consider E[n(t + τ )ξ (t )], which requires one to com-
pute E[ρ̂c(t + τ )ξ (t )]. From Eqs. (C23) and (C26), it is
evident that ξ (t ) is only correlated with the stochastic con-
tribution to δρc for the next time step, from t to t + δt . We
then find

E[ρ̂c(t + δt )ξ (t )] =
√

kE[H[n̂]ρ̂c(t )]

=
√

4k

( {n̂, ρ̂∞}
2

− E[n(t )ρ̂c(t )]

)
, (F2)

where we write E[ρ̂c] = ρ̂∞. Using the formal solution
ρ̂c(t ) = U (t, 0)ρ̂c(0) of the stochastic master equation (20)
with

U (t, t ′) = T exp

{
L(t − t ′) +

√
k
∫ t

t ′
dt1ξ (t1)H[n̂]

}
(T is the time ordering operator) and exploiting that ξ (t ) is
uncorrelated with any of the later ξ (t1), we conclude that

E[ρ̂c(t + τ )ξ (t )]

=
√

4k θ (τ )

(
eLτ {n̂, ρ̂∞}

2
− E[n(t )eLτ ρ̂c(t )]

)
, (F3)

and thus

1√
4k

E[n(t + τ )ξ (t )]

= θ (τ )

(
tr

[
n̂eLτ {n̂, ρ̂∞}

2

]
− E[n(t )tr[n̂eLτ ρ̂c(t )]]

)

= θ (τ )

(
tr

[
n̂eLτ {n̂, ρ̂∞}

2

]
− E[n(t )n(t + τ )]

)
. (F4)

In the last step, we used that

E[n(t )tr[n̂eLτ ρ̂c(t )]] = E[n(t )tr[n̂U (t + τ, t )ρ̂c(t )]], (F5)

since all the additional stochastic terms introduced on the
right-hand side average to zero.

Similarly, E[n(t )ξ (t + τ )] is nonzero for τ < 0 only. Then,
time translation invariance of the stationary state implies

E[n(t )ξ (t + τ )] = θ (−τ )E[n(t )ξ (t − |τ |)] (F6)

= θ (−τ )E[n(t + |τ |)ξ (t )] (F7)

and we conclude

1√
4k

(E[n(t + τ )ξ (t )] + E[n(t )ξ (t + τ )])

= tr

[
n̂eL|τ | {n̂, ρ̂∞}

2

]
− E[n(t )n(t + τ )]. (F8)

Inserting this into Eq. (F1) gives

S(τ ) = δ(τ )

4k
+ tr

[
n̂eL|τ | {n̂, ρ̂∞}

2

]
− (n∞)2 (F9)

with n∞ = tr[n̂ρ̂∞].

2. Explicit evaluation

We now evaluate Eq. (F9) explicitly for the steady states
ρ̂∞

+ = diag(1 + R, 1 − R, 0, 0)/2 and ρ̂∞
− = diag(0, 0, 1 +

R, 1 − R)/2 of L + L′ [as given in Eq. (20) and Eq. (C42)]
corresponding to the two measurement outcomes π = +1
and π = −1, respectively. Note that we wrote the ρ̂∞

π in the
energy basis here. Since L + L′ conserves π̂ , the trace in
Eq. (F9) reduces to a trace in one of the π subspaces. We thus
have to evaluate

tr

[
ne(Lπ,π +L′

π,π )|τ | {n, ρ∞}
2

]
(F10)

with ρ∞ = (τ0 + Rτz )/2. Clearly, the remaining calculation
is identical for the two subspaces. Suppressing π labels, we
evaluate

{n, ρ∞}
2

= n∞

2

(
τ0 + R + cos θ

2n∞ τz − sin θ

2n∞ τx

)

= a n∞
[
ρ∞ + R + cos θ − 2Rn∞

4n∞ τz − sin θ

4n∞ τx

]
.

The first term cancels against the −(n∞)2 term in S(τ ). We
expand the exponential of the Liouvillian in eigenmodes,

e(Lπ,π +L′
π,π )|τ | =

∑
n

eλn|τ ||ψn〉〈φn|, (F11)

where |ψn〉 and |φn〉 are the right and left eigenmodes
of Lπ,π + L′

π,π to eigenvalue λn, respectively (see Ap-
pendix D 1). Note that we can write |τz〉 � |ψslow〉 and |τx〉 �
−|ψfast,+〉 + |ψfast,−〉. With this, we can evaluate expression
(F10) to leading order,

〈n|e(Lπ,π +L′
π,π )|τ ||τz〉 � cos θeλslow|τ |, (F12)

〈n|e(Lπ,π +L′
π,π )|τ ||τx〉 � − sin θ cos(2�τ )eRe{λfast}|τ |. (F13)

Here, we expanded 〈n| = (〈φ0| + cos θ〈τz| − sin θ〈τx|)/2 and
used the overlaps 〈τz|ψslow〉 = 2, 〈τx|ψslow〉 = 0, 〈τz|ψfast〉 �
0, and 〈τx|ψfast,±〉 � ∓1. This yields the autocorrelation func-
tion

S(τ ) � δ(τ )

4k
+ 1

4

[
2k

�− + 2k
cos2 θeλslow|τ |

+ sin2 θ cos (2�τ )eRe{λfast}|τ |
]
. (F14)

Finally, we compute the noise spectrum

S(ω) =
∫ ∞

−∞
dτeiωτ S(τ ), (F15)

which becomes

S(ω) � 1

4k
+ cos2 θk

�− + 2k

|λslow|
ω2 + |λslow|2

+ sin2 θ

4

∑
±

|Re{λfast}|
(ω ± 2�)2 + |Re{λfast}2| . (F16)

Thus, the noise spectrum consists of Lorentzians centered
at ω = 0 due to λslow and at ±2� due to λfast,±. For |ti| �
ε, we have θ � π and the zero-frequency peak is higher
than the finite-frequency peaks by a factor of order (ε/|ti|)4.
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Without relaxation, i.e., for �− = �0 = 0 this reduces to the
expression (29) in the main text.

3. Fluctuations of time-averaged measurement signal

In the presence of relaxation, readout can be based on the
time-averaged measurement signal. To estimate readout times,
it is necessary to obtain the variance of the time-averaged
measurement signal; see Sec. III D. The time-averaged mea-
surement signal is

jint,π (T ) = 1

T

∫ T

0
dt jπ (t )

= 1

T

∫ T

0
dt

{
nπ (t ) + X0√

4kT

}
, (F17)

where X0 is a Gaussian random variable with zero mean and
unit variance. Readout relies on

E[ jint,π (T )] = n∞
π . (F18)

Here, we evaluate the variance of this quantity (suppressing π

labels),

V [ jint,π (T )] = 1

T 2

∫ T

0
dt
∫ T

0
dt ′ E[ j(t ) j(t ′)] − (n∞)2

= 2

T 2

∫ T

0
dt
∫ t

0
dτ S(τ ). (F19)

As |ti| � ε, we can neglect the sin2 θ term in Eq. (F14). Using

2

T 2

∫ T

0
dt
∫ t

0
dτ eλτ = 2

(
eλT − 1

λ2T 2
− 1

λT

)
� − 2

λT

for λT � −1 (checking a posteriori that the measurement
times indeed allow for this simplification), we obtain the final
result

V [ jint(T )] = 1

T

[
1

4k
+ k cos2 θ

�− + 2k

1

|λslow|
]
, (F20)

which may be rewritten as

V [ jint(T )] = 1

T

[
1

4k
+ 1

tan2 θ

4k

(�− + 2k)2

]
, (F21)

from which we find Eq. (38).

APPENDIX G: STEADY STATE IN THE PRESENCE
OF MAJORANA HYBRIDIZATIONS

Here, we justify the statement in Sec. III E that ρ̂∞ =
diag(1, 1, 1, 1)/4 is the only zero mode of L + L23 (in the
absence of relaxation). For small ε23, this may be obtained as

follows. We decompose ρ̂ into the steady states ρ̂∞
± of L plus

deviations δρ̂,

ρ̂ = |α|2ρ̂∞
+ + |β|2ρ̂∞

− + δρ̂. (G1)

Thus, δρ̂ contains only the traceless parts of the diagonal
blocks. Note that

L23ρ̂
∞
± = ∓ ε23

2

(
0 −i12

i12 0

)
= ∓ε23

2
|Y 〉, (G2a)

L23|Y 〉 = 4ε23(ρ̂∞
+ − ρ̂∞

− ). (G2b)

We also define the projector P̂ onto the nondecaying sub-
space span(ρ̂∞

+ , ρ̂∞
− ), as well as its complement P̂⊥ = 1 − P̂

which projects onto the fast decaying subspace. We then
project the eigenvalue equation

(L + L23)ρ̂ = λρ̂ (G3)

onto the two subspaces,

λ(|α|2ρ̂∞
+ + |β|2ρ̂∞

− ) = P̂L23δρ̂, (G4)

λδρ̂ = Lδρ̂ + L23(|α|2ρ̂∞
+ + |β|2ρ̂∞

− ) + P̂⊥L23δρ̂. (G5)

We formally solve the second equation for δρ̂ and insert it into
the first equation. Using Eqs. (G2) and the fact that only |Y 〉
is mapped onto span(ρ̂∞

+ , ρ̂∞
− ), i.e., P̂L23 ... = L23|Y 〉〈Y | .../4

(the factor of 1/4 stems from the fact that 〈Y |Y 〉 = 4), we find,
after tracing tr(ρ̂∞

+ ...) and using |β|2 = 1 − |α|2,

λ|α|2 = 1
2ε2

23GY (λ)(2|α|2 − 1). (G6)

Here we defined the “propagator”

GY (λ) = 〈Y | 1

λ − L − P̂⊥L23
|Y 〉. (G7)

We are interested in λ = 0. If GY (0) �= 0, it follows that a
zero mode necessarily has |α|2 = 1/2. Inserting this into the
eigenvalue equations, we obtain the relations P̂L23δρ̂ = 0 and
(L + P̂⊥L23)δρ̂ = 0. The first equation gives 〈Y |δρ̂〉 = 0; i.e.,
the steady state has no weight in the span of |Y 〉. Then, the
second equation becomes

(L + L23)δρ̂ = 0.

L has no zero modes acting on the traceless δρ̂. Hence, for
weak perturbations ε23 � |Re{λ̃slow}|, |λslow,π |, it follows that
δρ̂ = 0. Finally, it is straightforward to check numerically that
GY (0) is indeed nonvanishing within the relevant parameter
range by expanding in left and right eigenvectors of L +
P̂⊥L23. Thus, the completely mixed state is indeed the only
steady state.
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