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Parity-to-charge conversion in Majorana qubit readout
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We study the time-dependent effect of Markovian readout processes on Majorana qubits whose parity
degrees of freedom are converted into the charge of a tunnel-coupled quantum dot. By applying a recently
established effective Lindbladian approximation [Kiršanskas, Franckié, and Wacker, Phys. Rev. B 97, 035432
(2018); Mozgunov and Lidar, Quantum 4, 227 (2020); Nathan and Rudner, arXiv:2004.01469], we obtain
a completely positive and trace preserving Lindblad master equation for the combined dot-qubit dynamics,
describing relaxation and decoherence processes beyond the rotating-wave approximation. This approach is
applicable to a wide range of weakly coupled environments representing experimentally relevant readout
devices. We study in detail the case of thermal decay in the presence of a generic Ohmic bosonic bath, in
particular for potential fluctuations in an electromagnetic circuit. In addition, we consider the nonequilibrium
measurement environment for a parity readout using a quantum point contact capacitively coupled to the dot
charge.
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I. INTRODUCTION

In the pursuit of reliable and scalable qubits, Majorana
bound states (MBSs) have received a substantial amount of
attention in the previous decade [1–5]. Using zero-energy
Majorana states, non-Abelian many-body braiding statistics
could be implemented [6–13], and quantum information may
be encoded in nonlocal degrees of freedom which are robust to
local noise [1,8,13–20]. Several physical Majorana platforms
have been proposed and studied over the years [8,21–32].
Experiments aiming to verify the presence of MBSs have
so far focused primarily on measuring zero-bias conductance
peaks [33–40] and the fractional Josephson effect [41–43].
These phenomena represent key physical effects of zero-
energy Majorana end states in one-dimensional (1D) topo-
logical superconductors [8,22,23,44–46]. However, despite
providing necessary indicators, and with the benefit of readily
being experimentally accessible even in the coherent trans-
port regime [47], neither zero-bias peaks nor unconventional
Josephson relations have so far provided conclusive evidence
for the presence of MBSs [48–58]. The ultimate goal thus
remains to demonstrate non-Abelian braiding statistics, see
also Ref. [59].

The crux of the latter problem may be solved by developing
a reliable readout procedure for the fermion parity of a MBS
pair. Indeed, whereas braiding Majoranas locally in space
is very challenging from an experimental perspective, see
also Refs. [9,60], alternative schemes have been proposed
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which simulate braiding purely through parity measurements
[19,61–63]. In order to read out the parity of a MBS pair,
however, parity has to be converted to a physically observable
quantity, such as flux, charge, or capacitance [64]. This paper
focuses on the perhaps simplest Majorana qubit, called the
Majorana box qubit (MBQ) [18,19], see Fig. 1. The twofold
degenerate ground state of the MBQ is spanned by the parities
of MBS pairs in a system where one has four MBSs with
constant total parity. As depicted in Fig. 1 and detailed in
Sec. II, one can read out the parity of a MBS pair for any
initially prepared qubit state by tunnel-coupling a quantum dot
to the respective two MBSs on the island, since this parity in
general will affect the outcome of a dot charge measurement
[10,18,19,65].

However, a successful readout crucially relies on the total
parity in the combined dot-MBQ system being constant over

FIG. 1. Schematic of a Majorana box qubit (MBQ), consisting
of two topologically superconducting nanowires (shown in blue),
hosting Majorona zero-energy states (γi) at their ends. The nanowires
are strongly coupled to a common superconducting ground (green)
that effectively provides a common charging energy for the island.
The ground-state degeneracy is split by a tunnel-coupled single-level
quantum dot (red).
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a sufficiently long measurement time. This means that (i) the
readout device itself should not exchange particles with the
dot-MBQ system and (ii) the decoherence due to the readout
should be fast compared to decoherence caused by exter-
nal noise sources which do affect the total parity. Previous
theoretical studies of measurement-induced decoherence in
Majorana qubits [18,19,66–69] have analyzed related ques-
tions but without taking into account the detailed quantum
dynamics of the dot and thereby, in particular, neglecting
quantum backaction effects [70]. In this paper, we propose
and study a flexible and powerful theoretical approach which
can ultimately provide a unified and quite realistic description
of the parity-to-charge conversion process and the corre-
sponding readout dynamics in such a topologically protected
system.

In the main Secs. II and III of this work, we discuss
how a solely capacitively coupled environment representing
the readout device causes a prepared quantum state of the
dot-MBQ system with fixed total parity to decohere in time.
To describe the decay dynamics, in Sec. II, we derive a
Markovian quantum master equation [71–76] for the reduced
density operator, ρ(t ), describing the dot and the two coupled
Majorana states. To achieve this, we employ a recently estab-
lished [77–79] effective Lindbladian approximation. Unlike
the common secular approximation [75,76], this approxima-
tion retains nontrivial effects due to the coupling of coherence
and population dynamics, i.e., off-diagonal elements of ρ in
the local energy eigenbasis couple to diagonal elements, see
also Ref. [80]. Moreover, unlike, e.g., the Wangsness-Bloch-
Redfield approximation [71,72,81], this scheme is guaran-
teed to yield completely positive trace-preserving (CPTP)
dynamics [73,74]—an essential requirement for a physical,
probabilistic interpretation of the reduced density matrix ρ(t ).
As we are particularly interested in decoherence, i.e., the
decay of off-diagonal elements of ρ(t ), this approximation
is particularly well suited here. In contrast to previous works
[18,19,66–69], our approach is able to capture quantum back-
action effects on the MBQ state since the quantum dynamics
of the dot fermion is taken into account.

Experimentally relevant estimates for relaxation and deco-
herence rates in this dot-MBS system will be derived for two
different types of measurement environments in Sec. III. The
first is a thermal bath of bosonic modes [82,83], for which we
discuss electromagnetic potential fluctuations in an electric
circuit as a concrete example. This case also accounts for the
fact that even if the measurement process does not provide
the experimentalist with any information, the mere coupling
to the measurement device already leads to decoherence due
to the inevitable noise in the measurement apparatus. Second,
as an example for a nonequilibrium environment that does
provide information about the system state, we consider a
voltage-biased, capacitively coupled quantum point contact
(QPC) acting as a dot-charge sensor [84–87]. In the outlook
Sec. IV, we then lay out how future work can extend this
analysis to a quantitative description, taking into account also
other relaxation mechanisms. Such mechanisms could possi-
bly involve particle exchange such as quasiparticle poisoning.
The paper closes with some concluding remarks in Sec. V.
Finally, we note that technical details have been delegated to
two Appendices.

II. KEY CONCEPTS OF MBQ READOUT

A. Model

The MBQ device of interest is depicted in Fig. 1. It consists
of two topological superconductor nanowires [22,23], hosting
altogether four zero-energy MBSs at their ends, and an ef-
fectively spinless, single-level quantum dot tunnel-coupled to
two of the nanowire ends. With the superconducting bridge,
the two nanowires form a single floating island subject to
Coulomb charging effects. We assume that on the island,
the superconducting gap is so large that the influence of
quasiparticles and subgap (Andreev) states beyond MBSs can
be neglected. The low-energy Hamiltonian then reads

H = H0 + HB + HI , (1)

H0 = ε nd +
∑
i=1,2

γi(λid − λ∗
i d†), (2)

HI = √
gndϕ. (3)

The Hamiltonian H0 describes both the local coherent dy-
namics of the dot, with level position ε, occupation number
operator nd = d†d , and fermionic annihilation operator d , and
of the two tunnel-coupled MBSs. The latter are described by
Majorana operators, γi = γ

†
i , with anticommutation relations

{γi, γ j} = 2δi j . The amplitudes λi=1,2 for tunneling between
dot and γi are, without loss of generality, parametrized by the
real-valued quantities λ, a, and φ,

λ1 = λ � 0, λ2 = aλeiφ, 0 � a � 1. (4)

Importantly, the phase difference φ is controllable by, e.g.,
a variable magnetic flux inside the loop constituted by the
tunneling links and the superconducting backbone. As we
show in Sec. II B, one can tune this phase to split the energies
of the MBQ in such a way that it is possible to read out the
MBQ state. For this to work, however, we furthermore require
that the charging energy of the superconducting island is large
enough to constrain the total fermion parity of the MBQ,
(−1)nL+nR , where nL/R = f †

L/R fL/R denotes the occupation of
the left/right fermionic state with fL/R = (γ1/3 + iγ2/4)/2. We
assume Coulomb valley conditions such that all other charge
states of the superconducting island in Fig. 1 cost a large
excitation energy at least of the order of the charging energy
of the island [18,19].

The term HB in Eq. (1) describes the environment, e.g., rep-
resenting a measurement device, and HI is a capacitive cou-
pling between the dot charge and the environment. Concrete
implementations of HB and the specific degrees of freedom,
ϕ, coupling to the dot charge via HI are discussed in Sec. II C.
In general terms, the dimensionless coupling constant g in HI

is determined by the ratio between a capacitive interaction
energy, Eint, and a model-specific reference energy, Eref. We
require that this reference energy is large in comparison,
0 < Eint/Eref � 1, such that g � 1 quantifies a weak system-
environment coupling, justifying a perturbative expansion in
HI . Furthermore, we here only consider environments HB

which are quadratic in field operators, and that are effectively
bosonic from the point of view of the fermions in the dot-
MBQ system. As detailed in Sec. II C, this case includes, for
example, photons in a thermal electromagnetic environment
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as well as the effective bosonic modes originating from the
Coulomb interaction between the dot charge and the local
electronic charge density in a fermionic environment.

B. Readout principle and fidelity

To explain the readout principle for the MBQ state in
concrete terms, in the following, we always consider the
sector with even total parity, where the total parity of the
superconducting island is assumed to be conserved during
the entire measurement. In this case, the MBQ has two basis
states, |0L0R〉 with nL = nR = 0 and |1L1R〉 with nL = nR = 1.
Given this total-parity constraint, the readout principle and
its fidelity rely mostly on the fact that fermionic parity is
exchanged through the tunnel couplings between the dot and
the tunnel-coupled left Majorana pair, corresponding to γ1 and
γ2 in Fig. 1. Importantly, the full Hamiltonian (1) conserves
the joined parity of the dot and these two MBSs,

s = (−1)nd +nL . (5)

We next observe that due to the presence of the phase φ in the
tunneling amplitudes (4), eigenstates of the dot-MBQ system
Hamiltonian H0 (defined in the absence of the environment) in
general have different energies for s = +1 and −1. Denoting
the eigenstates of H0 by |p, s〉, with p = ±, we have

H0|p, s〉 = Ep,s|p, s〉, E±,s = (ε ± Es)/2,

Es=± =
√

ε2 + 4λ2(1 + a2 + 2sa sin φ). (6)

Since s is a conserved quantity, an initial MBQ state with s =
+1 will dynamically relax towards a stationary state with s =
+1 when coupled to the measurement device. By Eq. (6), this
stationary state has an energy different from the energy of the
state to which an initial state with s = −1 relaxes. In addition,
also the average dot occupation number,

〈nd〉 = d〈H〉
dε

, (7)

depends on this energy difference in the long-time limit. This
fact ultimately enables one to read out the parity number s =
±1 via measurements of the dot charge, see Eq. (7), or via its
quantum-capacitive effect ∼d2〈H〉/dε2, see Ref. [19].

Suppose now that the dot is initially empty, nd = 0, and the
MBQ has been prepared in the initial state

|ψ0〉 = α0|0L0R〉 + β0|1L1R〉, (8)

with complex-valued coefficients α0 and β0 subject to |α0|2 +
|β0|2 = 1. In general, the initial state of the combined dot-
MBQ system thus corresponds to a superposition of states
with different values of s = ±1. Since the energies (6) of
the system depend on s, decoherence due to the coupled bath
representing the measurement device should relax the reduced
density matrix of the dot-MBQ system, ρ(t ), to the stationary
limit according to

ρ(t ) =
(|α0|2ρs=+ α0β

∗
0 ρc

α∗
0β0ρ

†
c |β0|2ρs=−

)

t→∞−−−→ ρst =
(|α0|2ρst,s=+ 0

0 |β0|2ρst,s=−

)
. (9)

FIG. 2. Readout principles for the MBQ device in Fig. 1. Aver-
age steady-state dot occupation number, 〈nd 〉s, vs ε/λ for different
parities s = ±1 in Eq. (5). Here 〈nd 〉s has been calculated for the
ground state with energy E−,s in Eq. (6), using a = 1 and φ = π/3.
Calculating 〈nd〉s instead for the thermal states ρst,s in Eq. (10), the
two curves approach the constant curve 〈nd〉 = 1/2 with increasing
temperature. Thereby the readout visibility, i.e., the ability to distin-
guish the values s = ±1, will be gradually lost.

The diagonal blocks here describe the density matrix pro-
jected to the respective subspace with parity s = ±1, while the
off-diagonal part ρc describes coherences between both parity
sectors. The steady-state distributions, ρst,+ and ρst,−, may
in practice be distinguished by measuring 〈nd〉 or d〈nd〉/dε,
averaged over some time interval. In this way, one performs
a projective measurement of the initial MBQ state, where s =
+1 (s = −1) occurs with probability |α0|2 (|β0|2). Once the
dot is effectively decoupled from the MBSs by adiabatically
adjusting ε towards the limit of zero occupation nd = 0, one
knows that the MBQ state equals |0L0R〉 (|1L1R〉) if s = +1
(s = −1) has been measured.

To better understand the fidelity and limitations of this
readout, Fig. 2 shows the dependence of 〈nd〉s on the dot
level energy ε, as determined by Eq. (7) for the ground states
corresponding to the energies E−,s. We observe that for ε/λ 
=
0, the ground states in the s = ±1 sectors can be distinguished
by measuring the charge on the dot. If the system is instead
prepared in a thermal state,

ρst,s = 1

Zs

∑
p=±

e−βEp,s |p, s〉〈p, s|, (10)

with Eq. (6) and β = (kBT )−1, the curves in Fig. 2 would
flatten towards 〈nd〉s = 1/2 as temperature is increased. Ev-
idently, a charge readout of the dot can still measure s = ±1
provided that the system has thermalized at a sufficiently low
temperature.

We note that for a more general environment, the long-term
limit need not be represented by a thermal distribution. Never-
theless, as long as the dot charge ∼d〈H〉/dε and/or, depend-
ing on the setup, its quantum capacitance ∼d2〈H〉/dε2, differ
for s = +1 and s = −1, the value of s may in principle still
be distinguished if the system decoheres to a block-diagonal
state as in Eq. (9).

033254-3



MUNK, SCHULENBORG, EGGER, AND FLENSBERG PHYSICAL REVIEW RESEARCH 2, 033254 (2020)

FIG. 3. Schematic circuit representing a typical electromagnetic
environment. The dot-MBQ system (S) is capacitively coupled to the
environmental inductance and resistances. The resulting potential ϕ

on the capacitor C enters as a charge coupling in the Hamiltonian
(18).

By developing a Lindbladian master equation for the above
model, we show in Sec. II E below that block-diagonal re-
laxation similar to Eq. (9) does indeed generically happen.
The missing ingredient for arriving at this master equation
is— as covered in Sec. II C below—a physical specification
of the environment, HB, and its coupling to the dot, HI . A
key advantage of the jump operator approximation established
in Refs. [77–79], and summarized in Sec. II E, is that we
may simply write down the master equation once we have
determined the environmental correlation function,

B(t ) = 〈ϕ(t )ϕ〉. (11)

This correlator is defined with respect to the initial state
of the bath before the measurement begins, where ϕ(t ) =
eiHBtϕe−iHBt is taken in the interaction picture. We note that
this procedure directly works only for a vanishing linear
moment, 〈ϕ(t )〉 = 0. For 〈ϕ(t )〉 
= 0, the linear moment needs
to be time-independent, 〈ϕ(t )〉 = 〈ϕ〉. In that case, one can
remove the linear moment, ϕ → ϕ − 〈ϕ〉, by a shift of the dot
energy, ε → ε + 〈ϕ〉, in Eq. (1). As this shift does not intro-
duce an explicit time dependence, the effective Lindbladian
approximation in Sec. II E will still apply upon using the bath
correlator

B(t ) = 〈[ϕ(t ) − 〈ϕ〉][ϕ − 〈ϕ〉]〉 (12)

instead of Eq. (11).

C. Physical realizations of environments

Let us now precisely formulate the physical systems rep-
resenting the readout device. As announced in Sec. I, we
consider two different cases. The first is an Ohmic thermal
bath of bosonic modes. This can be seen as a simple phe-
nomenological model for the effects of a measuring apparatus
on the dot-MBQ system, such as capacitive noise due to
voltage fluctuations in the electronic circuit coupled to the dot,
see Fig. 3. A bosonic bath can, however, also be taken at face
value, as a microscopic model of thermal relaxation of the sys-
tem which will invariably be present due to charge couplings
with the environment. The second addressed case is that of
a nonequilibrium measurement environment, formed by two

FIG. 4. Schematic Majorana parity readout using a quantum
point contact (QPC) connecting two voltage-biased leads. The dot-
MBQ system capacitively couples to the QPC through a mutual
capacitance Cm between the charge density in the QPC and the
charge on the dot. This coupling decoheres the dot-MBQ system
and perturbs the potential that the QPC feels, leading to a parity-
dependent shift of the conductance through the QPC.

voltage-biased electronic leads coupled by a QPC. Since the
QPC is also capacitively coupled to the dot, see Fig. 4, the
QPC transmission is affected by the Coulomb interaction with
the dot. By monitoring the conductance through the QPC,
one can thereby measures the dot charge and hence the parity
s = ±1.

1. Thermal bath of bosons

Let us first consider a bosonic environment in thermal
equilibrium. This model is useful both for describing the
inherent decoherence due to electromagnetic radiation, but
also as a simple phenomenological model for understanding
the dynamics of the system under a generic readout. The
environmental Hamiltonian,

HB =
∑

q

ωq

(
b†

qbq + 1

2

)
, (13)

in this case consists of noninteracting bosons characterized by
quantum numbers q and energies ωq, where b†

q and bq are the
corresponding creation and annihilation operators. We assume
that the dot charge capacitively couples to these bosons,

HI = √
gndϕ, ϕ =

∑
q

(Mqb†
q + M∗

q bq). (14)

The bath operator ϕ is determined by the mode-dependent
coupling energies Mq. The small dimensionless coupling con-
stant g, which we have introduced in Eq. (1), is physically
related to the ratio of the capacitive interaction energy, Eint ,
of the dot-environment coupling and the typical frequency ω0
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of the environmental oscillators, g = g(Eint/ω0). The spectral
density associated with the coupling is assumed to be Ohmic
with some cutoff function C(ω,ωc) determined by a cutoff
frequency ωc (where ωc ≈ ω0),

J (ω) =
∑

q

|Mq|2δ(ω − ωq) = ωC(ω,ωc). (15)

An Ohmic spectral density occurs in many different scenarios
[82,83], including, e.g., the capacitive coupling of the system
to an electromagnetic transmission line [76]. The precise form
of the cutoff function C depends on the physical nature of
the bath, as we further discuss below. At this stage, it is
only relevant in so far as it will regularize integrals at high
frequencies in what follows.

The initial density operator of the bath, ρB, taken before
the dot couples to the environment at times t � 0, is assumed
to be thermal, ρB = e−βHB/Tr[e−βHB ]. The expectation value
〈ϕ(t1) . . . ϕ(tN )〉 with respect to ρB thus disappears by virtue
of Wick’s theorem for any odd number N of bath operators,
with ϕ(t ) = eiHBtϕe−iHBt . As stated above and detailed in
Sec. II E, the relaxation of the dot-MBQ system then only
depends on the auto-correlation function,

Bth(t ) = 〈ϕ(t )ϕ(0)〉

=
∫ ∞

0
dνJ (ν)[eiνt nB(ν) + e−iνt (nB(ν) + 1)], (16)

with the index “th” indicating the case of a thermal bath. Equa-
tion (16) derives from the vanishing two-point correlators
〈b†

qb†
q〉 = 〈bqbq〉 = 0, and the occupations 〈b†

qbq〉 = 〈bqb†
q〉 −

1 = nB(ωq), with the Bose-Einstein distribution, nB(ω) =
(eβω − 1)−1. The relaxation of the dot-MBQ system is then
determined by the Fourier transform of Eq. (16),

Bth(ω) =
∫ ∞

−∞
dt Bth(t )eiωt

= π

2
ωC(ω,ωc)

[
coth

(
ω

2kBT

)
+ 1

]
. (17)

To obtain physically meaningful estimates for g and for
the cutoff function C, we next observe that in many situ-
ations of practical interest, the dominant bosonic reservoir
is represented by the electromagnetic modes in the electric
circuit connected to the dot-MBQ system. In such cases, the
specific form of g and J (ω) may often be derived from the
electrodynamical properties of the equivalent classical circuit.
As a specific example, consider the case sketched in Fig. 3,
where the dot-MBQ system is placed in an LC circuit and
couples through the voltage drop ϕ/e over the capacitor C to
the bath. The interaction Hamiltonian may then be written as

HI = ndϕ. (18)

In thermal equilibrium, the correlation function B(t ) =
〈ϕ(t )ϕ〉 may be calculated by using the Kubo formula and the
fluctuation-dissipation theorem. The impedance of the circuit
in Fig. 3 is given by

Z (ω) =
(

1

R2
+ 1

R1 + iωL
+ iωC

)−1

, (19)

and B(ω) follows as (see also Ref. [83])

BLC (ω) = e2ω Re(Z (ω))

[
coth

(
ω

2kBT

)
+ 1

]
. (20)

Rescaling ϕ �→ √
gϕ in Eq. (18) and BLC (ω) �→ BLC (ω)/g

in Eq. (20), this expression matches the general result for a
thermal bosonic bath with Ohmic spectral density in Eq. (17),
where the coupling constant g = gLC and the bath cutoff
frequency ωc are given by

gLC = e2

2CωLC
, ωc = ωLC = 1√

LC
, (21)

and ωLC is the LC resonance frequency of the circuit in Fig. 3.
As expected, the dimensionless small system-bath coupling,
gLC , follows as the ratio between the capacitive interaction
energy, Eint = e2/2C, and the reference energy set by the
LC resonance frequency, Eref = ωLC . Equation (20) predicts
a cutoff function C(ω̃), with ω̃ = ω/ωc, of the form

C(ω̃) = 4

π

ω̃2 + ω̃1

1+ω̃2
1ω̃

2(
ω̃2 + ω̃1

1+ω̃2
1ω̃

2

)2 + ω̃2
(
1 − 1

ω̃−2
1 +ω̃2

)2 , (22)

with ω̃i=1,2 = (RiCωLC )−1. Evidently, C(ω̃) approaches a con-
stant for ω̃ → 0 but decays ∝1/ω̃2 for ω̃ → ∞. This limiting
behavior is characteristic for a Lorentzian cutoff function.

2. QPC detector

Next we consider a measurement apparatus defined by a
QPC that weakly couples together two voltage-biased elec-
tronic leads, see Fig. 4. The QPC is also capacitively coupled
to the dot charge. This coupling mechanism in turn affects
the QPC transparency, and hence the measured conductance
through the QPC. One can thereby perform a readout of the
parity s = ±1 in Eq. (5). As explained above, the outcome of
this measurement also determines the eigenvalue of the MBS
parity operator iγ1γ2.

To good accuracy, the setup in Fig. 4 can be modeled by
[84–87]

HB =
∑

k;�=L,R

ε�kc†
�kc

�k, HI = √
gndϕ,

g = (Eint/Eref )2, ϕ = ErefV ρ̂. (23)

The bath here corresponds to the left and right electronic
leads together with their mutual coupling via the QPC. The
Hamiltonian HB contains the annihilation (creation) operators
c(†)
�k for electrons in single-particle eigenstates of the combined

lead-QPC-lead system. The corresponding eigenenergies, ε�k ,
are labeled by the wave vector k and the index � = L, R. This
index specifies whether the scattering state originates from
the left or the right lead. The bath operator ϕ in Eq. (23)
contains the local electron density operator ρ̂ in the small
(essentially pointlike) region representing the central QPC
region, with volume V . We assume that the capacitive inter-
action between ρ̂ and the dot charge represents the dominant
coupling between the QPC and the dot-MBQ system, see also
Appendix A. The corresponding interaction energy, Eint =
2e2/(CmV ), is determined by the mutual dot-QPC capacitance
Cm per volume V , where the factor 2 accounts for the electron
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spin. To justify the weak-coupling approximation, g � 1, the
energy Eint must be small compared to a reference energy Eref.
The latter energy is obtained from the following analysis.

We assume that scattering states originating from the
left/right lead thermalize according to Fermi-Dirac distri-
butions with equal temperatures, TL = TR = T , but different
chemical potentials, �μ = μL − μR � 0. This potential bias
induces a stationary charge current across the QPC. The envi-
sioned readout relies on the fact that the capacitive coupling
of the QPC to the dot affects the QPC transparency, and hence
the current response to the potential bias depends on the dot
occupation [84–86]. As detailed in Appendix A, the bath cor-
relators describing the time-dependent effect of this readout
on the dot-MBQ system are obtained by expressing ρ̂ in terms
of the operators c�k and c†

�k . We find a time-independent linear
moment, 〈ϕ(t )〉 = 〈ϕ〉 
= 0. As pointed out in Sec. II B, one
can absorb 〈ϕ〉 by a shift of the dot level energy ε. The Fourier
transform of the autocorrelation function (12) is then found as

BQPC(ω) =
∫ ∞

−∞
dt BQPC(t )eiωt

= π
∑

�,�′=L,R

J��′ (ω)

[
coth

(
ω + �μ��′

2kBT

)
+ 1

]
, (24)

with the lead-dependent spectral densities

J��′ (ω) =
∫ ∞

−∞
d� ���′

(
� + μ��′ − ω

2
,� + μ��′ + ω

2

)

×
[

nF

(
� − �μ��′ + ω

2

)

−nF

(
� + �μ��′ + ω

2

)]
, (25)

where we use the Fermi-Dirac distribution, nF(ω) = (eβω +
1)−1, the lead-averaged chemical potentials μ��′ = (μ� +
μ�′ )/2, and the potential differences �μ��′ = μ� − μ�′ . The
coupling function

���′ (ω,ω′) = E2
ref

∑
kk′

|τ�k,�′k′ |2δ(ω − ε�k )δ(ω′ − ε�′k′ ) (26)

describes how the QPC scatters electrons from lead �′ with
energy ω′ into lead � with energy ω. In Appendix A, we
explicitly evaluate Eq. (26) for the case of 1D leads with
the QPC approximated by a δ-peak potential. In general, �

scales with the energetic densities of states in the respective
lead, D� = D�(E = μ�), and with the typical transmission
coefficient τ of the QPC, � ∼ τ 2(ErefD�)(ErefD�′ ). A small
coupling g can then be realized in two different ways: The
first is to have low QPC transparency τ � 1, as set by
precise implementation of the QPC. Alternatively, one needs
a reference scale Eref that is small compared to 1/DL,R but at
the same time large compared to the capacitive energy Eint,
thus leading to g = (Eint/Eref )2 � 1 according to Eq. (23).
Physically, this corresponds to either a relatively low density
of states or to a large mutual capacitance CmV .

To understand how ���′ in Eq. (25) behaves as a function of
�, and hence how it enters the spectral densities J��′ , we note
that the Fermi functions in Eq. (25) will effectively restrict the

support of the integrand to the window

−ω + |�μ��′ |
2

< � <
ω + |�μ��′ |

2
. (27)

Under the assumption that the applied voltage bias and any
internal energy scale determining the QPC transparency (e.g.,
a potential barrier height) are much smaller than the average
chemical potential with respect to the band bottom of the
leads, �μ��′ � μ��′ , we can distinguish two limits, namely
the cases |ω| � μ��′ and |ω| � μ��′ . For small frequencies,
|ω| � μ��′ , the coupling profile ���′ in Eq. (25) can be
assumed �-independent within the region (27) where the
integrand has significant support, ���′ ∼ [ErefD�(μ��′ )]2 ∼
(Eref/μ0)2, with the average chemical potential μ0 = (μL +
μR)/2. We here assumed a form of the density of states as
appropriate for a 1D electron gas with |�μ��′ | � μ��′ , where
one finds D�(μ��′ ) ∼ 1/μ��′ . For large frequencies, |ω| �
μ��′ , on the other hand, the coupling factor ���′ (� + μ��′ −
ω/2,� + μ��′ + ω/2) in Eq. (25) is expected to decay as
1/|ω| for most �. One can rationalize this fact by noting that
the density of states decreases, similarly to the case of a 1D
Fermi gas, with 1/

√|ω| for sufficiently strong lateral electron
confinement in the QPC. Importantly, to regularize Eq. (24)
at high frequencies, we also need to account for the finite
electronic bandwidth that eventually cuts off the integral.

To qualitatively include all the above-mentioned effects,
we now set Eref = μ0/2 with μ0 = (μL + μR)/2 and intro-
duce an exponential cutoff. We thus consider the simplified
coupling function

���′
(
� + μ��′ − ω

2
,� + μ��′ + ω

2

)
→ 1

4
e− |ω|

ωc , (28)

with ωc � μ0. The dimensionless coupling constant intro-
duced in Eq. (1) then equals

g = (2Eint/μ0)2, (29)

where Eint = 2e2/(CmV ). The weak-coupling assumption
holds for Eint � μ0. For a quantitatively more precise calcula-
tion, one can resort to a specific QPC model as shown, e.g., in
Appendix A, followed by a numerical evaluation of Eq. (25).

Here we proceed by inserting Eq. (28) into Eq. (25). We
then obtain an Ohmic spectral density with a potential shift
and an exponential cutoff,

J��′ (ω) → 1

4
(ω + �μ��′ )e− |ω|

ωc

�μ��′�ωc≈ ω + �μ��′

4
e− |ω+�μ

��′ |
ωc . (30)

Using this result in Eq. (24), summing over �, �′ = L, R, and
comparing the result to Eqs. (15) and (16), we observe that
BQPC(ω) becomes a lead average of bosonic bath correlators
in thermal equilibrium, Bth in Eq. (17),

BQPC(ω) = 2Bth(ω) + Bth(ω + �μ) + Bth(ω − �μ)

2
(31)

with the potential bias �μ = μL − μR.
In summary, Eq. (31) states that the readout procedure

represented by the potential gradient �μ manifests itself
analogously to the capacitive noise of thermal fluctuations.
For �μ � T , and when lead-state energy differences −�μ <
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ω < �μ are most relevant for the readout, this contribution to
the bath noise and to the relaxation of the dot-MBQ system
becomes dominant. In this regime, we show in Sec. III B 2 that
�μ plays the role of an effective temperature for the decay
rates. In the opposite high-temperature limit, T � �μ, the
dynamics instead represents a purely thermal decay due to the
two leads, BQPC ≈ 2Bth. However, the readout may still work
if the dot charge, and hence the QPC conductance, depends on
the final MBQ state, and thus on the parity of the initial MBQ
state.

D. Mapping to spin-boson model

In this section, we show that our model (1) is intimately
related to the celebrated spin-boson model, which is a paradig-
matic model for describing the dissipative dynamics of two-
level quantum systems [83]. To that end, we first observe that
the joined parity s in Eq. (5) is conserved for the model in
Eq. (1),

[H, s] = 0, s = (−1)nd +nL . (32)

Our system, defined by the dot and the two coupled MBSs,
can be described in terms of two different two-level systems
which are both coupled to a common bosonic bath. Below,
we make this connection explicit. The dynamical properties
of the spin-boson model have been thoroughly studied in
the past [83,88–91]. In contrast to those studies, we here
encounter two copies of the spin-boson model, corresponding
to the parity eigenvalues s = ±1, respectively. The dynamics
of coherences between those two subsectors then represents
the quantity of most interest. Note that such coherences do not
violate parity superselection rules [92–94] since they comply
with total parity conservation once the parity (−1)nR of the
uncoupled Majorana pair is accounted for.

Introducing the auxiliary Majorana operators η1,2 for rep-
resenting the dot fermion, d = (η1 + iη2)/2, we first define
the Pauli operator algebra

σ̃x = −iγ1η2, σ̃y = iγ1η1, σ̃z = −iη1η2. (33)

Next we write the parity operator (5) as s = −γ1γ2η1η2 in
order to express Eq. (1) as

H = −1

2
(ε + √

gϕ)σz − �s

2
σx + HB,

�s=±1 = 2λ
√

1 + a2 + 2sa sin φ, (34)

where we use the rotated Pauli operators

σα=x,y,z = eiθsσ̃z σ̃αe−iθsσ̃z ,

θs = −1

2
tan−1

(
a cos φ

s + a sin φ

)
. (35)

We note that a constant energy shift has been neglected in
Eq. (34), along with the term

√
gϕ/2. Indeed, upon averaging

over the bath degrees of freedom, the last term yields a con-
tribution ∼nd〈ϕ(t )〉 up to order O((

√
g)2). Since the average

〈ϕ(t )〉 is time-independent for all environments considered
here, see Sec. II C, such a contribution only generates a shift
of ε which can be calibrated away.

For �+ 
= �− in Eq. (34), the system state relaxes to the
stationary limit (9) for standard reasons. In particular, since

the energies of the two blocks with s = ±1 do not match, there
are no cancellations of dynamical phases in the off-diagonal
entries of the density matrix. The large number of bosonic
modes then implies that these terms will cancel out in the
long-time limit. However, for �+ = �−, the evolution of the
off-diagonals blocks is identical to the diagonal blocks, and
the long-time limit of the density matrix is instead given by

ρ(t )
t→∞−−−−→

�+=�−
P0|0d〉〈0d ||ψ0〉〈ψ0|

+ P1|1d〉〈1d |
∣∣ψ0〉〈ψ0

∣∣, (36)

where nd is the occupation of the dot, P0,1 the probability to
encounter nd = 0, 1 in the readout, |ψ0〉 has been specified in
Eq. (8), and we use |ψ0〉 = α0|0L1R〉 + β0|1L0R〉. Thus the dot
occupation can be read out, but no information will be gained
in this case. In fact, the final step of emptying the dot will
simply restore the initial MBQ state.

E. Effective Lindbladian

We are now in a position to derive the quantum master
equation governing the time evolution of the reduced den-
sity matrix, ρ(t ), describing the dot-MBQ system under the
influence of the dissipative environment. In general, a master
equation describing a CPTP Markovian time evolution of ρ(t )
can always be cast into Lindblad form [73–75],

ρ(t ) = eLtρ, (37a)

Lρ = −i[HLS + H0, ρ] +
∑

k

�k

(
LkρL†

k − 1

2
{L†

k Lk, ρ}
)

,

(37b)

where the jump operators Lk describe dissipative transitions
induced by the environment. The corresponding transition
rates are non-negative, �k � 0, thereby guaranteeing CPTP
time evolution. Furthermore, the Lamb shift contribution ap-
pearing in the coherent part of the time evolution is captured
by a Hamiltonian HLS . This term encodes system energy
renormalizations due to the dressing of system operators by
environmental modes. Such effects may occur even at zero
temperature.

Conventional recipes for deriving Markovian master equa-
tions for open quantum systems, such as the Wangsness-
Bloch-Redfield approach [71,72,81], in general do not result
in master equations of Lindblad form and hence do not nec-
essarily yield CPTP evolution. In contrast, the effective Lind-
bladian approximation, previously established in Refs. [77,78]
and very recently put on a rigorous footing by Nathan and
Rudner [79], automatically stipulates a Lindbladian form, and
thus does away with such problems. In this section, we give
a brief overview of this approximation and apply it to our
model. In effect, the approximation prescribes a normalized
transition rate � = 1 and a corresponding jump operator of
the form

L =
√

g

2

∑
m,n

√
B(En − Em)〈m|−σz|n〉|m〉〈n|, (38)

where B(ω) = ∫ ∞
−∞ dt eiωt B(t ). The states |n〉 = |p, s〉 are en-

ergy eigenstates of the system Hamiltonian H0, see Eq. (6),
and σz has been defined in Eq. (35), see also Appendix B for a
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detailed discussion. The appearance of the square root of the
Fourier transformed boson correlator (12) can be rationalized
by noting that Fermi’s golden rule is then immediately recov-
ered for the transition rates between eigenstate populations.
While jump operators of the form in Eq. (38) have been
suggested before [77], one of the central contributions of
Nathan and Rudner [79] is to put this approximation on solid
theoretical grounds by providing an error bound on ρ̇(t ). The
approximation consists (i) of a familiar type of Markovian
approximation, which is equivalent to the Wangsness-Bloch-
Redfield approach in the sense that both approaches share
the same error bound EM . However, Ref. [79] formulates (ii)
another approximation that is not equivalent to the standard
secular approximation [75,76] but nevertheless yields the
desired Lindblad form of the master equation. Importantly,
this second approximation has a different error bound, EL,
than the Wangsness-Bloch-Redfield approach. However, there
exists a single quantity, E , which is larger than both EM and
EL, which serves as error bound for the effective Lindbladian
approximation.

In order to derive Eq. (37), one starts from the Wangsness-
Bloch-Redfield approximation which can be written as
[71,72,75,81]

ρ̇(t ) = DR(t )ρ(t ) + EM, (39)

where EM is the error introduced by this approximation. The
retarded dissipator is given by

DR(t ) =
∫ t

−∞
dt ′�1(t, t ′), (40)

where the bath memory kernel superoperator, �1(t, t ′), is (in
the interaction picture) defined by

�1(t, t ′)O = − trB[HI (t ), [HI (t ′),O]]. (41)

Here trB indicates a trace over the bath degrees of freedom. We
note that the Born (weak-coupling) approximation has been
used to derive Eq. (39). In the maximal eigenvalue norm, the
error of the approximation may be bounded as [95]

‖EM‖ � 2g�̃
∫ ∞

0
dt t |B(t )|, (42)

with

�̃ = g
∫ ∞

0
dt |B(t )|. (43)

The latter quantity serves as bound for the rate of change of
the reduced density matrix in the maximal eigenvalue norm,

||ρ̇(t )|| � �̃. (44)

Nathan and Rudner [79] also show that the Born approxima-
tion alone introduces an error of size EM/2, and thus, in a
sense, is already equivalent to the full Born-Markov approx-
imation, which accounts for an additional error bounded by
EM/2. We note that this argument only holds true on short
timescales, since small deviations in ρ̇(t ) may lead to very
different long-time limits.

From the above starting point, one then derives the follow-
ing bound [79]:

ρ̇(t ) = L(t )ρ(t ) + EM + EL. (45)

This equation is of the Lindblad form, see Eq. (37), with the
single jump operator L in Eq. (38) and the rate � = 1. The
Lamb shift contribution HLS is discussed in Sec. III C below.
The new error term, EL, is bounded according to

‖EL‖ � 2g�̃
∫ ∞

0
dtdt ′ t |h(t )‖h(t ′)|,

h(t ) = 1

2π

∫ ∞

−∞
dω

√
B(ω)e−iωt . (46)

Moreover, one finds [79]

‖EM‖, ‖EL‖ � E, E = η�̃, (47)

where we define the dimensionless number

η = 2g
∫ ∞

−∞
dtdt ′|t h(t )||h(t ′)|. (48)

The effective Lindbladian approximation is then justified for
η � 1.

We emphasize that the error bound E is conservative.
Taking, e.g., a thermal bosonic bath, the error bound diverges
in the infinite-temperature limit owing to the presence of
nB(ν) in Eq. (16), even though the Markovian approximation
should be valid in this limit. Furthermore, E tends to be at least
an order of magnitude larger than EM in the cases considered
below. For the numerical results shown in Sec. III, we have
chosen model parameters in a conservative manner, such that
E is at most comparable to the slowest nonvanishing decay
rate of the problem. However, we expect that the effective
Lindbladian approximation remains accurate even when less
conservative parameters are chosen. Moreover, since E ∝ g2,
the error bound can always be made arbitrarily small against
the relevant relaxation and decoherence rates by reducing g,
since those rates already receive contributions ∝g. We discuss
the error bound in more detail in Sec. III B 1.

III. RESULTS

A. Results for generic environments

Making use of the effective Lindbladian approximation,
see Eqs. (37) and (38), we obtain an explicit expression for
the Liouvillian, L, that holds for an arbitrary bath correlation
function B(ω). Just as the Hamiltonian is a block-diagonal
operator, the Liouvillian is a block-diagonal superoperator.
We parametrize the reduced density matrix as

ρ =
(

ρ+ ρc

ρ†
c ρ−

)
, ρi =

(
ai bi

ci di

)
, i = ±, c, (49)

where the diagonal blocks ρ± refer to the parity s = ±1 in
Eq. (5). Noting that b± = c∗

±, the time evolution is given by
(i = ±, c)

ρi(t ) = eLitρi(t = 0). (50)

We refer the reader to Appendix B for the explicit form of the
superoperators Li. Their complex-valued eigenvalues, {�i

j},
contain information about the rate of change in the corre-
sponding density matrix block i. Specifically, the respective
decay rates are given by

�i
j = − Re �i

j . (51)
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For the diagonal blocks (i = s = ±), the problem is for-
mally identical to a single spin-boson model, see Sec. II D.
There is one zero eigenvalue, �s

0 = 0, corresponding to the
steady state reached at very long times. To lowest order in g
and using Eq. (51), we obtain the decay rates describing the
approach to the steady state,

�s
1 = −g

�2
s

4E2
s

[B(Es) + B(−Es)] + O(g3), (52a)

�s
2,± = − g

8E2
s

(
�2

s [B(Es) + B(−Es)] + 4ε2B(0)
)

± iEs + O(g2), (52b)

with �s in Eq. (34) and Es in Eq. (6). For a parity readout
of the dot-MBS system, these rates describe how fast the dot
charge (or the quantum capacitance) will reach its final value
at long times. The respective density matrix block in this long-
time limit is determined by the kernel of Li. For the diagonal
block with s = ±1, using the energy eigenbasis (6), we obtain

ρs(∞) = 1

A+
s + A−

s

(
A−

s −i g
Es

Ac
s

i g
Es

Ac
s A+

s

)
, (53)

with the quantities

A±
s = �2

s

4E2
s

B(±Es), Ac
s = A−

s n+
s − A+

s n−
s ,

n±
s = �sε

8E2
s

√
B(0)(3

√
B(±Es) −

√
B(∓Es)). (54)

In addition, to order O(g), the steady-state expectation value
for the dot occupation number in block s = ±1 is given by

〈nd (∞)〉s = 1

2
(1 − 〈σz(∞)〉s)

= 1

2

(
1 − ε

Es

B(Es) − B(−Es)

B(Es) + B(−Es)

)
. (55)

Similarly, the respective saturation value for the quantum
capacitance follows as d

dε
〈nd (∞)〉s.

Finally, for the coherence block (i = c), one finds only
nonzero eigenvalues. Up to order O(g2) terms, with p1, p2 =
±1, they are given by

�c
p1,p2

= − g

2

(
Ap2

p1
+ A−p1 p2

−p1
+ 2K p1

) + ip2 f p1 , (56)

with the quantities A±
s in Eq. (54) and

K± = ε2( f ±)2

2E2+E2−
B(0), f ± = 1

2
(E+ ± E−). (57)

We now proceed by illustrating these general results for the
specific environments in Sec. II C.

B. Results for specific environments

One of the main results of this work is stated in Eq. (56),
which yields the rates �c

p1 p2
= − Re �c

p1 p2
(with p1, p2 = ±1)

governing the decay of quantum coherence shared by the two
parity subblocks s = ±1, see Eq. (5). Along with the (known)
relaxation rates for the spin-boson model [83], see Eqs. (52a)
and (52b), these results allow one to obtain explicit estimates

for the relaxation and/or decoherence timescales characteriz-
ing the dot-MBQ system coupled to a generic environment
with the correlator B(ω). In this section, we examine these
results for the specific environments in Sec. II C.

1. Thermal bath of bosons

We begin with a bosonic bath in thermal equilibrium,
see Sec. II C 1. For an Ohmic bath, the correlator Bth(ω) is
given by Eq. (17). We choose an exponential cutoff function,
C(ω,ωc) = e−|ω|/ωc , where ωc is the bath cutoff frequency.

First, in order to obtain the dimensionless number η = ηth,
we have numerically computed the integrals in Eq. (48) as a
function of kBT/ωc. The error bounds discussed in Sec. II E
imply the condition ηth � 1 for the effective Lindbladian
approximation. Within the temperature range

0.001ωc � kBT � 10ωc, (58)

we find ηth < 100g, with a broad minimum at ηth ≈ 10g
around kBT ≈ 0.1ωc. For small system-bath couplings, say,
g � 0.001, we conclude that the effective Lindbladian approx-
imation is safely controlled within the temperature window
(58). The error bound Eth = ηth�̃, see Eq. (47), is then smaller
than the predicted decay rates. The error bound may, however,
become larger for either very low or very high temperatures.
The case of very high temperatures has already been dis-
cussed in Sec. II E. Moreover, in the zero-temperature limit,
one generally expects the Lindblad equation to break down
[75,83]. However, let us also recall that this error bound is
conservative, and the actual error introduced by the effective
Lindbladian approximation may in fact be much smaller, see
Sec. II E. Finally, we note that for the numerical calculation
of ηth, we have used a long-time integration cutoff tmax in
Eq. (48), which physically corresponds to the total duration of
the measurement. Sending tmax → ∞, one encounters a weak
logarithmic divergence of ηth, see also Refs. [78,79].

For the diagonal blocks Li with i = s = ±1, we recover
from Eqs. (52a) and (52b) the known thermalization rates of
the spin-boson model to lowest order in the coupling g [83],

�s
1,th = πg�2

s

4Es
e−Es/ωc coth

(
Es

2kBT

)
,

�s
2,th = 1

2
�s

1,th + πg

2

ε2

E2
s

kBT . (59)

These rates tell us how quickly thermalization occurs, i.e., on
which timescales the density matrix of the combined dot-MBS
system will approach the thermal state in Eq. (10). Turning
to the coherences between the s = +1 and s = −1 sectors,
Eq. (56) yields the corresponding four decay rates to order
O(g). With p1, p2 = ±1, we find

�c
p1,p2,th = πg

8

{
�2

p1

2Ep1

e− Ep1
ωc

[
coth

(
Ep1

2kBT

)
+ p2

]

+ �2
−p1

2E−p1

e− E−p1
ωc

[
coth

(
E−p1

2kBT

)
− p1 p2

]

+ ε2(E+ + p1E−)2

E2+E2−
kBT

}
. (60)
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FIG. 5. Thermalization rates �s
1/2,th (in units of gωc), see

Eq. (59), vs ε/λ for a thermal boson bath. These rates describe
thermalization of the diagonal density matrix blocks with parity s =
±1, where blue solid (red dashed) curves are for s = +1 (s = −1).
We use the parameters kBT = λ = 0.01ωc, a = 1, and φ = π/3.

Three of these rates approach a finite value as T → 0 and
therefore describe parity thermalization of the coupled dot-
MBS system. However, the smallest rate, �c

1,th ≡ �c
+,−,th,

vanishes in the T → 0 limit and corresponds to a dephasing
rate for inter-parity quantum coherence. From Eq. (60), we
find the low-temperature behavior

�c
1,th(T → 0) � πg

8

ε2(E+ − E−)2

E2+E2−
kBT . (61)

Figures 5–7 illustrate the above results. The decay rates in
the diagonal sector, see Eq. (59), are shown in Fig. 5, while the
decay of quantum coherence between the two parity sectors
is shown in Fig. 6, see Eq. (60), and in Fig. 7. In Figs. 5
and 6, we show the respective rates at fixed temperature as
a function of the ratio ε/λ between the dot level energy ε and
the overall tunneling strength λ. We observe that some of the

FIG. 6. Rates describing the decay of quantum coherence be-
tween different parity sectors, see Eq. (60), for a thermal bosonic
bath. We show the four rates �c

p1 p2,th (in units of gωc), see Eq. (60),
vs ε/λ, for the parameters in Fig. 5.

FIG. 7. Interparity dephasing rate, �c
1,th = �c

+−,th (in units of
gωc), vs kBT/ωc for a thermal bosonic bath, see Eq. (60). We use
the parameters in Figs. 5 and 6 with ε = λ/2. The low-temperature
behavior is given by Eq. (61).

inter-parity decay rates are of the same order of magnitude
as the thermalization rates in the parity-diagonal sectors.
These inter-parity rates also do not vanish in the T → 0 limit
and correspond to thermalization rates of the system. In the
long-time limit, the smallest of the rates shown in Fig. 6
dominates the approach to the steady state. The dephasing rate
in the off-diagonal parity sector, �c

1,th, is shown in Fig. 7 and
vanishes according to Eq. (61) as T → 0. Our results show
that quantum coherence between different parity sectors can
persist for long timescales at low temperatures.

We also note that in the long-time limit, the expectation
value of the dot occupation number approaches the thermal
equilibrium value. Indeed, Eq. (55) yields

〈nd (∞)〉s,th = 1

2

[
1 − ε

Es
tanh

(
Es

2kBT

)]
. (62)

This result holds for arbitrarily small (but finite) g.
As concrete example for a thermal bosonic bath, we now

consider the electromagnetic environment corresponding to
the circuit in Fig. 3, where the bath correlator has been
specified in Eq. (20). In effect, the respective decay rates can
then be inferred from the above results by replacing

ge− Es
ωc → gLC C(Es/ωLC ), (63)

with the Lorentzian cutoff function C(ω̃) in Eq. (22). The
coupling gLC and the LC resonance frequency ωLC have
been specified in Eq. (21). For instance, the first of the two
thermalization rates in Eq. (59), for the diagonal sector with
parity s = ±1, is given by

�s
1,LC = πgLC�2

s

4Es
C
(

Es

ωLC

)
coth

(
Es

2kBT

)
, (64)

with �s in Eq. (34). Similarly, we find from Eq. (61) the low-
temperature behavior of the dephasing rate for inter-parity
quantum coherence,

�c
1,LC � gLC

4

ωLC

ω1 + ω2

ε2(E+ − E−)2

E2+E2−
kBT, (65)

with ω1,2 = 1/(R1,2C).
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2. QPC detector

We next turn to the nonequilibrium environment corre-
sponding to the QPC measurement setup shown in Fig. 4,
see Sec. II C 2. For this QPC charge readout of the parity of
the dot-MBQ state, the bath correlator is given by Eq. (31).
For simplicity, we focus on the effect of the potential gradient
�μ = μL − μR > 0 across the QPC, and neglect the purely
thermal contribution to BQPC(ω), which on its own has already
been studied in Sec. III B 1. For �μ � ωc, we thus take the
bath correlator responsible for the QPC charge readout as

BQPC(ω) � π

2

∑
p=±

(ω + p�μ)e−|ω+p�μ|/ωc

×
[

coth

(
ω + p�μ

2kBT

)
+ 1

]
. (66)

In this case, our numerical analysis of Eq. (48) shows that
with increasing potential bias �μ, the parameter η becomes
smaller. In a sense, the bias �μ acts like an effective temper-
ature and by increasing its value, the memory time of the bath
becomes shortened [96]. For example, using �μ = 0.1ωc and
g = 0.001, we find that in contrast to Eq. (58), the effective
Lindbladian approximation stays accurate for all temperatures
kBT � 10ωc, down to zero temperature.

Let us now turn to the zero-temperature limit in order to
study how decoherence in our system will depend on �μ. For
T = 0 and 0 < Es,�μ � ωc, Eq. (66) simplifies to

BQPC,T =0(ω) ≈ π
∑
p=±

|ω + p�μ|�(ω + p�μ), (67)

where �(x) is the Heaviside step function. Moreover, from
Eq. (55), we obtain the average steady-state dot occupation
number as

〈nd (∞)〉s =
{

1
2 (1 − ε/Es), �μ < Es,
1
2 (1 − ε/�μ), �μ � Es.

(68)

In order to read out the parity s = ±1, we evidently cannot
have �μ � Es for both values of s. On the other hand, if
�μ < Es for both s, the dependence on �μ drops out com-
pletely, resulting in the optimal case of maximum visibility.
We illustrate the average steady-state dot occupation number
in Fig. 8, where we observe that while the above T = 0
argument basically carries over to the finite temperature case,
the sharp changes at �μ = Es in Eq. (68) are smeared out by
thermal fluctuations.

The smallest nonvanishing decay rate at T = 0 in the
diagonal block with parity s = ±1 is then given by

�s
1 = πg

4

�2
s

E2
s

×
{

Es, �μ < Es,

�μ, �μ � Es.
(69)

For the optimal visibility case with �μ < Es for both values
of s, this result formally coincides with the smallest thermal
rate at zero temperature, see Eq. (59). Importantly, the decay
rate is then insensitive to the value of the potential bias �μ.
For the decay of the off-diagonal coherences, we find that
the T = 0 dephasing rate, �c

1(�μ), depends linearly on the

FIG. 8. Dephasing rate for parity off-diagonal quantum coher-
ence, �c

1 (in units of gωc), in the T -�μ plane, for the case of a QPC
readout environment with ε = λ = 0.01ωc, a = 1, and φ = π/3.
The dashed horizontal lines correspond to �μ = Es=±, see Eqs. (6)
and (68).

potential bias for �μ < E±,

�c
1(T = 0,�μ) � πg

16

ε2(E+ − E−)2

E2+E2−
�μ. (70)

By comparing this result to the thermal rate in Eq. (61), we
observe that the potential bias plays the role of an effective
temperature, as expected on general grounds [96]. In the
opposite limit, kBT � �μ, the dephasing rate is basically
described by the results in Sec. III B 1.

Figure 8 illustrates the dephasing rate �c
1 for the case of

a QPC detector, as a function of both temperature and bias
voltage. These results were obtained from Eq. (56). We first
observe that at low temperatures, the dephasing rate increases
with increasing potential bias. This behavior is expected be-
cause the potential bias acts as effective temperature. On the
other hand, for kBT � �μ, the potential bias has little effect
on the rate which now is dominated by thermal fluctuations.
Next, we note that in the potential bias window where differ-
ent parity states can be distinguished with good visibility, the
timescale τM = 1/�c

1 for the off-diagonal coherence to decay,
and hence the time it takes to make a projective measurement
of the parity s = ±1, is limited to a time of the order τM ≈
106/ωc. On the other hand, the readout time is determined
by τR = mins 1/�s

1, i.e., in terms of the decay rates in the
diagonal sector. Now τR is typically shorter than τM , which
implies that if the system parameters are chosen such that
the final state allows one to distinguish the two values of s,
the time τM will effectively determine the readout time of the
measurement. Finally, we note that from Fig. 9, one observes
that for good visibility, one needs �μ � E+. This observation
suggests that a readout procedure with an initially larger value
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FIG. 9. Steady-state dot occupation number, 〈nd (∞)〉s, vs poten-
tial bias �μ for the QPC parity readout with s = ±1, see Sec. III B 2,
obtained from Eq. (55) with Eq. (66), ε = 0.01ωc, λ = ε, a = 1,
and φ = π/3. The system energies E± in Eq. (6) are shown as
green vertical dashed lines. Blue (red) curves are for parity s = +1
(s = −1). Solid curves are for kBT = 0.01ωc. The corresponding
analytical T = 0 results, Eq. (68), are shown as dashed curves.

of �μ may be advantageous since in this manner one can
speed up the off-diagonal decay. Subsequently using a smaller
potential bias �μ, one can then maximize visibility.

C. Lamb shift

The Lamb shift can be thought of as a renormalization
of the dot-MBQ energies by the bath modes. This renormal-
ization does not contribute to decay rates but contributes to
the effective Hamiltonian appearing in the Liouvillian. So far
we have not discussed the corresponding term, HLS , which
appears in the coherent time evolution part of Eq. (37). The
Lamb shift could potentially be important for the readout,
for instance, by reducing the visibility in the readout via
s-dependent shifts of the average dot occupation 〈nd〉s.

In this section, we show that for E± � ωc, HLS only causes
an s-independent constant energy shift. As a consequence, the
Lamb shift is not expected to affect the readout visibility for
our dot-MBQ setups.

In the eigenbasis of H0, defined by H0|p, s〉 =
( ε

2 + p
2 Es)|p, s〉 for p = ±1, see Eq. (6), the Lamb shift

in the effective Lindbladian approximation takes the form
[79,97]

HLS = g

16

∑
p,q,r,s=±1

Zpq,sZqr,s

×
[

Q

(
p − q

2
Es

)
+ Q

(
q − r

2
Es

)]
|p, s〉〈r, s|,

Q(ω) = P
π

∫ ∞

−∞
dν

B(ν)

ω − ν
, (71)

where P denotes the principal part of the integral and B(ν) is
the bath correlator for the respective environment. We employ
the quantities

Zpq,s ≡ 〈p, s|σz|q, s〉 =
{−pε/Es, p = q,

�s/Es, p = −q,
(72)

with �s in Eq. (34), such that Eq. (71) can be written as

HLS = g

8

∑
s

(
ε2Q(0)

E2
s

+ �2
s [Q(Es) + Q(−Es)]

2E2
s

)
�s, (73)

where �s is the projector onto the diagonal parity block with
s = ±1. The Lamb shift therefore shifts the energies in each
block.

We next discuss the form of HLS for the different envi-
ronments introduced above. Using Eq. (73) and symmetry
relations obeyed by B(ω) corresponding to Eq. (12), we
find that the Lamb shift HLS is independent of temperature.
Crucially, for Es � ωc, we will show that the energy shift is
s-independent for all these cases, and therefore it indeed is
irrelevant with respect to the parity readout. The Lamb shift
is also negligible with regard to the average dot occupation
〈nd (∞)〉s, since Eq. (62) is already determined by contribu-
tions of order O(g0).

1. Thermal boson bath

We first evaluate Eq. (73) for thermal bosons. For an Ohmic
bath, using the bath correlator Bth(ω) in Eq. (17) with an
exponential cutoff function, Eq. (73) yields the result

HLS = gωc

8

∑
p,s=±

[
1 + �2

s

2E2
s

ξ

(
Es

ωc

)]
|p, s〉〈p, s|, (74)

where ξ (x) = xex Ei(−x) − xe−x Ei(x) with the exponential
integral, Ei(x) = − ∫ ∞

x dte−t/t . Using ξ (x) → 0 for x → 0,
we find that for E± � ωc, Eq. (74) reduces to the constant
energy shift gωc/8 which does not affect the parity readout.

Next we turn to the electromagnetic environment in Fig. 3,
with the bath correlator BLC (ω) in Eq. (20), where the Lamb
shift takes a more complicated form. Using the cutoff function
C(ω̃) in Eq. (20) with ωc = ωLC , we find

Q(0) = e2

4C
P

∫ ∞

−∞
dω̃ C(ω̃),

Q(Es) + Q(−Es) = e2

4C
P

∫ ∞

−∞
dω̃ C(ω̃)

×
(

ω̃

ω̃ + Es
ωLC

+ ω̃

ω̃ − Es
ωLC

)
. (75)

Using these expressions, we observe that the s dependence
drops out again in HLS in the parameter regime E± � ωc =
ωLC .

2. Lamb shift for QPC

For the QPC case, we find the Lamb shift

HLS = gωc

8

∑
p,s

(
1 + ε2

E2
s

ξ

(
�μ

ωc

)
+ �2

s

E2
s

ξ

(
Es

ωc

))

× |p, s〉〈p, s|, (76)

where ξ (x) has been defined after Eq. (74). As in the thermal
case, in the limit E±,�μ � ωc, the Lamb shift has no conse-
quences for the parity readout.
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IV. OUTLOOK

The model we have introduced provides a flexible frame-
work, which may be adapted to study other experimental
setups and dephasing mechanisms related to the parity-charge
conversion process, see also Refs. [64,98]. Below we sketch
possible extensions of our work that we find particularly
interesting. However, a more detailed study of these points
goes beyond the scope of this paper.

A. Dispersive readout

One could use our framework to model the effect of
dispersive readouts of Majorana qubits [18,99]. To that end,
we consider the electromagnetic environment shown in Fig. 3.
To include the effects of the dispersive readout, however, one
should explicitly include the driving fields into the model
for the environment. This step will modify B(t ) significantly,
leading to dephasing already at zero temperature. From this
point on, our approach should then be applicable again. In par-
ticular, by calculating 〈nd (∞)〉s, one can obtain the impedance
shift of the system, from which the resulting amplitude and
phase shifts of the reflected signal corresponding to the values
s = ±1 can be deduced.

B. Other dephasing mechanisms

Above, we have studied dephasing caused by the mea-
surement circuit during the MBQ readout. In this section, we
describe how intrinsic sources of dephasing can be included
in the formalism. In particular, we discuss how the time
evolution of the density matrix will be changed due to residual
Majorana overlap integrals and/or because of quasiparticle
poisoning effects.

When allowing for quasiparticles to relax to or be excited
from the zero-energy MBS sector, we need, because of total
parity conservation, an additional quantum number describing
whether the quasiparticle sector has even or odd occupancy.
The total parity of the MBSs and the quantum dot is given by

p = −iγ1γ2γ3γ4η1η2, (77)

such that p = ±1 is the quantum number that keeps track of
whether the quasiparticle number parity has changed. We can
then define MBQ Pauli operators s = (sx, sy, sz ) as

sx = γ1γ3η1η2 = iγ2γ4 p,

sy = γ1γ4η1η2 = −iγ2γ3 p,

sz = γ1γ2η1η2 = iγ3γ4 p.

(78)

In a similar way, we can write the original Pauli operators σ̃α ,
see Eq. (33), as

σ̃x = −iγ1η2 = γ2γ3γ4η1 p,

σ̃y = iγ1η1 = γ1γ3γ4η1 p,

σ̃z = −iη1η2 = pγ1γ2γ3γ4.

(79)

The two sets of Pauli operators commute, [sα, σ̃α′ ] = 0 for all
α, α′.

1. Majorana overlaps

Dephasing of a Majorana qubit due to finite MBS overlaps
has been studied before by Knapp et al. [100]. The Majorana
overlaps introduce a Hamiltonian term of the form

Hoverlap =
∑
i< j

ti j iγiγ j = s · [pd1 + σ̃zd2], (80)

where the real-valued vectors d1 = (t24,−t23, t34) and d2 =
(t13, t14, t12) contain the overlap matrix elements ti j . We ob-
serve that the MBS overlaps basically cause the Bloch vector
of the MBQ to precess around an axis defined by the vectors
d1 and d2. It is straightforward to include Eq. (80) in the
coherent part of the Liouvillian, see Eq. (37). For a detailed
discussion of the resulting physics, see Ref. [100].

2. Quasiparticle poisoning

We now consider quasiparticle poisoning caused by ex-
citations out of the MBS ground state sector and/or by
the relaxation of thermally generated quasiparticles into the
MBS sector. We will assume that the timescales for these
two processes are slow, in particular, much slower than re-
laxation within the quasiparticle continuum. Moreover, the
timescale for the spatial equilibration of quasiparticles is also
assumed to be much shorter than the typical time between
subsequent poisoning events. These two assumptions imply
that the quasiparticle distribution function is identical for all
MBS positions. The Hamiltonian that describes the coupling
between quasiparticles and MBSs is then given by [68]

Hqp = HF + HB + Hpois, HF =
∑

k

Ek α
†
k αk ,

HB =
∑

q

ωqb†
qbq, Hpois =

4∑
i=1

γi

∑
qk

�iqkϕq, (81)

�iqk = viqkαk − v∗
iqkα

†
k , ϕq = bq + b†

q,

where αk are fermionic annihiliation operators for above-gap
Bogoliubov quasiparticles with energy Ek . Moreover, bq are
annihilation operators for bosonic modes (phonons and/or
electromagnetic modes) which mediate the coupling between
the two fermionic subsystems, ωq are boson energies, and
viqk are the coupling matrix elements. A key point is now
that the quasiparticles have different distribution functions
depending on the total quasiparticle number being even or
odd. Of course, this statement only holds true for a finite
system where parity is conserved, but for closed MBQs, this
is indeed the case. The difference between the even and odd
quasiparticle number sectors is only significant for temper-
atures T � T ∗, where T ∗ is the characteristic temperature
at which the probability of having a single quasiparticle on
the island approaches unity. This crossover temperature is
inversely proportional to the volume VS of the superconductor
and given by [36,68,101,102]

T ∗ ≈ �

kBNeff
, Neff = dSVS

√
2πkBT �, (82)

where dS is the density of states and � the pairing gap.
To take total parity conservation into account, we project

the Hamiltonian (81) onto the sector with (say) total even
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occupancy, Hqp → PeHqpPe, where Pe is the projection opera-
tor to total even parity. We also define separate projection op-
erators for quasiparticles and MBSs onto the respective even
and odd parity sectors, Pqp,M

e/o . With Pe = PM
e Pqp

e + PM
o Pqp

o , the
projected poisoning Hamiltonian becomes

PeHpoisPe =
4∑

i=1

PM
o γiP

M
e

∑
qk

Pqp
o �iqkϕqPqp

e

+
4∑

i=1

PM
e γiP

M
o

∑
qk

Pqp
e �iqkϕqPqp

o . (83)

We can now identify two contributions in Eq. (83). The first
term couples the MBQ via the operator γi,e→o = PM

o γiPM
e to

a reservoir with an even number of quasiparticles, while the
second term couples it via γi,o→e = γ

†
i,e→o to a reservoir with

odd quasiparticle number. Equation (83) allows us to directly
apply the effective Lindbladian approximation introduced in
Sec. II E. To that end, we define a jump operator for each of
the two terms in Eq. (83),

Le→o =
∑

i

∑
mn

〈m|γi,e→o|n〉√ge
ii(En − Em)|m〉〈n|, (84a)

Lo→e =
∑

i

∑
mn

〈m|γi,o→e|n〉√go
ii(En − Em)|m〉〈n|, (84b)

where the two bath functions are given by

ge/o
i j (t ) = −

∑
qk

〈�iqk (t )� jqk (0)〉e/o〈ϕq(t )ϕq(0)〉. (85)

The fermionic expectation value is here taken over quasipar-
ticle distributions in the respective sector with even or odd
total occupation number. The functions (85) have also been
discussed in Refs. [36,68,101–104]. Note that in Eqs. (84a)
and (84b) we have neglected coherent transport of quasipar-
ticles between the ends of the topological superconductors.
If coherent quasiparticle transfer between the wire ends is
important, it can be included by creating jump operators from
the square roots of the matrices ge/o

i j (ω) [79].
As final step, we now use the fact that because of the cou-

pling to incoherent quasiparticle reservoirs, the total even and
odd (p = ±1) sectors of the MBQ have no quantum-coherent
coupling. We can therefore write the dynamical equations for
the MBQ reduced density matrices with even or odd parity,
ρe/o, as

ρ̇e = (ρ̇e)(0) − 1
2 {L†

e→oLe→o, ρe} + Lo→eρoL†
o→e, (86a)

ρ̇o = (ρ̇o)(0) − 1
2 {L†

o→eLo→e, ρo} + Le→oρeL†
e→o, (86b)

where (ρ̇e/o)(0) is the time derivative in the absence of quasi-
particle poisoning. Finally, we note that the coupling of the
MBS sector to the quasiparticle reservoirs will also give rise
to Hamiltonian corrections of the same form as the residual
overlaps in Eq. (80).

V. CONCLUSIONS

We have developed a flexible theory for calculating the
thermalization and dephasing rates for arbitrary quantum

states of a Majorana box qubit tunnel-coupled to a quantum
dot for parity readout. Our analysis shows that this parity-to-
charge conversion process sensitively depends on the choice
of the readout device connected to the dot charge. The latter
can be thought of as a generic Markovian bosonic environ-
ment (heat bath), either in thermal equilibrium or operated
under nonequilbrium conditions. Particular care has been
taken to properly account for the decay of coherences among
blocks with different fermion number parity s = ±1, where s
refers to the parity of the quantum dot together with the two
tunnel-coupled Majorana states.

By employing a recently developed effective Lindbladian
approximation, the resulting quantum master equation is by
construction of Lindblad form, meaning that complete pos-
itivity of the density matrix is guaranteed during the entire
time evolution. We have provided explicit results for decay
rates when the environment consists of a generic thermal
boson heat bath. An important special case is defined by
the electromagnetic fluctuations in a macroscopic electric
circuit connected to the Majorana qubit. In addition, we have
examined the nonequilibrium environment corresponding to
a Majorana parity readout via conductance measurements
of a quantum point contact that is capacitively coupled to
the dot. For all these examples, we have derived analytical
expressions for decay rates, which in turn can be related
to experimentally measurable quantities. By taking into ac-
count quasiparticle poisoning and Majorana overlap effects as
sketched in Sec. IV, it stands to reason that this theoretical
approach can allow for a realistic and powerful description of
quantum decoherence in Majorana box qubits.

Note added. Recently, we were informed of a closely
related independent manuscript by Steiner and von Oppen
[105]. Their conclusions are consistent with our findings.
Despite of the overlap between both works, they are largely
complementary. While we employ the improved jump opera-
tors introduced in Refs. [77–79] and use them to investigate
explicit models for the measurement apparatus, Ref. [105]
focuses on the stochastic nature of quantum measurements
and provides an in-depth analysis of the measurement current.
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APPENDIX A: BATH CORRELATOR FOR QPC DETECTOR

In this Appendix, we derive the bath autocorrelator
BQPC(ω) in Eq. (31) for a quantum point contact capacitively
coupled to the dot-MQB system, see Fig. 4. We start from the
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interaction Hamiltonian (23),

HI = 2e2

Cm
ρ̂ nd , (A1)

where ρ̂ = ψ†ψ is the electron density operator in a small
(approximately pointlike) volume V centered around the lon-
gitudinal coordinate x = 0 along the QPC. Near this point, the
capacitive coupling between the QPC charge density and the
dot charge will be most pronounced. Here, ψ is the electron
annihilation operator for QPC electrons in this volume, and Cm

is the mutual dot-QPC capacitance per volume. The electron
spin is accounted for by the factor 2 in Eq. (A1).

As concrete example, we model the QPC as 1D fermion
system connected to electron reservoirs on the left and right
side, with chemical potentials μL and μR, respectively. We as-
sume that the capacitive interaction involves the QPC charge
density at x = 0 only, see Eq. (A1). The QPC itself is mod-
eled by a δ-peak barrier of height V0 per unit length. The
corresponding contribution to the first-quantized Hamiltonian
is VQPC = V0δ(x). We next express the local QPC fermion
operator ψ as

ψ =
∑

�=L/R,k

��k (x = 0) c�k, (A2)

where the c�k are fermionic annihilation operators correspond-
ing to the single-particle QPC scattering states ��k (x) with
wave number k originating from reservoir � = L, R. For the
1D QPC model with a δ-barrier, one finds [106]

��=L/R,k (x) = 1√
L0

[(e±ikx + rke∓ikx )�(∓x)+tke±ikx�(±x)],

rk = 1

i k
mV0

− 1
, tk = 1

1 + i mV0
k

, (A3)

where L0 is the QPC length, m the electron mass, and rk and tk
are reflection and transmission amplitudes, respectively. The
charge density at x = 0 follows as

ρ̂ = 1

V

∑
�,�′=L,R

∑
kk′

τ�k,�′k′ c†
�kc�′k′ , (A4)

where τ�k,�′k′ quantifies the overlap between ��k and ��′k′ . For
the 1D model with Eq. (A3), we obtain

τ�k,�′k′ = 1
4 (1 + rk + tk )(1 + rk′ + tk′ ), (A5)

which is independent of the lead indices �, �′. For calculating
the bath correlation function, we next assume

〈c†
�kc

�′k′ 〉 = δ��′δkk′nF,�(ε�k ), (A6)

with Fermi-Dirac distribution functions, nF,�(ε) =
1/(eβ(ε−μ� ) + 1), and the single-particle eigenenergies,
ε�k , in the bath Hamiltonian HB, see Eq. (23). Equation (A6)
effectively enforces the constraint that electrons thermalize
before entering the QPC. We then have

〈ρ̂(t )〉 = 〈ρ̂〉 = 1

V

∑
�,k

τ�k,�k nF,�(ε�k ), (A7)

where ρ̂(t ) = eiHBt ρ̂e−iHBt and τ�k,�k > 0. For the 1D example
with a δ barrier, we have τ�k,�k = |tk|2 according to Eq. (A3).

With the bath operator ϕ in Eq. (23), we now observe that
Eq. (A7) implies a time-independent linear moment,

〈ϕ(t )〉 = 〈ϕ〉 = Eref

∑
�,k

τ�k,�knF,�(ε�k ). (A8)

Rewriting the interaction Hamiltonian as

HI = √
gnd (ϕ − 〈ϕ〉) + √

gnd〈ϕ〉, (A9)

we observe that the linear moment in Eq. (A8) can be absorbed
by a shift of the dot level energy ε,

HI → √
gnd (ϕ − 〈ϕ〉), ε → ε − √

g〈ϕ〉, (A10)

see Eqs. (2) and (23). With respect to the redefined inter-
action Hamiltonian, the time-dependent bath autocorrelator
in Eq. (12), BQPC(t ), which enters the effective Lindbladian
approximation, can be evaluated by using c�k (t ) = e−iε�kt c�k

along with Wick’s theorem and Eq. (A6). The result is

BQPC(t ) = E2
ref

∑
�k,�′k′

|τ�k,�′k′ |2ei(ε�k−ε�′k′ )t

× nF,�(ε�k )[1 − nF,�′ (ε�′k′ )]. (A11)

We now introduce the coupling profile function ���′ (ω,ω′) as
in Eq. (26), which for the 1D case with a δ barrier is given by

���′ (ω,ω′) =
m

4π2 L2
0E2

ref

√
ωω′(mV2

0
2 + ω

)(mV2
0

2 + ω′)�(ω)�(ω′), (A12)

where we use Eq. (A3) and 1
L0

∑
k (· · · ) → 1

2π

∫
dk(· · · ).

Identifying the general form (26) of � in Eq. (A11), we find

BQPC(t ) =
∑
�,�′

∫ ∞

−∞
dωdω′ �(ω,ω′)ei(ω−ω′ )t

× nB(ω − ω′ − μ� + μ�′ )[nF,�′ (ω′) − nF,�(ω)],

(A13)

where we used the identity

nF(ξ )[1 − nF(ξ ′)] = nB(ξ − ξ ′)[nF(ξ ′) − nF(ξ )].

Changing variables in Eq. (A13) to � = (ω + ω′)/2 and
ν = ω − ω′, shifting � by μ��′ = (μ� + μ�′ )/2, and finally
performing a Fourier transformation, we arrive at Eqs. (24)
and (25).

Finally, we note that if we evaluate
���′ (� + μ��′ − ω

2 ,� + μ��′ + ω
2 ) with the coupling function

Eq. (A12) for Eref = μ0/2 with μ0 = (μL + μR)/2 and
mV2

0 � μ0 as well as 1/(mL2
0 ) � μ0, we can qualitatively

confirm the behavior of ���′ (� + μ��′ − ω
2 ,� + μ��′ + ω

2 )
assumed below Eq. (26) in order to arrive at the simplification
in Eq. (28). For all involved integrals to converge, � is here
assumed to decay sufficiently fast at large frequencies due to
the finite electronic bandwidth in the leads.

APPENDIX B: MATRIX FORM OF THE LIOUVILLIAN

In this Appendix, we specify the full matrix form of the
Liouvillian. For a generic environmental correlation function,
B(ω), using the energy eigenstates |p, s〉 of the combined dot-
plus-coupled-MBS system in Eq. (6) and the quantities �s in
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Eq. (34), the jump operator takes the general form

L = −
√

g

2

∑
s=±1

[
ε
√

B(0)

Es
(|−, s〉〈−, s| − |+, s〉〈+, s|)

+�s
√

B(−Es)

Es
|+, s〉〈−, s|

+ �s
√

B(Es)

Es
|−, s〉〈+, s|

]
. (B1)

Using the basis in Eq. (49), the matrix form of the Liouvillian
contains the blocks Li with i = ±, c,

L =

⎛
⎜⎝
L+ 0 0 0
0 Lc 0 0
0 0 L∗

c 0
0 0 0 L−

⎞
⎟⎠, (B2)

with the parity-diagonal blocks (s = ±1),

Ls =

⎛
⎜⎜⎜⎝

−gA+
s −gms −gms gA−

s

−gn+
s −gBs + iEs gCs gn−

s

−gn+
s gCs −gBs − iEs gn−

s

gA+
s gms gms −gA−

s

⎞
⎟⎟⎟⎠,

(B3)

and the matrix

Lc =
(
L++

c L+−
c

L−+
c L−−

c

)
. (B4)

This matrix contains the following 2 × 2 blocks:

L+−
c =

⎛
⎝ gj−+ g

√
A−

+A−
−

g
√

A+
−A−

+ gq−
+

⎞
⎠,

L−+
c =

⎛
⎝ gq+

+ g
√

A−
−A+

+

g
√

A+
+A+

− gj++

⎞
⎠,

L++
c = −

(
g
2 (A+

++A+
− )+gK−−i f − −gj−−
−gq+

−
g
2 (A−

−+A+
+ )+gK+−i f +

)
,

L−−
c = −

(
g
2 (A−

++A+
− )+gK++i f + −gq−

−
−gj+−

g
2 (A−

++A−
− )+gK−+i f −

)
.

In the above expressions, we have used the quantities A±
s and

n±
s in Eq. (54), and K± and f ± in Eq. (57). Moreover, we

define

Bs = 1

8E2
s

[
�2

s (B(Es) + B(−Es)) + 4ε2B(0)
]
,

Cs = �2
s

4E2
s

√
B(Es)B(−Es), (B5)

ms = �sε

8E2
s

√
B(0)(

√
B(Es) +

√
B(−Es)),

as well as

j±s = ± �sε

8E2
s E−s

√
B(0)[

√
B(±Es)(2Es − E−s)

+ E−s

√
B(∓Es)],

q±
s = ± �sε

8E2
s E−s

√
B(0)[−

√
B(±Es)(2Es + E−s)

+ E−s

√
B(∓Es)]. (B6)
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