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Response of macroscopic and microscopic dynamical quantifiers to the quantum critical region
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At finite temperatures, the quantum critical region (QCR) emerges as a consequence of the interplay between
thermal and quantum fluctuations. We seek suitable physical quantities, which during dynamics can give
prominent response to QCR in the transverse field quantum XY model. We report that the maximum energy
absorbed, the nearest neighbor entanglement, and the quantum mutual information of the time-evolved state
after a quench of the transverse magnetic field exhibit a faster drop with temperature when the initial magnetic
field is taken from within the QCR, compared to the choice of the initial point from different phases. We propose
a class of dynamical quantifiers, originating from the response of these physical quantities and show that they
can faithfully mimic the equilibrium physics, namely detection of the QCR at finite temperatures.
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I. INTRODUCTION

The onset of a phase transition is signaled by the
emergence of long-range fluctuations in the system. In the
classical domain, these fluctuations are solely driven by tem-
perature, leading to a phase transition when the temperature
crosses a critical value. On the other hand, in the absolute
zero temperature, where thermal fluctuations are completely
absent, quantum phase transitions (QPTs) [1–4] can occur,
which are exclusively driven by quantum fluctuations. Such
transition typically takes place at specific value(s) of sys-
tem parameter(s) called the quantum critical point(s) (QCP).
The QCP in a QPT takes the analogous role of the critical
temperature in the case of classical phase transitions. It was
recently found that the presence of QCP can interestingly
induce nonanalyticities in the dynamics of physical quan-
tities after a quench of system parameters in paradigmatic
one-dimensional quantum spin models. The study of these
dynamical nonanalyticities goes by the name of dynamical
quantum phase transition (DQPT) [5–14], which was shown
to be detected by Loschmidt echo [12] and entanglement
measures [15,16].

Typically, studies of phase transition hovers around two
extremes: the high-temperature (classical) limit and the zero-
temperature quantum limit. However, the story becomes in-
teresting when one probes in regimes where both thermal
and quantum fluctuations are finite and comparable. In such
a domain, the conventional knowledge of physics near the
critical points is not of much help since that region does
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have a different phase. Therefore, a complete understanding
of a system where both of these fluctuations coexist is an
essential challenge that is yet to be resolved in full generality.
Nevertheless, there has been a number of efforts to uncover
the region, known as quantum critical region (QCR) [2,4],
where both thermal and quantum effects are present. In the
finite-temperature domain, studying the canonical equilibrium
state reveals that the quantum critical point expands into a
conical region, the QCR, with the zero-temperature QCP at
its vertex. Note that the QCR does not correspond to a well
defined phase, bounded not by critical lines, but rather by
crossover regions. Therefore, to detect such a region, no order-
parameter-based classification or gap-closing criterion exists,
thereby making its identification extremely challenging. Nev-
ertheless, several investigations are carried out to characetrize
QCR [17–24]. Furthermore, studies of the same using the
information-theoretic quantities include detection through di-
rectional derivatives of magnetization and entanglement [25],
Benford analysis of magnetization [26]. Recently, the coveted
QCR was also observed experimentally [27]. Note that the
properties of the QCR are dictated by scale invariance which
it borrows from the underlying QCP. The boundaries of the
QCR for low temperatures is defined by the straight lines

T ≈ C|h − hc|, (1)

where C is a constant determined by the universality class of
the system [2], and h represents the system parameter, while
h = hc denotes the QCP.

In this paper, we search for physical characteristics at
finite temperatures which yield a well-defined response to the
QCR during their out of equilibrium dynamics. We believe
investigations of QCR during evolution set our analysis apart
from most of the other studies which typically deal with
the equilibrium setting. In particular, we report that energy
absorbed during a time pulse, a quantity of macroscopic
origin, and microscopic information-theoretic quantities like
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bipartite entanglement and quantum mutual information man-
ifest a qualitative difference in their dynamics when the initial
quench point is “within” the QCR. Interestingly, the dynam-
ical response of these quantities can be structured in a way
which enables quantitative demarcation of the QCR. Notice
that since there exists an intrinsic fuzziness in the boundaries
of QCR even in equilibrium, our analysis also observes such
inherent uncertainity during the detection of QCR from the
dynamics of the physical quantities.

The paper is organized as follows: Sec. II describes the sys-
tem we consider for our analysis and its critical properties. In
Sec. III, we show that temperature dependence of macroscopic
(Sec. III A) and microscopic (Sec. III B) dynamical quanti-
fier can indicate QCRs during out-of-equilibrium dynamics.
Based on the analysis of Sec. III, we quantitatively demarcate
QCRs in Sec. IV from ordered and disordered regions. Finally,
we draw conclusions in Sec. V.

II. THE MODEL AND ITS CRITICALITIES

We consider an interacting quantum spin-1/2 system
on a one-dimensional (1D) lattice with nearest-neighbor
anisotropic XY interaction in the presence of a uniform ex-
ternal transverse magnetic field. The model is described by
the Hamiltonian

Ĥ = 1

2

N∑
j=1

[
J

(
1 + γ

2
σ̂ x

j σ̂
x
j+1 + 1 − γ

2
σ̂

y
j σ̂

y
j+1

)
+ hσ̂ z

j

]
(2)

with periodic boundary condition. Here, σ̂ α with α = x, y, z
are the Pauli matrices, J represents the strength of
nearest-neighbor exchange interaction, γ is the anisotropy
parameter in the x-y direction, h is the uniform transverse
magnetic field strength, and N denotes the total number
of lattice sites. The above Hamiltonian can be mapped
to a noninteracting 1D spinless Fermi system via the
Jordan-Wigner transformation, and then can be solved exactly
via successive Fourier and Bogoluibov transformations [28]
(see the Appendix for details). For nonzero choices of γ ,
the 1D quantum XY model at zero temperature has a QCP,
belonging to the Ising universality class, at h/J = ±1 where
the model goes from an ordered phase, a ferromagnetic one for
J < 0 or an antiferromagnetic one for J > 0 (with |h| < |J|),
to a disordered paramagnetic phase (when |h| > |J|) with
critical exponents z = 1, ν = 1 [4].

As mentioned earlier, for nonzero temperatures, the QCPs
expand into a conical shaped region, called the QCR; see
Fig. 1. Here, we set out to investigate how the dynamics gets
effected in a finite-temperature situation due to the presence
of QCR via both macroscopic and microscopic quantities. In
our analysis for the Ising transition, we fix γ = 0.8 unless
otherwise stated. The results remain qualitatively similar for
different choices of γ �= 0 as well.

We know that apart from the Ising transition, the above
model undergoes an anistropic phase transition, where the
(anti)ferromagnetic ground state changes its orientation from
x to y direction or vice versa, across the critical line (γ =
0, |h| < |J|) having the same critical exponents as the Ising
transition. The model also displays a multicritical transition
at the point where the Ising and anisotropic critical lines

h = hc h

T

Ordered phase Disordered phase

Quantum
critical region

High T

FIG. 1. A schematic representation of the quantum critical region
(QCR), the ordered and disordered phases with respect to the system
parameter h and temperature T . At zero temperature, the system
undergoes a quantum phase transition from ordered to disordered
phase at h = hc. At high temperatures, strong thermal fluctuations
typically wash out the quantum phases.

meet, i.e., at (γ = 0, h = ±J ), which has different critical
exponents (z = 2 and ν = 1/2) than the former ones [4]. We
also repeat our analysis for this multicritical point, where we
consider γ = 1 − |h(t = 0)/J|.

III. SIGNATURES OF QUANTUM CRITICAL REGION:
OUT-OF-EQUILIBRIUM DYNAMICS

In this section, we study the response of physical quan-
tities both macroscopic (absorbed energy) and microscopic
information theoretic quantities (bipartite entanglement and
mutual information) after a quench of the magnetic fields in
the presence or absence of the quantum critical region.

A. Macroscopic signatures of QCR: Falloff behavior of energy

In the context of zero-temperature QPT, it was shown [29]
that the energy absorbed in a square pulse quench of the
magnetic field (see below), in the long time limit, develops
some kinks when the quench crosses an equilibrium quantum
critical point of the transverse field XY model. Therefore, this
intrinsic nonequilibrium quantity could mimic equilibrium
properties. This motivated us to investigate the features of this
quantity at finite temperatures and search for signatures of the
QCR. We study dynamics of the canonical equilibrium state
of temperature T , under a time pulse of the external transverse
magnetic field of the form

h(t ) =

⎧⎪⎨
⎪⎩

h0, t � 0,

h1, 0 < t � τ,

h0, t > τ,

(3)

i.e., the initial Hamiltonian Ĥ0 corresponding to a transverse
field strength h0 is quenched to a new Hamiltonian Ĥ1 with
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FIG. 2. Temperature dependence of �Q̃ = �Qmax (T )
�Qmax (T =0) for a given physical quantity, Q. The abscissa represent kBT/J and the ordinate

is �Q̃. (a) Q is the energy absorbed during a time pulse, (b) Q = logarithmic negativity, and (c) Q = quantum mutual information. Plots
corresponds to the analysis of Ising criticality, i.e., transverse field XY model with γ = 0.8, and are for different values of h0/J and a fixed
value of the final quench parameter h1/J = 1. For kBT/J � 0.1, �Q̃ falls sharply when the quench begins from the QCR whereas it is almost
independent of temperature when the quench begins from the ordered and disordered regimes. For higher temperatures, �Ẽ and �Ĩ reach
zero asymptotically, as depicted in insets (a) and (c), while �L̃ displays nonmonotonicity and sudden collapse with respect to T , shown in
inset (b). All axes are dimensionless.

transverse field strength h1. The time evolution of the thermal
state of Ĥ0 at a temperature T is allowed to take place with Ĥ1

for a finite time τ . Finally, the external field is quenched back
to its original value h0. We follow the same quench strategy for
analyzing both the Ising criticality and multicritical transition.
Since the XY model is integrable, the time evolved state
at time τ can be calculated analytically and allows one to
evaluate the energy absorbed during the time pulse, which is
defined as

�E (T, τ ) = Tr(Ĥ0e−iĤ1τ ρ̂0eiĤ1τ ) − Tr(Ĥ0ρ̂0), (4)

where ρ̂0 = e− Ĥ0
kBT /Tr e− Ĥ0

kBT , with kB being the Boltzmann
constant, represents the thermal state.

The value of the absorbed energy maximized over the
duration of the pulse can be calculated as

�Emax(T ) = max
τ

|�E (T, τ )|. (5)

In order to reveal the equilibrium QCR, we analyze the
temperature dependence of the scaled quantity

�Ẽ (T ) = �Emax(T )

�Emax(T = 0)
. (6)

The above quantity depends both on the initial and final fields
(h0 and h1) and consequently on their corresponding quantum
phases. To obtain proper response for equilibrium QCR, the
final quench point should be chosen suitably such that it
maximizes the distinct temperature dependence of �Ẽ (T ).
We find that choosing the final quench point as h1/J = 1
gives rise to strong temperature dependence of �Ẽ (T ) for
almost any choice of the initial quench point h0, and hence
we fix h1/J = 1 for all our quantitative analyses. However,
the qualitative features reported here remain unaltered even
for different values of the final field strength h1, as we shall
see later. Therefore, we are left with a quantity that effectively
depends on only the (h0, T ) pair, which will be used to
demarcate the QCR.

For now, we restrict ourselves only to the analysis of
Ising criticality, and the qualitative findings [see Fig. 2(a)] of

our investigation corresponding to the Ising transition using
�Ẽ (T ), for kBT/J � 0.1, are summarized below (note that
the behavior is qualitatively same for multicritical transition):

(1) If the initial field strength, h0, is chosen from deep
inside the ordered or disordered phases, �Ẽ (T ) is an almost
constant function of T ; i.e., it changes negligibly with chang-
ing temperature.

(2) If h0 is inside the quantum critical region, i.e. from
points close to the quantum critical point, there is a rapid
fall of �Ẽ (T ) with temperature. As the initial quench point
is closer to the QCP, the fall is faster.

(3) The relevant physics reported in 1 and 2 above is
independent of the quench length, |h0/J − h1/J|, in the sense
that they do not affect the fall-off feature in �Ẽ (T ). For
example, for the quench h0

J (0.2) → h1
J (0.3, 2), we get that

all the relevant quantities under consideration remain almost
constant for kBT

J � 0.1, while for the quench h0
J (0.95) →

h1
J (0.3, 2), we observe a rapid fall off in �Q̃. See Fig. 3.

As mentioned earlier, the choice of h1 = J was motivated by
the observation that driving by the Hamiltonian with critical
parameters yields a strong response to the QCR. Similar
behavior can also be seen with microscopic quantities, which
are discussed later in the paper.

On the other hand, for higher temperatures, the thermal
fluctuations surpass its quantum counterparts and the signa-
tures of QCR vanish beyond a certain temperature. In particu-
lar, for any quenches beginning either in ordered, disordered,
or QCR, the physical quantity of interest decreases in a similar
manner with increasing temperature and vanishes asymptoti-
cally; see the inset of Fig. 2(a).

B. Microscopic signatures of QCR: Entanglement
and mutual information

Let us now consider the dynamics of two microscopic
quantities under the quenching strategy,

h(t ) =
{

h0, t � 0

h1, t > 0
. (7)
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FIG. 3. Independence of the fall-off feature in �Ẽ for quantum
XY model with transverse field and γ = 0.8. The abscissa represents
temperature, kBT/J � 0.1, while the ordinate represents �Ẽ . �Ẽ is
calculated for different choices of (h0/J, h1/J ) pair. The behavior
of �Ẽ clearly shows that the characteristic temperature dependence
is independent of the quench length |h0/J − h1/J|. Both axes are
dimensionless.

We start of our analysis with bipartite entanglement [30],
which has been known to play an important role in detecting
equilibrium QCPs [31–37], although it turns out to be less
effective in the case of dynamical phase transition at zero tem-
perature [16]. However, in thermal equilibrium, entanglement
has been already used to successfully detect the QCR [25].
Therefore, it is important to explore dynamical response of
entanglement due to QCR.

To quantify entanglement, we use negativity (N ) and
logarithmic negativity (L) [38–40], which are defined for an
arbitrary two-party density matrix ρAB, as

N (ρ̂AB) = 1
2

(∣∣∣∣ρ̂TB
AB

∣∣∣∣ − 1
) = 1

2

(∣∣∣∣ρ̂TA
AB

∣∣∣∣ − 1
)
,

L(ρ̂AB) = log2(2N (ρ̂AB) + 1), (8)

where ||A|| = Tr
√

A†A and TA(TB) denotes partial transpo-
sition with respect to party A(B) [41,42]. The dynamics
of nearest-neighbor negativity as well as logarithmic neg-
ativity after a sudden quench as in Eq. (6) can be com-
puted analytically in terms of classical correlators Ci j =
Tr(ρ̂AB(t, T )σ i ⊗ σ j ) with i, j = x, y, z, and the magne-

tization in the z direction, mz = Tr(ρ̂AB(t, T )I2 ⊗ σ z ) =
Tr(ρ̂AB(t, T )σ z ⊗ I2), where ρ̂AB(t, T ) denotes the density

matrix corresponding to nearest-neighbor sites at a given time
t and temperature T (see the Appendix for details). The exact
diagonalization of Ĥ guarantees the analytical forms of the
nonvanishing classical correlators and magnetization. Note
that owing to the translational invariance of the model, all
nearest-neighbor density matrices of the initial as well as the
time-evolved states, ρ̂AB(t, T ), are identical.

Like in the case of energy absorbed, we consider the
maximal value of change in logarithmic negativity, which is

defined as

�Lmax(T ) = max
t

|L(T, t ) − L(T, t = 0)|, (9)

and the corresponding scaled quantity as

�L̃(T ) = �Lmax(T )

�Lmax(T = 0)
. (10)

For low temperatures, kBT/J � 0.1, �L̃(T ) also remain con-
stant when the initial field strength is taken far from QCP
while it decreases with kBT/J when h0/J is chosen from the
QCR [as depicted in Fig. 2(b) for Ising criticality]. However,
unlike �Ẽ (T ), we notice that above kBT/J > 0.1, �L̃(T )
reveals nonmonotonic behavior, see Fig. 2(b), as reported in
various earlier works in the static scenario [36,37]. Further-
more, at high temperatures, �L̃(T ) suddenly collapses to
vanishingly small values, which is not the case for �Ẽ (T ),
which rather approaches zero asymptotically [compare insets
of Figs. 2(a) and 2(b)].

We move on with our search for physical quantities and
consider quantum mutual information [43] for the same.
Unlike entanglement, which solely measures the quantum
correlations, mutual information, IA:B, is a measure of the
total correlations between the parties A and B [44,45]. For
a bipartite density matrix ρ̂AB, the mutual information is
defined as

IA:B = S(ρ̂A) + S(ρ̂B) − S(ρ̂AB), (11)

where S(σ̂ ) = −Tr [σ̂ log2 σ̂ ] is the von Neumann entropy of
a state σ̂ and ρ̂A(B) is the reduced density matrices of ρ̂AB. Like
in the previous cases, the mutual information of ρ̂AB(t, T )
can be evaluated analytically for the system considered (see
the Appendix for details). The maximal change in mutual
information and its scaled variant for a given temperature T
are defined respectively as

�Imax(T ) = max
t

|IA:B(T, t ) − IA:B(T, t = 0)|,

�Ĩ(T ) = �Imax(T )

�Imax(T = 0)
, (12)

which again decreases with the variation of temperature when
h0 ∈ QCR, as depicted in Fig. 2(c).

IV. IDENTIFYING QUANTUM CRITICAL REGION VIA
DYNAMICAL QUANTIFIERS

We can now qualitatively discern among the different
regimes of the equilibrium phase diagram, viz., ordered, dis-
ordered, and quantum critical regions, by the distinct tem-
perature dependence of the the macroscopic and microscopic
quantifiers, �Q̃, for different quantifiers Q. With this qual-
itative success, it can be expected that it would also be
possible to estimate the extent of the quantum critical regime
quantitatively by studying the dynamics.

The main observation that we obtain until now is that

�Q̃(T ) ≈ �Q̃(T = 0) for 0 � T � T ∗, (13)

where T ∗ is fixed by the initial field strength, h0. We now
propose that given a quantifier, Q, and a value of h0, the
boundary of the QCR can be indicated by the temperature
T ∗ up to which the constancy window lasts, i.e., Eq. (12) is
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FIG. 4. Quantum critical regions in the (h0/J, kBT/J ) plane
corresponding to the Ising transition (upper row) and multicritical
transition (bottom row). It is constructed by solving Eq. (14) with
energy absorbed, logarithmic negativity, and quantum mutual infor-
mation. For panels (a) and (c), the temperature kBT/J � 0.1, while
in panels (b) and (d) kBT/J is plotted up to 0.01. All the axes are
dimensionless.

valid. T ∗ can be computed from the solution of the following
condition:

|�Qmax(T ) − �Qmax(T = 0)|
|�Qmax(T = 0)| = η. (14)

In principle, η should be zero, but numerically, it is chosen to
be as close as possible to zero. Since evaluation of T ∗ from
Eq. (14) is basically a root-finding problem, η turns out to be
the tolerance which is fixed by the numerical precision in our
calculations. In our analysis, we fix η to be 10−6. It means that
if the fractional change in �Q̃(T ) is below the cutoff η, it is
considered to be constant, while �Q̃(T ) > η = 10−6 implies
entry into the QCR. Let us now investigate whether such a
proposal works by studying the trends of Q ∈ {E ,L, I}.

Figure 4 reveals the QCR obtained from three different
dynamical quantifies mentioned above: The upper row cor-
responds to the Ising criticality, while the bottom row is for
multicritical transition, which as mentioned earlier, possesses
different critical exponents compared to the Ising transition.
Interestingly, response of dynamical quantifiers to QCRs
corresponding to these qualitatively different criticalities are
almost identical. It highlights the universality of our method to
compute the QCR. Furthermore, note that the QCR obtained
from Q ∈ {E ,L, I}, i.e., from �Ẽ (T ), �L̃(T ) and �Ĩ (T )
are qualitatively similar; i.e., the demarcated regions have a
large overlap [see Figs. 4(a)–4(d)]. We want to point out that
the small quantitative differences are not at all alarming but
rather expected, since the boundary of the QCR is not at
all sharp, and there is an intrinsic fuzziness. The fact that
there exists no order parameter or gap closing argument as
in the case of zero-temperature QPTs further reinforces the

above statement. In reality, the uncanny similarities in the
QCR as detected by different quantities, which are chosen
from different paradigms, one thermodynamic and the others
microscopic, are rather remarkable.

V. CONCLUSION

The coexistence of thermal and quantum fluctuations in the
quantum critical region (QCR) makes the study of quantum
phases in this regime very interesting. Although the proposal
of QCR was made since the discovery of quantum phase
transitions, due to the lack of any conclusive marker, very few
investigations were made in this direction. Nonetheless, some
attempts were made to study the QCR in equilibrium using
varied techniques.

In this article, we investigated the effect of QCR on the
dynamics of physical quantities after a sudden quench of
the system parameters. We reported a macroscopic quantity,
namely the energy absorbed during a time pulse, and two
microscopic ones from the information theoretic domain, en-
tanglement (a measure of quantum correlations) and quantum
mutual information (a measure of total correlations), which
provide a well-defined and qualitatively similar response to
the presence or absence of the QCR. We quantified their
responses, and converted them into detection criterion for
obtaining the boundary of QCR. These quantities, which are
completely on opposite ends of the spectrum, distinguish
the QCR from other phases efficiently. We want to mention
that our techniques of QCR detection would suffer from
computability issues when one considers systems having no
analytical solutions due to the presence of both temperature
and time. Nevertheless, we expect similar features for nonin-
tegrable models for finite timescales, in particular, for times
much shorter than the timescales required for thermalization.

We believe our work can shed some light on the under-
standing of the coveted QCR. The proposal of dynamical
quantifiers is relevant from the perspective of experiments,
and at the same time, they provide fundamental insights
into the dynamical behavior of quantum critical matter—both
can have important consequence in manufacturing quantum
technologies.
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APPENDIX: DIAGONALIZATION OF THE MODEL

We consider a quantum XY model on a one-dimensional
(1D) lattice with N sites, described by a Hamiltonian,

Ĥ = 1

2

N∑
j=1

[
J

{
1 + γ

2
σ̂ x

j σ̂
x
j+1 + 1 − γ

2
σ̂

y
j σ̂

y
j+1

}
+ h(t )σ̂ z

j

]
.

(A1)
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To diagonalize the XY model, it is mapped to a free Fermi gas
Hamiltonian by the Jordan-Wigner transformation in terms of
the fermionic operator ĉ [28,46–48], as

Ĥ = J

2

N∑
j=1

[
ĉ†

j ĉ j+1 + ĉ†
j+1ĉ j

+ γ (ĉ†
j ĉ

†
j+1 + ĉ j+1ĉ j ) + h(t )

J
(2ĉ†

j ĉ j − 1)

]
. (A2)

Further, a Fourier transformation enables us to write
Ĥ = ∑

p Ĥp, where the matrix form of Ĥp in the basis

{|0〉, ĉ†
pĉ†

−p|0〉, ĉ†
p|0〉, ĉ†

−p|0〉} is given by

Ĥp = J

⎡
⎢⎢⎢⎣

−h(t )/J iγ sin φp 0 0

−iγ sin φp h(t )/J+2 cos φp 0 0

0 0 cos φp 0

0 0 0 cos φp

⎤
⎥⎥⎥⎦,

(A3)

where φp = 2π p/N .
Using this simplified form of the block-diagonal Hamil-

tonian, we can easily compute the two-site nearest-neighbor
reduced-density matrix between jth and ( j + 1)-th lattice
sites of the thermal state (at a temperature T ) in equilibrium as

ρ̂ j, j+1(T ) = 1

4

[
I j ⊗ I j+1 + mz(T )

(
σ̂ z

j ⊗ I j+1 + I j ⊗ σ̂ z
j+1

)

+
∑

α,α′=x,y,z

Cαα′
(T )σ̂ α

j ⊗ σ̂ α′
j+1

]
, (A4)

where mz(T ) = 〈σ̂ z
j ⊗ I j+1〉T = 〈I j ⊗ σ̂ z

j+1〉T is the
transverse magnetization (along the z direction) and
Cαα′

(T ) = 〈σ̂ α
j ⊗ σ̂ α′

j+1〉T (with α and α′ taking values x, y,
or z independently) are the classical correlators. Note that for
any thermal state of the XY model, mx, my, and off-diagonal
classical correlators are identically zero. The translation
invariance of the model assures all two-site reduced-density
matrices to be identical, and consequently all the classical
correlators and magnetizations to be site independent. Thus,
we drop the site labels and call the nearest-neighbor density
matrix to be ρ̂AB. However, under sudden quenches,

h(t ) =
{

h0, t � 0

h1, t > 0
. (A5)

Cxy and Cyx also take finite values. The time-evolved two-site
reduced-density matrix, ρ̂AB(t, T ), can be computed by
tracking the time evolution of the classical correlators and
magnetization, which reads as

ρ̂AB(t, T ) = 1

4

[
IA ⊗ IB + mz(t, T )

(
σ̂ z

A ⊗ IB + IA ⊗ σ̂ z
A

)
+

∑
α=x,y,z

Cαα (t, T )σ̂ α
A ⊗ σ̂ α

B

+Cxy(t, T )σ̂ x
A ⊗ σ̂

y
B + Cyx(t, T )σ̂ y

A ⊗ σ̂ x
B

]
.

(A6)

The time dependence of these quantities mz(t, T ) and the
classical correlators after a sudden quench are analytically
computed in Refs. [28,47,48]. Furthermore, for the XY
model, we have Cxy(t, T ) = Cyx(t, T ) for all times.

1. Evaluation of energy absorbed in a time pulse

The energy absorbed in a square time pulse that lasts time
τ is evaluated as

�E (T, τ ) = Tr(Ĥ0e−iĤ1τ ρ0eiĤ1τ ) − Tr(Ĥ0ρ0) (A7)

where ρ0 = e− Ĥ0
kBT /Tr e− Ĥ0

kBT . Now, after Fourier transforma-
tion, we have

�E (T, τ ) = 1

2π

∫
d p

[
Tr

(
Ĥ p

0 e−iĤ p
1 τ ρ

p
0 eiĤ p

1 τ
) − Tr

(
Ĥ p

0 ρ
p
0

)]
,

(A8)

where Ĥ p
0,1 is obtained from Eq. (A3). This enormously

simplifies the calculation since operators in each momen-
tum block are just 4 × 4 matrices. The exponentials can be
computed by diagonalizing the operators in the exponent by
appropriate unitary operation, which leads to the following
expression for E (T, τ ):

E (T, τ ) = 1

2π

∫
d p

[
Tr

(
UH̃ p

0 U†e−iH̃ p
1 τU ρ̃

p
0U†eiH̃ p

1 τ
)

− Tr
(
H̃ p

0 ρ̃
p
0

)]
, (A9)

where we have

H̃ p
0,1 = diag(cos φp − �0,1, cos φp + �0,1, cos φp, cos φp),

e±iH̃ p
1 τ = e±iτ cos φp diag(e∓iτ�1 , e±iτ�1 , 1, 1),

�0,1 =
√

(cos φp + h0,1)2 + γ 2 sin2 φp. (A10)

Furthermore, the unitary U = U †
1 U0 ⊕ I2, where U0,1

reads as

U0,1 = 1√
2�0,1

[
i
√

�0,1 + α0,1 i
√

�0,1 − α0,1

−√
�0,1 − α0,1

√
�0,1 + α0,1

]
, (A11)

with α0,1 = h0,1 + cos φp. Note that U0,1 ⊕ I2 is the unitary
which diagonalizes Ĥ p

0,1. Once we get H̃ p
0 , ρ̃

p
0 can be written

as e−βH̃ p
0 /Tr e−βH̃ p

0 , and can be computed easily.

2. Evaluation of entanglement

For ρ̂AB(t, T ), we always get a state in which the only
nonzero local magnetization is in the z direction, mz(t, T ), and
possesses the following correlation matrix,

T (t, T ) =

⎡
⎢⎣

Cxx(t, T ) Cxy(t, T ) 0

Cyx(t, T ) Cyy(t, T ) 0

0 0 Czz(t, T )

⎤
⎥⎦, (A12)

with Cxy(t, T ) = Cyx(t, T ). The computation of entanglement
simplifies with the observation that ρ̂AB(t, T ) can be brought
in the standard X state [49,50] form (diagonal correlation
matrix with nonzero magnetization in the z direction) by
choosing appropriate unitaries in the local x-y sectors. It is
equivalent to the diagonalization of the upper 2 × 2 block of
T (t, T ). Since we have mx(t, T ) and my(t, T ) to be identically
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0, they would remain so for all bases in the x-y plane. Further-
more, basis transformation in the local x-y planes would keep
mz(t, T ) and Czz(t, T ) unaltered. Since entanglement remains
unchanged by local unitary operations, we compute the same
for ρ̂AB(t, T ) using negativity [39], and it reads as

N (ρ̂AB(t, T )) = − 1
4 min[0,N1,N2], (A13)

where

N1 = 1 + Czz(t, T )

−
√

[Cxx(t, T ) + Cyy(t, T )]2 + 4[mz(t, T )]2,

N2 = 1 − Czz(t, T )

−
√

[Cxx(t, T ) − Cyy(t, T )]2 + 4[Cxy(t, T )]2.

(A14)

Logarithmic negativity [40] is then easily calculated to be
L(t, T ) = log2(2N (ρ̂AB(t, T )) + 1).

3. Evaluation of mutual information

For computing the mutual information, we first evalu-
ate the spectrum of ρ̂AB(t, T ), and its single-site reduc-
tions, ρ̂A(t, T ) = TrBρ̂AB(t, T ) which is equal to ρ̂B(t, T ) =

TrAρ̂AB(t, T ). The spectrum of ρ̂AB(t, T ), Xρ̂AB (t,T ), is obtained
from the eigenvalues of ρ̂AB(t, T ) and is given by

Xρ̂AB (t,T ) = 1
4 {1 − Czz(t, T ) ± |Cxx(t, T )

+Cyy(t, T )|, 1 + Czz(t, T )

±
√

[Cxx(t, T ) − Cyy(t, T )]2 + 4[mz(t, T )]2}.
(A15)

The spectra of ρ̂A(B)(t, T ) is computed to be

Xρ̂A(t,T ) = Xρ̂B (t,T ) = 1
2 {1 ± mz(t, T )}. (A16)

Therefore, the mutual information between A and B of ρ̂AB(t )
can be expressed as

IA:B(t, T ) = H (Xρ̂A(t,T ) ) + H (Xρ̂B (t,T ) ) − H (Xρ̂AB (t,T ) ),

(A17)

where H (X ) denotes the Shannon entropy of the spec-
tral (probability) distribution X . Since we have Xρ̂A(t,T ) =
Xρ̂B (t,T ), the above equation can be simplified as

IA:B(t, T ) = 2H (Xρ̂A(t,T ) ) − H (Xρ̂AB (t,T ) ). (A18)
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