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Holographic angular streaking of electrons and the Wigner time delay
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For a circularly polarized single-color field at a central frequency of 2ω, the final electron momentum
distribution upon strong field ionization does not carry any information about the phase of the initial momentum
distribution. Adding a weak, corotating, circularly polarized field at a central frequency of ω gives rise to a
subcycle interference pattern [holographic angular streaking of electrons (HASE)]. This interference pattern
allows for the retrieval of the derivative of the phase of the initial momentum distribution after tunneling φ′

off (pi ).
A trajectory-based semiclassical model (HASE model) is introduced which links the experimentally accessible
quantities to φ′

off (pi ). It is shown that a change in φ′
off is equivalent to a displacement in position space �x of

the initial wave packet after tunneling. This offset in position space allows for an intuitive interpretation of the
Wigner time delay �τW in strong-field ionization for circularly polarized single-color fields. The influence of
Coulomb interaction after tunneling is investigated quantitatively.
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I. INTRODUCTION

The appearance of a comb of discrete peaks in the energy
distributions of electrons upon strong field ionization [1] of
single atoms or molecules is well-known as above threshold
ionization (ATI) [2–4]. This quantization of energy can be
interpreted as a consequence of energy conservation and the
finite bandwith of the incident photons [5]. Alternatively,
the time-dependent electric field of the incident light can be
considered: For a light pulse with multiple cycles, the periodic
release of electron wave packets (grating in the time domain)
gives rise to equally spaced interference fringes in energy
space. Thus, the periodicity of the light’s time-dependent
electric field and the discrete value for the photon energy are
two sides of the same coin [6]. Upon strong field ionization
by a single-color light field at a central frequency of 2ω, the
electron energy spectrum shows discrete energy peaks that
are separated by �E = 2h̄ω (T390 = 2π

2ω
, 2ω = 0.1168 a.u.

corresponds to the frequency of a light field at a wavelength of
390 nm). These discrete electron energies appear as concentric
rings in the electron momentum distribution in the plane of
polarization.

Using two-color fields that consist of a high-intensity light
field at a central frequency of 2ω and a low-intensity light field
at a central frequency ω (typically the intensities differ by a
factor of 100) leads to the appearance of sidebands between
the energy peaks caused by the 2ω field [7]. Light fields that
consist of a fundamental and a second-harmonic frequency
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that have the same helicity are referred to as corotating two-
color (CoRTC) fields [see Fig. 1(a) for an example]. In this
case, the intensity of these rings in the electron momentum
distribution is modulated as a function of the angle in the plane
of polarization [8]. This results in an alternating half-ring
(AHR) pattern in momentum space as illustrated in Fig. 1(b).
The origin of this pattern is a subcycle interference which has
been observed experimentally and reproduced using saddle-
point strong field approximation as well as by solving the
time-dependent Schrödinger equation [8,9]. Recently, Feng
et al. [10] have succeeded to model the appearance of side-
bands for linearly polarized light by considering semiclassical
trajectories that have release times that differ exactly by T390

which is one cycle of the 2ω field.
Here, we build on the perspective of interference of wave

packets in momentum space [11–13] and refer to this as
holographic angular streaking of electrons (HASE). It will be
shown that—by using the framework of HASE—changes of
the Wigner time delay [14,15]) become accessible also in the
multiphoton and tunneling regime by measuring final electron
momentum distributions [16–18].

The paper is organized as follows. In Sec. II, we present
a trajectory-based semiclassical model (HASE model) which
explains the alternating half-ring (AHR) pattern as interfer-
ence between four different trajectories. In this model, we
introduce one free parameter, external to the model, which
is the initial phase of the trajectories. Section III shows the
results of our HASE model for the case that this initial phase
is set to zero. Section IV shows how the initial phase modifies
the AHR pattern. Section V illustrates how the initial phase is
connected to a position offset of the initial wave packet that
is modeled by the trajectories. Section VI illustrates how the
initial phase is related to the Wigner time delay and Sec. VII
provides a recipe explaining how to use our formalism to
obtain the Wigner time delay in strong-field ionization from
the observable AHR pattern. We conclude with a discussion
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FIG. 1. (a) shows the combined electric field �E and the negative
vector potential − �A of a co-rotating two-color (CoRTC) field. The
helicities of the two colors and the temporal evolution of �E and − �A
are indicated with arrows. (b) shows a sketch of the alternating half-
ring (AHR) pattern in momentum space that is expected for a CoRTC
field that is dominated by the light field at a central frequency of 2ω

(colored regions indicate high intensity in final momentum space).

of the influence of Coulomb interaction in Sec. VIII. The
abbreviation a.u. is used to indicate atomic units throughout
the paper.

II. THEORETICAL MODEL

The time-dependent electric field, �E (t ), used throughout
this paper is illustrated in Fig. 2(a), together with the corre-
sponding negative vector potential − �A(t ) which is given in
Eq. (1). �E (t ) and �A(t ) are linked by �E = − d �A

dt :

�A(t ) = −
⎡
⎣ 0

E780
ω

sin(ωt ) + E390
2ω

sin(2ωt )
E780
ω

cos(ωt ) + E390
2ω

cos(2ωt )

⎤
⎦. (1)

Here, t is the time and ω is the angular frequency of light
at a wavelength of 780 nm (the field amplitudes are E390 =
0.04 a.u. and E780 = 0.004 a.u. for the two-color field and
E390 = 0.04 a.u. and E780 = 0.0 a.u. for the single-color field
throughout this paper).

FIG. 2. (a) shows the combined electric field �E (t ) and the neg-
ative vector potential − �A(t ). The blue dots in (b) indicate possible
final electron momenta �pf . Each indicated value of �pf is connected
by two blue lines to the values − �A(t1) and − �A(t2). t1 and t2 are
the two release times that have been obtained from solving Eq. (2)
numerically. The vectors of the blue lines reflect the corresponding
initial momenta �pi,1 and �pi,2.

In Sec. I–VII of this paper, a simplified two-step model
is used (HASE model): The electron is set free by tunnel
ionization and then accelerated by the laser field. For the
propagation after tunneling, the Coulomb interaction is ne-
glected. Thus, the final electron momentum �p f is the sum of
the negative vector potential at the time the electron tunnels
− �A(t ) and the initial momentum �pi after tunneling. The initial
momentum �pi must be perpendicular to the laser electric field
�E (t ) at the instance of tunneling. (The initial momentum
component perpendicular to the yz plane (px) is set to zero
in our HASE model.) This leads to Eq. (2). If one considers
only release times t within a single light cycle (0 as < t <

T780, with T780 = 2π/ω ≈ 2602 as), then there are two release
times t1 �= t2 that lead to the same final electron momentum
�p f . Each release time tn must fulfill Eq. (2) to ensure that
the initial momentum along the tunneling direction (which is
antiparallel to the electric field at the instance of tunneling) is
zero (trajectory number n ∈ 1, 2, 3, 4):

�p f = − �A(tn) + �pi,n

= − �A(tn) + pn

| �E (tn)|

⎛
⎝ 0

Ez(tn)
Ey(tn)

⎞
⎠. (2)

Here, pn defines the absolute value and the sign of the initial
momentum after tunneling. The sign of pn is defined such that
a positive value of pn corresponds to a case in which − �A(tn)
and �pi,n are parallel and therefore | �p f | > | �A(tn)| for the field
geometry shown in Fig. 2(a). In full analogy, negative values
of pn lead to | �p f | < | �A(tn)|.

Solving Eq. (2) numerically leads to two possible initial
momenta ( �pi,1 and �pi,2) for every final electron momentum �p f .
This gives rise to a two-path interference. The two possible
pathways to the same final electron momentum are illustrated
in Fig. 2(b): For several final electron momenta, the two
possible vector potentials that lead to these final electron
momenta are indicated by connecting the respective − �A(t1)
and − �A(t2) (using blue lines) with the final electron momenta
(indicated by blue dots). Interestingly, the lines for the dot
labeled with I in Fig. 2(b) have a finite intermediate angle.
Closer inspection reveals that this is the case for all pairs of
lines except for the dot that is labeled with II in Fig. 2(b).

To be able to model intra- and intercycle interference on
the same footing using a semiclassical model, we consider
four wave packets (release times t1, t2, t3 = t1 + T780, t4 =
t2 + T780, �pi,1 = �pi,3, and �pi,2 = �pi,4). The phases of the four
semiclassical trajectories (trajectory number n ∈ 1, 2, 3, 4) at
the time t f = t4 are modeled by using Eq. (3). See, e.g.,
Ref. [19–22] for an overview regarding semiclassical trajec-
tories:

φn( �p f , t f ) = Iptn
h̄

− φprop( �p f , tn, t f ) + φoff . (3)

Here, Ip denotes the ionization potential (Ip = 15.76 eV is
used, which is the ionization potential of argon) and φoff is
an offset phase (for the sake of simplicity, this offset phase
can be considered to be zero until the discussion of Fig. 6).
Iptn models the phase evolution of the electron in its bound
state. φprop( �p f , tn, t f ) describes the change of the electron’s
phase after tunneling, starting from the release time tn until
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FIG. 3. (a) illustrates the absolute value of the negative vector potential | − �A(t )| and highlights the first half-cycle (0 as < t � T390) of the
two-cycle light field in blue. | − �A(t )| is shown as a black line in all panels. (b) [(c)] shows the electron release time [initial momentum] as a
function of the final electron momentum. (d) depicts the final phase modulo 2π as a function of the final electron momentum. (e)–(f) show the
same as (a)–(d) but using the second half-cycle (T390 < t � 2T390). The black arrows in (b)–(d) and (f)–(h) indicate the temporal evolution of
− �A(t ).

the final time t f . At the time t f , the electron possesses the
final momentum �p f . Throughout this paper, the final time is
set to t f = t4. For every considered trajectory (n ∈ 1, 2, 3, 4),
the change in phase after tunneling is described by the integral
of the electron’s energy over time [19]:

φprop(tn, t f , �p f ) = 1

h̄

∫ t f

tn

p2
y(t ) + p2

z (t )

2me
dt

= 1

h̄

∫ t f

tn

(Ay(t ) + py f )2 + (Az(t ) + pz f )2

2me
dt .

(4)

Here, me = 1 a.u. is the electron’s mass and h̄ = 1 a.u. is
the reduced Planck constant. For Eq. (4), it is used that the
instantaneous momentum can be expressed by the difference
of the instantaneous vector potential �A(t ) and the final mo-
mentum �p f . Thus, the semiclassically modeled wave function
at a given final electron momentum �p f is given by

�( �p f ) =
4∑

n=1

B(pn) exp(iφn( �p f , t f )). (5)

Here, B(pn) is the amplitude which is given by the square root
of the existence probability of the respective trajectory [for the
sake of simplicity, the amplitude B(pn) can be considered to
be one until the discussion of Fig. 6]. Finally, the experimen-
tally accessible intensity in final electron momentum space is
modeled by |�( �p f )|2.

III. NUMERICAL EXAMPLES WITHOUT OFFSET PHASE

In the following, the theoretical HASE model is used to
produce numerical results. In all examples, two optical cycles
of the two-color field are considered. The absolute value of
the negative vector potential | − �A(t )| is shown as a black
line in Fig. 3(a) and the first half-cycle (0 as < t1 � T390) is

highlighted in blue. For radial momenta pr =
√

p2
y + p2

z ∈
[0.2, 1], Eq. (2) is solved numerically. The release time t1
is depicted as a function of the final electron momentum
in Fig. 3(b). As expected, the release time increases mono-
tonically with the angle in the plane of polarization [23].
Figure 3(c) shows the initial momentum �pi,1 as a function of
the final electron momentum. Using Eq. (3) with an offset
phase of zero (φoff = 0 rad) allows for the calculation of
the phase as a function of the final electron momentum [see
Fig. 3(d)].

Figures 3(e)–3(h) are generated in analogy to Figs. 3(a)–
3(d) but here the release time is restricted to T390 < t2 � 2T390.
In Figs. 3(c) and 3(g), it can be nicely seen that the value of
the initial momentum is zero at final momenta that coincides
with the negative vector potential and increases (decreases)
for increasing (lower) radial momenta.

In Figs. 4(a)–4(d) the differences of the first and second
row in Fig. 3 are presented. The ionization times that are com-
pared are highlighted in Fig. 4(a). The differences in release
time tdiff = t2 − t1 − T390 are shown in Fig. 4(b) as a function
of the final momentum. Strikingly, the difference is not zero
but values of more than 100 attoseconds are found. The
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FIG. 4. (a) the relevant ionization times for the first row are highlighted. The first (second) half-cycle is highlighted in blue (green).
(b) shows the differential release time of Figs. 3(b) and 3(f). (c) shows the differential initial momentum of Figs. 3(c) and 3(g). (d) shows the
differential final phase comparing Figs. 3(d) and 3(h). (e)–(h) are analogous to (a)–(d) but compare the third and the second half-cycle instead
of the second and the first half cycle. The dashed white lines in (d) and (h) are circles to guide the eye.

differences in the initial momentum pdiff = pi,2 − pi,1 are
shown in Fig. 4(c) as a function of final momentum and
are as expected from the shape of the vector potential. The
differences in final phase �diff = �2 − �1 are presented in
Fig. 4(d) and show a slightly distorted circular symmetry
(for a single-color laser field, a perfect circular symmetric
distribution would be observed). Figures 4(e)–4(h) are anal-
ogous to Figs. 4(a)–4(d) but compare the third and the second
half-cycle instead of the second and the first half-cycle [as vi-
sualized in Fig. 4(e)]. Because of the definitions t3 = t1 + T780

and pi,3=pi,1 the results in Figs. 4(f) and 4(g) are the same as
Figs. 4(b) and 4(c) but with opposite signs. Figures 4(d) and
4(h) are not trivially linked because the final electron phase
has to be evaluated using Eq. (3).

The experimentally accessible quantity is |�( �p f )|2. As-
suming that all four trajectories have the same amplitude
[B(pn) = 1] and using an offset phase of zero (φoff = 0 rad),
Eq. (5) can be evaluated for each final electron momentum �p f .
Each trajectory is released within one of the four half-cycles
of the laser field [as illustrated in Fig. 5(a)]. The result is
presented in Fig. 5(b) as |�simple|2 and the expected AHRs
in final electron momentum space are reproduced. For com-
parison, a single-color field at 390 nm with E390 = 0.04 a.u.
is evaluated that leads to the well-known ATI structure in final

electron momentum space without any angular modulations
or sidebands [see Fig. 5(d)].

IV. NUMERICAL EXAMPLES WITH OFFSET PHASE

In this section, the influence of a nonzero offset phase φoff

is investigated. We use an offset phase that depends linearly
on the initial momentum pi by setting φoff (pi ) = κ

pi

a.u.
(for a

real valued κ). Figure 6(a) shows the phase of such such an
initial momentum distribution with κ = π that has a constant
amplitude of B(pn) = 1. Evaluating |�( �p f )|2 for these param-
eters leads to |�linear|2, which is shown in Fig. 6(c). Strikingly,
a rotation of the electron momentum distribution with respect
to Fig. 5(b) can be seen. Figure 6(e) quantifies the rotations
of the ATI peaks and the sidebands in more detail by plotting
the offset angle α as a function of φ′

off = ∂φoff

∂ pi
(separately for

every energy peak). The value of the offset angle α is retrieved
using the following procedure: The angular distribution for
every energy peak is analyzed separately by performing a
Fourier transformation to extract the offset angle α from the
phase of the lowest frequency component in Fourier space [not
the DC component, see Sec. VII for details and note that α is
defined as indicated in Figs. 6(c) and 6(d)].

In general, φ′
off (pi ) does not have to be constant but can

vary with pi. Using the driving field shown in Fig. 1, for

033248-4



HOLOGRAPHIC ANGULAR STREAKING OF ELECTRONS … PHYSICAL REVIEW RESEARCH 2, 033248 (2020)

FIG. 5. (a) illustrates that electron release times from all half-
cycles are considered. (b) shows the electron momentum distribution
|�simple|2 with the expected alternating half rings. (c), (d) show the
same as (a), (b) but using a single-color field with E390 = 0.04 a.u.
The black line represents the negative vector potential and the gray
dashed line guides the eye and is the same in (b), (d).

any absolute value of the final electron momentum | �p f |, the
two relevant initial momenta (pi1 and pi2) that lead to this
final momentum differ by less than 0.15 a.u. [see Figs. 4(c)
and 4(g)]. Hence, the offset angle α can be used to infer
the value of φ′

off (pi ) but represents not the exact derivative
but approximates the deviate in in interval with a length of
up to �pi = 0.15 a.u. (In principle, the value of �pi could
be further reduced by decreasing the intensity of the light
field at at central frequency of ω, because this also reduces
the difference of the minimal and the maximal value of the
absolute value of the negative vector potential | − �A|.)

Inspecting Fig. 6(a), the choice of B(pi ) = 1 appears to be
unrealistic. More realistic values of the amplitude distribution
are shown in Fig. 6(b) using B(pi ) = exp ( (pi−p0 )2

2σ 2 ). Here,
σ = 0.2 a.u. accounts for the width of the initial momentum
distribution after tunneling [24] and p0 = 0.2 a.u. is chosen
to model a typical nonadiabatic momentum offset [25–27].
The result is shown as |�lin,env|2 in Fig. 6(d). As expected,
this mainly affects the visibility of the inner and outer energy
peaks [compare intensity envelopes of Figs. 6(c) and 6(d)].
Interestingly, the rotation angles α are hardly affected [com-
pare Figs. 6(e) and 6(f)]. It can be concluded that for typical
[8,9,28,29] light intensities of CoRTC fields, the derivative of
the phase of the initial momentum distribution φ′

off (pi ) can be
inferred from the (experimentally accessible) offset angles α

in final momentum space.
For the conditions that are used throughout this paper,

the Keldysh parameter, γ = ωeff
eE0

√
2meIp, is close to γ = 3.

Here, ωeff is the effective angular frequency that is close to
the angular frequency of light at a wavelength of 390 nm
(see Ref. [27] for details). This is the regime of nonadiabatic

FIG. 6. (a) [b] shows an initial momentum distribution with
a constant [nonconstant] amplitude B(pi ) and a linear phase.
(c) [(d)] shows the expected intensity in final momentum space
|�linear|2 [|�lin,env|2] using the initial momentum distribution shown
in (a) [(b)]. (e) [(f)] shows the offset angles α that have been extracted
from electron momentum distributions as in (c) [(d)]. The offset
angles of the ATI peaks are determined as indicated in (c) and
(d). The offset angles of the sideband peaks are determined in full
analogy but subtracting π to take the alternating pattern of ATI peaks
and sidebands into account (see Sec. VII for details).

tunneling [4,25,27]. In our HASE model, the electronic wave
packet after tunneling is described by an initial momentum-
dependent amplitude and an initial momentum dependent
phase [see Figs. 6(a) and 6(b)]. A typical nonadiabatic offset
of the amplitudes in momentum space can be modeled as
shown in Fig. 6(b). In our HASE model, the phase of the initial
wave packet in momentum space is defined by Eq. (3) (for
φoff = 0 rad, this is equivalent to the typical assumption for
adiabatic tunneling, see, e.g., Ref. [19]). It is important to re-
alize that the phase of the wave packet might be affected by the
nonadiabaticity of the tunneling process. However, φoff (pi ) is
external to the HASE model, which allows for the modeling
of an arbitrary phase structure of the electron wave packet
after tunneling, and calculate the resulting interference pattern
in the final electron momentum distribution. Setting φ′

off to
certain values that are independent of pi and investigating α

is just one possibility (as has been done for Fig. 6). In turn,
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hypotheses about the electron wave packet’s phase structure
upon nonadiabatic tunneling might be tested using our HASE
model or the semiclassical two-step (SCTS) model presented
in Sec. VII. We emphasize that we do not claim nor prove
that our model is exact. We suggest viewing our theoreti-
cal model as a simple man’s model to holographic angular
streaking that should be benchmarked by comparison with
experiments [28,29] and future theoretical studies (also see
Sec. VIII).

It should be noted that the subcycle dependence of the
ionization rate [30] and Coulomb interaction after tunneling
[21,31,32] are not included in the HASE model. The subcycle
dependence of the ionization rate is expected to lead to similar
deviations as the envelope of the amplitudes of the initial
momentum distribution [see Figs. 6(a) and 6(b)]. In Sec. VIII,
we present an SCTS model that includes Coulomb interaction
after tunneling and compare the results with the results of
the HASE model. A validation of the HASE model using a
full quantum simulation (e.g., by using the time-dependent
Schrödinger equation) has not yet been achieved and is be-
yond the scope of this paper.

V. HASE AND OFFSETS OF THE BOUND WAVE
FUNCTION IN POSITION SPACE

As described above, CoRTC fields allow one to obtain
φ′

off = ∂φoff

∂ pi
from measured electron momentum distributions.

The next step is to understand the meaning of a phase gradient
of the initial momentum distribution.

The only position-space-information that is explicitly in-
cluded in the HASE model is that the initial momentum
distribution is zero along the direction of the electric field at
the instance of tunneling. However, there is more position-
space-information included in the model because a linear
phase in momentum space corresponds to a shift in position
space (complex momentum space and complex position space
are linked by Fourier transformation, also see Refs. [13,33]
for similar approaches to measure position information). Let
the position-dependent wave function �(xi ) be the Fourier
transform of the momentum-dependent wave function �(pi ).
Then a real valued position offset �x leads to the shifted
position-dependent wave function �̄(xi ) = �(xi + �x). The
Fourier transform leads to the wave function �̄(pi ):

�̄(pi ) = exp

(
i
pi�x

h̄

)
�(pi ). (6)

Figure 7 illustrates the relation that is described in Eq. (6)
by showing a wave function for the initial momentum dis-
tribution with a Gaussian distribution of the amplitudes that
is centered around zero initial momentum. For a constant
phase, the Fourier transform of a Gaussian distribution would
be another Gaussian distribution that is centered at zero.
The linear phase in Fig. 7(a) [same phase dependence as in
Figs. 6(a) and 6(b)] is reflected by an offset in position space
by �x as can be seen in Fig. 7(b).

Identifying pi�x/h̄ = φoff allows us to link �x = φ′
off h̄ for

the case of a linear phase of the initial momentum distribution
as discussed regarding Fig. 6. Thus, it can be concluded that
the value of �x = φ′

off h̄ can be interpreted as a measure
of the displacement of the wave packet after tunneling in

FIG. 7. (a) shows a wave function for an initial momentum
distribution with a Gaussian distribution of the amplitudes and a
linear phase. (b) shows the Fourier transform of the distribution that
is shown in (a). The black vertical lines guide the eye to emphasize
the shift of the amplitudes in (b) that is proportional to the slope of
the phase in (a) [see Eq. (6)].

position space for the case of a linear phase of the initial
momentum distribution. (Positive values of φ′

off correspond to
a displacement of the wave packet after tunneling in position
space that is antiparallel to − �A(t ) at the electron release time
t .)

Figure 7 suggests that the measurement of the phase gradi-
ent in momentum space can be used to probe the amplitudes
of the initial state’s wave function in position space. This is
the position space analog to the much-used fact that tunneling
acts like a filter on the initial bound state’s wave function in
momentum space [24,25,34], which has been used to infer
fingerprints of the bound state’s wave function in momentum
space from the measured final state’s momentum distribution
(e.g., in Refs. [35,36]). Thus, HASE is an approach to access,
e.g., molecular structure and polarization states in position
space.

Looking at the entire ionization process as a black box
and only considering the continuum states allows for an
illuminating insight: If Coulomb interaction after tunneling
is neglected, any displacement of an initial state by a given
vector leads to a displacement of the corresponding final state
by the same vector. Let this displacement be antiparallel to the
direction of the streaking momentum �pstreak = − �A(t ), then,
for a single-color circularly polarized field, a displacement of
the initial position by �x is equivalent to a continuum wave
packet that leaves the black box with a time delay �t . This can
be described quantitatively using Eq. (7) and is illustrated in
Fig. 8:

�t = me�x

p f

= meh̄

p f
φ′

off (pi )

= meh̄

p f
φ′

off (p f − pstreak ). (7)

Here, me = 1 a.u. is the electron’s mass, h̄ = 1 a.u. the re-
duced Planck constant and pstreak = | − �A|. In the next section,
it will be shown that, within the HASE model, the time delay
�t is the same as the Wigner time delay.
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FIG. 8. (a) schematically illustrates an initial bound state in posi-
tion space. xi is perpendicular to the tunneling direction. (b) depicts
the position distribution along the same direction as in (a) directly
after tunneling (xi) and for the final time (x f ). At the final time
t f , the wave packet is broadened along x f due to dispersion of the
continuum wave packet. Note that the width of the distribution might
change during tunneling, which is neglected here for the sake of
simplicity. (c) shows the initial momentum distribution along pi and
the corresponding final momentum distribution along pf which only
differs by the momentum that is due to the streaking of the laser
pstreak. (d)–(f) show the same as (a)–(c) with the only difference
being that the initial bound state in position space is displaced by
�x as illustrated in (d). This shifts all positions in (e) by the value
of �x. The final momentum distributions in (c) and (f) are the same.
The shift in position �x of a continuum wave packet with a given
momentum pf allows us to calculate the time delay of the scenario
in (a)–(c) relative to the scenario in (d)–(f) using �t = me�x

p f
. The

temporal evolution of the tunneling direction is indicated in (a) and
(d) by the arrow labeled with evo.

VI. HASE AND THE WIGNER TIME DELAY

The generation of sidebands is closely related to recon-
struction of attosecond harmonic beating by interference of
two-photon transitions (RABBITT) [37–39]. RABBITT can
be used to access the Wigner time delay [14]. By definition,
RABBITT only treats two-photon transitions. In this section,
it is explained how HASE can be used to access changes of
the Wigner time delay for multiphoton ionization and tunnel
ionization.

So far, it has been shown that HASE is sensitive to the slope
of the phase of the initial momentum distribution, φ′

off , and
that φ′

off is linked to offsets of the initial position distribution.
In the following, the question how φ′

off affects the phase of the
final, semiclassically modeled electronic wave function �( �p f )
is investigated. To answer this, we assume that the complex
valued wave function of the initial momentum distribution
does not change if the weak field at the central frequency ω

is switched off.
The simple case of a single-color circularly polarized light

field with E390 = 0.04 a.u. is considered and the derivative
of the initial phase φ′

off (pi ) is assumed to be known. In this
case, the final electron momentum distribution is independent
of the angle in the plane of polarization [see Fig. 5(d)]. We
now make use of the fact that changes in φ′

off (pi ) do not affect

the trajectory or the probability |�( �p f )|2 but only influence
the final phase arg(�( �p f )).

Initial and final momenta are unambiguously linked by
�p f = − �A(t ) + �pi [see Eq. (2)]. Because of the symmetry of
circularly polarized single-color light fields, a phase gradient
at a given value of pi directly allows us to quantify the phase
change at all final momenta with | �p f | = | �A(t )| + pi. This
implies that the phase gradient of the final electron momentum
distribution is known at the corresponding energy E . This
energy-dependent phase of the semiclassically modeled wave
function can be expressed using the concept of the Wigner
time delay τW . Throughout this paper, the Wigner time delay
τW is used as defined in Eq. (8) (see Refs. [37,40–42] for
similar interpretations of the Wigner time that are closely
related to the group delay [41,42]):

τW = h̄
∂ arg(�)

∂E
. (8)

Using the trajectory-based HASE model and considering
a single-color circularly polarized light field [as for Figs. 5(c)
and 5(d)], the initial momentum is unambiguously linked with
the final momentum. One can compare two scenarios: The
first scenario uses φ′

off = 0 rad/a.u., leading to the semiclas-
sically modeled wave function �simple( �p f ) at a given time
t f . In the second scenario, an arbitrary phase of the initial
momentum distribution φ′

off is used (the amplitudes B(pi )
can be shown to be irrelevant regarding τW for a single-color
circularly polarized light field) leading to the semiclassically
modeled wave function �delayed( �p f ) at the same time t f .
The two semiclassically modeled wave functions are related
by

�delayed( �p f ) = �simple( �p f ) exp(iφoff (pi )). (9)

As a result, the change of the Wigner time delay due to the
phase of the initial momentum distribution is given by

�τW = h̄

(
∂ arg(�delayed( �p f ))

∂E
− ∂ arg(�simple( �p f ))

∂E

)

= h̄
∂ arg(exp(iφoff (pi )))

∂E

= h̄
∂φoff (pi )

∂E
. (10)

Substituting energy with momentum leads to

�τW = h̄
me

p f

∂φoff (pi )

∂ pi

= h̄
me

p f
φ′

off (pi )

= h̄
me

p f
φ′

off (p f − pstreak ). (11)

The result in Eq. (11) is equivalent to the previously obtained
expression for the delay time �t [see Eq. (7)]. Thus, we find
that �t and �τW are equivalent within the HASE model. This
result allows one to gain very fundamental insight: Within
the HASE model, the Wigner time delay for strong field
ionization is related to an intuitive shift of the wave function
in position space at the tunnel exit �x and might also be
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related to the bound wave function in position space. We
emphasize that the equivalence of �t and �τW is not a result
of a full quantum treatment and only a semiclassical result
that is based on the HASE model (which neglects Coulomb
interaction after tunneling). For realistic potential landscapes,
�t can deviate from �τW . A first approach to study such a
scenario is presented in Sec. VII.

VII. RECIPE FOR THE EXPERIMENTAL ACCESS TO
CHANGES OF THE WIGNER TIME DELAY IN STRONG

FIELD IONIZATION

The first step to access the Wigner time delay in strong
field ionization within the framework of HASE is to conduct
an experiment using a CoRTC field. High ratios of E390/E780

decrease the visibility of the sidebands [10] but also reduce
the difference of the minimal and the maximal value of
the absolute value of the negative vector potential | �A(t )|.
As described above, higher values of E390/E780 lead to a
more accurate mapping of the offset angle, α, to the phase
gradient of the initial momentum distribution after tunneling,
φ′

off . Typical values of E390/E780 are close to 10 (see, e.g.,
Refs. [8,9,28,29]). The amplitude of E390 should be chosen
such that the ionization channel that is investigated is not
saturated. E390 = 0.04 a.u. is a good choice for the single
ionization of argon [27].

Second, the offset angles α have to be retrieved from the
measured final electron momentum distribution for every en-
ergy peak. (In principle, the result of a theoretical calculation
that solves the time-dependent Schrödinger equation on a grid
could be used as well. In this case, the absolute square of
the final electronic wave function in momentum space should
be analyzed.) The final electron momentum distribution is

considered to be in polar coordinates with px, pr =
√

p2
y + p2

z

and φpolar. Here, φpolar is the angle in the yz plane [defined in
the same way as α in Figs. 6(c) and 6(d)]. In a next step, the
angular distribution for a given energy peak is analyzed. Let
this angular distribution be represented by a vector �X with N
entries. The discrete Fourier transform �Y is given by (where
k ∈ {1, 2, ..., N}):

Y (k) =
N∑

j=1

X ( j) exp

(
(−2π i)( j − 1)(k − 1)

N

)
. (12)

Now, the offset angle for the selected energy peak is given by
α = − arg (Y (2)) for the sidebands (energy peaks that vanish
if E780 is set to zero) and α = − arg (Y (2)) − 180◦ for the
ATI peaks (energy peaks that do not vanish if E780 is set to
zero). Now, α represents a distribution that is proportional to
cos(φpolar − α − 180◦) for sidebands and cos(φpolar − α) for
ATI peaks.

Third, the offset angles α can be related to the derivative
of the phase of the initial momentum distribution φ′

off using
Fig. 6(e) as a look-up table. From Eq. (11), the change in
Wigner time delay, �τW , can be directly obtained for an
offset angle α. The result is presented in Fig. 9(a). However,
this mapping of α to φ′

off and �τW can only be done if the
following conditions are fulfilled: (i) the laser parameters and

FIG. 9. (a) shows the change in Wigner time delay due to a linear
phase of the initial momentum distribution for the case defined in
Fig. 6(a). This relates the change in Wigner time delay (for a single-
color field with E390 = 0.04 a.u.) and the offset angles α (that are
obtained using a two-color field with E390 = 0.04 a.u. and E780 =
0.004 a.u.). (b) is analogous to (a) but uses the amplitude distribution
from Fig. 6(b).

the value for the ionization potential Ip are as in this paper, (ii)
the envelope of the amplitudes can be neglected [see Figs. 6(f)
and Fig. 9(b)], (iii) the subcycle dependence of the ionization
rate [30] can be neglected, and (iv) Coulomb interaction after
tunneling [32] can be neglected. Conditions (i)–(iii) are not
problematic because one could simply rerun the simulations
by solving Eqs. (2) and (4), using new laser parameters,
the appropriate ionization potential, and an amplitude dis-
tribution of the initial momentum distribution that does not
only depend on the initial momentum [B(pi )] but also on the
electron release time [B(pi, t )]. This time dependence could
be obtained from theory [30]. Alternatively, B(pi, t ) could be
estimated directly from the envelope of the measured electron
momentum distribution (see, e.g., Refs. [9,23,28]). In general,
the measured electron momentum distribution should be nor-
malized by the envelope of the measured electron momentum
distribution to remove the modulation of the intensity from
the measured interference pattern. An additional benefit of the
extracted envelope of the measured electron momentum distri-
bution is that it allows one to estimate the absolute orientation
of the laser electric field (even if Coulomb interaction after
tunneling is not neglected [32]). Condition (iv) is usually not
fulfilled. In Sec. VIII, it will be shown that for small values of
α, Coulomb interaction after tunneling just adds an additional,
energy-dependent offset angle, αCoulomb, to the offset angle
that is due to φ′

off . Consequently, the measured offset angle, α,
can be expressed by αcorrected = α − αCoulomb to be as precise
as possible. An elegant alternative to circumvent problems
regarding condition (iv) is to compare two different ionization
channels (e.g., different kinetic energy releases for molecu-
lar dissociation) and assume that both have the same value
αCoulomb. The pairs of measured offset angles (αchannel 1 and
αchannel 1) can be used to calculate the difference in the Wigner
time delay for the two channels. This is a good approximation
if the mapping of �τW to offset angle α is linear (which is
the case for offset angles between 60◦ and 120◦). For this
procedure, the contribution of Coulomb interaction cancels
out and allows for the experimental access of the difference
in the Wigner time delay for the two ionization channels upon
tunnel ionization.
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FIG. 10. (a) shows the absolute value of the time-dependent
electric field used for the SCTS model. The shaded region indicates
the electron release times that were considered for our SCTS model.
(b) depicts the electron energy spectrum from the SCTS model.
(c) presents the electron momentum distribution in the plane of
polarization from the SCTS model with φ′

off = 0 rad/a.u. (d) shows
the offset angles, α, as a function of φ′

off in full analogy to Fig. 6(f).
The values of α that are obtained using the SCTS model are labeled
with SCTS. The data from Fig. 6(f) are shown for comparison and
labeled with HASE. φ′

off = π rad/a.u. is indicated by a black dashed
line.

VIII. THE INFLUENCE OF COULOMB INTERACTION
AFTER TUNNELING

In the previous sections, Coulomb interaction after tunnel-
ing of the electron with its parent ion was neglected. In the
next step, we run a SCTS simulation (as in Refs. [12,19])
which includes Coulomb interaction after tunneling. Compar-
ison of the results obtained from the SCTS model with the
results from the HASE model shows that Coulomb interaction
after tunneling does not qualitatively change the obtained
offset angles, α, or the inferred values for the changes of
the Wigner time delay, �τW . This indicates that—despite its
simplicity—the HASE model captures the essential physics
of the studied scenario. We emphasize that the SCTS model is
not a full quantum simulation and that further experimental
and theoretical benchmarks are needed. References [28,29]
claim to provide experimental evidence that indicates that the
HASE model is a good approximation.

For the SCTS calculation, we use the same CoRTC field
as in Fig. 1(a) and add an envelope with a total duration of
14 cycles of the light field (14T780). The rising and falling
edges of the laser pulse have a sine-square shape and between
there is a flat envelope with a duration of two cycles of the
light field (2T780). The absolute value of the electric field that
is used for our SCTS calculation is shown in Fig. 10(a). To
minimize the contributions of the rising and falling edges

of the laser pulse in our SCTS model, the electron release
time is restricted to the inner two cycles of the light pulse
[shaded region in Fig. 10(a)]. In contrast to the HASE model,
the SCTS model is a full three-dimensional model which
does not neglect the initial momentum components in and
against the light propagation direction. The momentum offset
�p0_3D and the ionization probability that are used in the SCTS
simulation (see [43]) are chosen to be very similar to those of
the HASE model [see Fig. 6(b)]. Using an ionization poten-
tial of Ip = 15.76 eV, we calculate 250-million semiclassical
trajectories. The intensity in final electron momentum space
is calculated as a coherent sum of all semiclassically modeled
electrons using Eq. (15) from Ref. [19] for a Cartesian three-
dimensional grid in momentum space with a bin size of
0.01 a.u. The resulting electron energy distribution is shown
as a blue line in Fig. 10(b) and the projection of the electron
momentum distribution to the light’s polarization plane is
shown in Fig. 10(c). Convergence of the SCTS simulation was
achieved by implementing the method of phase compression
as described in Ref. [44]. Convergence was verified by vari-
ation of the grid’s bin size. It can be seen in Fig. 10(c) that
the intensity of low-energy electrons is very high (note that
the color scale is saturated for radial momenta below 0.2 a.u).
This is not unexpected because the intensity of low-energy
electrons sensitively depends on the choice of �p0_3D [25]. For
comparison with experimental data, �p0_3D could be chosen
differently (e.g., using results from saddle-point strong field
approximation [27]) but the purpose of this section is to
analyze the role of Coulomb interaction after tunneling by
comparing the HASE model and the SCTS model. To this
end, the small radial electron momenta (pr < 0.2 a.u.) are not
important because we did not include them in the discussion
of the HASE model at all.

Figure 10(c) is the first important result of the SCTS model
with respect to the overall aim of this paper. Figure 10(c)
is obtained using the SCTS with no additional phase added
to the trajectory at the tunnel exit (corresponds to φ′

off =
0 rad/a.u.). In full analogy to the HASE model, the SCTS
model is extended adding the offset phase φoff (p0⊥) = κ

p0⊥
a.u.

.
To compare the SCTS model and the HASE model, the value
of φ′

off is systematically varied and the rotation angles, α,
are obtained as for Fig. 6(f). The results from the SCTS
model and the results from the HASE model show excellent
agreement [Fig. 10(d)]. In particular, the peaks at medium
electron energies (αSB2, αAT I2 and αSB3) only deviate by a few
degrees for a wide range of φ′

off . For low- and high-electron
energies (αAT I1 and αAT I3), deviations by up to 10◦ are found.
Most importantly, it is evident that the slopes of all curves in
Fig. 11(a) are similar. This is the first key-finding of this sec-
tion because this constant slope is the necessary precondition
that allows for the straightforward mapping of changes of α to
changes of the Wigner time delay (see Secs. III–VII).

The result in Fig. 10(d) shows that �α can be used to
determine �φ′

off . To further validate the HASE model, it
remains to be shown that φ′

off allows one to infer �τW as
suggested in Eq. (11). In the next step, the validity of Eq. (11)
is tested using the SCTS model. To this end, we have per-
formed a second SCTS simulation using a single-color field
(E390 = 0.04 a.u. and E780 = 0 a.u.) with all other parameters
identical to the previous two-color simulation and excluded
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FIG. 11. The blue line in (a) shows the electron energy distribu-
tion that is obtained using the SCTS model for the single-color field
(E390 = 0.04 a.u. and E780 = 0 a.u.). The change of the semiclassical
phase, φSCTS,π (E ) − φSCTS,0(E ), that results in comparing an SCTS
simulation with φ′

off = π rad/a.u. and φ′
off = 0 rad/a.u., is shown

by the red circles. (b) shows the change of the Wigner time delay
according to the SCTS model, �τW ,SCTS,π , as orange data points.
It should be noted that �τW ,SCTS,π is the derivative of the phase
difference that is shown in (a). For comparison, the Wigner time
delay from the HASE model, �τW ,HASE,π , is shown as green dashed
line.

recolliding trajectories (characterized by reaching a minimal
distance below 10 a.u. to the nucleus, this is the case for
about 5% of all calculated trajectories). The resulting electron
energy spectrum is shown as a blue line in Fig. 11(a).

The SCTS calculation does not only give access to the
absolute square of the semiclassically modeled wave func-
tion (see Eq. (15) from Ref. [19]) but can also be used to
investigate the phase of the semiclassically modeled wave
function (using the argument of the expression between the
dashes in Eq. (15) from Ref. [19]). For a thin slice along
the light propagation direction −0.01 a.u. < px < 0.01 a.u.,
the change of the semiclassical phase, φSCTS,π − φSCTS,0, is
investigated. Here, φSCTS,π [φSCTS,0] is the phase from the
SCTS model using φ′

off = π rad/a.u. [φ′
off = 0 rad/a.u.]. It

is found that φSCTS,π − φSCTS,0 only depends on the electron’s
energy, E , which is expected due to the symmetry of circularly
polarized light. The energy-dependent value for φSCTS,π −
φSCTS,0 is shown in Fig. 11(a) in red. This phase difference
allows one to express the corresponding change of the Wigner
time delay using the SCTS model by

�τW ,SCTS,π (E )

= h̄
∂φSCTS,π (E )

∂E
− h̄

∂φSCTS,0(E )

∂E

= h̄
∂ (φSCTS,π (E ) − φSCTS,0(E ))

∂E
. (13)

Equation (13) is evaluated to obtain �τW ,SCTS,π (E ), which is
shown in Fig. 11(b). To compare �τW ,SCTS,π (E ) to the results
from the HASE model, the change of the Wigner time delay
according to the HASE model is expressed by [see Eq. (11)]:

�τW,HASE,π (E ) = h̄
me√
2E

π rad

a.u.
. (14)

The result for �τW ,HASE,π (E ) is shown as a green dashed line
in Fig. 11(b). The obtained values for �τW from the SCTS
and the HASE model qualitatively agree. For high electron

energies, the agreement is very good and for low-electron
energies Coulomb interaction after tunneling reduces �τW

by about 30% in the SCTS model compared to the HASE
model. This allows one to conclude that the mapping of
φ′

off = π rad/a.u. to changes of the Wigner time delay quali-
tatively agrees for the HASE model and the SCTS model. As
expected, the deviations for the first ATI peak are larger than
those of the other ATI peaks because Coulomb interaction
after tunneling has a stronger impact on slow electrons than
it has on fast electrons.

Finally, it should be noted that the choice of φ′
off =

π rad/a.u. is chosen without loss of generality because the
Wigner time delays shown in Fig. 11(b) are expected to scale
linearly with φ′

off . The fact that the mapping of φ′
off to �τW

[see Eq. (11)] is qualitatively reproduced by the SCTS model
is the second key finding of this section.

IX. CONCLUSION

Building on the simplified HASE model, it is shown that
the angular distribution of main ATI peaks and sidebands
can be used to infer the derivative of the phase of the initial
momentum distribution, φ′

off , from experimentally accessible
quantities. Further, it is found that φ′

off can be related to
changes of the Wigner time delay �τW within the HASE
model. Finally, an intuitive interpretation of the Wigner time
delay for tunnel ionization is suggested that links the Wigner
time delay to a displacement of the wave function in position
space. The findings from the HASE model are compared to re-
sults from an SCTS model that includes Coulomb interaction
after tunneling.

In future (coincidence) experiments, the offset angles α of
ATI peaks and sidebands could be examined as a function
of the kinetic energy release for molecular dissociation, the
molecular orientation or the atomic species. Recently, it has
been claimed that the angular dependence of the Wigner
time delay upon tunnel ionization of molecular hydrogen has
been measured using HASE [28]. In another recent work, it
has been suggested that the HASE model is not limited to
ionization in corotating two-color fields but can also be used
to model ionization in counter-rotating two-color fields [29].
In conclusion, HASE paves the road toward the measurement
of molecular structure, polarization states, and nonadiabatic
fingerprints of tunnel ionization in position space with subcy-
cle temporal resolution.
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such that an increase in the value of p0⊥ leads to an increased
absolute value of the final electron momentum (as for the HASE
model, see discussion of Eq. 2). Here, we choose σ = 0.2 a.u.,

p0‖ = 0 a.u. and �p0_3D =
(

0
0.2
0

)
in full analogy to the HASE

model. It should be noted, that due to the choice of R( �pi_3D), the
tunneling probability, does not depend on the absolute value of
the electric field, which is a difference compared to the original
SCTS model (see Eq. 9 from Ref. [19]).
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