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Active motion of synthetic nanomotors in filament networks
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The collective behavior of chemically powered nanomotors in complex filament networks is investigated. The
synthetic motors are small oligomers and use self-diffusiophoresis for their active motion. Much like biological
molecular machines, these motors attach to the filaments, which highly suppress orientational Brownian motion,
and move along them. The collective motion is influenced by structure of the network and the forces that bind
the motors to the filaments; it is characterized by strong clustering, especially near cross-links in the network,
and differs substantially from that in a simple fluid phase where only weak clustering occurs. The features of the
collective behavior are quantitatively examined through computations of the effective binding potentials and the
dynamics of probe oligomers. The results are relevant for applications in the biological and materials sciences
involving complex natural and synthetic networks activated by small chemically powered motors.
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I. INTRODUCTION

Molecular motors with linear dimensions of tens of
nanometers carry out their functions in complicated and
crowded environments. In the cell, motor proteins, such as
those in the family of kinesins, actively transport material
along microtubules in the cellular medium comprising fluid
and a variety of small molecules and large macromolecules
within a dense network of filaments of different types [1–4].
These and the many other kinds of molecular motors derive
their fuel from an equally complex network of biochemical re-
actions, the whole operating under nonequilibrium conditions.
Despite this, complexity biological systems function effec-
tively, even in the presence of strong thermal fluctuations. On
larger micrometer scales, bacteria and other microorganisms
are able to swim in environments, such as gel media, and in
microfluidic structures [5,6].

This paper deals with the behavior of synthetic motors
that also use chemical energy as their fuel source in systems
with filament networks that mimic those in the cell or gel
media. An understanding of how these motors function under
such complex environmental conditions is required to exploit
their full potential in diverse biological and materials science
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applications. In contrast to molecular machines that typically
use conformational changes to effect directed motion, the
motors in our paper do not rely on moving parts for their
propulsion and, instead, operate by a self-diffusiophoretic
mechanism [7–10]. In diffusiophoresis, a colloid in a chemical
concentration gradient induces fluid flows in its vicinity that
lead to motion in media free from external forces [11–13].

Extensive research on these objects has resulted in the
construction of numerous different motors with sizes ranging
from tens of nanometers to several micrometers using various
types of chemical fuel and operating by different mechanisms
[14–21]. The behavior of large collections of such motors has
been frequently a topic of current research [22–33]. Although
many of these investigations consider motor dynamics in
simple fluid-phase systems or in the presence of walls [34],
there have been investigations of motors in more complex
media including those with inert and active obstacles as well
as chemical patterns [35–37].

Molecular motors mediate some of the effects of thermal
fluctuations and carry out directed transport by attaching to the
macromolecular filament network in the cell. Similarly, if the
medium in which the synthetic chemically powered motors
operate contains macromolecular filaments, the motors may
attach to the filaments and move along them [38]. This attach-
ment serves to “tame” the orientational Brownian motion that
affects such motors in solution, which is especially important
for small nanoscale motors where reorientation is rapid. When
there are many motors in the system and the filament network
has a complicated structure, we show below how the collective
motor dynamics is modified.

The outline of the paper is as follows. Section II describes
the motor used in this paper, how the filaments and filament
network are constructed, and the dynamics used to evolve the
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FIG. 1. A chemically powered oligomeric motor. The motor
consists of three beads: one catalytic bead (C) and two noncatalytic
beads (N). A catalytic reaction occurs when fuel particles (A) en-
counter the C bead and are converted to product particles (B).

entire system. In Sec. III, in order to extract some general
features of the dynamics of motors on filaments in a simple
context, the properties of the diffusiophoretic motors in bulk
solution is contrasted with those when there is just a single
filament or two cross-linked filaments in the system. The full
complexity of the behavior of motors in filament networks
is the subject of Sec. IV where motor and filament network
properties are analyzed in detail. The conclusions are given in
Sec. V.

II. MOTORS, FILAMENT NETWORK, AND DYNAMICAL
MODEL

A. Motors, filaments, and filament networks

The synthetic self-propelled motor we consider is a stiff
short chain made of three linked beads; one end bead is cat-
alytic (C) whereas the remaining two beads are noncatalytic
(N) (Fig. 1). The three-bead oligomeric motors can attach to a
filament and move along it whereas their orientational motion
is highly suppressed [38]. All motor beads have the same
radii σC = σN = 2.0. (All results and parameters are given in
the dimensionless units defined in the Appendix.) The beads
are connected by stiff harmonic springs Vbond = 1

2 ks(r − req )2

where the spring constant is ks = 500 and the equilibrium
bond length is req = 3.0, whereas the bending stiffness is
taken into account by adding a spring linking the end beads
with 2req. The volume of the motor is computed by subtracting
the overlap volumes between the beads, and the total mass of
the motor is mM = 848.23.

The filaments are linear chains made from 50 beads (F),
each with radius σF = 0.75. The neighboring beads in a chain
are linked by stiff harmonic springs with the same forms
as those for the motor but with an equilibrium bond length
of rF

eq = 1.0, so the length of a filament is �F = 50. The
bending stiffness of a filament is controlled by a three-body
potential, Vbend = kb[1 − cos θ ] with kb = 100, and cos θ =
r̂i−1,i · r̂i,i+1, where r̂i, j = (ri − r j )/|ri − r j |. The total mass
of the filament is mF = 795.21, accounting for overlap of the
filament beads.

A complex semiflexible network is built from NF = 50
cross-linked filaments of the same length �F as follows. The
NF filaments are first randomly distributed in space to ensure
that the network is homogeneous, and then cross-links are
added to provide structural stability to the network. The
characteristics of the network are determined by the mesh
size of the network ξ or the average distance between cross-
links �c. The filaments cannot form loops or knots since their
persistence length is much longer than the characteristic mesh

FIG. 2. A filament network made from NF = 50 cross-linked
filaments. The beads of the filament chains are rendered in cyan,
whereas the cross-linker beads are yellow.

size. Some beads in each filament are chosen to be cross-linker
beads with the average distance between cross-links given by
�c. The cross-links are stable because the potential between
cross-linker beads α and α′ in different neighboring filaments
is attractive and is given by [39]

Vatt (ri j ) =

⎧⎪⎨
⎪⎩

4ε′
FF

[(
σFF
ri j

)12−(
σFF
ri j

)6]
, ri j � rc,

−ε′
FF cos2 π (ri j−rc )

2wFF
, rc � ri j � rc+wαα′ ,

0, ri j � rc + wαα′ ,

(1)

where ε′
FF = 10, σFF = 2 σF + σ with σ = 1, rc = 21/6σFF,

and wαα′ = 2σF . A example of a filament network constructed
in this way is shown in Fig. 2.

B. System dynamics

The motors and filaments are contained in a cubic sim-
ulation box of linear size L = 50 with periodic boundary
conditions in all directions. The fluid phase contains N =
NA + NB particles of species A and B with mass m = 1. With
the exception of the harmonic spring potentials discussed
above and used to construct the motors and filaments, all
other intermolecular interactions take place through repulsive
Lennard-Jones (LJ) potentials of the form

Vαα′ = 4εαα′

[(
σαα′

ri j

)12

−
(

σαα′

ri j

)6

+ 1

4

]
θ (rc − ri j ), (2)

where θ (r) is the Heaviside function and the separation be-
tween a particle i of type α and a particle j of type α′ is ri j =
|ri − r j |. The interactions between fluid particles and motor
and filament beads have LJ energy parameter εαS and cutoff
distance rc = 21/6σαS , where σαS = (σα + σS ). The repulsive
potential between two beads in different motors has σMM =
2σC + σ with σ = 1. Interaction strengths among motor and
filament beads are εMF = 0.1, and among motor monomers,
εMM = 1.0. Interaction strengths between solvent particles
and filament beads are εAF = εBF = 0.1. Filament beads in-
teract with those in neighboring filaments with strength εFF =
1.0. The A and B fluid particles have identical effective radii
σA = σB = 0.25 and energy parameters εAC = εBC = εNA =
1.0, εNB = 0.1 for their interactions with the motor beads.
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Interactions among fluid particles are described by multi-
particle collision dynamics [40–42], and the time evolution of
the entire system is carried out using a method that combines
molecular dynamics with multiparticle collision dynamics
for solvent particles. Our simulations are carried out under
low Reynolds number conditions where inertia plays no role.
Additional details of the simulation method are given in the
Appendix.

In propulsion by self-diffusiophoresis chemical reactions
on the catalytic portions of the motor lead to an inhomoge-
neous distribution of reactants and products in the vicinity of
the motor. If these inhomogeneously distributed fluid species
interact with the motor through different intermolecular po-
tentials, they give rise to forces on the motor which, by
momentum conservation, lead to fluid flows in the surround-
ing medium that are responsible for propulsion [8]. In the
oligomeric motor considered here, the reversible chemical
reactions A + C � B + C that power motor motion take place
on the catalytic bead of a motor. Since self-propulsion cannot
take place at equilibrium, for the mechanism to operate, the
system must be maintained in a nonequilibrium state where
detailed balance is broken.

The reversible reactions A + C
k+�
k−

B + C are implemented

microscopically in our simulations through collision events
between the A or B particles and the C motor beads where
a transformation from one species to the other take place with
unit probabilities p+ = p− = 1 when the reaction radius Rc

is crossed by an A or B particle [43]. The radius Rc is taken
to be infinitesimally greater than the range of the potentials
so that there are no abrupt changes in the forces. These
collision events determine the reaction rate coefficients k±
whose values depend on the degree to which the rates are
limited by reaction on the catalytic surface or diffusion to
it. Assuming that the entire surface of the catalytic sphere is
available for catalytic reactions, approximate values for these
rate coefficients can be obtained from kinetic theory which
yields [44] k± = k0

±kD/(k0
+ + k0

− + kD) with kD = 4π (DM +
D)Rc, the Smoluchowski diffusion controlled rate coefficient
with DM and D, respectively, the motor and common A and
B species diffusion coefficients. From simple collision the-
ory, the intrinsic rate coefficient is k0

± ≈ p±R2
c (8πkBT/μ)1/2

where μ = mMm/(mM + m) is the reduced mass. In the sim-
ulations, the motor mass is much larger than the reactive
species mass mM � m, also DM � D. For our parameters,
the reaction rate is strongly influenced by diffusion but is
neither fully diffusion nor reaction limited. Nonreactive col-
lisions of the A and B species with the noncatalytic beads
are governed by the intermolecular interactions described
above.

The reactive collision events satisfy detailed balance and,
starting from an initial state, the system as described above
will evolve to equilibrium where k+/k− = ceq

B /ceq
A = Keq with

ceq
α as the equilibrium concentrations of the species α = A, B,

and active motion will cease. ( Since we have chosen p± =
1, k+ = k−, and the equilibrium constant Keq for this reaction
is unity.)

The system can be maintained in a nonequilibrium state by
coupling to reservoirs with fixed concentrations of chemical
species or, as in biochemical systems, by reactions in the

environment that are themselves maintained in nonequilib-
rium conditions. Here, we impose nonequilibrium conditions

through fluid phase reactions B
k+b�
k−b

A which break detailed

balance [43] and occur locally in the bulk of the solution
with rate coefficients k±b. These fluid phase reactions were
implemented using the reactive version of multiparticle col-
lision dynamics [45]. Detailed balance is broken because the
fluid phase reaction occurs under nonequilibrium conditions
by a different mechanism where the constant concentrations
of pool chemical species (not shown) are incorporated in the
k±b rate coefficients [43]. The deviation from equilibrium is
controlled by the (dimensionless) chemical affinity [10],

Arxn = − 	μ

kBT
= ln

k+cs
A

k−cs
B

, (3)

where 	μ = 	μ0 + kBT ln cs
B/cs

A and cs
α, α = A, B are the

steady-state values of the concentrations of the fluid phase
rate equations cs

A/cs
B = k+b/k−b. Thus, provided k+b/k−b �=

k+/k−, detailed balance will be broken, and active motion will
persist.

The propulsion velocity of the oligomeric motor is directed
along its long axis, V sd = VsdûM, where ûM is a unit vector
directed from the noncatalytic to catalytic beads and Vsd and
can be written in the general form [10]

Vsd = χWrxn, (4)

where Wrxn is the reaction rate, which is proportional to the
chemical affinity Arxn and χ is the diffusiophoretic parameter
that depends on the fluid and motor properties including the
interaction potentials.

We introduce the following terminology: A forward-
moving motor moves with the catalytic bead at its head
whereas a backward-moving motor moves with the last non-
catalytic bead at its head. On the basis of Eq. (4), the motor
can be made to move forward or backward by changing either
the chemical affinity or the interaction potentials. For a given
set of interaction potentials, changing the ratio k+b/k−b from
greater to less than unity changes the sign of the affinity and
the direction of motor motion.

Differences in the potential energies can be due to interac-
tions of any or all fluid reagent species with either the catalytic
or noncatalytic portions of the motor. We have chosen the
fluid-motor interaction potentials such that the potential func-
tions for the A and B species differ only in their interactions
with the noncatalytic motor beads. In this circumstance, the
catalytic bead is responsible for producing the concentration
inhomogeneities, and forces due to the noncatalytic beads lead
to propulsion. For the choice in this paper, (εNA = 1.0, εNB =
0.1) and positive chemical affinity (k+b > k−b), the motor
moves in the forward direction due to the stronger repulsive
forces at the noncatalytic end of the motor. If these interaction
energies were reversed (εNB = 1.0, εNA = 0.1), the motor
would move backward for the same value of the affinity.
A description of the dynamics for a wide range of possible
interaction potential differences has been given for Janus
colloids [40]. In this paper, we fix the interaction potentials
and control the direction of motor motion by the chemical
affinity.
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TABLE I. Dynamical properties of a motor for various equilib-
rium and nonequilibrium conditions: The table gives the average
motor propulsion velocity Vsd, the orientational relaxation time τR,
and the effective diffusion constant Deff for different numbers of mo-
tors NM and different numbers of filaments NF (a); NM = 1, NF = 0;
(b) NM = 1, NF = 1; (c) NM = 20, NF = 2; and (d) NM = 45, NF =
50, where NF and NM are the numbers of filaments and motors,
respectively. The total simulation time is denoted by tm(∼105).

Vsd × 103 τR Deff

(a) f-m 8.91 ± 0.17 1300 0.035
b-m −9.39 ± 0.20 1600 0.05

(b) f-m 10.01 ± 0.07 > tm Ballistic
b-m −10.36 ± 0.14 > tm Ballistic

(c) f-m 5.14 ± 0.31 > tm

b-m −6.55 ± 0.21 > tm

(d) f-m 0.24 ± 0.02 > tm

b-m −0.35 ± 0.03 > tm

III. MOTORS IN FLUIDS AND ON FILAMENTS

A. Motor dynamics in the fluid phase

In order to put our study of motor dynamics in filament
networks into perspective, we first briefly describe the dynam-
ics of the three-bead oligomeric motors in solution. Under
nonequilibrium conditions, the motor will execute directed
motion along its symmetry axis ûM, a unit vector directed
from the noncatalytic to catalytic beads in a motor.

As discussed above, the nonequilibrium conditions in the
system are specified by the values of the fluid-phase reac-
tion rate coefficients. Three different choices of these fluid-
phase rate coefficients are considered: (i) (k+b = 10−2, k−b =
10−3) where the motor moves in a forward direction (f-m); (ii)
(k+b = 10−3, k−b = 10−2), the motor moves in a backward
direction (b-m); and (iii) (k+b = k−b = 10−3) where the sys-
tem satisfies detailed balance and leads to an equilibrium state
(inactive). Note that the directed motion of the motor, forward
or backward, is not controlled by changes in the interaction
potentials of the reactive species with the motor beads; these
remain unchanged in our paper.

The self-diffusiophoretic propulsion velocity of the center
of mass of the motor V sd can be determined in the simulations
by computing

V sd = 〈V(t ) · ûM(t )〉ûM(t ) ≡ VsdûM(t ), (5)

where V is the velocity of the center of mass of the motor and
〈· · · 〉 denotes the average over time and realizations.

In addition to directed motion along ûM, an active motor
will undergo orientational Brownian motion that leads to long-
time diffusive dynamics characterized by an effective diffu-
sion coefficient Deff = DM + 1

3V 2
sdτR where the orientational

relaxation time τR can be determined from the decay of the
orientational correlation function, 〈ûM(t ) · ûM(0)〉 = e−t/τR .

Table I(a) shows how the average motor propulsion ve-
locity of single active motor Vsd, the orientational relaxation
time τR, and the effective diffusion coefficient change with the
values of k+b and k−b. For reference, a single inactive motor
in an equilibrium system with (k+b = k−b = 10−3) has dif-

FIG. 3. (a) Radial distribution function g(r) of motor center-
sphere pairs and (b) the spatial orientational correlation functions
Cu(r) for NM = 20 motors and no filaments NF = 0. Three cases
are shown: (i) (k+b = 10−2, k−b = 10−3) (f-m, red circles and lines);
(ii) (k+b = 10−3, k−b = 10−2) (b-m, blue diamonds and lines); (iii)
(k+b = 10−3, k−b = 10−3) (inactive, green triangles and lines).

fusion coefficient DM = 0.0035 and orientational relaxation
time τR = 1400. Diffusion is anisotropic for the three-bead
oligomeric motor, and DM is the average of its parallel and
perpendicular components DM = (D‖ + 2D⊥)/3.

Next, we consider the collective dynamics of these
oligomeric motors in solution. Depending on the nonequi-
librium conditions, dynamic clusters with a finite lifetime
can occur. The tendency to form small transient clusters
can be quantified by considering the steady-state radial dis-
tribution functions g(r) with r being the magnitude of the
distance between the center spheres of the motors, which is
defined as

g(r) = V

4πr2NM

〈
NM∑

j<i=1

δ
(∣∣(rNi − rNj

)∣∣ − r
)〉

, (6)

where V is the volume of the system, NM is the number
of motors, and the angle brackets again denote an average
over time and realizations. Figure 3(a) shows plots of this
radial distribution function. From the presence of a peak in
g(r), one can see that small transient clusters are formed for
forward-moving motors whereas there is no such tendency for
backward-moving and inactive motors.

The greater tendency of forward-moving motors to form
clusters is similar to that for self-diffusiophoretic motors
in fluids. For our parameters, forward-moving motors move
towards higher product B concentrations, whereas backward-
moving motors move towards lower B concentrations. Con-
sequently, in many-motor systems, a forward-moving motor
will detect a higher-B concentration from a nearby motor and
move towards it, but a backward-moving motor will tend to
avoid other motors because of the B-concentration field they
produce.

Additional insight into this tendency to self-assemble can
be gleaned from an examination of the local spatial orienta-
tional order described by the function,

Cu(r) =
〈

1

n(r)

NM∑
j<i=1

(ûi · û j )δ(|(ri − r j )| − r)

〉
, (7)

where n(r) = ∑NM
j<i=1 δ(|(ri − r j )|− r) is the number den-

sity of motor pairs separated by the distance r. From this
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definition, two motors separated by the distance r have the
same or opposite orientations when Cu(r) > 0 or Cu(r) < 0,
respectively. Correspondingly, in Fig. 3(b), one sees that the
main distinctive features of the curves are in their struc-
tures at small separations r < 7.5. Since Cu(r) < 0 in this
range of r values, nearest-neighbor forward-moving motors
tend to have an antiparallel alignment, whereas neighboring
backward-moving motors have Cu(r) > 0, and they tend to
have a parallel alignment.

The orientational trends have their origin in the clustering
tendencies discussed above. In our motors, it is the noncat-
alytic beads that respond to the concentration gradients; thus,
for forward-moving motors noncatalytic beads of one motor
will tend to be attracted to the catalytic bead of the other motor
so that an antiparallel configuration is favored. The opposite
is true for backward-moving motors. Since their noncatalytic
beads tend to avoid the catalytic beads, a parallel arrangement
is favored.

Since detailed balance is not violated when k+b = k−b, the
chemical reactions on the catalytic spheres of inactive motors
take place at equilibrium. The interaction potentials remain
the same as for the active motors, and the figure shows the
much smaller equilibrium spatial and orientational structural
features of a suspension of inactive oligomers in a fluid with
these interactions.

B. Motor dynamics when attached to filaments

The dynamics described above changes if a filament is
present in the system. Although the motor and filament
beads interact directly through repulsive interactions, solvent-
mediated effects give rise to effective attractive interactions
that lead to binding of motors to filaments. The strength of
these effective attractive interactions will determine length of
time motors remain attached, and the corresponding average
fractions of bound and unbound motors in the system under
steady-state conditions. For strong binding, motors will tend
to move along filament for long periods of time, and the
orientational Brownian motion will be suppressed leading to
more efficient directed motion.

The changes in motor properties that occur as a conse-
quence of attachment to a filament can be seen in a compari-
son of results in parts (a) and (b) in Table I. The magnitudes of
motor velocities are somewhat larger but within statistical un-
certainties, and the motor reorientation times are substantially
longer when motors are attached to a filament.

To investigate and distinguish the single motor behavior on
different timescales, the mean-squared displacement (MSD)
	r(t )2 = 〈[r(t ) − r(0)]2〉 of the motor is shown in Fig. 4.
In bulk solution, the active and inactive motors display the
expected behavior: The active motor has a distinct ballistic
regime followed by a long-time diffusive regime, whereas the
inactive motor has a very short inertial regime followed by
diffusive dynamics. By contrast, for active motors on the fila-
ment, ballistic motion persists for long times, and the diffusive
regime is not reached on the timescale of the simulations τR >

tm ∼ 105. The diffusive dynamics on the filament for the inac-
tive motors is characterized by a larger value of the diffusion
coefficient D0 = 0.0063, compared with that for inactive mo-
tors in the solution DM = 0.0035 as mentioned in Sec. III A.

FIG. 4. Log-log plots of the mean square displacement 〈	r2(t )〉
for active and inactive motors in bulk solution and attached to a single
filament. Fits to the mean-square-displacement curves are indicated
by dashed lines for the ballistic ∼V 2

u t2 and dotted lines for the
diffusive ∼t portions of these curves. Only the ballistic regime is
seen for motors on a filament on the timescales of the plot.

Since the filament networks we will consider are cross-
linked, it is useful to examine how motors interact with
the cross-linked segments of the filament network. For this
purpose, it is sufficient to consider two pinned cross-linked
filaments which, for simplicity, we take to be linked at
right angles to each other. The presence of such a cross-
link can substantially alter the effective attractive interactions
between the motor and the filaments. This effect can studied
quantitatively through the effective potential of mean force
that the motor experiences in the vicinity of the filaments,
which is generally defined in terms of the radial distribution
function by

W (r) = −kBT ln g(r). (8)

We first computed the potential of mean force W1(r) =
−kBT ln gMF(r) for the interaction of the central motor bead
with a bead in a single filament where no cross-links are
present. Here, the radial distribution function gMF(r) is de-
fined as in Eq. (6) with r, now, the distance between the central
bead of a motor and a filament bead. Since an active motor
can move along the filament, we used umbrella sampling [46]
with a biasing harmonic potential to localize the motor to a
specific bead in the filament. Figure 5(a) is a plot of W1(r)
versus r and shows an attractive interaction with a well depth
of approximately 0.6 (3.0kBT ).

For two perpendicular cross-linked filaments, we deter-
mined the effective potential W2(r) = −kBT ln gMC(r) be-
tween the central bead of the motor and the midpoint between
the two cross-linker beads. Once again, the radial distribution
function gMC(r) was determined using umbrella sampling
with a harmonic biasing potential that localizes the motor to
the vicinity of the cross-linker midpoint. The results of this
calculation are shown in Fig. 5(b). Now, one sees a double-
well attractive potential with well depths of approximately
1.3 (6.5kBT ) and 1.0 (5.0kBT ), separated by a high barrier.
The double-well structure of this effective potential has its
origin in the two predominant orientations the motor can take
when in the vicinity of the cross-linked filaments: (1) The
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FIG. 5. (a) The potential of mean force W1(r) between the single
forward-moving motor and the filament NM = 1, NF = 1. (b) The
potential of mean force W2(r) between a single forward-moving
motor and the midpoint between two cross-linker beads in a system
with two perpendicular cross-linked filaments NM = 1, NF = 2. The
results were obtained from time averages over 20 independent real-
izations of the dynamics.

motor is attached to and lies parallel to one of the filaments so
that its center is in close proximity to the filament linker beads
[left inset of Fig. 5(b) corresponding to the short-distance
minimum], and (2) the head of an attached motor encounters
the other filament at their intersection point and, in this case,
the distance between the center bead of the motor and the
midpoint of the linker beads is r ≈ 5.6 [right inset Fig. 5(b)
corresponding to the longer-distance minimum). The motor
can switch between these configurations, but such switches
are rare events since the free-energy barrier is approximately
5 to 6kBT .

The dynamics changes for systems with two cross-linked
filaments and many (20 are considered here) motors. After
a short transient time period, all 20 motors attach to and
remain on the filaments for the duration of the simulation.
Motors are observed to move along the filaments, but those
attached to the cross-links remain there for long times and
hinder the movement of other motors, leading to the formation
of dynamic clusters around the cross-linked region. It follows
from this that the magnitude of average motor velocity is
much smaller than that for a single motor as can be seen in
Table I(c).

The enhanced binding of motors to cross-links will in-
fluence the collective dynamics when motors are attached
to filaments. To examine this effect in a simple context, we
present results for the potential of mean force W2(r) for
a system with 20 motors and two orthogonal cross-linked
filaments in Fig. 6. Results for motors moving forward and
backward as well as inactive motors with no net propulsion are
shown in the figure. The double-well structure persists but is
altered, and additional structure at longer distances appears as
a result of clustering near the cross-linkers. Note that the most
prominent double-well structure is seen in the plot for inactive
motors. This is likely due to their preferential attachment to
the cross-linkers and their lack of a diffusiophoretic force to
assist them to overcome such potential traps. Since backward-
moving motors do not favor cluster formation, they are able
to escape the trapping regions more effectively than inactive
motors, and this is reflected in the smaller depths of the double
wells and the added structure at longer distances.

FIG. 6. The potential of mean force W2(r) between the forward-
moving motors and the midpoint between two cross-links in a system
with two perpendicular cross-linked filaments NM = 20, NF = 2:
(a) (kb = 10−2, k−b = 10−3) (f-m, red circles and lines); (b) (kb =
10−3, k−b = 10−2) (b-m, blue diamonds and lines); and (c) (kb =
10−3, k−b = 10−3) (inactive, green triangles and lines). The results
were obtained from time averages over 20 independent realizations
of the dynamics, and the error bars represent ± one standard
deviation.

Forward-moving motors show the most complicated struc-
tural features in W2(r). The potential well at short distances
has a depth comparable to that for inactive motors, but a
much more complex structure is seen at longer distances.
Since forward-moving motors tend to form transient clusters,
and these clusters lie predominantly near the linker points,
this favors the formation of a strong short-range attractive
potential. However, because the motors are active, they are
able to explore a larger configuration space, which leads to
the additional structural features seen in the plot.

We may also compare these forward-moving motor results
for a system with 20 motors with those discussed earlier for
a single motor in Fig. 5(b). In the many-motor system, the
simple double-well structure is highly modified, and the well
depths are much smaller since many motors accumulate in the
limited space around the cross-link.

IV. COLLECTIVE MOTOR DYNAMICS IN
FILAMENT NETWORKS

The semiflexible filament networks are constructed using
the method given in Sec. II and as discussed there for net-
works with cross-links, the mesh size ξ or average distance
between cross-links �c depends on the lengths of the filaments
�F and the distribution of the cross-links. The simulations
in this section involve networks constructed from NF = 50
filaments each with length �F = 50, and Nc ∼ 90–110 cross-
links separated by an average distance of �c ∼ 4–8. The initial
state of the system is constructed from a realization of the
filament network, fluid particles, and NM = 45 chemically
active motors that are randomly placed in the fluid phase.

A. Macroscopic filament properties

Before describing the collective dynamics of motors, it is
first useful to quantitatively assess the physical characteristics
of the filaments in a network with cross-links with and without
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FIG. 7. The power spectrum of the thermal filament fluctuations
in the filament network with NF = 50. The bending rigidity of a
single filament is determined by kb = 100. The bending rigidities
are obtained from fits of Eq. (10) (solid lines) to the simulation data
(solid circles) as shown in the figure: (i) κ = 100 for the filament
network without the cross-links (red solid circles); (ii) κ = 50 for
the filament network with the cross-links (green solid circles); (iii)
κ = 40 for the cross-linked filament network with NM = 45 active
forward-moving motors (blue solid circles).

the presence of motors. For this purpose, the filament bending
modulus was determined from an analysis of the thermal
fluctuations of the filament chain conformations. A model for
the force-extension response of such semiflexible filaments is
based on an energy functional that accounts for the bending
energy and tension [39,47]. It takes the form

H[u(z)] =
∫ �F

0
dz

{
κ

2
|u′′(z)|2 + τ

2
|u′(z)|2

}
. (9)

Here, u(z) is the transverse deviation of the filament away
from the line joining the end points of the filament with
contour length �F, u′′ is the local curvature, and u′ is the local
axial strain along the filament. Letting n̂i, i = 1, 2 denote unit
vectors in the two transverse directions, we can write u(z) =
[u1(z), u2(z)]. The components ui(z) can be expressed in a
Fourier series as ui(z) = ∑

q ui(q) sin(qz) with wave-numbers
q = π/L, 2π/L, . . ..

The Fourier coefficients ui(q) in the two transverse direc-
tions satisfy the equipartition theorem; therefore, the resulting
power spectrum of these fluctuations in either transverse
direction is given by [39,47]

S(q) ≡ �F〈|ui(q)2|〉 = kBT

κq4 + τq2
, (10)

where κ is the filament bending modulus and τ is its tension.
Figure 7 shows simulation results for the power spectra

of systems of filaments with and without cross-links as well
as filament networks with cross-links and active motors and
compares them to S(q) obtained using Eq. (10). In the simu-
lations, S(q) was obtained by fast Fourier transform of the fil-
ament fluctuation amplitudes in the two transverse directions
and averaging over all filament configurations.

From an examination of this figure, one sees that the
power spectrum scales as S(q) ∝ q−4 for small values of
the wave-number q. The bending rigidities were obtained

FIG. 8. A instantaneous configuration of chemically powered
motors on the cross-linked filament network.

by fitting Eq. (10) to the simulation data in the bending-
dominated regime. For a filament whose length �F is less than
the persistence length �p, �F � �p = κ/kBT , the filament is
nearly straight with only small transverse fluctuations. With
no cross-links, the filaments are stiff since they were designed
to have a bending parameter of kb = 100, and the power-law
fits of the data to Eq. (10) do, indeed, yield κ ∼ 100 and
γ = 0. This result indicates that the bending stiffness of a
filament network with no cross-links is the same as that of
an individual filament.

The presence of cross-links gives rise to strong interactions
among filaments which no longer behave as individual ele-
ments but form part of an interconnected network with differ-
ent properties. For such a cross-linked network, we find that
the average bending rigidity of the filaments in the network
decreases to κ = 50 since the forces from the other filaments
tend to reduce the filament stiffness. If, in addition, motors are
attached to the filaments in the network the bending rigidity
decreases further to κ = 40. This smaller change indicates
that the bending rigidity, which is an essential feature of
the filament network, is mainly governed by the cross-linked
structure of the network.

B. Collective dynamics in the filament network

Building on the two-filament results presented in Sec. III,
we now consider the dynamics of motors in a complex semi-
flexible filament network. Starting from an initial state where
the motors are placed uniformly at random in the system, and
accounting for exclusion by the filaments, the motors quickly
attach to the filaments. An example of a configuration showing
motors on a cross-linked filament network formed by such a
process is given in Fig. 8.

The collective behavior of motors in systems with a high
concentration of motors per unit filament length differs sub-
stantially from that in the bulk phase or in networks with low
motor densities. Table I(d) shows that the motor propulsion
velocity decreases by more than an order of magnitude for
this (NM = 45, NF = 50) system, compared to the results in
(a)–(c) in this table.

The position dependence of the effective interaction Weff

between the central motor beads and the midpoints between
the cross-linked filament beads can again be used to character-
ize the clustering properties of motors on filaments. Since the
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FIG. 9. The potential of mean force Weff (r) between the central
motor beads and the midpoint between the cross-linked beads in
the filament network with NM = 45, NF = 50: (a) kb = 10−2, k−b =
10−3 (f-m, red circles and lines); (b) kb = 10−2, k−b = 10−3 (b-
m, blue diamonds and lines); (c) kb = 10−3, k−3 = 10−b (inactive
motors, green triangles and lines). Results were obtained from time
averages over 20 realizations of the dynamics.

links are uniformly distributed and the motors form clusters
around the links, it is difficult for motors to escape the trapping
regions around the links. The effective potentials Weff (r),
analogous to those in Fig. 6, are shown in Fig. 9. One sees that
the potential curves for forward-moving, backward-moving,
and inactive motors are almost indistinguishable. The two
dominant minima are in approximately the same locations as
in Figs. 5(b) and 6 but are shifted slightly to shorter distances;
however, the well depths are significantly smaller. The average
over many cross-links in the network tends to eliminate the
finer structure seen in Fig. 6 where a single cross-link is
considered so that only the structure corresponding to the
dominant structures survives. From these results, one can
conclude that the steady-state structural features of the motor
clusters are governed mainly by the structure of the filament
network and especially the density of the cross-links.

C. Filament network dynamics

The static structural properties of the motor-filament net-
work were examined in Sec. IV A. Here, we investigate
whether active motors can change the dynamical properties of
the filament network. In this connection, we study a specific
aspect of the dynamics: The changes in the forces exerted on
probe particles by the network. The probe particles we con-
sider are three-bead inactive oligomers which are tethered to
randomly chosen locations in the system by harmonic springs
Up(r) = kp

2 (|rc − rc0|)2, where kp is the spring constant and
rc0 is the equilibrium separation. The tethering points do not
lie on the filaments but, such as the untethered motors, the
tethered oligomers can attach to the filaments and, thus, serve
as probes of the network dynamics by monitoring the forces
they experience through such probe-filament interactions. The
effects of these interactions are reflected in the MSD of the
tethered oligomers, which behave much like probe molecules
confined by optical traps.

In the absence of any interactions with the filaments or
motors, a probe oligomer’s overdamped dynamics is well

FIG. 10. Mean-square displacement of the probe oligomers.
Panel (a): kT = 0.5: (i) k+b = 10−2, k−b = 10−3 (f-m, red circles
and lines); (ii) k+b = 10−3, k−b = 10−2 (b-m, blue diamonds and
lines); (iii) k+b = 10−3, k−b = 10−3 (inactive motors, green lines
and triangles), (i-iii) NM = 45. The inset: MSD for a single tethered
probe oligomer in solution. kp = 0.25 (purple curve); kp = 0.5 (cyan
curve). Dotted lines are fits of Eq. (12) to the curves. Panel (b):
kp = 0.25: (i) k+b = 10−2, k−b = 10−3 (f-m, red circles and lines);
(ii) k+b = 10−3, k−b = 10−2 (b-m, blue diamonds and lines); (iii)
k+b = 10−3, k−b = 10−3 (inactive motors, green triangles and lines),
(i-iii) NM = 45, (iv) no active motors (black lines and triangles);
Dotted lines in (a) and (b) are fits of Eq. (13) to the curves. NF =
50, Np = 5.

described by the Langevin equation,

d

dt
r(t ) = −kp

ζp
r(t ) + f p(t ), (11)

where the random force satisfies the fluctuation-dissipation
relation 〈 f p(t ) f p(t ′)〉 = 2Dp1δ(t − t ′) with Dp = kBT/ζp as
the diffusion coefficient and ζp is the friction coefficient. The
MSD of the probe oligomer computed from this equation is

	r(t )2 = 〈[r(t ) − r(0)]2〉 = 6
kBT

kp
(1 − e−kpt/ζp ). (12)

This expression accurately describes the time evolution of the
simulation data with a value of ζp = 60 for the probe oligomer
friction coefficient as can be seen in the inset of Fig. 10.
As expected, the MSD saturates at a value of 6kBT/kp = 4.8
when kp = 0.25 and at half the value if kp = 0.5.

As mentioned above, the probe oligomers attach to the
filaments, and the effects of forces exerted on the tethering
springs can be monitored through the mean-squared displace-
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TABLE II. Dynamical properties of the probe oligomers for
various equilibrium and nonequilibrium conditions. The effective
diffusion coefficients D̃p, the effective spring constant k̃p, and the
friction coefficient ζ̃p from fits of the simulation data to Eq. (13) for
(a) kp = 0.5; (b) kp = 0.25. Results are for NF = 50 and NM = 45,
except where noted.

D̃p × 105 k̃p ζ̃p

(a) f-m/b-m/inactive 1.2 0.75 380

(b) f-m 3.2 0.3 380
b-m 2.8 0.35 380

Inactive 2.8 0.55 380
NM = 0 2.8 0.45 300

ment 	r(t )2. Provided the number of such probe oligomers
is small, they will not modify the properties of the network.
Below, we consider Np = 5 probe oligomers; this number was
tested and found to satisfy this criterion. The sensitivity of
these probes can be tuned by changing their force constants kp.

The results of calculations of 	r(t )2 are shown in Fig. 10
for the filament network in the absence of motors and with
forward-moving motors, backward-moving motors, and inac-
tive motors. The temporal behavior of 	r(t )2 in the presence
of the filament network differs qualitatively from that for
a probe oligomer in solution. The most obvious qualitative
change in panel (a) of this figure for kp = 0.5 is the continual
linear increase in 	r(t )2 up to the times t ≈ 104–105 consid-
ered in our simulations. In panel (b), where the spring constant
is smaller kp = 0.25, the linear growth regime is now resolved,
and one can see the differences in behavior when motors are
active in the filament network.

The phenomenological expression,

	r(t )2 = 6
kBT

k̃p
(1 − e−k̃pt/ζ̃p ) + 6D̃pt (13)

can capture the gross structure of the probe oligomer MSD
curves. It shows that the short-time behavior is similar to
that of a probe oligomer in solution but with modified force
constant and friction to account for the interactions with the
network and motors. The friction coefficient ζ̃p is much larger
than its solution value and gives rise to the longer times
needed to reach the diffusive regime and a plateau value. In
this intermediate-time region, the MSD curves for the active
forward- and backward-moving motors are higher than those
with inactive and no motors due to changes in the effective
force constants as seen in Table II. The values of ζ̃p and k̃p

were determined from fits to the short-time regime of the
MSD curves in Fig. 10, whereas D̃p was computed from the
slope of a linear fit to the data in the longer-time linear regime.

Since the probes are strongly bound to the massive filament
and motor network, the linear diffusive regime characterized
by small effective diffusion coefficients D̃p (see Table II)
reflects the diffusive dynamics of the entire motor-filament
network and its internal dynamics. Due to the harmonic nature
of the tethering springs, 	r(t )2 must saturate at sufficiently
long times, but our simulations have not yet reached this
regime. The damped oscillatory behavior seen in some of
the curves is likely due to the oscillator regime change from

strongly overdamped dynamics to more weakly damped dy-
namics because of coupling to the network.

From these results, we see that the gross changes to the
probe MSDs, in the presence of the filament network, are
the effective force constants and friction coefficients that
describe the short-time dynamics and the long linear increase
in the MSD curves before saturation at much longer times
(not seen on the timescales of the simulation). These major
changes depend primarily on the transient binding of the
probes whether active or inactive to the filaments as evident
in the data for the larger force constant in Fig. 10(a) where
the MSD curves for forward, backward, and inactive motors
are very similar. Effects that are specific to the different
motor types are more nuanced and are seen only if the probe
particles are tethered by weaker harmonic springs [Fig. 10(b)].
Thus, the network structure strongly influences the motions
of the diffusiophoretic motors in this paper, but motor activity
only weakly changes the network dynamics. However, if the
filaments are less rigid, the motor motion may couple more
strongly to internal network collective modes.

V. CONCLUSION

In solution, small oligomeric motors execute directed mo-
tion along their long axis and are subject to strong thermal
fluctuations that lead to rapid orientational motion. This rel-
atively rapid thermally driven orientational motion restricts
the timescale on which the active ballistic directed motion
occurs, and strongly influences the character of the collective
dynamics in many-motor systems.

By contrast, in complex filament networks, these motors
have a propensity to attach to the filaments and move along
them, much like molecular motors in the cell. Orientational
Brownian motion is highly suppressed giving rise to long-
lived active ballistic motion. Cross-links in the filament net-
work play important roles in determining the characteristics of
the collective dynamics. The combination of stronger binding
forces in these regions and the fact that crossing filaments can
act as obstacles to motor motion lead to strong clustering in
these regions of the network. The effects are very strong for
forward-moving motors that have stronger clustering tenden-
cies even in the bulk phase. The use of probe oligomers to
investigate aspects of the filament network dynamics shows
how the character of motor motion, forward or backward,
is reflected in form of the mean-square displacement of the
probe oligomers.

The scales on which the phenomena described in this
paper can be observed are diverse. Thick biofilaments, such
as microtubules have diameters in the range of 25 nm. Given
the relative sizes of the motors and filaments in our paper,
this corresponds to motors with diameters of approximately
70 nm with lengths of about 200 nm, comparable to those of
some of the very small motors that have been constructed and
studied experimentally [19,48]. This indicates that biological
applications may be possible for synthetic motor-biofilament
systems. On larger scales, synthetic filament networks with
much thicker filaments have been constructed using three-
dimensional printing methods [49], and such networks acti-
vated by micrometer-sized chemically powered motors have
the potential for materials science applications.
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The work described in this paper indicates that the ability
of small synthetic motors to perform useful transport tasks in
filament networks depends on a number of factors; some are
similar to those for molecular machines whereas others are
unique to the synthetic motors considered here. In qualitative
terms, molecular machines, such as the kinesins walk along
filaments in specific directions determined by the filament
polarity and when not bound undergo diffusion in the medium.
They typically remain bound to filaments for times that are
sufficiently long so that many steps along the filament can
be taken for efficient cargo transport. The diffusiophoretic
motors considered here propel themselves in bulk solution
along their polar axis determined by the location of the
catalytic region. If the motors are small, they will reorient
rapidly leading to enhanced diffusion but with no specific
target direction. We have seen that attachment to filaments can
tame this orientational motion, but if the motors are strongly
bound to the filaments (this binding is especially strong near
cross-links), their propulsion velocity is smaller; thus, the
resulting dynamics depends on competing effects. Since the
parameter space that fully characterizes the filament network,
motor dynamics, and binding properties is large, these param-
eters can be used to design motor-filament systems that have
desirable properties. For example, if the binding of motors to
the filaments is much weaker, the active motors may be able
to surmount free-energy barriers that lead to strong clustering
at cross-links. In this way, motor-filament interactions may be
used to control the average length of time the synthetic motors
remain attached to filaments. Then, such as molecular motors,
they will attach and detach in the course of their motion on
a filament. In a filament network, a motor that detaches from
one filament may attach to another filament and continue its
active motion. The motors are still able to form clusters in
regions with cross-links.

These are not the only aspects of systems that merit study.
Our motors move equally well in either direction along fila-
ments, but it is possible to design motors with biased motion.
In addition, it has been observed in our studies that motors can
actively transport small filaments through the network, much
like the active transport of organelles and other materials by
molecular machines in the cell. These and other aspects make
synthetic motor motion in complex networks an interesting
topic to study.
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APPENDIX

The hybrid multiparticle collision dynamics-molecular dy-
namics simulation method consists of free streaming and

collision steps [40]. In the streaming step, the dynamics of
all the species is governed by molecular dynamics and prop-
agated by Newton’s equations of motion. In this step, there is
no net force among solvent particles. Instead, the interactions
among the solvent particles are described by multiparticle
collisions dynamics [41,42]. In the collision step, at discrete
times τ , the system is divided into cubic cells ξ with size
a0 = 1. The rotation operators ω̂α = π/2 are assigned to each
cell from some set of rotation operators. The postcollision
velocity vi(t + τ ) of each particle i within the same cell can
be obtained according to the rotation rule,

vi(t + τ ) = vc.m.(t ) + ω̂α[vi(t ) − vc.m.(t )], (A1)

where the center-of-mass velocity vc.m. of each cell ξ is
calculated from vc.m. = ∑Nc

j=1 v j/Nc where Nc is the total
number of particles in the cell. Grid shifting is employed to
ensure Galilean invariance [50].

Newton’s equations are solved using the velocity-Verlet
algorithm with a time step 	tMD = 0.001. The multiparticle
collision time is 	tMPC = 0.5, and the system temperature
is kBT = 0.2. The average number of particles per collision
cell is nc = 10. The total number of fluid particles in system
volume varies from 1040 000 to 1123 300 depending on
the volume fraction of motors and filaments. The values of
	tMPC and nc are important parameters that determine the
magnitudes of the fluid transport properties [41]. For our
system, the viscosity of the fluid is η = 1.282 and the fluid-
particle self-diffusion coefficients are given by DA = DB =
D = 0.118. The Schmidt number is not large (Sc = 1.2) but
is greater than unity so that momentum transport is larger than
mass transport. For systems where the fluid particles interact
with solute particles, the fluid will have liquidlike properties
[51].

The initial configuration of motors and filament network
is generated in the following way: The motors are given
random positions and orientations in the simulation box. The
first bead of each filament is given a random initial position
and a randomly chosen head-to-tail orientation along which
other beads are added to grow the filament. The positions
of the added beads are obtained by choosing a fixed bond
distance between each of the beads. In order to prevent
possible overlaps with other beads in the system, the total
force on each bead is then simply calculated as the sum of
the forces acting on the bead. If the net force acting on a
bead is strong, Brownian dynamics with a small net force is
used to adjust the positions of the beads to avoid overlaps. In
addition, if two cross-linker beads are close enough to each
other, a permanent linking potential is introduced between
them. The average distance between cross-linker beads along
a filament is lc. The completion of the growth processes for
all filaments along with motor position adjustments yields the
initial configuration of the system.

In our simulations, all quantities are reported in dimension-
less units based on energy in units of ε, mass in units of m, and
distance in units of σ .
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