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Approaching the quantum limit of precision in absorbance estimation using classical resources
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The utility of transmission measurement has made it a target for quantum enhanced measurement strategies.
Here we find if the length of an absorbing object is a controllable variable, then, via the Beer-Lambert law,
classical strategies can be optimized to reach within 83% of the absolute quantum limit in precision. Our analysis
includes experimental losses, detector noise, and input states with arbitrary photon statistics. We derive optimal
operating conditions for both classical and quantum sources, and observe experimental agreement with theory
using Fock and thermal states.
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I. INTRODUCTION

In sensing, a measured parameter is often a function of
known variables of the apparatus and a variable of interest.
An example is the Beer-Lambert law, where the intensity of
radiation transmitted through a sample of length L is given
by I = I0 exp (−aL), where I0 and I are the intensity before
and after the sample, and a is the sample absorbance param-
eter. The law is ubiquitous across investigative techniques,
including atomic vapor thermometry [1], femtosecond pump-
probe spectroscopy [2], high-throughput screening [3], on-
and in-line food processing [4], medical diagnostics [5], and
spectrophotometry [6]. The Beer-Lambert law also applies
to nonoptical techniques such as neutron transmission and
electron tomography [7,8].

Quantum metrology investigates how quantum strategies,
such as probing with quantum states, provide increased preci-
sion or sensitivity over classical techniques in estimating pa-
rameters including optical phase [9,10], transmission [11,12],
polarization [13], and displacements [14]. Many practical
implementations have demonstrated these schemes, outper-
forming classical strategies operating at the same average
intensity [15–17].

Motivated by the utility of measuring optical transmission
to image and identify objects, there have been explorations
of the benefits of using quantum light to estimate trans-
mission η, given by I = ηI0 [12,18,19], including practical
demonstrations of twin-beam strategies to provide unbiased
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estimation [20], feed-forward circuits for improved source
metrics [11], and microscopy [21,22]. Here, we investigate the
advantage of applying optical quantum states for estimation
of the absorbance coefficient a (loss per unit length) used in
the Beer-Lambert law [23,24]. We compare the output with
previous results on estimation of the transmission coefficient
η, which is directly related via η = exp(−aL).

II. THEORY

A. Quantum absorbance estimation with loss

The scenario we consider (Fig. 1) comprises the targeted
absorbance a ∈ [0,∞), a variable length L ∈ (0,∞), length-
independent loss γ which, for example, could arise from loss
at each facet of the sample chamber, and length-dependent
loss per unit length β, which we refer to as copropagating
loss, and could arise from a distinct absorbing material in the
chamber with the sample. Input intensity I0 is then related to
output I by

I = I0 exp(−aL)ηl , (1)

where we group the instrumental “nonsample” loss mecha-
nisms as ηl = γ 2 exp(−βL) and facet loss is assumed to be
the same for entrance and exit to simplify expressions. Vari-
ables L, β, and γ are assumed to be known a priori to infinite
precision and so contribute no uncertainty to estimating a.
In practice, these variables will have uncertainty which will
contribute to the uncertainty in a, the impact of which can
be found using error propagation [25]. We note that both
length-dependent loss variables a and β are multiplied by
the same length L as any loss occurring outside of L can be
encapsulated in γ .

To compare different experimental strategies, we use the
Fisher information per average incident photon into the sam-
ple, F (x) = F (x)/N̄0. F (x) is the total Fisher information for
the probe state on parameter x. N̄0 is the mean input pho-
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FIG. 1. A typical experiment to measure the absorbance of a
medium in the presence of other loss mechanisms such as surface
losses γ and copropagation loss β.

ton number. Using Fisher information per absorbed photon,
F/[N̄0(1 − η)], does not alter the qualitative results observed,
but can alter the optimal numerical values of the parameters
(which can still be analytically defined).

For estimating transmission η (or absorption 1 − η), a
theoretical optimal strategy (per unit intensity) is to input Fock
states, |N0〉, of known photon number N0 into the sample,
and perform photon counting at the output [18,19]. This
single-mode strategy saturates the quantum Cramér-Rao
bound for loss estimation and therefore bounds the precision
provided by any quantum state of light, including twin-beam
strategies [11,12,20] and bright squeezed states [14]. The
corresponding classical strategy uses coherent states |α〉, with
mean photon number N̄0 = |α|2. The underlying evolution
of any input state in absorbance and transmission estimation
is the same physical process: a loss channel. Therefore, the
Fisher information of transmission and absorbance are pro-
portional to one another [Eq. (2)] [25,26], and so share the
same optimal quantum strategy.

Because η = exp(−aL) is a continuous differentiable func-
tion of a, the relationship relating the Fisher information on
each parameter applies [25],

F (a) =
(

∂η

∂a

)2

F (η) = L2e−2aLF (η). (2)

For transmission estimation with ηl present, for classical and
quantum strategies, we have [11,23]

FC (η) = ηl

η
= ηl e

aL, (3)

FQ(η) = ηl

η(1 − ηηl )
= ηl eaL

1 − ηl e−aL
, (4)

where FC (η) and FQ(η) define the respective fundamen-
tal precision bounds for classical and quantum strategies
in estimating η. When combined with Eq. (2), Eqs. (3)
and (4) provide Fisher information per incident photon for
estimating a,

FC (a) = L2γ 2e−(a+β )L, (5)

FQ(a) = L2γ 2

e(a+β )L − γ 2
. (6)

These are plotted in Fig. 2(a) for a fixed L = 1 and no
experimental loss ηl = 1, along with the quantum advantage
Q(a) = FQ(a)/FC (a). We find fixing L provides a scaling
for Q(a) that follows the trend of transmission estimation:
Q(a) → ∞ for a → 0 [Q(η) → ∞ for η → 1] [11].

We see in Fig. 2(b) how F (a) changes for a fixed sam-
ple absorbance (a = 1), no experimental loss ηl = 1, and
varying L. This differs from Fig. 2(a) and from previous
results for absorption estimation that show a degradation of
the quantum state Fisher information for increased total loss
[11,12,23]. For varying length, both FC (a) and FQ(a) have
maximal values before tending towards zero for both large
and small L. This demonstrates that for a particular a (e.g., a
particular gas fixed in concentration), optimizing the length of
the medium that the light passes through provides maximum
information on a. The optimal FC (a) can be found by solving
∂FC (a)/∂L = 0,

∂FC (a)

∂L
= 2Lγ 2e−(a+β )L − (a + β )L2γ 2e−(a+β )L

= [2 − (a + β )L]Lγ 2e−(a+β )L = 0, (7)
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FIG. 2. (a) F (a) given a fixed L = 1 for both classical and quantum strategies. Also shown is the quantum advantage Q(a) =
FC (a)/FC (a). The trend follows that previously found in transmission estimation [23], where weakly absorbing samples are most improved
by using quantum states of light. Color arrows dictate the relevant axis for each line. (b) F (a) and Q(a) given a fixed sample absorbance of
a = 1. We see that the Fisher information in both classical and quantum cases peaks at particular length values. (c) F (a) and Q(a) when both
schemes are allowed to operate at the optimal length values given by Eqs. (8) and (9). We see that maximizing the Fisher information in the
classical and quantum case means that the quantum advantage is fixed to a value of 1.2 for all values of absorbance.
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FIG. 3. (a) The effect of facet transmission γ on the maximally achievable quantum advantage Q(a) when both classical and quantum
strategies are optimized over the length Lopt. (b) The dependence of the Fisher information Fψ (a) as a function of absorbance a for different
input state Fano factors σψ . The sample length is set to L = 1. (c) The optimal sample length as a function of input state Fano factor for three
sample absorbance values.

which is only satisfied by (a + β )L = 2 for nonzero L and a.
Therefore, for a coherent state,

LC
opt = 2/(a + β ) (8)

maximizes FC (a). For a = 1, β = 0, and γ = 1, this is in
agreement with Fig. 2(b). An identical process for FQ(a)
yields the optimal

LQ
opt = W[−2γ 2/e2] + 2

a + β
, (9)

where W[x] is the principal value of the Lambert W func-
tion [27]. As the values of Lopt are inversely proportional
to a, the optimal lengths correspond to constant total trans-
mission values. For β = 0 and γ = 1, these are η

Q
optimal =

0.20 and ηC
optimal = 0.14. This shows that for any fixed a,

L should be chosen for �80% total absorption through the
sample.

We now compare FC (a) and FQ(a) when both schemes
are allowed their optimal Lopt value. We compute the quantum
advantage as a function of absorbance where at each value
of a the length of the material is set to Lopt(a) [Fig. 2(c)].
We find that where there are no constraints on L, the ad-
vantage gained by using quantum states of light is limited
to a fixed factor of Q(a) = 1.2, for any a. Equivalently,
this shows classical light can reach to within 83% of the
fundamental quantum bound. Free choice of the L limits the
benefit of implementing a quantum strategy for estimating the
absorbance. This can also be seen analytically by inputting the
respective values for Lopt into the expression for the quantum
advantage Q(a).

Copropagating loss β reduces the Fisher information for
both classical and quantum strategies, and in both cases also
impacts Lopt. However, the Fisher information in the two
schemes is reduced by the same factor and therefore the ratio
between them, Q(a), is independent of this type of loss. This
is not true for the facet transmission factor γ , which has
a more detrimental effect on the quantum bound than the
classical one [Fig. 3(a)].

An important feature of Lopt is that for both strategies, it
is a function of absorbance. Since a is the parameter being
estimated, there are cases where it will not be known in
advance. There do, however, exist practical scenarios when
one may still be able to implement Lopt. One is when the
experiment is intended to measure deviation from an initially

known a by δa, such as a change in the concentration of
a gas. Another is when a is known approximately and the
quantum strategy is employed to achieve a more precise
measurement. Finally, in cases when a is completely unknown
but L can be easily varied, one could use Bayesian inference
to adaptively update the value of L as estimates of a are
attained.

B. Quantum absorbance estimation with arbitrary states

We now expand our analysis to consider general states |ψ〉,
with arbitrary Fano factor σψ = Var(N0)/N̄0, where Var(N0)
and N̄0 are the input photon-number variance and mean,
respectively. This allows the estimation capabilities of any
light source with any photon statistics to be found. For
simplicity, the following analysis assumes that there is no
extra experimental loss present: ηl = 1.

Let X (N0) define the (arbitrary) photon-number distribu-
tion describing the input state of light used to probe a sample
of transmission η, where N0 is the input photon number.
As we are interested in linear absorption processes, where
the loss acts independently on each incoming photon, the
sample applies a Bernoulli trial (binomial distribution) to
the input distribution and results in the output compound
distribution,

XB(N |η) =
∞∑

N0=0

X (N0)B(N |N0, η), (10)

where B(N |N0, η) defines a binomial distribution provid-
ing the probability of measuring N successfully transmit-
ted photons with N0 trials and a probability of transmis-
sion η. The expectation values and variance of the binomial
distribution,

B(N |N0, η) =
(

N0

N

)
ηN (1 − η)N0−N , (11)

can be calculated to be

EB[N] = N0η, (12)

EB[N2] = η2N2
0 + η(1 − η)N0, (13)

VarB(N ) = N0η(1 − η), (14)
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where EF [x] denotes the expectation value of x for the distri-
bution F . For the compound distribution XB(N |η),

EXB [N] =
∞∑

N=0

NXB(N |η)

=
∞∑

N=0

N
∞∑

N0=0

X (N0)B(N |N0, η)

=
∞∑

N0=0

X (N0)EB[N]

=
∞∑

N0=0

X (N0)N0η = ηEX [N0], (15)

EXB [N2] =
∞∑

N=0

N2
∞∑

N0=0

X (N0)B(N |N0, η)

=
∞∑

N0=0

X (N0)
[
N2

0 η2 + N0(η − η2)
]

= η2EX
[
N2

0

] + η(1 − η)EX [N0], (16)

VarXB (N ) = η2VarX (N0) + η(1 − η)EX [N0]. (17)

From Eq. (17), we see that for an input photon-number
distribution of X (N0), the photon-number variance of the light
after the sample (where the sample transmission coefficient is
η) is given by

VarXB (N ) = η2Var(N0) + (1 − η)ηN̄0, (18)

where EX [N0] = N̄0 is the mean number of input photons
and Var(N0) is the variance. Using the estimator η̂ = N/N̄0

allows the variance on the estimator to be computed using the

propagation of errors, Var(η̂) = ( ∂η̂

∂N )
2
VarXB (N ):

Var(η̂) = Var(N )XB

N̄2
0

= 1

N̄0
[η2σψ + (1 − η)η], (19)

where σψ = Var(N0)/N̄0 is the Fano factor of the input state.
From this, we find that the Fisher information on the parame-
ter η per incident photon is given by

Fψ (η) = 1

η2σψ + (1 − η)η
. (20)

Note that the Fisher information is maximized for the case
where σψ = 0, which is true for Fock states and in agreement
with previous results [18,19]. The calculated Fψ (η) for Fock
and coherent (σψ = 1) states are also in agreement with
previous bounds found in the literature [11,23].

Following Eq. (2), where F (η) is related to F (a), the
Fisher information on a for an arbitrary input state is found
to be

Fψ (a) = L2/[σψ + exp(aL) − 1]. (21)

For coherent and Fock states (σψ = 1 and 0, respectively),
Fψ (a) returns to FC (a) and FQ(a). Equation (21) can com-
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FIG. 4. (a) Experimental setup to measure optimization of sam-
ple length. (b) Results for pair-photon source (c) Results for single-
armed source with and without dark counts included in the theoreti-
cal analysis.

pute the estimation capabilities of any quantum probe state,
including displaced (bright) squeezed states [28].

The dependence of the optimal length on σψ is found
analytically to be

Lψ
opt = {W[2(σψ − 1)/e2] + 2}/a. (22)

The dependence of Fψ (a) and Lψ
opt on the Fano factor and

absorbance a are shown in Figs. 3(b) and 3(c), respectively.
The general features of absorbance estimation also appear

in multipass strategies for quantum and classical light. Specif-
ically, the freedom of multiple passes acts like a discrete
version of optimizing L and allows FC to approach the value
of FQ. This has been demonstrated by Birchall et al. who
investigated multipass strategies in lossy phase estimation
[29] and loss estimation [30].

III. EXPERIMENT

We experimentally demonstrate length-dependent opti-
mization performed for both quantum (single-photon) and
noisy (thermal) sources of light using the apparatus in
Fig. 4(a) and Ref. [11]. A collinear type-II spontaneous para-
metric down-conversion source [periodically poled potassium
titanyl phosphate (PPKTP) crystal] is pumped by a 3 mW,
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404 nm continuous-wave laser to spontaneously produce cor-
related photon pairs at 810 nm with orthogonal polarizations.
The photon pairs are spatially separated at a polarizing beam
splitter (PBS) into “signal” and “idler” channels. The signal
photon is detected by a single-photon avalanche photodiode
(SPAD) to herald the presence of a single-photon Fock state
(idler). Long-pass (LPF) and band-pass filters (BPF) exclude
the pump.

The sample of varying loss is a Pockels cell modulator.
When used in conjunction with a PBS Sagnac, this applies
a variable loss to the incoming photon independent of polar-
ization [11]. The transmission of the idler photon’s path with
the switch fully open is 38%, including detection efficiency,
and thus we apply γ = √

0.38 = 0.62 and β = 0 to the fol-
lowing analysis. The experiment produced approximately 14
k coincidences/s.

Optimization of L is observed by applying the inferred
total loss from an object with absorbance a = 1 m−1 with
varying L. For example, for a = 1 m−1, L = {1, 3, 5} m ap-
plies losses η = exp (−aL) = {0.37, 0.14, 0.05}, which we
implement with the Pockels cell. By setting each η and then
taking measurements to estimate a (given that we have prior
knowledge of L), we measure the statistics of the noise on
the estimate of absorbance and to estimate F (a) = 1/Var(â),
where Var(â) denotes the variance on the estimates of the
parameter a.

Estimates of a are found by using

â = − ln(Ncc/γ NS )/L, (23)

where Ncc is the number of coincidences between signal and
idler SPADs, and NS is the total number in the signal channel
[11]. Equation (23) is only valid for the Fisher information
per incident photon metric where instrumental loss occurring
before and after the sample affect F in the same fashion,
and therefore do not need to be considered independently. A
total of 500 estimates for each setting of absorbance were
found using a coincidence window of 0.5 seconds. These
were separated into five groups of 100 estimates, and the
variance of each group computed, each providing a Fisher
information estimate. Their means are shown in Fig. 4(b),
with error bars computed using the standard error of the
Fisher information estimates. These show good agreement
with theoretical predictions for the optimal quantum strategy.

A. Single arm estimation and the effects of dark counts

By disregarding the idler photons, we experimentally test
the estimation capabilities of a noisy (super-Poissonian) light
source as a single arm of a pair-photon source is a thermal
state [31]. Here, the estimator for the absorbance is changed to

â = − ln[(NI − N̄DC)/N̄0]/L, (24)

where NI is the number of idler photons detected, N̄DC is the
mean number of dark counts in the idler detector, and N̄0 is
the mean number of input photons, found prior by applying
no loss.

The results in Fig. 4(c) deviate from the theory given
by Eq. (20). We attribute this to dark counts from the
SPADs, which are particularly detrimental for the thermal
state (single-arm) strategy as the counts from the lossy arm

are used to estimate a. This is in contrast to the more robust
coincidence estimator [Eq. (23)] where only the singles in
the signal channel are considered. By adding dark counts into
the analysis, we are able to reconcile the difference between
theoretical predictions and the experimental results seen in
Fig. 4(c).

For a single-arm measurement, estimates of η are calcu-
lated using the estimator

η̂ = NI − N̄DC

N̄0
, (25)

where NI is number of detector counts in a sample window,
N̄DC is the average number of dark counts over many sample
windows, and N̄0 is the average number of input photons. The
number of counts on the detector is the sum of dark counts
in the sample window and the number of incident photons,
Ni, NI = NDC + Ni. As Ni and NDC are independent variables,
the variance on NI is the sum of the individual variances
of Ni and NDC,

Var(NI ) = Var(Ni ) + Var(NDC). (26)

Using error propagation, Var(η̂) = ( ∂η̂

∂NI
)
2
Var(NI ), and

Eq. (25), we find

Var(η̂) = Var(NI )

N̄2
0

= Var(Ni ) + Var(NDC)

N̄2
0

. (27)

We can relate the detected incident photon-number variance
with the input (presample) variance using Eq. (18),

Var(Ni ) = η2Var(N0) + (1 − η)ηN̄0, (28)

which can then be used to give the variance on η̂ for an
arbitrary input state with Fano factor σψ = Var(N0)/N̄0,

Var(η̂) = 1

N̄0

[
Var(NDC)

N̄0
+ η2σψ + (1 − η)η

]
. (29)

This provides an estimator information per incident photon of

I (η) = 1

Var(NDC)/N̄0 + η2σψ + (1 − η)η
, (30)

which simplifies to the Fisher information bounds for previ-
ously discussed scenarios [Var(NDC) = 0]. This can be related
to the information on the absorbance a by using Eq. (2) and
produces the corrected theoretical line in Fig. 4(c).

We estimate the σψ value for the idler path by measuring
the photon-number variance and mean when there is no sam-
ple present and correcting for the inherent loss of the channel.
By rearranging Eq. (18), we find

σψ = σ + ηl − 1

ηl
, (31)

where σψ is the Fano factor at the input to a lossy channel
with transmission ηl and σ is the Fano factor measured
after the channel. Experimentally, the postloss Fano factor
was measured to be σ = 314.5 with ηl = 0.38. This gave
a predicted σψ = 826. The variance of detector dark counts
Var(NDC) was measured to be 518.
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IV. CONCLUSION

We have shown how experimental optimization of the sam-
ple length L can offer significant advantages in precision for
both quantum and classical inputs in absorbance estimation.
We find that for cases where this optimization is possible,
the quantum advantage is restricted to 1.2, at most. We
have derived optimal conditions for a number of experimen-
tal variations including additional experimental loss, input
states with arbitrary photon-number statistics, and detector
dark counts. The experimental implementation presented here
demonstrates that L can be optimized for Fock and thermal
states, suggesting that for such an experiment, quantum ad-
vantage is limited. These results not only have implications for
future quantum sensors designed for measuring absorbance,
but can also be applied to optimize classical sensors using any
light source, impacting a range of application areas [1–6].

Fock states are unlikely to find widespread use for
high-precision measurements because the experiments that
operate at the quantum limit in precision per-photon
flux use coincidence-based photon-counting measurements
[11], which currently limit optical power in the probe to
∼femtowatts. In many cases, the performance of Fock states
can be readily surpassed by using a classical source of much
higher brightness, albeit at lower precision per photon flux.
However, as Fock states saturate the quantum Cramer-Rao
bound for loss estimation, they bound the ultimate precision
achievable by any state for any fixed photon number. Our
work outlines a strategy of experimental optimization of
the much more practical coherent state that reaches 83% of
the precision enhancement defined by this ultimate quantum

limit. Shot-noise limited intensity measurements are sufficient
for this strategy, opening the way for a practical dynamic
range of probe intensity even in cases using a noisy laser
source [32].

The existence of experimental optimization strategies for
absorbance, phase [29], and loss estimation [30] suggests that
in general, the existence of a free optimization parameter can
be a powerful tool for increasing the achievable measurement
precision. Future analysis and experiments should consider
this to correctly predict the advantages of quantum strategies.
Efforts towards providing practical advantages using quantum
light can now be focused towards applications where such
optimization strategies are difficult to implement, such as
imaging or very weakly absorbing samples.

Data are available at the University of Bristol data
repository [33].
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