
PHYSICAL REVIEW RESEARCH 2, 033241 (2020)

Collective dynamics of active Brownian particles in three spatial dimensions:
A predictive field theory
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We investigate the nonequilibrium dynamics of spherical active Brownian particles in three spatial dimensions
that interact via a pair potential. The investigation is based on a predictive local field theory that is derived by
a rigorous coarse-graining starting from the overdamped Langevin dynamics of the particles. This field theory
is highly accurate and applicable even for the highest activities. It includes configurational order parameters
and derivatives up to infinite orders. We present also three finite reduced models that result from the general
field theory by suitable approximations and are easier to apply. Furthermore, we use the general field theory
and the simplest one of the reduced models to derive analytic expressions for the density-dependent mean
swimming speed and the spinodal corresponding to the onset of motility-induced phase separation of the
particles, respectively. Both of these results show a good agreement with recent findings described in the
literature. The analytic result for the spinodal yields also a prediction for the associated critical point whose
position has not been determined before.
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I. INTRODUCTION

Active Brownian particles (ABPs), combining Brownian
motion with self-propulsion, constitute a prime example for
active matter that is currently attracting a lot of research
interest [1–10]. Besides artificial self-propelled microparti-
cles [11–16], motile microorganisms [17–19] are often de-
scribed as ABPs. It was shown that even bacteria, which
perform a run-and-tumble motion [19–22] like Escherichia
coli [20,23–25], can successfully be described as ABPs. Al-
ready isometric, i.e., spherical, ABPs have been found to
exhibit many striking effects [3–5,26–33]. Among them is
motility-induced phase separation (MIPS) [3], which became
particularly popular and is still gaining great scientific inter-
est [20,29,34–49]. MIPS is the separation of the particles into
a low-density gaslike and a high-density fluidlike phase that
originates from the nonequilibrium behavior of the particles
and occurs even if their interactions are purely repulsive.

The collective dynamics of ABPs and the arising effects
can be described theoretically by field theories [50]. This
approach usually allows deeper insights into a system’s be-
havior than computer simulations. As nonlocal field theories
are typically much more difficult to interpret and treat numer-
ically, most of the existing field theories for ABPs are local.
Examples for nonlocal field theories describing ABPs are ac-
tive dynamical density functional theories (DDFTs) [51–54].
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These theories, however, are applicable only for a weak
propulsion of the particles and sometimes also only for low
particle densities. Examples for local field theories include
active phase field crystal (PFC) models [55–60]. They are
derived from DDFTs and thus include the same aforemen-
tioned limitations regarding the propulsion and density of the
particles. Other local field theories include active diffusion
equations [21,35], an extension for mixtures of active and pas-
sive Brownian particles [44], a hydrodynamic model explic-
itly considering the flow field of the particle suspension [61],
a model with an explicit particle-field representation [62],
Cahn-Hilliard-like models [38,39,47], the related noninte-
grable Active Model B (AMB) [40], its extension Active
Model B + (AMB+) [32,63], and a recently published highly
accurate predictive field theory [50]. These models, however,
are limited to weak self-propulsion, include only terms with
low orders of the order-parameter fields and derivatives, or
are restricted to systems with two spatial dimensions. Fur-
thermore, the existing models are often not predictive. These
strong limitations restrain the applicability or accuracy of the
models. For example, the dimensionality of a system of ABPs
is known to be crucial for its dynamical properties [64] so that
a suitable theory for three spatial dimensions is needed [50].

In this paper, we present such a field theory. It is local
and describes the nonequilibrium dynamics of interacting
spherical ABPs in three spatial dimensions. The field the-
ory is highly accurate and applicable even for the highest
activities (and thus persistence lengths) of the particles. For
this purpose, approximations are kept to a minimum during
the derivation of the theory. In its initial form, the the-
ory takes configurational order-parameter fields and deriva-
tives up to infinite order into account. Moreover, the the-
ory is predictive, meaning that it includes analytic expres-
sions that allow to calculate the values of all coefficients
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occurring in the field theory from the microscopic proper-
ties of the system. These properties enter the calculation as
the values of microscopic parameters and partial knowledge
about the pair-distribution function, which are required as
input. The predictivity is achieved via a rigorous coarse-
graining of the particles’ dynamics that is described by over-
damped Langevin equations. In addition to the general field
theory, we provide three relatively simple reduced models
of increasing complexity that involve only a small number
of terms and are easier to apply than the general field the-
ory. These models are obtained from the general theory by
restricting the maximal order of order-parameter fields and
derivatives as well as performing a quasistationary approxi-
mation. We discuss these models and show that several of the
aforementioned local field theories for systems of ABPs from
the literature can be identified as special cases of our reduced
models. To demonstrate examples for concrete applications
of our general field theory and reduced models, we use the
general field theory to derive an analytic expression for the
density-dependent mean swimming speed of ABPs in a homo-
geneous state. Besides the usually considered linear density
dependence, our expression includes a nonlinear correction
that is in excellent agreement with previous analytic findings
described in Ref. [65]. Furthermore, we use the simplest of
our reduced models to obtain an analytic expression for the
spinodal corresponding to the onset of MIPS in a system
of ABPs with an arbitrary pair-interaction potential. The
obtained expression is found to be in good agreement with
results of computer simulations presented in Ref. [66]. Our
spinodal condition also yields a prediction for the associated
critical point for which simulation results from the literature
seem to be not yet available.

The paper is structured as follows. In Sec. II, we de-
rive the general field theory and present possible simplify-
ing approximations. The reduced models are presented and
compared to other existing theories in Sec. III. In Sec. IV,
exemplary applications of the field theory and reduced models
are demonstrated. Finally, we conclude in Sec. V.

II. GENERAL FIELD THEORY AND APPROXIMATIONS

A. General field equations

Our derivation of a general field theory is based on
the interaction-expansion method [50]. We consider N sim-
ilar active Brownian spheres with diameter σ in three
spatial dimensions. Their motion is described by their
center-of-mass positions {�ri(t )} and orientational unit vec-
tors {ûi(t )} as functions of time t , where the index
i ∈ {1, . . . , N} distinguishes between the particles. One
can parametrize the vectors �ri = (x1,i, x2,i, x3,i )T and ûi =
(cos(φi ) sin(ϑi ), sin(φi ) sin(ϑi ), cos(ϑi))T by the Cartesian
coordinates x1,i, x2,i, and x3,i and the spherical coordi-
nates ϑi and φi, respectively. The equations of motion for

the particles are given by the overdamped Langevin equa-
tions [8,33,41,46,64,66]

�̇ri = �ξT,i + v0ûi + βDT �Fint,i, (1)

˙̂ui = ûi × �ξR,i. (2)

Here, a dot over a variable denotes a derivative with re-
spect to time, v0 is the propulsion speed of a noninteract-
ing particle, and β = 1/(kBT ) is the thermodynamic beta
with the Boltzmann constant kB and the absolute tempera-
ture T of the particles’ environment. The translational dif-
fusion constant of a particle is denoted as DT and, since
the particles are spherical, related to the rotational diffu-
sion constant DR by the expression DR = 3DT/σ 2. With
the statistically independent Gaussian white noises �ξT,i(t )
and �ξR,i(t ) the translational and rotational Brownian mo-
tion of the ith particle is taken into account. Their correla-
tions are given by 〈�ξT,i(t1) ⊗ �ξT, j (t2)〉 = 2DTδi j13δ(t1 − t2)
and 〈�ξR,i(t1) ⊗ �ξR, j (t2)〉 = 2DRδi j13δ(t1 − t2) with the 3 × 3-
dimensional identity matrix 13. Furthermore, �Fint,i({�ri}) de-
scribes the interaction force that the other N − 1 particles
exert on the ith particle. We assume that the interactions
can be described via a pair-interaction potential U2(‖�ri − �r j‖)
so that the interaction force can be written as �Fint,i({�ri}) =
−∑N

j=1, j �=i
�∇�riU2(‖�ri − �r j‖), where �∇�ri = (∂x1,i , ∂x2,i , ∂x3,i )

T is
the nabla operator that involves partial derivatives with respect
to the elements of the position vector �ri.

Rewriting the Langevin equations (1) and (2) into the
corresponding Smoluchowski equation yields

Ṗ =
N∑

i=1

((
DT��ri + DRR2

i

)
P − �∇�ri · ((v0ûi + βDT �Fint,i )P)

)
(3)

with the many-particle probability density P({�ri}, {ûi}, t ). The
symbol ��ri = �∇�ri · �∇�ri denotes the Laplacian and Ri = ûi ×
�∇ûi is the rotational operator with �∇ûi being the nabla operator
that involves partial derivatives with respect to the elements
of the orientation vector ûi. By integrating over all degrees
of freedom except for those of one particle and renaming
its position as �r and its orientation as û, one gets a dynamic
equation for the local orientation-dependent density

	(�r, û, t ) = N

( N∏
j = 1
j �= i

∫
R3
d3r j

∫
S2

d2u j

)
P

∣∣∣∣�ri = �r,
ûi = û

. (4)

The symbol S2 denotes the three-dimensional unit sphere
and d2u j = sin(ϑ j )dϑ jdφ j is a solid angle differential. Using
the divergence theorem and neglecting boundary terms, one
obtains

	̇ = (DT��r + DRR2 − v0 �∇�r · û)	 + Iint (5)

with the interaction term

Iint = βDT �∇�r ·
(

	(�r, û, t )
∫
R3
d3r′ U ′

2(‖�r − �r′‖)
�r − �r′

‖�r − �r′‖
∫
S2

d2u′ g(�r, �r′, û, û′, t )	(�r′, û′, t )

)
, (6)
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FIG. 1. Notation for the positions and orientations of two active
Brownian spheres in three spatial dimensions.

where U ′
2(r) ≡ dU2(r)/dr is a shorthand notation. The pair-

distribution function g(�r, �r′, û, û′, t ) describes the relation
between the two-particle density 	(2)(�r, �r′, û, û′, t ) and the
one-particle density product 	(�r, û, t )	(�r′, û′, t ):

	(2)(�r, �r′, û, û′, t ) = g(�r, �r′, û, û′, t )	(�r, û, t )	(�r′, û′, t ).

(7)

We assume the system to be in a homogeneous stationary
state so that the pair-distribution function can be parameter-

ized as g(r, ûR, û, û′), where the particle distance r and the
unit vector ûR are defined by the relation �r′ − �r ≡ rûR. A
sketch of the geometry is shown in Fig. 1. Since the pair-
distribution function appears in Eq. (6) as a product with the
interparticle force −U ′

2(r), this assumption limits the applica-
bility of the theory only to systems that are (nearly) homo-
geneous on the scale of the interaction length, which is very
short for the Weeks-Chandler-Andersen potential and many
other usual interaction potentials. The time dependence of the
pair-distribution function is neglected, since it is typically not
known in practice, but the following steps of the derivation
could also be performed retaining this time dependence.

Taking the rotational invariance of the homogeneous state
into account, we expand the pair-distribution function into
spherical harmonics Y m

l (û) [67]:1

g(r, ûR, û, û′) =
∑
lr ll ′

g(lr ll ′; r)
∑

mr mm′
C(ll ′lr, mm′mr )

×Y mr∗
lr

(ûR)Y m
l (û)Y m′

l ′ (û′). (8)

Here,

∑
lr ll ′

∑
mr mm′

=
∞∑

lr ,l,l ′=0

lr∑
mr=−lr

l∑
m=−l

l ′∑
m′=−l ′

(9)

is a shorthand notation,

g(lr ll ′; r) =
{√

(2lr+1)(2l+1)(2l ′+1)
(4π )3/2C(ll ′lr ,000)

∫
S2

d2u
∫
S2

d2u′ ∫
S2

d2u′′ g(r, û, û′, û′′)Plr (û)Pl (û′)Pl ′ (û′′), if l + l ′ + lr = even,
0, else

(10)

are the expansion coefficients of the pair-distribution func-
tion g(r, ûR, û, û′) with the Legendre polynomials Pl (û),
C(ll ′lr, mm′mr ) are the Clebsch-Gordan coefficients, and the
superscript ∗ denotes complex conjugation.

Similar to the spherical harmonics expansion of the
pair-distribution function, an orientational expansion of the
one-particle density field 	(�r, û, t ) into Cartesian tensor order-
parameter fields Oi1···in (�r, t ) [50,67,68] is performed:2

	(�r, û, t ) =
∞∑

n=0

Oi1···in (�r, t )ui1 · · · uin . (11)

The Cartesian order-parameter fields Oi1···in (�r, t ) can be ob-
tained as

Oi1···in (�r, t ) =
∫
S2

d2uUi1···in (û)	(�r, û, t ), (12)

with the orientation-dependent nth-order tensors Ui1···in (û).
These tensors are defined by the expansion (11) [68]. The
elements of the orientation vector û are denoted as ui = (û)i.

Applying the aforementioned expansions as well as an
untruncated gradient expansion in the interaction term (6),

1We use the Condon-Shortley phase convention for the spherical
harmonics [67].

2From here onwards, summation over indices appearing twice in a
term is implied.

the integrations in this term can be carried out and a local
expression is obtained. Inserting this expression into Eq. (5)
and using Eq. (12) leads to the following dynamic equation
for the configurational order-parameter fields Oi1···in (�r, t ):

Ȯi1···id =
∞∑

k=0

∫
S2

d2uUi1···id

(
(DT��r + DRR2 − v0∂bub)

× u j1 · · · u jkO j1··· jk
4√
π

∂p0

( ∞∑
h=0

ua1 · · · uahOa1···ah

×
∞∑

n=0

∑
lr ll ′

∑
mr mm′

C(ll ′lr, mm′mr )Y m
l (û)

× 1

n!
G(n, lr, l, l ′)

(
Smr

lr

)
p0 p1···pn

× (
Sm′

l ′
)

j1··· jk
∇p1···pnO j1··· jk

))
. (13)

For a compact notation, we introduce the spherical coeffi-
cients

G(n, lr, l, l ′) = −
√

π

4
βDT

∫ ∞

0
dr′ r′n+2U ′

2(r′)g(lr ll ′; r′),

(14)
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the spherical coefficient tensors

(
Sm

l

)
i1···in =

∫
S2

d2uY m
l (û)ui1 · · · uin (15)

with the property (Sm
l )i1···iN = 0 ∀ l > N , and the operators

∇i1···im ≡ ∂i1 · · · ∂im , where ∂i is the ith component of the nabla
operator acting on �r. The field equations (13) describe the time
evolution of the order-parameter fields Oi1···id and constitute a
rather general field theory that is the main result of the present
work.

Our field equations (13) extend those from Ref. [50] to
three spatial dimensions. By restricting both the positions
and orientations of the particles to a plane, the field the-
ory (13) simplifies to that of Ref. [50]. The spherical har-
monics expansion (8) reduces to a Fourier expansion and the
Clebsch-Gordan coefficients C(ll ′lr, mm′mr ) reduce to Kro-
necker symbols δlr+l ′,l = δk3,k1+k2 . Thus it is possible to relate
the coefficients A(n, k1, k2) from Ref. [50] to the coefficients
G(n, lr, l, l ′) of the present theory:

G(n, a, b, c) ∼ A(n, b + c, b − a). (16)

To calculate the values of the coefficients (14), partial infor-
mation about the pair-distribution function g(r, ûR, û, û′) is
required. Since g(r, ûR, û, û′) always occurs as a product with
the interparticle force −U ′

2(r) in the theory, it is sufficient
to know g(r, ûR, û, û′) on the scale of the interaction length.
Results for the pair-distribution function can be obtained by
analytic approaches and computer simulations. For ABPs
interacting by a Weeks-Chandler-Andersen potential, there
exist analytic representations for two [69] and three [66]
spatial dimensions that can be used. The analytic repre-
sentation from Ref. [66] will be used in Sec. IV further
below.

B. Approximations

The general field equations (13) are rather complicated,
since they contain order-parameter fields and derivatives up
to order infinity. However, the field equations can be seen
as a framework from which simpler reduced models can be
obtained by truncating the maximal order of order-parameter
fields and derivatives.

The first three order-parameter fields are the density field
ρ(�r, t ) describing the local particle number density, the po-
larization vector �P (�r, t ) that gives insights into the local
mean orientation of the particles, and the symmetric and
traceless nematic tensor Qi j (�r, t ) that characterizes their local
alignment. Restricting the orientational expansion of the one-
particle density to these three order parameters is common
both in theories for liquid crystals [55,70–74] and active mat-
ter [44,50,56,57,60,75,76]. This means that the one-particle
density 	(�r, û, t ) is approximated as

	(�r, û, t ) ≈ ρ(�r, t )

4π
+ Pi(�r, t )ui + Qi j (�r, t )uiu j . (17)

We will use this approximation, truncating the orientational
expansion of the one-particle density, throughout the rest of

this work. The order-parameter fields can be obtained from
the one-particle density via their definitions

ρ(�r, t ) =
∫
S2

d2u 	(�r, û, t ), (18)

Pi(�r, t ) = 3

4π

∫
S2

d2u 	(�r, û, t )ui, (19)

Qi j (�r, t ) = 15

8π

∫
S2

d2u 	(�r, û, t )

(
uiu j − 1

3
δi j

)
, (20)

which allow for the identification of the corresponding tensors
Ui1···in (û).

When truncating the gradient expansion, a maximal order
of two, four, or six is typically chosen [50]. A model con-
taining a maximal order of two derivatives can describe the
enhanced mobility of ABPs and the onset of instabilities, al-
lowing, e.g., to calculate the spinodal for MIPS [35,44,49,50].
If a further analysis of the system of ABPs is desired, fourth-
order-derivative models, often called phase field models, can
be used to describe also the emergence of patterns and their
dynamics [32,39,40]. A sixth-order-derivative model can, on
top of that, describe crystallization and particle-resolved lat-
tice structures [56–60]. Models of odd orders in derivatives
are typically not considered [50].

Considering the aforementioned restrictions for the order
in the orientational and gradient expansions yields models
with three coupled time-dependent partial differential equa-
tions for ρ, Pi, and Qi j . A further reduction of the complexity
of the models can be achieved by performing a quasista-
tionary approximation (QSA) [21,44,50]. This approximation
exploits the fact that, unlike the density ρ, the polarization
vector Pi and the nematic tensor Qi j are nonconserved quan-
tities whose dynamics can be considered as instantaneously
relaxing when the system is described on the characteristic
time scale of the density. A QSA results in a dynamic equation
for ρ and constitutive equations for Pi and Qi j , where all three
equations include only the order-parameter field ρ. Applying
a QSA conserves the locality of a model and usually the
maximal order of derivatives is kept unchanged in the model’s
equations.

Lastly, if a model is still considered to be too complex,
a low-density approximation [50] can be applied to further
reduce the number of terms in the model. This approxi-
mation truncates the total order with respect to the density
and derivatives of the individual terms at a chosen cutoff
value.

The truncation of the orientational and gradient expan-
sions is necessary for obtaining models consisting of a finite
and closed system of partial differential equations, but the
maximal orders at which these expansions are truncated can
be chosen differently from this paper when further accuracy
or more compact models are wanted. In contrast, the QSA
and the low-density approximation can be omitted if more
complex and more accurate models are desired, since these
approximations only decouple and reduce the equations of the
models.
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III. REDUCED MODELS

In this section, we present three reduced models ob-
tained by making use of the approximations described in
Sec. II B. These models are a second-order-derivative model,
a fourth-order-derivative model, and a seventh-order low-
density model. All of these models were obtained via a QSA.
The last one involves also a low-density approximation. The
models consist of a continuity equation

ρ̇ = ∂iJi (21)

for the density with the density current Ji and constitutive
equations for Pi and Qi j . In the equations for Pi and Qi j ,
we omit the highest one and two orders, respectively, since
they do not contribute to the density current Ji [50]. We
compare our models with popular models for ABPs in three
spatial dimensions from the literature.3 The models from
Refs. [61,62] are not included in our comparison, since they
are ABP models in two spatial dimensions.

A. Second-order-derivative model

The first reduced model contains derivatives up to second
order. Its density current is given by

Ji = D(ρ)∂iρ (22)

with the density-dependent diffusion coefficient

D(ρ) = DT + 2

3π
G(1, 0, 0, 0)ρ

+ 1

6DR

(
v0 − 4

π
G(0, 1, 1, 0)ρ

)

×
(

v0 − 2

π
(G(0, 1, 1, 0) + G(0, 1, 0, 1))ρ

)
. (23)

The constitutive equations for the polarization vector and
nematic tensor read

Pi = −v0 − 4
π

G(0, 1, 1, 0)ρ

8πDR
∂iρ (24)

and

Qi j = 0, (25)

respectively. This is the model of the lowest nontrivial order
in derivatives that can be obtained from the general field
theory (13).

The form of Eqs. (22)–(25) is similar to that of the
corresponding model for two spatial dimensions, which is
given by Eqs. (20)–(24) in Ref. [50]. This means that, within
these models, the dynamic behavior of ABPs in two and
three spatial dimensions is similar. Three different coefficients
G(1, 0, 0, 0), G(0, 1, 1, 0), and G(0, 1, 0, 1) contribute to the
density-dependent diffusion coefficient (23). Neglecting the
coefficients G(1, 0, 0, 0) and G(0, 1, 0, 1) reduces the diffu-
sion coefficient (23) to that given by Eq. (10) in Ref. [21],

3The models from the literature can be applicable also to systems
that are not considered in the present work. We neglect the corre-
sponding additional features of these models when comparing with
our models.

when selecting a dimensionality d = 3 and run-and-tumble
rate α = 0. A comparison of our model with that of Ref. [21]
also yields the expression v(ρ) = v0 − 2

π
G(0, 1, 1, 0)ρ for

the phenomenological density-dependent swimming speed in
the latter model.

B. Forth-order-derivative model

The second model that we present contains up to four
derivatives per term. Its density current reads

Ji = (α1 + α2ρ + α3ρ
2)∂iρ

+ (α4 + α5ρ + α6ρ
2 + α7ρ

3 + α8ρ
4)∂i�ρ

+ (α9 + α10ρ + α11ρ
2 + α12ρ

3)(�ρ)∂iρ

+ (α13 + α14ρ + α15ρ
2 + α16ρ

3)(∂i∂ jρ)∂ jρ

+ (α17 + α18ρ + α19ρ
2)(∂ jρ)(∂ jρ)∂iρ (26)

and the constitutive equations for Pi and Qi j are given by

Pi = (β1 + β2ρ)∂iρ

+ (β3 + β4ρ + β5ρ
2 + β6ρ

3)∂i�ρ

+ (β7 + β8ρ + β9ρ
2)(�ρ)∂iρ

+ (β10 + β11ρ + β12ρ
2)(∂i∂ jρ)∂ jρ

+ (β13 + β14ρ)(∂ jρ)(∂ jρ)∂iρ (27)

and

Qi j = (γ1 + γ2ρ + γ3ρ
2)(3∂i∂ jρ + δi j�ρ)

+ (γ2 + 2γ3ρ)(−3(∂iρ)∂ jρ + δi j (∂kρ)∂kρ), (28)

respectively. Expressions for the coefficients α1, . . . , α19,
β1, . . . , β14, γ1, γ2, and γ3 can be found in the Appendix.
According to its form, this model can also be called a “phase
field model”. Neglecting all coefficients except for α1, α2,
α3, β1, and β2 would result in the second-order-derivative
model. The fourth-order-derivative model is the first reduced
model considered here, where the constitutive equation for
the nematic tensor Qi j does not vanish and it contributes to
the dynamics of the concentration field. Again, the model has
a similar form as the corresponding model for two spatial
dimensions, which is given by Eqs. (20) and (25)–(27) in
Ref. [50].

We compare our fourth-order-derivative model, which
is given by Eqs. (22) and (26)–(28), with the models of
Refs. [32,38,40,47]. All these models from the literature con-
sist only of a dynamic equation for the density field and do not
include equations for other order-parameter fields.

First, we compare our model with the general model of
Ref. [47], which is given by a continuity equation for the
density and the density current (2) in that work.4 Their model
is an out-of-equilibrium generalization of the Cahn-Hilliard
model and allows its coefficients to be density-dependent. A
comparison of their model with ours leads to the relations of

4The authors of Ref. [47] present their dynamic equation in two
equivalent forms, which are given by Eqs. (1) and (2) in that work,
and give relations between the coefficients of these different forms.
For convenience, we compare with the second of these forms.
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TABLE I. Relations of the coefficients α(ρ ), κ (ρ ), λ(ρ ), β(ρ ),
and ζ (ρ ) from the model given by a continuity equation for the
density with the density current (2) in Ref. [47] and the coef-
ficients α1, . . . , α19, β1, . . . , β14, γ1, γ2, and γ3 from the fourth-
order-derivative model (or “phase field model”) given by Eqs. (21)
and (26)–(28) in the present work.

Corresp. term in the
Relations of the coefficients model from Ref. [47]

α(ρ ) = −α1 − α2ρ − α3ρ
2 ∂iρ

κ (ρ ) = α4 + α5ρ + α6ρ
2

+ α7ρ
3 + α8ρ

4 ∂i�ρ

ζ (ρ ) = −α9 − α10ρ − α11ρ
2 − α12ρ

3 (�ρ )∂iρ

λ(ρ ) = − 1
2 (α13 + α14ρ + α15ρ

2

+ α16ρ
3) (∂i∂ jρ )∂ jρ

β(ρ ) = −α17 − α18ρ − α19ρ
2 (∂ jρ )(∂ jρ )∂iρ

β1, . . . , β14 = 0 –

γ1, γ2, γ3 = 0 –

the coefficients of both models that are listed in Table I. The
comparison shows that their model includes ours as a special
case and leads to expressions for their general coefficients in
terms of the density field and the predictive coefficients of
our model. These relations allow to combine the framework
of general thermodynamic variables of Ref. [47] with our
predictive model and thus to calculate, e.g., the binodal for
a system of ABPs in three spatial dimensions [47].

The second model we compare with is the continuum
theory given by Eqs. (10)–(13) in Ref. [38]. We neglect
the phenomenological term μrep of this model, which was
included to take excluded-volume interactions into account,
since it gives a contribution ∝ ρ5∂iρ in the density current
that is not allowed by the combination of gradient expansion
and QSA employed in the derivation of our model. We also
neglect the noise vector �� of the model of Ref. [38], since our
model is deterministic. The model of Ref. [38] can then be
identified as a limiting case of our model, which is obtained
when performing a nondimensionalization of our model and
assuming the relations that are given in Table II.

Third, we compare our model with the models AMB and
AMB+ presented in Refs. [32,40]. Both of these models can
be identified as limiting cases of our model. AMB+, which is
given by Eqs. (3), (5), and (6) in Ref. [32], can be obtained
from our model by performing a nondimensionalization and
assuming the relations given in Table III. The nondimension-
alization introduces a dimensionless density field φ = cφ (ρ −
ρ̄ ), where the constant cφ accounts for the nondimensionality
of φ and ρ̄ is a reference density. In AMB and AMB+, ρ̄

is chosen to be the mean-field density corresponding to the
critical point [32,40]. To keep AMB+ simple, the mobility M
in this model is considered to be independent of the density in
Ref. [32], but, as mentioned in that work, the mobility could
in principle depend on ρ and even its derivatives. Our model
can be written with such a mobility as well, if one considers
a tensorial mobility. Furthermore, AMB, which is given by
Eqs. (1)–(3) in Ref. [40], is a limiting case of the more general

TABLE II. The same as in Table I, but now for the model given
by Eqs. (10)–(13) in Ref. [38], where κ0 is a parameter of the model
and the characteristic length q0, characteristic time t0, and reference
density ρ0 stem from the nondimensionalization underlying this
model.

Corresp. term in the
Relations of the coefficients model from Ref. [38]

1 = t0
q2

0
α1 = − t0

3q2
0
ρ0α2 = t0

2q2
0
ρ2

0α3 ∂iρ

κ0 = − t0
q4

0
ρ0α5 = t0

3q4
0
ρ2

0α6 = − t0
3q4

0
ρ3

0α7

= t0
q4

0
ρ4

0α8
ρ∂i�ρ

κ0 = t0
q4

0
ρ2

0α10 = − t0
2q4

0
ρ3

0α11 = t0
q4

0
ρ4

0α12 (�ρ )∂iρ

α4, α9, α13, . . . , α19 = 0 –

β1, . . . , β14 = 0 –

γ1, γ2, γ3 = 0 –

AMB+ and therefore also included in our model as a limiting
case. AMB is obtained from AMB+ when setting ζ = 0
and therefore from our model when performing a nondimen-
sionalization, assuming the relations given in Table III, and
additionally setting α9 = α5.

C. Seventh-order low-density model

The third and last reduced model that we present is the
seventh-order low-density model. It considers terms up to a
total order in the density and derivatives of seven, i.e., it makes
use of the low-density approximation. The density current of
this model reads

Ji = (α1 + α2ρ + α3ρ
2)∂iρ + (α4 + α5ρ + α6ρ

2)∂i�ρ

+ (α9 + α10ρ)(�ρ)∂iρ + (α13 + α14ρ)(∂i∂ jρ)∂ jρ

+α17(∂ jρ)(∂ jρ)∂iρ + ε1∂i�2ρ (29)

TABLE III. The same as in Table I, but now for the model
AMB+ given by Eqs. (3), (5), and (6) in Ref. [32], where a, b,
K0, K1, ζ , λ, ρ̄, M, and cφ are parameters of the model and the
characteristic length q0 and characteristic time t0 stem from the
nondimensionalization underlying this model.

Corresp. term in the
Relations of the coefficients model from Ref. [32]

a = t0
α1−ρ̄2α3

q2
0M

∂iρ

b = t0α3
3q2

0c2
φ

M
, α2 + 2ρ̄α3 = 0 ∂i(ρ3)

K0 = −t0
α4+ρ̄α5

q4
0M

∂i�ρ

K1 = − t0α5
2q4

0cφM
ρ∂i�ρ, (∂i∂ jρ )∂ jρ

ζ = t0
q4

0cφM
(α5 − α9) (�ρ )∂iρ

λ = t0
α13−2α5
2q4

0cφM
(∂i∂ jρ )∂ jρ

α5, . . . , α8, α10, α11,

α12, α14, . . . , α19 = 0 –

β1, . . . , β14 = 0 –

γ1, γ2, γ3 = 0 –
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with the coefficient

ε1 = v2
0

48600D3
R

(
45DT + 2v2

0

DR

)2

− DTv4
0

1620D4
R

(30)

and the constitutive equations for Pi and Qi j are given by

Pi = (β1 + β2ρ)∂iρ + (β3 + β4ρ + β5ρ
2)∂i�ρ

+ (β7 + β8ρ)(�ρ)∂iρ + (β10 + β11ρ)(∂i∂ jρ)∂ jρ

+β13(∂ jρ)(∂ jρ)∂iρ − 3ε1

4πv0
∂i�2ρ (31)

and

Qi j = (γ1 + γ2ρ)(3∂i∂ jρ + δi j�ρ)

+ γ2(−3(∂iρ)∂ jρ + δi j (∂kρ)∂kρ), (32)

respectively. This model is a reduced fourth-order-derivative
model with an additional term ∝ ∂i�2ρ. Also this model has
a similar form as the corresponding model for two spatial
dimensions, which is given by Eqs. (20) and (28)–(31) in
Ref. [50].

The term ∝ ∂i�2ρ with its fifth order in derivatives
(leading to a contribution of sixth order in derivatives in
the dynamic equation for ρ) is of particular importance,
since it allows the seventh-order low-density model to de-
scribe crystalline states on a particle-resolving length scale.
Therefore, the model can also be called a “PFC model”.
There exist already some “active PFC models” that describe
crystals of ABPs [56–60], but they are inherently different
from our model proposed here. In contrast to our model,
the active PFC models from the literature are applicable
only close to thermodynamic equilibrium [54]. Furthermore,
they focus on particles in two spatial dimensions, where
the two-dimensional manifold on which the particles move
is planar in Refs. [56–59] and spherical in Ref. [60]. To
the best of our knowledge, there presently exists no ac-
tive PFC model for ABPs in three spatial dimensions. This
means that our seventh-order low-density model, given by
Eqs. (22) and (29)–(32), constitutes a reasonable starting
point for investigating the nonequilibrium dynamics of active
crystals in three spatial dimensions, where one can expect
to observe even more positional and orientational patterns
than those that have been found for lower-dimensional active
crystals [77].

IV. APPLICATIONS

The general field theory (13) and already the simpler
models presented in Sec. III have many possible applications.
To present two examples, in the following, we apply them
to predict a spinodal condition describing the onset of MIPS
and an expression for the density-dependent mean swimming
speed of the interacting particles.

A. Predictions for motility-induced phase separation

To obtain a spinodal condition that describes the onset
of MIPS as a function of the Péclet number Pe, which is a
measure for the activity of the ABPs, and the particles’ mean
packing density � [21,35,39,44,50], we consider the second-
order-derivative model and perform a linear stability analysis

of the dynamic equation for the concentration field (22). This
yields the spinodal condition

D(ρ) = 0, (33)

where D(ρ) is given by Eq. (23). Similar as for the cor-
responding spinodal condition for two spatial dimensions,
which is given by Eq. (66) in Ref. [50], there are three differ-
ent coefficients, here given by G(1, 0, 0, 0), G(0, 1, 1, 0), and
G(0, 1, 0, 1), also in the spinodal condition for three spatial
dimensions (33). Simulation results for MIPS of ABPs in
three spatial dimensions can be found in Refs. [41,64,66].
Reference [66] provides also an analytic representation of the
pair-distribution function of ABPs that interact via the purely
repulsive Weeks-Chandler-Andersen (WCA) potential, which
is a standard choice for the pair-interaction potential of ABPs
in simulations and well in line with the behavior of ABPs
observed in experiments [36]. When denoting the diameter of
the ABPs with σ and introducing the interaction strength ε,
the WCA potential reads

U2(r) =
{

4ε
((

σ
r

)12 − (
σ
r

)6) + ε, if r < 2
1
6 σ,

0, else.
(34)

For the remainder of this work, we consider this interaction
potential, which allows us to use the analytic representation
of the pair-distribution function from Ref. [66]. The particular
values of the three different coefficients of the spinodal con-
dition (33) are then approximately given by

G(1, 0, 0, 0) = 3.31 + 1.01e4.07�, (35)

G(0, 1, 1, 0) = 1.79 + 0.561�, (36)

G(0, 1, 0, 1) = −1.63, (37)

where � = ρσ 3π/6 is the mean packing density of the
system. G(1, 0, 0, 0) follows an exponential function with
a constant offset, which applies also to the corresponding
coefficient in the model for two spatial dimensions [50].
Interestingly, G(0, 1, 1, 0) and G(0, 1, 0, 1) are given by a
linear function and a constant, whereas the corresponding
coefficients in two spatial dimensions follow a constant and
a linear function [50], respectively. This difference will be
further addressed in Sec. IV B.

By using Eqs. (35)–(37) as well as the relations DT =
σ 2/τLJ with the Lennard-Jones time τLJ = σ 2/(βDTε) and
DR = 3DT/σ 2, which apply for spherical particles, it is possi-
ble to plot the spinodal condition (33) as a function of the Pé-
clet number Pe = v0σ/DT and mean packing density �. The
theoretical prediction and corresponding results of Brownian
dynamics simulations from Ref. [66] are shown in Fig. 2. In
the simulations, the Péclet number was varied via DT, keeping
the bare propulsion speed constant at v0 = 24σ/τLJ, and the
quantities σ , τLJ, and ε were used as units for length, time, and
energy, respectively. A comparison of the analytic prediction
and simulation data shows a good agreement for packing
densities � < 0.6. However, at higher packing densities � �
0.6 the agreement decreases more and more. A possible

033241-7



JENS BICKMANN AND RAPHAEL WITTKOWSKI PHYSICAL REVIEW RESEARCH 2, 033241 (2020)

FIG. 2. State diagram showing the characteristic length Lc cal-
culated from simulation data [66] as a function of the Péclet num-
ber Pe and packing density � of the system. Large values of Lc

correspond to clusters originating from MIPS and low values to a
homogeneous state. Our predictions for the spinodal and associated
critical point (Pec = 67.9, �c = 0.584) are also shown. Furthermore,
the random-loose-packing density �rlp = 0.58 [78] and the random-
close-packing density �rcp = 0.64 [79] for hard spheres in three
spatial dimensions are indicated.

explanation is that at such high densities, which are larger than
the random-loose-packing density �rlp = 0.58 [78] and close
to or larger than the random-close-packing density �rcp =
0.64 [79] of hard spheres in three spatial dimensions, the
characteristic length Lc that is used in Fig. 2 to identify MIPS
is no longer suitable to distinguish clusters originating from
MIPS from structure formation due to random clustering,
percolation, and solidification phenomena. Another possible
reason for the reduced agreement at high packing densities are
the approximations involved in the derivation of the spinodal
condition from the general field theory (13). Due to the
truncation of the expansions in Eq. (13), interactions are taken
only approximately into account, although they dominate the
dynamics at high packing densities. Moreover, the analytic
representation of the pair-distribution function from Ref. [66]
and the resulting approximate expressions (35)–(37) are less
accurate for high than for low packing densities.

As a further result, we are able to give a prediction
for the critical point. According to our equations, the co-
ordinates of the critical point are given by Pec = 67.9 and
�c = 0.584. To the best of our knowledge, there are no
other analytic predictions for the spinodal or critical point of
MIPS in systems of ABPs in three spatial dimensions in the
literature with whom we could compare. Comparing instead
with the available results for ABPs in two spatial dimen-
sions, where the critical point is at (Pec,2D ≈ 40,�c,2D ≈
0.6) [50,80], one finds that MIPS requires a larger activity but
no larger overall particle density in three spatial dimensions
than in two spatial dimensions, which is in line with the
findings described in Ref. [64].

B. Density-dependent mean swimming speed

The microscopic parameter v0 denotes the bare propulsion
speed of a single ABP or such particles in a very dilute system,
where particle interactions can be neglected. If the interactions
between the ABPs become important, the swimming speed
reduces for increasing particle density ρ. The density depen-
dence of the swimming speed v[ρ] is an important quantity
as it allows for conclusions on the particle interactions and
it is known that a sufficiently fast decrease of the swim-
ming speed with the local density can lead to the emergence
of MIPS [20,21]. One can determine the density-dependent
swimming speed v[ρ] from Eq. (5) by performing an orien-
tational expansion, a QSA, neglecting terms of second and
higher orders in derivatives, and extracting the contribution to
the dynamics of 	 of the form �∇ · (v[ρ]û	(�r, û, t )). We find
for the density-dependent swimming speed up to zeroth order
in derivatives the expression

v(ρ) = v0 − 2

π
G(0, 110)ρ. (38)

This result gives a predictive relation for the phenomenolog-
ical parameter v of the model for three spatial dimensions
proposed in Ref. [21]. At a first glance, our result for the
density-dependent swimming speed seems to decrease lin-
early with the density, as the result for v(ρ) in two spatial
dimensions from Ref. [50] does. However, for the WCA in-
teraction potential considered here, the coefficient G(0, 110)
has a dependence on ρ. Inserting the expression (36) into
Eq. (38), using the proportionality of ρ and �, and setting
v0 = 24σ/τLJ (see Sec. IV A) yields

v(�) ≈ v0(1 − 1.139� − 0.357�2). (39)

This density dependence of the swimming speed is to first
order a linear decrease, but interestingly we find a notable
negative quadratic correction that becomes relevant for high
densities. The same behavior was predicted in Ref. [65],
which is a work based on the Green-Kubo approach. Their
numerical data are in excellent agreement with our prediction
(see Fig. 3).

V. CONCLUSIONS

We derived a predictive local field theory for the collective
dynamics of spherical ABPs in three spatial dimensions.
The derived theory is rather general and highly accurate and
includes order parameters and derivatives up to infinite orders.
Alongside the general theory we provided less complex re-
duced models that can be favorable for specific applications.
These special models contain various popular models from
the literature, such as AMB [40] and AMB+ [32], as limiting
cases, which supports the validity of the general theory. Via
a comparison we were able to obtain analytic expressions
for the often phenomenological coefficients of the models
from the literature, thus linking these coefficients to the mi-
croscopic parameters of the considered system. The applica-
bility and accuracy of our theory was further demonstrated
by addressing specific applications. We derived an analytic
expression for the density-dependent mean swimming speed
of ABPs in a homogeneous state and found an interesting
high-density correction that seems to be of relevance solely
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FIG. 3. Comparison of our prediction (39) for the mean swim-
ming speed v(�) as a function of the particles’ mean packing
density � and corresponding results from Ref. [65] for the linear-
response limit and three larger values of v0. The close-packing
density for hard spheres in three spatial dimensions is denoted
by �cp = π/(3

√
2) ≈ 0.74.

for three-dimensional systems. This correction extends the
usually considered linear density-dependence and is con-
firmed by results from the literature that were obtained by
a different analytic approach [65]. Furthermore, we derived
an analytic expression for the spinodal describing the onset
of MIPS in a system of spherical ABPs in three spatial
dimensions. A comparison of our spinodal condition with
recent simulation results for particles interacting via a Weeks-
Chandler-Andersen potential from the literature [66] showed
a good agreement. To the best of our knowledge, this spinodal
condition constitutes the first predictive analytic expression
for the onset of MIPS in a system of ABPs with three spatial
dimensions. Our spinodal condition also yielded a prediction
for the critical point associated with the spinodal for which
no other estimates seem to exist in the literature so far. In
the future, detailed numerical studies of ABP systems in three
spatial dimensions should give good estimates for the critical
point, making it possible to confirm our prediction and thus
to provide additional support for the validity of the general
theory. Further tests of the general theory or reduced models
are possible by solving their field equations numerically and
comparing the solutions with the results of corresponding

Brownian dynamics simulations, where the infinite number
of terms in the general theory can be handled, e.g., via a
convergence analysis.

The general field theory and simpler reduced models pre-
sented in this work can be applied to study a broad range of
further far-from-equilibrium effects in systems of ABPs. With
the fourth-order-derivative model one could, e.g., investigate
the clustering and formation of interfaces in the dynamics of
ABPs at high densities, which is not fully captured by AMB
and AMB+ as they do not include all potentially relevant
terms with a high order in the density field. The seventh-
order low-density model could be used to study effects like
solidification and crystallization in systems of ABPs. This
model can be seen as an extension of the traditional active
PFC model [56] towards far-from-equilibrium contributions
and three spatial dimensions. One can expect that many fas-
cinating findings are still to discover in solid states of ABPs,
especially in three spatial dimensions. As in the case of two
spatial dimensions [50], an application of our reduced models
to systems of ABPs on curved manifolds like a sphere [60] is
straightforwardly possible, since the density currents in these
models contain only a scalar order-parameter field where the
occurring differential operators can easily be adapted to a
curved manifold. If needed, also more complex and accurate
models can be derived from our general field theory by
omitting some of the approximations made for simplification.
Finally, one could extend our general field theory towards
even more complex systems. Important examples of such
systems are mixtures of different types of active and passive
particles [44,59,81] and active particles with nonspherical
shapes [52,82] as in active liquid crystals [83–85]. Since
controlling the dynamics of active colloidal particles is a
highly relevant topic when envisaging applications of active
particles in fields like medicine and materials science, an
extension of the field theory towards the inclusion of external
fields will be a further important quest for the future.
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APPENDIX: COEFFICIENTS FOR THE FOURTH-ORDER-DERIVATIVE MODEL

In this Appendix, we give explicit expressions for the coefficients that occur in Eqs. (26)–(32). For simplicity, the rotational
relaxation time τ = 1/DR is introduced.

The coefficients occurring in Eqs. (26) and (29) are given by

α1 = DT + 1

6
τ 2v2

0, (A1)

α2 = − 1

3π
τv0(G(0, 1, 0, 1) + 3G(0, 1, 1, 0)) + 2

3π
G(1, 0, 0, 0), (A2)

α3 = 4

3π2
τG(0, 1, 1, 0)(G(0, 1, 0, 1) + G(0, 1, 1, 0)), (A3)

α4 = 1

540
τ 2v2

0

(
45DT + 2τv2

0

)
, (A4)
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α5 = 1

270π
(τv0(−45DTτ (G(0, 1, 0, 1) + 3G(0, 1, 1, 0)) + τv0(τv0(−2G(0, 1, 0, 1) − 10G(0, 1, 1, 0) +

√
2(G(0, 1, 1, 2)

+ G(0, 1, 2, 1))) − 5
√

3G(1, 0, 1, 1) + 4G(1, 2, 0, 2) + 2
√

30G(1, 2, 1, 1) + 4G(1, 2, 2, 0)) − 27(G(2, 1, 0, 1)

+ G(2, 1, 1, 0))) + 18G(3, 0, 0, 0)), (A5)

α6 = 1

135π2
τ (90DTτG(0, 1, 1, 0)(G(0, 1, 0, 1) + G(0, 1, 1, 0)) + τ 2v2

0 (18G(0, 1, 1, 0)2

+ G(0, 1, 1, 2)G(0, 1, 2, 1) − 4
√

2(G(0, 1, 1, 2) + G(0, 1, 2, 1))G(0, 1, 1, 0) + G(0, 1, 0, 1)

× (8G(0, 1, 1, 0) −
√

2(G(0, 1, 1, 2) + G(0, 1, 2, 1)))) + τv0(G(0, 1, 1, 0)

× (15
√

3G(1, 0, 1, 1) − 12G(1, 2, 0, 2) − 6
√

30G(1, 2, 1, 1) − 8G(1, 2, 2, 0))

+ G(0, 1, 0, 1)(5
√

3G(1, 0, 1, 1) − 2
√

30G(1, 2, 1, 1) − 4G(1, 2, 2, 0))

+ 2
√

2(G(0, 1, 2, 1)G(1, 2, 0, 2) + G(0, 1, 1, 2)G(1, 2, 2, 0))) + 8G(1, 2, 0, 2)

× G(1, 2, 2, 0) + 54G(0, 1, 1, 0)G(2, 1, 0, 1) + 27(G(0, 1, 0, 1) + G(0, 1, 1, 0))G(2, 1, 1, 0)), (A6)

α7 = 2

135π3
τ 2(−14τv0G(0, 1, 1, 0)3 + G(0, 1, 1, 0)2(5τv0(

√
2G(0, 1, 1, 2) +

√
2G(0, 1, 2, 1) − 2G(0, 1, 0, 1))

− 10
√

3G(1, 0, 1, 1) + 8G(1, 2, 0, 2) + 4
√

30G(1, 2, 1, 1) + 4G(1, 2, 2, 0)) + G(0, 1, 1, 0)(3τv0(
√

2G(0, 1, 0, 1)

× (G(0, 1, 1, 2) + G(0, 1, 2, 1)) − G(0, 1, 1, 2)G(0, 1, 2, 1)) − 2
√

2(2G(0, 1, 2, 1)G(1, 2, 0, 2)

+ G(0, 1, 1, 2)G(1, 2, 2, 0)) + G(0, 1, 0, 1)(4
√

30G(1, 2, 1, 1) + 4G(1, 2, 2, 0) − 10
√

3G(1, 0, 1, 1)))

− G(0, 1, 0, 1)G(0, 1, 1, 2)(τv0G(0, 1, 2, 1) + 2
√

2G(1, 2, 2, 0))), (A7)

α8 = 8

135π4
τ 3G(0, 1, 1, 0)(G(0, 1, 0, 1) + G(0, 1, 1, 0))(−

√
2G(0, 1, 1, 0)(G(0, 1, 1, 2) + G(0, 1, 2, 1))

+ 2G(0, 1, 1, 0)2 + G(0, 1, 1, 2)G(0, 1, 2, 1)), (A8)

α9 = − 1

1080π
τv0(20τ (18DT + τv2

0 )G(0, 1, 1, 0) + τv0(τv0(30G(0, 1, 0, 1) + 4
√

2G(0, 1, 1, 2)

− 5
√

2G(0, 1, 2, 1)) − 60G(1, 0, 0, 0) − 12
√

30G(1, 2, 1, 1) − 20G(1, 2, 2, 0)) + 72G(2, 1, 1, 0)), (A9)

α10 = 1

540π2
τ (72G(0, 1, 1, 0)(5DTτ (3G(2, 1, 0, 1) + G(0, 1, 0, 1) + G(0, 1, 1, 0))) + τ 2v2

0 (G(0, 1, 0, 1)((2
√

2G(0, 1, 1, 2)

− 7
√

2G(0, 1, 2, 1)) + 170G(0, 1, 1, 0)) + 30G(0, 1, 0, 1)2 + 64G(0, 1, 1, 0)2

− 2G(0, 1, 2, 1)2 + 3
√

2G(0, 1, 1, 0)(2G(0, 1, 1, 2) − 9G(0, 1, 2, 1))) − 2τv0(4
√

2G(0, 1, 2, 1)

× (G(1, 2, 2, 0) − G(1, 2, 0, 2)) + G(0, 1, 0, 1)(30G(1, 0, 0, 0) + 3
√

30G(1, 2, 1, 1)

+ 14G(1, 2, 2, 0)) + G(0, 1, 1, 0)(90G(1, 0, 0, 0) − 20
√

3G(1, 0, 1, 1) + 29
√

30G(1, 2, 1, 1)

+ 24G(1, 2, 0, 2) + 18G(1, 2, 2, 0))) + 16G(1, 2, 2, 0)(2G(1, 2, 0, 2) − G(1, 2, 2, 0))

+ 36G(2, 1, 1, 0)(G(0, 1, 0, 1) + 3G(0, 1, 1, 0))), (A10)

α11 = 1

135π3
τ 2(G(0, 1, 1, 0)2(τv0((

√
2G(0, 1, 1, 2) + 19

√
2G(0, 1, 2, 1)) − 142G(0, 1, 0, 1))

+ 60G(1, 0, 0, 0) − 20
√

3G(1, 0, 1, 1) + 32G(1, 2, 0, 2) + 26
√

30G(1, 2, 1, 1) + 8G(1, 2, 2, 0)) − 34τv0G(0, 1, 1, 0)3

+ G(0, 1, 1, 0)(τv0(−60G(0, 1, 0, 1)2 + 3
√

2G(0, 1, 0, 1)(G(0, 1, 1, 2) + 5G(0, 1, 2, 1)) + G(0, 1, 2, 1)(4G(0, 1, 2, 1)

− 3G(0, 1, 1, 2))) + 2(G(0, 1, 0, 1)(30G(1, 0, 0, 0) − 10
√

3G(1, 0, 1, 1) + 7
√

30G(1, 2, 1, 1) + 8G(1, 2, 2, 0))

+
√

2G(1, 2, 2, 0)(G(0, 1, 1, 2) + 4G(0, 1, 2, 1)) − 8
√

2G(0, 1, 2, 1)G(1, 2, 0, 2))) − G(0, 1, 0, 1)G(0, 1, 1, 2)

× (τv0G(0, 1, 2, 1) + 2
√

2G(1, 2, 2, 0))), (A11)

033241-10
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α12 = 4

135π4
τ 3G(0, 1, 1, 0)(G(0, 1, 1, 0)2(36G(0, 1, 0, 1) −

√
2(G(0, 1, 1, 2) + 4G(0, 1, 2, 1)))

+ 6G(0, 1, 1, 0)3 + G(0, 1, 1, 0)(−3
√

2G(0, 1, 0, 1)(G(0, 1, 1, 2) + 2G(0, 1, 2, 1))

+ 30G(0, 1, 0, 1)2 + G(0, 1, 2, 1)(G(0, 1, 1, 2) − 2G(0, 1, 2, 1))) + 3G(0, 1, 0, 1)G(0, 1, 1, 2)G(0, 1, 2, 1)), (A12)

α13 = 1

1080π
τv0(−60τ (12DT + τv2

0 )G(0, 1, 1, 0) + τv0(τv0(12
√

2G(0, 1, 1, 2) + 35
√

2G(0, 1, 2, 1) − 30G(0, 1, 0, 1))

+ 60G(1, 0, 0, 0) − 40
√

3G(1, 0, 1, 1) + 4
√

30G(1, 2, 1, 1) + 140G(1, 2, 2, 0)) − 144G(2, 1, 1, 0)), (A13)

α14 = 1

540π2
τ (720DTτG(0, 1, 1, 0)(G(0, 1, 0, 1) + G(0, 1, 1, 0)) + 48G(1, 2, 2, 0)2 + 64G(1, 2, 0, 2)G(1, 2, 2, 0)

+ 432G(0, 1, 1, 0)G(2, 1, 0, 1) + 72G(0, 1, 0, 1)G(2, 1, 1, 0) + 216G(0, 1, 1, 0)G(2, 1, 1, 0) + τ 2v2
0 (30G(0, 1, 0, 1)2

+ G(0, 1, 0, 1)(210G(0, 1, 1, 0) − 6
√

2G(0, 1, 1, 2) − 29
√

2G(0, 1, 2, 1)) + 208G(0, 1, 1, 0)2 + 2G(0, 1, 2, 1)

× (10G(0, 1, 1, 2) + 3G(0, 1, 2, 1)) − 3
√

2G(0, 1, 1, 0)(26G(0, 1, 1, 2) + 63G(0, 1, 2, 1)))

− 2τv0(G(0, 1, 0, 1)(30G(1, 0, 0, 0) − 10
√

3G(1, 0, 1, 1) +
√

30G(1, 2, 1, 1)

+ 58G(1, 2, 2, 0)) + G(0, 1, 1, 0)(90G(1, 0, 0, 0) + 48G(1, 2, 0, 2) − 110
√

3G(1, 0, 1, 1) + 23
√

30G(1, 2, 1, 1)

− 20
√

2G(0, 1, 1, 2)G(1, 2, 2, 0) − 4
√

2G(0, 1, 2, 1)(2G(1, 2, 0, 2) + 3G(1, 2, 2, 0)) + 206G(1, 2, 2, 0)))), (A14)

α15 = − 1

135π3
τ 2(τv0(60G(0, 1, 1, 0)G(0, 1, 0, 1)2 + G(0, 1, 0, 1)(194G(0, 1, 1, 0)2 −

√
2G(0, 1, 1, 0)(21G(0, 1, 1, 2)

+ 65G(0, 1, 2, 1)) + 7G(0, 1, 1, 2)G(0, 1, 2, 1)) + G(0, 1, 1, 0)(118G(0, 1, 1, 0)2 −
√

2G(0, 1, 1, 0)(67G(0, 1, 1, 2)

+ 153G(0, 1, 2, 1)) + G(0, 1, 2, 1)(41G(0, 1, 1, 2) + 12G(0, 1, 2, 1)))) − 2G(0, 1, 0, 1)(G(0, 1, 1, 0)(30G(1, 0, 0, 0)

− 30
√

3G(1, 0, 1, 1) + 9
√

30G(1, 2, 1, 1) + 56G(1, 2, 2, 0)) − 7
√

2G(0, 1, 1, 2)G(1, 2, 2, 0))

− 2G(0, 1, 1, 0)(30G(1, 0, 0, 0) + 32G(1, 2, 0, 2) − 50
√

3G(1, 0, 1, 1) + 11
√

30G(1, 2, 1, 1) + 68G(1, 2, 2, 0))

+ 2
√

2G(0, 1, 1, 0)(13G(0, 1, 1, 2)G(1, 2, 2, 0) + 4G(0, 1, 2, 1)(4G(1, 2, 0, 2) + 3G(1, 2, 2, 0)))),

+ 3G(1, 2, 2, 0)) + 206G(1, 2, 2, 0)))), (A15)

α16 = 4

135π4
τ 3G(0, 1, 1, 0)(30G(0, 1, 1, 0)G(0, 1, 0, 1)2 + G(0, 1, 0, 1)(−

√
2G(0, 1, 1, 0)(11G(0, 1, 1, 2) + 32G(0, 1, 2, 1))

+ 52G(0, 1, 1, 0)2 + 11G(0, 1, 1, 2)G(0, 1, 2, 1)) + G(0, 1, 1, 0)(22G(0, 1, 1, 0)2 −
√

2G(0, 1, 1, 0)(17G(0, 1, 1, 2)

+ 38G(0, 1, 2, 1)) + G(0, 1, 2, 1)(17G(0, 1, 1, 2) + 6G(0, 1, 2, 1)))), (A16)

α17 = 1

135π2
τ (τ 2v2

0 (14G(0, 1, 1, 0)2 + 2G(0, 1, 1, 0)(15G(0, 1, 0, 1) − 3
√

2G(0, 1, 1, 2)

− 10
√

2G(0, 1, 2, 1)) + G(0, 1, 2, 1)(2G(0, 1, 1, 2) + G(0, 1, 2, 1))) + 2τv0(2
√

2G(1, 2, 2, 0)(G(0, 1, 1, 2)

+ G(0, 1, 2, 1)) − G(0, 1, 1, 0)(15G(1, 0, 0, 0) − 10
√

3G(1, 0, 1, 1) + 4
√

30G(1, 2, 1, 1)

+ 20G(1, 2, 2, 0))) + 8G(1, 2, 2, 0)2), (A17)

α18 = 2

135π3
τ 2(−30τv0G(0, 1, 1, 0)3 + G(0, 1, 1, 0)2(τv0(21

√
2G(0, 1, 1, 2) + 59

√
2G(0, 1, 2, 1)

− 104G(0, 1, 0, 1)) + 30G(1, 0, 0, 0) − 30
√

3G(1, 0, 1, 1) + 12
√

30G(1, 2, 1, 1) + 16G(1, 2, 0, 2) + 44G(1, 2, 2, 0))

− G(0, 1, 1, 0)(τv0(30G(0, 1, 0, 1)2 −
√

2G(0, 1, 0, 1)(3G(0, 1, 1, 2) + 17G(0, 1, 2, 1)) + 3G(0, 1, 2, 1)

× (5G(0, 1, 1, 2) + 2G(0, 1, 2, 1))) − 2G(0, 1, 0, 1)(−5
√

3G(1, 0, 1, 1) + 15G(1, 0, 0, 0) + 2
√

30G(1, 2, 1, 1)

+ 14G(1, 2, 2, 0)) + 8
√

2G(0, 1, 2, 1)G(1, 2, 0, 2) + 6
√

2G(1, 2, 2, 0)(G(0, 1, 1, 2) + 2G(0, 1, 2, 1)))

− G(0, 1, 0, 1)G(0, 1, 1, 2)(τv0G(0, 1, 2, 1) + 2
√

2G(1, 2, 2, 0))), (A18)

033241-11
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α19 = 16

135π4
τ 3G(0, 1, 1, 0)(G(0, 1, 1, 0)2(19G(0, 1, 0, 1) − 2

√
2(2G(0, 1, 1, 2) + 5G(0, 1, 2, 1))) + 4G(0, 1, 1, 0)3

+ G(0, 1, 1, 0)(15G(0, 1, 0, 1)2 − 2
√

2G(0, 1, 0, 1)(G(0, 1, 1, 2) + 4G(0, 1, 2, 1)) + 2G(0, 1, 2, 1)(2G(0, 1, 1, 2)

+ G(0, 1, 2, 1))) + 2G(0, 1, 0, 1)G(0, 1, 1, 2)G(0, 1, 2, 1)). (A19)

The coefficients occurring in Eqs. (27) and (31) are given by

β1 = − 1

8π
τv0, (A20)

β2 = 1

2π2
τG(0, 1, 1, 0), (A21)

β3 = − 1

720π
τ 2v0

(
45DT + 2τv2

0

)
, (A22)

β4 = 1

360π2
τ (τv0(τv0(8G(0, 1, 1, 0) −

√
2G(0, 1, 1, 2) −

√
2G(0, 1, 2, 1)) − 2

√
30G(1, 2, 1, 1) + 5

√
3G(1, 0, 1, 1)

− 4G(1, 2, 2, 0)) + 90DTτG(0, 1, 1, 0) + 27G(2, 1, 1, 0)), (A23)

β5 = 1

180π3
τ 2(G(0, 1, 1, 0)(3

√
2τv0(G(0, 1, 1, 2) + G(0, 1, 2, 1)) − 10

√
3G(1, 0, 1, 1) + 4G(1, 2, 2, 0)+ 4

√
30G(1, 2, 1, 1))

− G(0, 1, 1, 2)(τv0G(0, 1, 2, 1) + 2
√

2G(1, 2, 2, 0)) − 10τv0G(0, 1, 1, 0)2), (A24)

β6 = 1

45π4
τ 3G(0, 1, 1, 0)(2G(0, 1, 1, 0)2 −

√
2G(0, 1, 1, 0)(G(0, 1, 1, 2) + G(0, 1, 2, 1)) + G(0, 1, 1, 2)G(0, 1, 2, 1)),

(A25)

β7 = 1

1440π2
τ (20τ (18DT + τv2

0 )G(0, 1, 1, 0) + τv0(τv0(2
√

2G(0, 1, 1, 2) − 7
√

2G(0, 1, 2, 1) + 30G(0, 1, 0, 1))

− 6
√

30G(1, 2, 1, 1) − 60G(1, 0, 0, 0) − 28G(1, 2, 2, 0)) + 36G(2, 1, 1, 0)), (A26)

β8 = 1

360π3
τ 2(G(0, 1, 1, 0)(3τv0(

√
2G(0, 1, 1, 2) + 5

√
2G(0, 1, 2, 1) − 20G(0, 1, 0, 1)) + 60G(1, 0, 0, 0)

− 20
√

3G(1, 0, 1, 1) + 14
√

30G(1, 2, 1, 1) + 16G(1, 2, 2, 0)) − G(0, 1, 1, 2)(τv0G(0, 1, 2, 1)

+ 2
√

2G(1, 2, 2, 0)) − 22τv0G(0, 1, 1, 0)2), (A27)

β9 = 1

30π4
τ 3G(0, 1, 1, 0)(G(0, 1, 1, 0)(10G(0, 1, 0, 1) −

√
2G(0, 1, 1, 2) −

√
22G(0, 1, 2, 1)) + 2G(0, 1, 1, 0)2

+ G(0, 1, 1, 2)G(0, 1, 2, 1)), (A28)

β10 = 1

1440π2
τ (60τ (12DT + τv2

0 )G(0, 1, 1, 0) + τv0(τv0(30G(0, 1, 0, 1) − 29
√

2G(0, 1, 2, 1)) − 6
√

2G(0, 1, 1, 2)

+ 20
√

3G(1, 0, 1, 1) − 60G(1, 0, 0, 0) − 2
√

30G(1, 2, 1, 1) − 116G(1, 2, 2, 0)) + 72G(2, 1, 1, 0)), (A29)

β11 = 1

360π3
τ 2(G(0, 1, 1, 0)(τv0(21

√
2G(0, 1, 1, 2) + 65

√
2G(0, 1, 2, 1) − 60G(0, 1, 0, 1)) − 60

√
3G(1, 0, 1, 1)

+ 18
√

30G(1, 2, 1, 1) + 60G(1, 0, 0, 0) + 112G(1, 2, 2, 0)) − 74τv0G(0, 1, 1, 0)2 − 7G(0, 1, 1, 2)(τv0G(0, 1, 2, 1)

+ 2
√

2G(1, 2, 2, 0))), (A30)

β12 = 1

90π4
τ 3G(0, 1, 1, 0)(G(0, 1, 1, 0)(−11

√
2G(0, 1, 1, 2) − 32

√
2G(0, 1, 2, 1) + 30G(0, 1, 0, 1)) + 22G(0, 1, 1, 0)2

+ 11G(0, 1, 1, 2)G(0, 1, 2, 1)), (A31)

β13 = 1

180π3
τ 2(G(0, 1, 1, 0)(τv0(3

√
2G(0, 1, 1, 2) + 17

√
2G(0, 1, 2, 1) − 30G(0, 1, 0, 1)) + 30G(1, 0, 0, 0)

− 10
√

3G(1, 0, 1, 1) + 4
√

30G(1, 2, 1, 1) + 28G(1, 2, 2, 0)) − 14τv0G(0, 1, 1, 0)2 − G(0, 1, 1, 2)(τv0G(0, 1, 2, 1)

+ 2
√

2G(1, 2, 2, 0))), (A32)
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β14 = 2

45π4
τ 3G(0, 1, 1, 0)(G(0, 1, 1, 0)(15G(0, 1, 0, 1) − 2

√
2G(0, 1, 1, 2) − 8

√
2G(0, 1, 2, 1)) + 4G(0, 1, 1, 0)2

+ 2G(0, 1, 1, 2)G(0, 1, 2, 1)). (A33)

The coefficients occurring in Eqs. (28) and (32) are given by

γ1 = 1

144π
τ 2v2

0, (A34)

γ2 = − 1

144π2
τ (τv0(6G(0, 1, 1, 0) −

√
2G(0, 1, 2, 1)) − 4G(1, 2, 2, 0)), (A35)

γ3 = 1

36π3
τ 2G(0, 1, 1, 0)(2G(0, 1, 1, 0) −

√
2G(0, 1, 2, 1)). (A36)
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