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Prospecting chiral multisite interactions in prototypical magnetic systems
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Atomistic spin models have found enormous success in addressing the properties of magnetic materials,
grounded on the identification of the relevant underlying magnetic interactions. For instance, the huge
development in the field of magnetic skyrmions and other noncollinear magnetic structures is largely due
to our understanding of the chiral Dzyaloshinskii-Moriya interaction. Recently, various works have proposed
new types of chiral interactions, with seemingly different forms, but the big picture is still missing. Here,
we present a systematic construction of a generalized spin model containing isotropic and chiral multisite
interactions. These are motivated by a microscopic model that incorporates local spin moments and the spin-orbit
interaction, and their symmetry properties are established. We show that the chiral interactions arise solely from
the spin-orbit interaction and that the multisite interactions do not have to follow Moriya’s rules, unlike the
Dzyaloshinskii-Moriya and chiral biquadratic interactions. The chiral multisite interactions do not vanish as a
result of inversion symmetry and comply with a generalized Moriya rule: If all sites connected by the interaction
lie in the same mirror plane, the chiral interaction vector must be perpendicular to this plane. We then illustrate
our theoretical considerations with density functional theory calculations for prototypical magnetic systems.
These are triangular trimers built out of Cr, Mn, Fe, and Co adatoms on the Re(0001), Pt(111), and Au(111)
surfaces, for which C3v symmetry applies, and Cr and Fe square tetramers on Pt(001) with C4v symmetry.
The multisite interactions are substantial in magnitude and cannot be neglected when comparing the energy of
different magnetic structures. Finally, we discuss the recent literature in light of our findings and clarify several
unclear or confusing points.

DOI: 10.1103/PhysRevResearch.2.033240

I. INTRODUCTION

Atomistic spin models provide the foundation to under-
stand the properties of magnetic materials: Complex mag-
netic ground-state structures, elementary excitations (spin
waves), solitons whether topologically trivial or nontrivial
(domain walls and magnetic skyrmions, respectively), thermal
effects, and real-time dynamics [1]. In comparison to the full
quantum-mechanical description, this type of model aims at
a coarse-grained, low-energy description of a given material,
by assuming that magnetism is well described by assigning
rigid magnetic moments (spins) to specific spatial positions
(sites) and specifying how these spins interact among each
other (magnetic interactions). Uncovering a new type of mag-
netic interaction often leads to novel magnetic states (such as
quantum spin liquids [2]), or even to new fields of research in
magnetism (e.g., skyrmionics [3]). It is then essential to have
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a systematic catalog of the possible magnetic interactions,
preferably coupled with a theory that can make material-
specific predictions and help guide or interpret experimental
efforts.

Magnetic interactions can be broadly divided into isotropic
and anisotropic interactions. Isotropic interactions depend
only on the relative angles between the spins, such as the orig-
inal exchange interaction discovered by Heisenberg [4], with
detailed microscopic understanding provided for instance by
Anderson’s theory of superexchange [5]. The anisotropic in-
teractions depend on how the spins are aligned with real-space
directions (for instance, the bonds between magnetic sites or
certain crystal directions) and arise from relativistic effects,
namely spin-orbit coupling (SOC). Interactions which are
symmetric under exchange of the spin components include the
single-ion anisotropy and the two-site symmetric anisotropic
exchange or compass anisotropy [6,7], which together lead
to the magnetocrystalline anisotropy. An extreme case of
symmetric anisotropic exchange is the Kitaev interaction
[8,9], that can stabilized exotic quantum spin liquids [2].
A different kind of two-site anisotropic interaction, which
is antisymmetric upon exchange of the spin components, is
the Dzyaloshinskii-Moriya interaction (DMI) [10,11]. The
DMI lifts the chiral degeneracy of the magnetic structure,
as it favors one sense of rotation, leading to spiral magnetic
ground states, domain walls, and magnetic skyrmions of well-
defined chirality or handedness. All these interactions can
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also be classified by the number of spin components that
they couple (two-spin interactions, sometimes more for the
single-ion anisotropy) and by how many sites are coupled
(one-site interaction for the single-ion anisotropy, the others
being two-site interactions).

There are two ways in which the previous set of interac-
tions can be generalized, either by interactions that couple
more spin components (without an external magnetic field:
four-spin, six-spin, etc.) or more sites (three-site, four-site,
etc.), either isotropic or anisotropic. The isotropic interac-
tions include the biquadratic interaction (four-spin two-site)
[12–14], the four-spin three-site interaction [15,16], and the
ring exchange (four-spin four-site) [17–19], with a recent
proposal for a six-spin three-site isotropic interaction [20],
which we will show can be related to the six-spin six-site
interaction derived in Ref. [19]. These isotropic interactions
can be systematically derived from a half-filled Hubbard
model [17–19,21]. They are rarely the dominant magnetic
interactions but can completely change the picture obtained
from the previously discussed two-spin interactions alone
[22,23].

The two-spin interactions tend to favor relatively simple
magnetic structures, such as ferromagnetic, antiferromag-
netic, or spin spiral ground states—these are called single-
Q states as their periodicity can be described by a single
wave vector Q. The isotropic four-spin interactions can couple
single-Q states which are degenerate when considering only
two-spin interactions, and stabilize complex superpositions of
such states. The general mechanism and the possible connec-
tion to long-range interactions can be understood resorting to
Kondo lattice models [24–27]. For example, the up-up-down-
down state is a double-Q state that was recently uncovered
in magnetic monolayers with an hexagonal lattice [28–30],
with the four-spin three-site interaction playing the key role.
The nanoskyrmion lattice in an Fe monolayer on Ir(111)
[31] can be seen as another type of double-Q state stabilized
by a combination of various interactions, including isotropic
four-spin ones. The prediction of a triple-Q state in this
type of monolayers stabilized by the ring exchange [32] has
also finally been experimentally realized [33]. Isotropic four-
spin interactions also explain why some bulk materials host
short-period magnetic skyrmion lattices and other multiple-Q
states [34–38]. Another class of materials where the isotropic
four-spin interactions play various roles are high-temperature
superconductors, likely stabilizing the bicollinear antiferro-
magnetic ground state of FeTe [39,40] and modifying the
spin wave spectrum of the parent compound La2CuO4 [41].
As a final example, solid 3He is perhaps the most famous
system where multisite isotropic interactions are essential to
understand its magnetic properties [42], with up to six-spin
six-site interactions quantitatively determined in an hexagonal
monolayer [43].

In contrast to the large body of knowledge concerning
isotropic multisite interactions, not much attention has been
paid to their anisotropic counterparts. The anisotropic two-
spin interactions have been derived from an extended Hubbard
model [44], but to our knowledge no attempt has been made
to reach their four-spin counterparts, so their possible forms
remain unclear. One can still proceed in various ways, which
become very powerful if combined with a model-independent

method of evaluating the energy of a magnetic structure,
for instance, resorting to density functional theory (DFT)
calculations. First, the energy of different magnetic structures
can be systematically mapped to a spin cluster expansion
[45–49], of which the four-state mapping method is a simpli-
fied form able to determine all types of two-spin interactions
(see, for instance, Ref. [50] for an application to the Kitaev
interaction). In Ref. [51], we used the spin-cluster expansion
in combination with an intuitive microscopic model to catalog
all possible anisotropic two-spin and four-spin interactions in
magnetic dimers on surfaces with strong SOC, uncovering
the chiral biquadratic interaction (CBI) and also three- and
four-site chiral interactions. Phenomenological considerations
can also be used to identify allowed forms for the interactions
consistent with the symmetry of a target material. This led
to the discovery of chiral four-spin three-site interactions in
MnGe [20] (for which a derivation based on multiple scatter-
ing theory was also provided), and motivated their existence
in an Fe chain on Re(0001) [52], while the magnetism of
Ca3Ru2O7 was rationalized by invoking higher order Lifshitz
invariants in connection to a Ginzburg-Landau theory [53].
Lastly, the energy can also be expanded in a Taylor series
in small deviations from a reference magnetic structure. This
was developed into the very successful infinitesimal rotation
method for two-spin interactions [54–56], with an extension to
four-spin interactions recently proposed [20,57], and a grow-
ing body of work addressing its application for noncollinear
magnetic structures [22,23,58,59].

In this work, we present a comprehensive study of isotropic
and chiral multisite interactions in prototypical magnetic sys-
tems. First, we specify the form of our spin model, containing
besides one-site and two-site interactions (including the DMI
and the CBI) also isotropic and chiral three-site and four-site
interactions. The employed forms of the interactions are fully
justified by our microscopic model [51] (see Appendix B of
that reference), and we supply simple heuristic arguments
for their derivation. We then discuss the symmetry properties
of the chiral three-site and four-site interactions, showing in
detail that they are not bound by Moriya’s rules, in contrast
to the DMI and the CBI. After presenting our computational
approach, we proceed to investigate these interactions in
several magnetic systems. We chose clusters that are common
atomic motifs in many periodic magnetic materials, namely
homoatomic trimers on fcc(111) and hcp(0001) surfaces (C3v

symmetry), and tetramers on the fcc(001) surface (C4v), which
illustrate the magnitude and symmetry properties of the con-
sidered interactions. Finally, we discuss several recent works
in light of our findings, and present our conclusions.

II. SPIN MODEL WITH ISOTROPIC AND CHIRAL
MULTISITE INTERACTIONS

Consider a magnetic material with well-localized spin
moments on atomic sites labeled {1, . . . , N}. The energy of
a given spin configuration can be described by a function
E (S1, . . . , SN ; B) of the orientations of each spin moment,
represented by classical unit vectors, |Si| = 1, and of the
external magnetic field B. This energy function can contain
several terms, describing different types of magnetic interac-
tions, which we catalog by how many spin components are
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involved (p-spin interactions) and by how many sites are in-
volved (q-site interactions). Time-reversal symmetry demands
E (−S1, . . . ,−SN ; −B) = E (S1, . . . , SN ; B). This implies that
the interactions which are independent of the external mag-
netic field must contain an even number of spin moments
(p mod 2 = 0). We now describe the interactions that we
consider in this paper. All the presented forms have already
been derived from a microscopic model in our previous work,
including the multisite forms (see Appendix B of Ref. [51] for
details).

A. Spin model with three- and four-site interactions

The magnetic interactions can be grouped in the following
way, going from one-site up to four-site interactions:

E =
∑

i

Ei + 1

2

∑
i, j

′
Ei j + 1

2

∑
i, j,k

′
Ei jk + 1

4

∑
i, j,k,l

′
Ei jkl . (1)

Here i, j, k, l ∈ {1, . . . , N} with N being the number of mag-
netic atoms. The sums over sites are unrestricted except for the
exclusion of repeated sites, i �= j �= k �= l , which is indicated
by the primes. We now discuss the interactions that will be
computed for the prototypical magnetic systems.

B. One-site interactions

The one-site contribution to the magnetic energy is (α, β ∈
{x, y, z})

E1 = B · S1 +
∑
α,β

Kαβ

1 Sα
1 Sβ

1 . (2)

We have a one-spin interaction with the external magnetic
field (in energy units), and the two-spin interaction de-
scribes the lowest order contribution to the on-site magnetic
anisotropy energy. As Sα

1 Sβ

1 is a symmetric rank-2 tensor, only
the symmetric part of Kαβ

1 contributes to the sum, so it can be
written as

K1 =

⎛
⎜⎝

Kxx
1 Kxy

1 Kxz
1

Kxy
1 Kyy

1 Kyz
1

Kxz
1 Kyz

1 Kzz
1

⎞
⎟⎠. (3)

Its eigenvectors specify the easy, intermediate, and hard local
anisotropy axes, in increasing order of the corresponding
energy eigenvalues. The nonvanishing elements of this matrix
are determined by the local symmetry of the environment of
the magnetic atom. Furthermore, the condition |S1| = 1 re-
moves one parameter, so five independent parameters remain.
The choice of free parameters used in this work is explained
in Appendix A.

C. Two-site interactions

For the two-site interactions, we consider all possible two-
spin interactions plus two kinds of four-spin interactions:

E12 = J12 S1 · S2 + D12 · (S1 × S2) +
∑
α,β

�Jαβ

12 Sα
1 Sβ

2

+ B12(S1 · S2)2 + C12 · (S1 × S2)(S1 · S2). (4)

Here, J12 is the conventional isotropic Heisenberg ex-
change interaction [4], D12 is the vector defining the chiral

Dzyaloshinskii-Moriya interaction [10,11] which can only be
present in systems without inversion symmetry, and �Jαβ

12 =
�Jβα

12 defines the symmetric exchange anisotropy [60]. Like
the on-site magnetic anisotropy, the eigenvectors of the �J12

matrix can be used to specify the easy, intermediate, and hard
axes of a given pair of magnetic atoms (see Appendix A).
For very anisotropic systems, this leads to the Kitaev bond-
dependent symmetric exchange anisotropy [9,50]. The two-
site interactions are augmented with the isotropic biquadratic
interaction B12(S1 · S2)2 and with the recently uncovered
chiral biquadratic interaction C12 · (S1 × S2)(S1 · S2), which
follows the same Moriya rules as the two-spin DMI. These
were found to be the dominant four-spin contributions to
the two-site interactions in our previous study, Ref. [51]. If
the relativistic spin-orbit interaction can be neglected, then
only the isotropic Heisenberg and biquadratic interactions
remain. The interaction coefficients have the general symme-
tries J12 = J21, D12 = −D21, �Jαβ

12 = �Jαβ

21 , B12 = B21, and
C12 = −C21, which justify the prefactor of 1/2 assigned to
the two-site interactions in Eq. (1).

D. Heuristic arguments for the form of
the chiral multisite interactions

Instead of repeating the derivations already presented in
Ref. [51], here we present heuristic arguments for the con-
struction of chiral multisite interactions starting from known
isotropic multisite interactions. The microscopic model dis-
cussed in that work presents a systematic expansion of the
grand potential in terms of the spin-dependent parts of the
electronic Hamiltonian. These are assumed to be a local ex-
change coupling between the electrons and the local moments
∝ σ · Si, and the local SOC ∝ σ · L (its spatial location can
be left unspecified), with σ being the vector of Pauli matrices
describing the electron spin, Si a unit vector describing the
orientation of the spin moment at site i, and L being the local
orbital angular momentum operator. Isotropic interactions are
represented by closed loops that contain an even number of
magnetic sites and are connected by spin-independent Green’s
functions, while chiral interactions additionally contain one
spin-orbit site. The specifics of the diagrammatic expansion
of the grand potential are not needed if one is only interested
in the form of the interactions, and it is based this point of
view that we now present our heuristic arguments. The order
that the magnetic and SOC sites appear in and the algebra
of Pauli matrices are essential. The final goal is to identify
the elementary forms of the interactions which are needed to
construct the atomistic spin model according to Eq. (1).

As shown in Table I, the isotropic two-site interactions
arise from the loops connecting 1 and 2 once (two-spin,
bilinear) and twice (four-spin, biquadratic). The form of these
interactions can be obtained by tracing a product of local
exchange couplings, according to the order that the sites are
traveled in the loop. For the isotropic bilinear interaction, one
then writes

1
2 Tr (σ · S1)(σ · S2) = S1 · S2, (5)

and for the biquadratic one

1
2 Tr (σ · S1)(σ · S2)(σ · S1)(σ · S2) = 2(S1 · S2)2 − 1. (6)
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TABLE I. Diagrams for the heuristic derivation of the form of the
magnetic interactions. The numbered sites represent local exchange
couplings of the type σ · Si, and the interaction is given by a closed
loop connecting the sites with an even number of lines. The form of
the isotropic interaction can then be obtained by a spin trace over
the ordered product of sites, according to the order in which the loop
is traveled. The form of the chiral interactions (first order in SOC)
can be obtained from the diagrams for the isotropic interactions by
inserting σ · L in between a pair of sites (dashed line). As a set of
sites can be connected in various ways, this will lead to various forms
for the interactions, which can be related to each other via symmetry
operations, if applicable.

I C

The second term is a constant and can be disregarded. For
these interactions, it clearly does not matter if the loop starts
from site 1 or from site 2.

The corresponding chiral two-site interactions can be gen-
erated by inserting spin-orbit coupling in between two mag-
netic sites. For the bilinear interaction, inserting SOC between
1 and 2 gives (the connection containing SOC is indicated by
the dashed line)

1

2i
Tr (σ · S1)(σ · L)(σ · S2) = L · (S2 × S1). (7)

This generates the DMI. Similarly, starting from the bi-
quadratic interaction and inserting SOC between 1 and 2 pro-
duces the chiral biquadratic coupling S2 × S1(S1 · S2), with
similar properties to the DMI. The chiral interaction vectors
are then governed by the SOC, and it can also be shown
that they comply with the symmetry operations relating 1
and 2 (see Ref. [51]). In the following, we will present the
simplified forms of the isotropic and chiral three-site and
four-site interactions, along with the heuristic arguments that
justify them.

E. Three-site interactions

As with the four-spin two-site interactions, here we will
also restrict our attention to isotropic and chiral interactions.
Due to time-reversal symmetry, a three-site interaction must
contain an even number of spin moments, four-spin being the
minimum, which implies that at least one of them appears
repeatedly. We adopt the convention of Laszloffy et al. [52]

that the second site is the one that will appear repeated; see
Table I. The isotropic three-site interaction is thus expected to
have the form

1
2 Tr (σ · S1)(σ · S2)(σ · S3)(σ · S2)

= 2(S1 · S2)(S2 · S3) − S1 · S3. (8)

The second term is of the form of the isotropic two-site
interaction and so it can be dropped, leaving the first term
as our prototype for isotropic four-spin three-site interactions.
The basic symmetry is that (1,2,3) and (3,2,1) produce the
same interaction.

If we insert SOC between 1 and 2, we obtain
1

2i
Tr (σ · S1)(σ · L)(σ · S2)(σ · S3)(σ · S2)

= 2 L · (S2 × S1)(S2 · S3) + L · (S1 × S3). (9)

The second term is of the form of the DMI and so it can
be dropped, leaving the first term as our prototype for chiral
four-spin three-site interactions. There is no relation between
(1,2,3) and (3,2,1), due to the cross product in the first term.
This can be understood from our heuristic argument: SOC
can influence different pairs of sites, which can naturally
lead to different chiral interaction vectors, depending on the
symmetry of the system. If one had instead inserted SOC
between 1 and 3 one would find a similar form, but with
the dot product now between 1 and 2 and the cross product
between 3 and 2. Inserting SOC in other places does not bring
other forms for the spin coupling, up to minus signs.

We then write the three-site interactions as

E123 = B123(S1 · S2)(S2 · S3) + C123 · (S1 × S2)(S2 · S3).

(10)

Note the convention that the second site is the one that appears
repeated. The other possible combination of dot and cross
products is covered by E321, which is included in Eq. (1).
The isotropic interaction has the general symmetry B123 =
B321, which justifies the prefactor of 1/2 in Eq. (1). An
alternative way of expressing the chiral interactions is using
the symmetric and antisymmmetric combinations:

C±
123 · (S1 × S2(S2 · S3) ± S3 × S2(S2 · S1)), (11)

and the corresponding chiral interaction vectors have the
general symmetry C±

123 = ±C±
321. The minus combination can

be expressed using the scalar spin chirality (see Appendix B),
providing a link to the spin-chiral interactions introduced in
Ref. [20]:

C−
123 · (S1 × S2(S2 · S3) − S3 × S2(S2 · S1)) (12)

= (
C−

123 · S2
)
S1 · (S2 × S3) + C−

123 · (S1 × S3). (13)

F. Four-site interactions

Following our heuristic argument, the form of the isotropic
four-site interactions can obtained from a four-site loop as
shown in Table I, which translates to

1
2 Tr (σ · S1)(σ · S2)(σ · S3)(σ · S4)

= (S1 · S2)(S3 · S4)−(S1 · S3)(S2 · S4)+(S1 · S4)(S2 · S3).
(14)
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This is the known form of the ring exchange, including the
minus sign. We take just the first term as our prototype for
isotropic four-spin four-site interactions, as the site summa-
tions in Eq. (1) will reproduce the remaining possibilities for
combining pairs of sites with dot products, and the interaction
coefficients will cover the symmetry (see, e.g., Ref. [21]).

The form of the chiral interaction can be obtained as
before, by inserting SOC between 1 and 2:

1

2i
Tr (σ · S1)(σ · L)(σ · S2)(σ · S3)(σ · S4)

= L · (S2 × S1)(S3 · S4) + L · (S3 × S4)(S1 · S2)

+ L · (S1 × S3)(S2 · S4) + L · (S4 × S2)(S1 · S3)

+ L · (S2 × S3)(S1 · S4) + L · (S4 × S1)(S2 · S3).
(15)

This can be obtained from the form of the ring exchange by
replacing a dot product by a cross product in every term, and
leaving the other dot product, with an additional minus sign if
the second dot product is replaced. The perhaps unexpected
complexity of this interaction can be understood from the
corresponding diagram. In contrast to the chiral three-site
interaction, where SOC only affects one of two bubbles in
the diagram, here SOC affects the entire loop, even if it is
inserted between a specific pair of sites, and thus generates
all possible kinds of pairwise chiral couplings between the
four spins. As for the chiral three-site interaction, inserting
SOC between a different pair of sites leads to a different form
with an independent chiral interaction vector. Once again, by
exploiting the summation over sites in Eq. (1) it is sufficient
to take the first term as our prototype for the chiral four-spin
four-site interaction.

We thus express the contribution to the magnetic energy
from the isotropic and chiral four-site interactions as

E1234 = B1234 (S1 · S2)(S3 · S4) + C1234 · (S1 × S2)(S3 · S4).
(16)

Note the convention in these interactions that the sites are
paired as (1,2) and (3,4), and that the cross product applies to
the first pair. If we repeat one site and write (1,2,2,3), this form
reduces to the three-site one. We also have the general symme-
tries for the interaction coefficients B1234 = B2134 = B1243 =
B2143 and C1234 = C1243 = −C2134 = −C2143, which justify
the prefactor of 1/4 assigned to the four-site interactions in
Eq. (1).

III. SYMMETRIES OF MULTISITE INTERACTIONS

Following Neumann’s principle, the magnetic energy
function must respect the point group symmetry. If G
is a symmetry operation of the point group, this means
E (GS1, . . . ,GSN ;GB) = E (S1, . . . , SN ; B). In the absence of
an external magnetic field, all interactions must then be in-
variant under all symmetry operations of the crystallographic
point group. The action of the symmetry operation can be
separated as G = PO, where P maps the atomic sites to each
other, and O transforms the orientations of the magnetic mo-
ments (rotation R, mirroring M, inversion I). The matrices
O are orthogonal, O−1 = OT, and in particular for the mirror
symmetries M = MT. For a magnetic interaction connecting

q sites (i1, . . . , iq), a symmetry operation that maps these sites
into themselves, P (i1, . . . , iq) = (i1, . . . , iq), can place con-
straints on the interaction coefficients (e.g., Moriya’s rules).
If this is not the case, i.e., P (i1, . . . , iq) �= (i1, . . . , iq), then
we only find relations between q-site interactions connecting
different sets of sites.

The basic building blocks of the interactions that we
discuss in this work are either dot products Si · S j or cross
products Si × S j of the spin orientations, which are combined
in various ways for the different types of interactions. A
symmetry operation G acts on these building blocks as fol-
lows. The relation between atomic sites implied by the sym-
metry operation is expressed by the replacement P (i, j) =
(k, l ). The dot product transforms as (GSi ) · (GS j ) = (OSk ) ·
(OSl ) = Sk · Sl , and the last equality follows from the fact
that the spatial transformations O leave the angle between
vectors unchanged. If the interaction consists solely of dot
products of spin orientations then the symmetry operations
establish relations between the interaction coefficients, e.g.,
Ji j (GSi ) · (GS j ) = Ji j Sk · Sl , which implies Ji j = Jkl . For the
cross product, there is a subtlety: (GSi ) × (GS j ) = (OSk ) ×
(OSl ) = (det O)O(Sk × Sl ). As the cross product is an axial
vector, it transforms for proper rotations with det O = +1 and
for improper rotations (inversion, mirroring) with det O =
−1. For the chiral interactions, the cross product is combined
with the chiral interaction vector, for instance, Di j for the
DMI, which then transfers the result of the spatial symmetry
from the cross product to this vector, Di j · ((GSi ) × (GS j )) =
(det O)(O−1Di j ) · (Sk × Sl ). This implies the relation Dkl =
(det O)(O−1Di j ). If (k, l ) = (i, j) up to reordering, we find
constraints on the allowed components of the axial vector,
which leads to Moriya’s rules [11]. For instance, {Si, S j} →
{S j, Si} if an inversion center is present between i and j,
which leads to Di j = −Di j and confirms the vanishing of
the DMI (and CBI) in this case. If (k, l ) �= (i, j), we find
relations between chiral vectors connecting different sites, and
this shows that the vectors must be related by a simple change
in orientation, as the spatial symmetry O leaves the length
of vectors invariant. The properties of the different multisite
interactions then follow from combining these principles with
each type of interaction and the symmetry of the considered
system.

For the benefit of the reader, we briefly recall the Moriya
rules [11] for the DMI vector acting on the bond between sites
i and j:

(1) If there is an inversion center in the middle of the bond,
Di j = 0.

(2) If the bond is bisected by a mirror plane, Di j must lie
in this plane.

(3) If the bond is contained in a mirror plane, Di j must be
perpendicular to this plane.

(4) If a twofold rotation axis passes through the middle of
the bond, Di j must be perpendicular to this axis.

(5) If the bond lies on an n-fold rotation axis, Di j must be
along this axis.

They follow from the general symmetry principles.
In the following, we consider C3v and C4v , which are

the point groups of the magnetic trimers and tetramers for
which we will present results for the magnetic interac-
tions. The corresponding magnetic structures and symmetry
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(b)
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(a)

3

2 1
4 3

21

FIG. 1. Illustration of the symmetries of the considered nanos-
tructures. The magnetic atoms (numbered) are illustrated by red
spheres and the surface atoms by gray spheres. Mirror symme-
tries are indicated by dashed lines while the arrows indicate rota-
tional symmetries. (a) Compact trimer on a hexagonal surface with
C3v symmetry. (b) Compact tetramer on a square lattice with C4v

symmetry.

operations are illustrated in Fig. 1 and the latter listed in
Appendix C.

A. Symmetries for a trimer

For the trimer [C3v symmetry; see Fig. 1(a)], the three
mirror symmetries correspond to

(S1, S2, S3) → M1(S1, S3, S2), (17)

(S1, S2, S3) → M2(S3, S2, S1), (18)

(S1, S2, S3) → M3(S2, S1, S3). (19)

The isotropic interactions are only affected by a permutation
of site labels, which implies J12 = J13 = J23 and likewise for
the isotropic biquadratic interaction Bi j . Similarly, there is
only one independent parameter for the isotropic three-site
interactions, B123.

To illustrate a symmetry operation that maps a set of sites
onto itself, consider the DMI between atoms 1 and 2 and the
mirror symmetry M3. The cross product transforms as S1 ×
S2 → (M3S2) × (M3S1) = M3(S1 × S2). The DMI thus
transforms as

D12 · (S1 × S2) → (M3D12) · (S1 × S2), (20)

which implies that M3D12 = D12 for the energy to remain
invariant, or D12 = (0, Dy

12, Dz
12). This shows that D12 lies

in the mirror plane M3, as expected from Moriya’s rules.
The mirror symmetries M1 and M2 map the atom pair
(1,2) into (1,3) and into (3,2), respectively, so they exemplify
symmetries that relate different sites. From these symmetries,
we get

D12 · (S1 × S2) → (M1D12) · (S3 × S1), (21)

D12 · (S1 × S2) → (M2D12) · (S2 × S3), (22)

or M1D12 = D31 and M2D12 = D23. The rotations lead to
D23 = R+D12 and D31 = R−D12. As we demonstrated in
Ref. [51], the CBI vector [see Eq. (4)] has the same trans-
formation properties as the DMI vector. We thus have C12 =
(0,Cy

12,Cz
12), and all the other vectors can be generated from

this one with the same symmetry operations used for the DMI
vectors. If the symmetry is increased from C3v to D3h then
the mirror symmetry Mz (z → −z) also applies, which would
lead to −MzD12 = D12 and so D12 = (0, 0, Dz

12), again in
accordance with Moriya’s rules.

Similar considerations allow us to establish the symmetry
properties of the chiral three-site interaction vectors Ci jk [see
Eq. (10)]. Take the interaction connecting atoms 1 and 3
through atom 2 as an example [see Fig. 1(a)]. If SOC me-
diates the interaction between atoms 1 and 2, the interactions
corresponds to Eq. (9) with the coefficient C123. In contrast
to the isotropic multisite interactions, as well as the DMI,
there is no general relation between C123 and C321, as justified
by the microscopic model that assigns SOC to a specific
bond. In addition, the C3v point group symmetry does not
map the form S1 × S2(S2 · S3) onto itself, which would be
necessary in order to find symmetry constraints for C123.
Thus, the interaction vector C123 for the trimer is a general
three-component vector. To show how a constraint on this
interaction can emerge, consider increasing hypothetically the
symmetry to D3h. The additional mirror symmetry Mz leaves
the site labels invariant and enforces C123 = −MzC123, or
C123 = (0, 0,Cz

123).
Nonetheless, the C3v symmetry of the trimer leads to

a simplification of the chiral three-site interaction since it
can be used to relate the different interaction vectors to
each other. Starting from Eq. (10), we can group the in-
teractions in two subsets corresponding to a cyclic per-
mutation of the sites, S1 = {C123, C231, C312} and S2 =
{C321, C132, C213}. The rotational symmetries can be used to
relate the vectors in the set S1 to each other, C231 = R+C123

and C312 = R−C123. The vectors in the set S2 transform
among themselves in the same way, and the mirror sym-
metries connect the two sets. For instance, the mirror M3

imposes

C123 · (S1 × S2)(S2 · S3) → −(M3C123) · (S2 × S1)(S1 · S3),
(23)

which leads to C213 = −M3C123, and similarly C321 =
−M1C231 and C132 = −M2C312. The pattern formed by the
six chiral vectors is shown in Fig. 2.

We now illustrate the convention of Eq. (1) for the three-
site interactions with the case of the trimer, for which sum-
ming over all triples results in

E (3) = 1

2

∑
i, j,k

′
Ei jk = B123 ((S1 · S2)(S2 · S3) + (S2 · S3)(S3 · S1) + (S3 · S1)(S1 · S2))

+ 1

2
(C123 · (S1 × S2)(S2 · S3) + C231 · (S2 × S3)(S3 · S1) + C312 · (S3 × S1)(S1 · S2)

+ C321 · (S3 × S2)(S2 · S1) + C132 · (S1 × S3)(S3 · S2) + C213 · (S2 × S1)(S1 · S3)). (24)
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We repeat that all chiral interaction vectors can be related to
the general vector C123 using the C3v symmetry.

B. Symmetries for a tetramer

For the tetramer [C4v symmetry; see Fig. 1(b)], the four
mirror symmetries correspond to the following mappings:

(S1, S2, S3, S4) → Mx(S2, S1, S4, S3), (25)

(S1, S2, S3, S4) → My(S4, S3, S2, S1), (26)

(S1, S2, S3, S4) → M+(S1, S4, S3, S2), (27)

(S1, S2, S3, S4) → M−(S3, S2, S1, S4). (28)

There are two types of interactions, those that connect
atoms only along the edges of the tetramer (nearest neighbors)
and those that include connections across the diagonals (next
nearest neighbors). For the two-site interactions connecting
(i, j), we can list eight ordered pairs along the edges and four
ordered pairs along the diagonals, with ( j, i) being related to
(i, j) by construction (e.g., Jji = Ji j or D ji = −Di j). We have
J12 = J23 = J34 = J41 (nearest neighbors) and J13 = J24 (next
nearest neighbors), and similarly for the isotropic biquadratic
interaction Bi j . The DMI vectors along the edges of the
tetramer have the same form as for the trimer, as they contain
a mirror plane perpendicular to the edge connecting each pair,
MxD12 = D12 so D12 = (0, Dy

12, Dz
12). The pattern of DMI

vectors around the edges of the tetramer can then be simply
obtained by rotation starting from D12 as reference: D23 =
RD12, D34 = RD23, and D41 = RD34. The DMI vector across
the diagonals have to comply with two mirror planes, M+
and M−. We have D24 = −M−D24 and D24 = +M+D24

so D24 = D24( 1√
2
, 1√

2
, 0), and the other DMI vector is ob-

tained from D31 = MxD24 = D24(− 1√
2
, 1√

2
, 0). Once again,

the CBI vector Ci j has the same properties as the DMI vector.
The three-site interactions are specified by triples (i, j, k),

for which eight connect only sites along the edges (nearest
neighbors) and 16 include a diagonal connection (next nearest
neighbors). For the isotropic three-site interactions given in
Eq. (10), we have Bi jk = Bk ji (the repeated site is unchanged)
and two independent parameters: B123 if both dot products are

y

x 3

2 1

FIG. 2. Relations between the chiral three-site interaction vec-
tors under C3v symmetry. For comparison, the DMI vectors are along
the mirror planes intersecting each edge of the triangle.

along the edges and B124 if one of the dot products is along
the diagonal.

The chiral three-site interactions given in Eq. (10) can be
separated into three groups. The diagrams from our heuristic
arguments provide visual insight into this:

1 2

3

→ C123 · (S1 × S2) (S2 · S3) , (29)

1 2

4

→ C124 · (S1 × S2) (S2 · S4), (30)

1 2

4

→ C421 · (S4 × S2) (S2 · S1). (31)

The dashed line indicates the location of the cross product
between spins arising from SOC. The C4v symmetry places
no constraints on a single chiral interaction vector Ci jk , but
establishes groups of vectors which are related to each other
by symmetry.

The diagram given in Eq. (29) has connections with both
cross and dot products along the edges (nearest neighbors).
It can be drawn in eight symmetry-related ways, and the
corresponding interaction vectors are all related to C123.
The rotations give directly C234 = RC123, C341 = RC234,
and C412 = RC341. The remaining four chiral vectors can
be related to C123 using a mirror, C214 = −MxC123, and
rotations, C321 = RC214, C432 = RC321, and C143 = RC432.
The connections including a diagonal have to be distinguished
by whether the cross product occurs on an edge or on a
diagonal. The first case is represented by the diagram in
Eq. (30), which can be drawn in eight symmetry-related ways,
with all chiral vectors being related to C124. The rotations
give C231 = RC124, C342 = RC231, and C413 = RC342. Ap-
plying a mirror, we find C213 = −MxC124, and with rotations
we get C324 = RC213, C431 = RC324, and C142 = RC431.
The second case is represented by the diagram in Eq. (31),
which can be drawn in eight symmetry-related ways, with
all chiral vectors being related to C421. The rotations give
C132 = RC421, C243 = RC132, and C314 = RC243. Applying
a mirror, we find C423 = −M−C421, and with rotations we
get C134 = RC423, C241 = RC134, and C312 = RC241. This
completes the list of the chiral three-site vectors.

The four-site interactions are specified by quadruples
(i, j, k, l ), for which eight connect only sites along the edges
(nearest neighbors) and 16 include a diagonal connection
(next nearest neighbors). For the isotropic four-site interac-
tions given in Eq. (10), we have Bi jkl = Bjikl = Bi jlk = Bjilk

and two independent parameters: B1234 if both dot products
are along the edges, and B1324 if both dot products are along
the diagonal.

For the chiral four-site interactions given in Eq. (10)
we have Ci jkl = Ci jlk = −C jikl = −C jilk , which reduces the
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amount of independent terms by a factor of four. The six in-
dependent terms can be further grouped according to whether
the cross product is along an edge of the tetramer (four terms)
or along a diagonal (two terms), each generated by a reference
interaction vector. In contrast to the chiral three-site interac-
tions, the reference chiral vectors have additional constraints
enforced by the mirror symmetries. The chiral interaction vec-
tors for the group of four terms are generated from C1234 by
rotational symmetry: C2341 = RC1234, C3412 = RC2341, and
C4123 = RC3412. The reference chiral vector is constrained by
the mirror plane Mx combined with the general symmetry of
the interaction, which yields −MxC1234 = C2143 = −C1234,
and so C1234 = (0,Cy

1234,Cz
1234). This is analogous to the

Moriya rule for the DMI vector: If the bond containing
the cross product is bisected by a mirror plane, the chiral
vector must lie in this mirror plane. The chiral interaction
vectors for the group of two terms are specified by C1324 and

C2431 = RC1324. Now the M+ symmetry imposes a stronger
constraint on the reference vector, −M+C1324 = C1342 =
C1324, from which follows C1324 = C1324(− 1√

2
, 1√

2
, 0). This

is analogous to the Moriya rule for the DMI vector: If the
bond containing the cross product lies in a mirror plane, the
chiral vector must be perpendicular to this mirror plane. If
we again consider increasing hypothetically the symmetry,
this time to D4h, the additional mirror symmetry Mz leaves
the site labels invariant and enforces C1234 = −MzC1234,
or C1234 = (0, 0,Cz

1234). Thus, the chiral four-site interaction
vector Ci jkl obeys symmetry rules similar to the well-known
Moriya rules for the DMI vector, if the symmetry opera-
tion maps the pairs (i, j) and (k, l ) onto themselves (up to
reordering).

We now illustrate the convention of Eq. (1) for the four-site
interactions with the case of the tetramer, for which summing
over all quadruples results in

E (4) = 1

4

∑
i, j,k,l

′
Ei jkl = 2B1234 ((S1 · S2)(S3 · S4) + (S1 · S4)(S2 · S3)) + 2B1324 (S1 · S3)(S2 · S4)

+ C1234 · (S1 × S2)(S3 · S4) + C2341 · (S2 × S3)(S4 · S1) + C3412 · (S3 × S4)(S1 · S2)

+ C4123 · (S4 × S1)(S2 · S3) + C1324 · (S1 × S3)(S2 · S4) + C2413 · (S2 × S4)(S1 · S3). (32)

IV. GLOBAL MAPPING FROM DFT CALCULATIONS
TO THE SPIN MODEL

The energy of a chosen magnetic structure for a given ma-
terial can be obtained from first principles, for instance, from
a DFT calculation. Suppose that the relevant coarse-grained
variables which are necessary to map to the spin model are
already defined. These are the localized spin moments Mi that
exist on some subset of all the atomic sites of the magnetic
material. The spin moments must be relatively rigid, so that
their magnitude is not strongly dependent on the magnetic
structure. It is then meaningful to separate the magnitude from
the orientation, Mi = Mi Si (recall |Si| = 1), and to identify
the orientations of the magnetic moments with those in the
target classical spin model. One can then view the DFT total
energy as a functional of the magnetic structure specified by
those orientations, EDFT[S1, . . . , SN ]. In practice, an arbitrary
magnetic structure is not a stationary solution of the DFT
total energy, which must then be stabilized by the addition
of constraints [61–63],

E cDFT = EDFT +
∑

i

Si · Bi (33)

satisfying the condition

∂E cDFT

∂Si
= ∂EDFT

∂Si
+ Bi = 0 (34)

when the derivatives are evaluated for the chosen magnetic
structure {S1, . . . , SN }. The self-consistently obtained con-
straining magnetic field Bi is thus equal to the exact total
energy derivative with respect to the orientation of the spin
moment on site i, and this is the key observation that is used
to map the DFT calculations to the classical spin model given

in Eq. (1),

Bi = −∂EDFT

∂Si
=

mapping
− ∂E

∂Si
. (35)

The dependence of the DFT total energy on the spin orien-
tations can be arbitrarily complex, and so the mapping must
be chosen in a way that allows for systematic improvement
and a controllable error between the energy obtained from
DFT and the one computed from the parametrized spin model,
for a selected set of magnetic structures. We have to generate
a number of magnetic structures that is enough to obtain
all the magnetic interaction coefficients from fitting the self-
consistent constraining magnetic fields from the respective
DFT calculations to the corresponding derivatives of the spin
model. To this end, each spin moment is set to one of 14 pre-
defined orientations (six along the Cartesian axes plus 8 along
the diagonals of each octant). The magnetic structures are
constructed by the tensor product of all possible orientations
of each spin moment, leading to 14N magnetic structures. For
the systems we consider, we would have 2744 magnetic struc-
tures for the trimer (N = 3) and 38 416 magnetic structures
for the tetramer (N = 4). Enforcing time-reversal symmetry
together with the corresponding point group symmetry (C3v

for the trimer and C4v for the tetramer) achieves a reduction to
252 and 2513 inequivalent magnetic structures, respectively.
As the number of configurations is still fairly large for the
tetramer, we resort to randomly sampling 250 magnetic struc-
tures from this subset of inequivalent magnetic structures. The
constraining magnetic fields for each magnetic structure are
then self-consistently obtained from the corresponding DFT
calculation.

The quality of the fit is quantified by the mean-
average-error (mae) between the constraining fields and the
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corresponding derivatives of the fitted spin model, summed
over the used magnetic structures:

mae = 1

NsNa

Ns∑
s=1

Na∑
i=1

∣∣∣∣∂EDFT

∂Si
− ∂E

∂Si

∣∣∣∣
{S}s

. (36)

Here the sum is over the used Ns magnetic structures, and for
each magnetic structure {S}s we compute for all the Na atoms
in the trimer or tetramer the absolute error between cDFT and
the fitted spin model.

V. COMPUTATIONAL DETAILS

We employ the all-electron Korringa-Kohn-Rostoker
Green’s function method in full potential with spin-orbit cou-
pling added to the scalar relativistic approximation [64,65].
Exchange and correlation effects are treated in the local spin
density approximation (LSDA) as parametrized by Vosko
et al. [66]. The pure surfaces are modeled by 22 layers
with two vacuum regions corresponding to four interlayer
distances, each using the experimental lattice constants, which
are for the considered face-centered cubic (fcc) structures
aPt = 3.924 Å and aAu = 4.078 Å, and for the considered
hexagonal close-packed (hcp) structure aRe = 2.761 Å and
cRe = 4.456 Å. The scattering wave functions are expanded
up to an angular momentum cutoff of �max = 3 and a k mesh
of 150 × 150 is used. The nanostructures are embedded in
real space using a nearest-neighbor cluster. The constrained
DFT calculations for the magnetic structures required for the
mapping to the spin model are performed as explained in
the previous section, following the procedure introduced for
magnetic dimers in our previous work, Ref. [51].

To account for structural relaxations, we use the QUANTUM

ESPRESSO package [67,68]. The surfaces are modeled by five
layers surrounded by a vacuum region of the same thickness.
The nanostructures are placed on 4 × 4 supercells of the
surfaces and a k mesh of 2 × 2 × 1 is used. Exchange and
correlations effects are treated in the generalized gradient
approximation using the PBEsol functional [69], and we used
ultrasoft pseudopotentials from the pslibrary [70] with an
energy cutoff of 100 Ry. The nanostructure as well as the
first surface layer are allowed to relax. For the setup of
the KKR geometry, we use only the vertical relaxation of the
nanostructure, since the relaxation of the first surface layer
turns out to be negligible in agreement with previous studies
[71]. The results of the structural relaxations are summarized
in Table II.

VI. RESULTS

We consider Cr, Mn, Fe, and Co trimers on the Pt(111),
Re(0001), and Au(111) surfaces, and additionally Cr and Fe
tetramers on the Pt(001) surface. The constrained magnetic
configurations described in Sec. IV were used to fit the
interaction parameters for the one-, two-, three, and four-site
interactions. The quality of the fits is quantified by the mean
average error, Eq. (36). We show in Table III how the fit
improves (or not) by adding more types of interactions to the
spin model. A significant drop in the mean average error when
adding a new class of interactions to the fit shows that these

TABLE II. Magnetic ground-state properties of different nanos-
tructures obtained from QUANTUM ESPRESSO and from KKR. We
considered compact fcc-top-stacked trimers for the Pt(111) and the
Au(111) surfaces, and hcp-top-stacked trimers for the Re(0001)
surface. On the Pt(001) surface, two compact tetramers are used.
We define the average relaxation of a nanostructure as r = 1 −
d/d0, where d is the average vertical distance between the atoms
composing the nanostructure and the atoms of the surface layer,
and d0 is the bulk vertical interlayer distance. These are computed
with QUANTUM ESPRESSO, and inform the value used in the KKR
calculations as shown. We also show the spin magnetic moments per
atom M obtained from both types of calculations.

Surface System rQE [%] MQE [μB] rKKR [%] MKKR [μB]

Pt(111) Cr3 17.3 3.09 17.5 3.33
Mn3 15.9 3.76 4.05
Fe3 18.1 3.08 3.24
Co3 19.4 2.11 2.12

Pt(001) Cr4 21.6 2.93 22.5 3.04
Fe4 24.4 3.25 3.19

Re(0001) Cr3 20.3 1.50 15.0 1.80
Mn3 14.1 3.17 3.07
Fe3 15.5 2.58 2.55
Co3 16.7 1.31 1.38

Au(111) Cr3 15.4 3.61 17.5 4.09
Mn3 19.0 3.88 4.26
Fe3 19.5 2.92 3.24
Co3 19.5 2.00 2.05

make an important contribution to the energy. However, no
significant improvement in the fitting error can also arise due
to the weakness of the additionally fitted interactions. Overall,
all of the systems could be well fitted with our procedure.

TABLE III. Mean-average-error (mae), Eq. (36), in units of
[meV] of the spin model fits to the constrained DFT calculations for
the different trimers and tetramers that we studied.

(p-spin, q-site)
interactions (2,2) (4,2) (4,3) (4,4)

Pt(111) Cr3 4.78 3.39 1.12
Mn3 1.09 0.63 0.27
Fe3 2.35 2.16 0.80
Co3 1.29 1.18 0.91

Re(0001) Cr3 1.54 0.77 0.57
Mn3 2.06 1.63 1.19
Fe3 1.36 1.20 1.18
Co3 0.66 0.45 0.39

Au(111) Cr3 4.46 3.49 0.68
Mn3 1.38 0.43 0.38
Fe3 3.81 2.66 1.57
Co3 1.98 1.51 0.58

Pt(001) Cr4 6.60 2.49 1.95 1.69
Fe4 2.85 1.62 1.41 1.26
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TABLE IV. Magnetic interactions in different compact top-stacked trimers in units of [meV]. We give the reference parameters for all
isotropic and chiral two-site and three-site interactions, Eqs. (4) and (10). The full set of interactions can be obtained from the shown ones by
applying the C3v-symmetry operations to the trimer; see Sec. III A.

Surface System J12 Dy
12 Dz

12 B12 Cy
12 Cz

12 B123 Cx
123 Cy

123 Cz
123

Pt(111) Cr3 74.35 −4.43 −4.49 −6.25 −1.85 −0.03 7.72 −0.54 −0.09 −2.23
Mn3 62.58 5.68 0.78 1.72 0.97 −0.04 1.23 0.47 −0.09 0.23
Fe3 −50.00 4.66 0.94 −1.21 −1.23 0.01 4.48 0.02 1.46 −1.31
Co3 −66.24 −7.84 5.05 0.67 1.33 −0.15 −1.68 −0.22 −0.38 0.22

Re(0001) Cr3 9.33 −7.90 −0.78 −2.69 0.45 −0.23 0.55 1.05 −0.84 1.46
Mn3 −3.72 −11.88 0.04 −2.63 −1.30 0.51 2.01 −1.55 1.41 −1.71
Fe3 −16.14 1.52 2.12 −1.38 0.50 −0.53 −0.07 0.62 −0.52 0.40
Co3 −5.66 4.47 −1.67 −0.98 −0.19 0.21 −0.43 0.06 0.29 −0.02

Au(111) Cr3 88.10 −3.73 1.69 −5.10 −1.07 0.53 8.06 0.22 −1.19 −0.06
Mn3 −10.40 4.94 1.76 2.65 0.06 −0.27 0.25 −0.18 0.56 −0.25
Fe3 −113.04 3.66 −3.53 −5.52 −0.38 2.14 5.02 1.07 −1.06 1.71
Co3 −72.41 0.34 −2.20 2.39 0.27 −0.80 −3.14 −0.78 1.12 0.79

A. Trimers with C3v symmetry

A trimer of identical magnetic atoms arranged as a com-
pact triangle on an fcc(111) or hcp(0001) surface has C3v

symmetry. The chosen coordinate system and labeling of the
magnetic atoms and mirror planes are shown in Fig. 1(a).
These are called top-stacked trimers, as they enclose a surface
atom [60]. The isotropic and chiral interactions for the trimer
are specified by Eqs. (4) and (10), with the detailed form
for three-site interactions given in Eq. (24). The reference
interaction parameters are given in Table IV, from which the
full spin model can be parametrized by applying the C3v-
symmetry operations. (The symmetric anisotropy parameters
[see Eqs. (2) and Eq. (4) and Appendix A] are not of our
primary interest, but can be found in Table VI.)

We first discuss possible scenarios considering the
isotropic interactions alone. The corresponding magnetic
structures are sketched in Fig. 3. The dominant interac-
tion is almost always the isotropic two-spin interaction J12.
J12 < 0 favors a ferromagnetic alignment, while J12 > 0 fa-
vors the planar Néel state for the trimer (the two forms
N+ and N− shown in Fig. 3 have the same energy). The
isotropic biquadratic interactions B12 and the three-site ones
B123 tend to have comparable magnitudes, and mostly op-
posite signs. B12 < 0 favors collinear states and B12 > 0
an xyz state where all three spins are mutually perpendic-
ular (not shown), while B123 < 0 favors a ferromagnetic
alignment and B123 > 0 an up-up-down state. Including all
isotropic interactions, the ferromagnetic state has energy
EF = 3(J12 + B12 + B123), the xyz state has zero energy, the
up-up-down state Euud = −J12 + 3B12 − B123, and the planar
Néel states EN = 3

4 (−2J12 + B12 + B123). The data in Ta-
ble IV show that for most trimers B12 < 0 and B123 > 0,
so their combined action prefers an up-up-down state. Its
energy difference to the ferromagnetic state is Euud − EF =
−4(J12 + B123). We find this energy difference to be about
7 meV for the Mn trimer on Re(0001), but for all other
trimers with J12 < 0 the ferromagnetic state is much more
stable than the other states. If J12 > 0, then the relevant
energy difference is to the planar Néel state, Euud − EN =
1
4 (2J12 + 9B12 − 7B123), showing that the isotropic four-spin

interactions strongly penalize the planar Néel state. For in-
stance, this energy difference is just 10 meV for Cr3 on
Pt(111), and becomes negative (−2 meV) when this trimer is
placed on Re(0001), which would make the up-up-down state
the ground state if only isotropic interactions were at play.

In order to easily compare the isotropic and chiral contri-
butions to the magnetic energy of the trimer, we now consider
a family of magnetic structures with three-fold rotational
symmetry. We parametrize the spins as

Si = cos φi sin θ x̂ + sin φi sin θ ŷ + cos θ ẑ, (37)

with φ1 = φ + 30◦, φ2 = φ1 + s 120◦, and φ3 = φ1 + s 240◦.
For θ = 0◦ or 180◦, we have the ferromagnetic state along
±z, and for θ = 90◦ we have the planar Néel state with
either clockwise (s = −) or anticlockwise rotation of the spins
(s = +); see Fig. 3. We define the cosine α(θ ) = S1 · S2 and
sine β(θ ) = |S1 × S2| of the opening angle, and the direction
of the cross product is indicated by us(θ, φ) = S1 × S2/|S1 ×
S2|. Considering only isotropic and chiral interactions, for
these structures the total magnetic energy per trimer atom is
[cf. Eq. (24)]

Es(θ, φ) = α(θ )(J12 + α(θ )(B12 + B123))

+ β(θ )us(θ, φ) · (D12 + α(θ )(C12 + C′
123))

= α(θ )J̃12(θ ) + β(θ )us(θ, φ) · D̃12(θ ). (38)

y

x
3

2 1

3

2 1

3

2 1

3

2 1

FIG. 3. Basic magnetic structures for a trimer. F, ferromagnetic
state; uud, up-up-dow state; N+, planar Néel state with anticlockwise
rotation of the spins; N−, planar Néel state with clockwise rotation
of the spins.

033240-10



PROSPECTING CHIRAL MULTISITE INTERACTIONS IN … PHYSICAL REVIEW RESEARCH 2, 033240 (2020)

The isotropic interactions combine into an effective inter-
action J̃12(θ ), while the chiral interactions form the combined
chiral interaction vector D̃12(θ ). Here, C′

123 = (0,Cy
123,Cz

123),
as for these magnetic structures Cx

123 does not contribute. The
chiral part of the energy can be split into an out-of-plane
contribution,

E z
s (θ, φ) = s

√
3

2
D̃z

12(θ ) sin2 θ, (39)

and an in-plane contribution

Ey
+(θ, φ) = −

√
3

2
D̃y

12(θ ) cos φ sin(2θ ),

Ey
−(θ, φ) = 0. (40)

This shows that the z component distinguishes between the
two planar Néel states shown in Fig. 3, favoring one or the
other depending on its sign. The y component only results
in an energy gain for the structures with an anticlockwise
rotation of the spins, which is maximized for φ = 0◦ if
D̃y

12(θ ) sin(2θ ) > 0 and for φ = 180◦ otherwise. A structure
that would favor a clockwise rotation of the spins around the
triangle might still be able to gain energy from the in-plane
component of the effective chiral vector, if the opening angles
are not fixed to be the same for all pairs of spins.

For these types of magnetic structures, the isotropic bi-
quadratic and three-site interactions contribute to the energy
as B12 + B123. As seen from Table IV, these interactions have
opposite signs for most trimers, canceling out almost com-
pletely for Cr3 on Pt(111) [see Fig. 4(a)], Mn3 on Re(0001),
and Fe3 on Au(111). When J12 is the dominant interaction,
we can approximate α(θ ) ≈ 1 − 3

2θ2 for J12 < 0 (canted fer-
romagnetic), from which we obtain that the isotropic energy
increases with the tilt angle with the coefficient J12 + 2(B12 +
B123), while for J12 > 0 we have instead α(90◦ + θ ) ≈ − 1

2 +
3
2θ2 (canted planar Néel), with the corresponding coefficient
being J12 − (B12 + B123). Thus, the change in the energy from
tilting the spins is influenced by the isotropic four-spin inter-
actions in different ways depending on the chosen reference
configuration and can be an indirect way of establishing their
relative importance. Overall, we see that it is important to
include the different types of isotropic interactions, and not
just the two-site biquadratic interactions, when extending the
spin model.

The chiral interactions lead to a canting of the magnetic
structure with a well-defined chirality. This is controlled by
the effective chiral vector, which has contributions from the
DMI, the CBI, and the chiral three-site interactions. As with
the isotropic interactions, the latter two interactions can either
cooperate and compete, and as they are vector interactions
this can happen in different ways for the different vector
components. The CBI and the chiral three-site interaction for
Cr3 on Pt(111) have comparable magnitudes but are almost
perpendicular to each other, combining into a vector C12 +
C′

123 which is almost half of the DMI in magnitude. However,
the additional dependence on α(θ ) of the CBI and the chiral
three-site interaction conspires to cancel the enhancement of
the DMI near θ = 90◦, instead leading to its weakening, as
shown in Figs. 4(b) and 4(c). The different contributions to the
energy are shown in Fig. 4(d). The strong antiferromagnetic
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FIG. 4. Contributions to the energy of C3v-symmetric magnetic
structures of Cr3 on Pt(111). (a) Effective isotropic interaction
J̃12(θ ) = J12 + α(θ )(B12 + B123). (b) y component and (c) z com-
ponent of the effective chiral interaction vector D̃12(θ ) = D12 +
α(θ )(C12 + C′

123). (d) Total magnetic energy per trimer atom relative
to the energy of the planar Néel state (θ = 90◦) given by J12 alone.
The analytic form of the energy due to the isotropic and chiral
interactions is given in Eq. (38). For each θ , we consider the value of
φ that minimizes the energy. The last curve includes the contribution
from the symmetric anisotropic interactions. The energy minima are
indicated by the gray stars.

J12 favors the planar Néel state, which becomes canted due
to the usual DMI—the two minima near θ = 90◦ correspond
to two canted N+ states, with the spins tilting either toward
the center of the trimer or away from it. The chiral four-spin
interactions weaken the canting of the Néel state. Finally, the
contribution to the energy from the symmetric anisotropic
interactions [not included in Eq. (38)] modifies the canting
angle, due to the tilted easy axis of the single-site magnetic
anisotropy.

While the previously discussed rotational symmetric mag-
netic structures showed the importance of the Moriya-like
components of the chiral four-site interaction, it did not give
access to the states favored by Cx

123. Following Eq. (10) and
Fig. 2, a typical term of the non-Moriya component is given
by

Ex
123 + Ex

213 = Cx
123(S1 × S2)x(S2 − S1) · S3, (41)

while the same combination gives for the Moriya components

Ey
123 + Ey

213 = Cy
123(S1 × S2)y(S2 + S1) · S3, (42)
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FIG. 5. Magnetic structure favored by the non-Moriya compo-
nent of the chiral three-site interaction, Cx

123. (a) Top view. (b) Side
view. Spherical coordinates: θ1 = θ2 = 78.6◦, θ3 = 0◦, φ1 = 173.0◦,
and φ2 = 7.0◦.

and similarly for Cz
123. This exemplifies why the non-Moriya

interaction is inoperative for magnetic structures where all the
mutual angles are the same, which implies (S2 − S1) · S3 = 0,
as we discussed in relation to Eq. (38). However, if one started
from an up-up-down state (see Fig. 3) and then (S2 − S1) ·
S3 = −2, the non-Moriya interaction becomes active and
would lead to a canting of this magnetic structure.

One way of comparing the different chiral interactions
acting on the trimer is to find what is the magnetic structure
that is favored by each type of interaction on its own. The
out-of-plane DMI (Dz

12) favors the planar Néel state, selecting
either N+ or N− depending on its sign (see Fig. 3). The
in-plane DMI (Dy

12) favors a canted form of the N+ state, with
all spins having the same polar angle of θ = 45◦ and with the
spins tilting either toward the center of the trimer or away
from it. The chiral biquadratic and the Moriya components
of the chiral three-site interactions favor similar states as the
usual DMI. The out-of-plane components (Cz

12 and Cz
123) also

favor either N+ or N−, while the in-plane components (Cy
12

and Cy
123) favor a canted form of the N+ state, but with a

different value of the polar angle, θ = 25.5◦. In contrast, the
non-Moriya contribution favors a completely different state,
shown in Fig. 5. One of the spins stays normal to the plane
of the trimer, while the other two cant symmetrically toward
each other (φ1 = 173.0◦ and φ2 = 7.0◦) with a large opening
angle with respect to the out-of-plane spin (θ1 = θ2 = 78.6◦).

B. Tetramers with C4v symmetry

A tetramer of identical magnetic atoms arranged as a
compact square on an fcc(001) surface has C4v symmetry.
The chosen coordinate system, labeling the magnetic atoms
and mirror planes, is shown in Fig. 1(b), and the symmetry
matrices are described in Appendix C. The isotropic and chiral

interactions for the tetramer are specified by Eqs. (4), (10), and
(16), with the detailed form for four-site interactions given
in Eq. (32). The reference interaction parameters are given in
Table V, from which the full spin model can be parametrized
by applying the C4v-symmetry operations. (The symmetric
anisotropy parameters [see Eqs. (2) and (4) and Appendix A]
are not of our primary interest, but can be found in Table VII.)

We first discuss possible scenarios considering the
isotropic interactions alone. The dominant interaction
is the nearest-neighbor interaction J12. J12 < 0 favors a
ferromagnetic alignment, while J12 > 0 favors the collinear
up-down-up-down antiferromagnetic state (going around the
tetramer). As the tetramer allows for next-nearest-neighbor
interactions, J13 could in principle compete with J12 and
stabilize an up-up-down-down state, but this requires
J13 � |J12|, a condition far from being satisfied in our
tetramers. The isotropic biquadratic and four-site interactions
contribute to the energy in exactly the same way for these
three collinear states, E = 4(B12 + B1234) + 2(B13 + B1324),
and so do not favor any of them. The isotropic three-site
interactions do distinguish between the three collinear states:
B123 distinguishes the up-up-down-down state from the other
two, while B124 distinguishes all three of them. However, the
magnitude of these isotropic four-spin interactions for our
tetramers is not strong enough to modify the collinear state
favored by the nearest-neighbor interaction J12.

In order to easily compare the isotropic and chiral contribu-
tions to the magnetic energy of the tetramer, we now consider
a family of magnetic structures with fourfold rotational sym-
metry. We parametrize the spins as in Eq. (37), but now setting
φ1 = φ + 45◦, φ2 = φ1 + s 90◦, φ3 = φ1 + s 180◦, and φ4 =
φ1 + s 270◦ with s = {+,−}. As before, θ = 0◦ or 180◦ corre-
sponds to the ferromagnetic state. However, θ = 90◦ is not the
up-down-up-down state, but a planar noncollinear state with
all spins perpendicular to their nearest neighbors. We define
α(θ ) = S1 · S2 and β(θ ) = |S1 × S2|, with the direction of
the cross product indicated by us(θ, φ) = S1 × S2/|S1 × S2|,
which together characterize the openings of nearest-neighbor
spins. We also define α′(θ ) = S2 · S4, β ′(θ ) = |S2 × S4|, and
u′

s(θ, φ) = S2 × S4/|S2 × S4|, characterizing the openings of
next-nearest-neighbor spins. Considering only isotropic and
chiral interactions, for these structures the total magnetic
energy per tetramer atom is [cf. Eq. (32)]
Es(θ, φ) = α(J12 + α(B12 + B123 + B1234) + α′B124)

+ α′

2
(J24 + α′(B24 + B1324) + 2αB124)

TABLE V. Magnetic interactions in different compact tetramers deposited on the Pt(100) surface in units of [meV]. We give the reference
parameters for all isotropic and chiral two-, three-, and four-site interactions. The full set of interactions can be obtained from the shown ones
by applying the C4v-symmetry operations to the tetramer; see Sec. III B.

J12 J24 Dy
12 Dz

12 D24 B12 B24 Cy
12 Cz

12 C24

Cr4 29.09 11.69 0.42 1.22 −0.70 −11.54 −0.58 2.34 0.66 0.11
Fe4 −25.07 −2.44 −1.28 −0.40 4.35 −4.34 −0.20 0.98 0.52 −0.47

B123 B124 Cx
123 Cy

123 Cz
123 Cx

124 Cy
124 Cz

124 Cx
421 Cy

421 Cz
421 B1234 B1324 Cy

1234 Cz
1234 C2413

Cr4 −2.69 −0.82 −0.89 0.81 −1.91 0.40 0.61 0.09 −0.31 −0.26 0.32 −1.15 1.26 0.87 0.95 1.19
Fe4 0.20 1.09 −0.26 −0.37 −1.57 0.04 −0.72 −0.52 −0.16 −0.26 0.22 0.15 1.10 −0.86 −0.28 −0.60
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+ βus · (D12 + α(C12 + C′
123 + C1234) + α′C′

124)

+ β ′

2
u′

s · (D24 + α′(C24 + C2413) − αC′
421)

= αJ̃12 + α′

2
J̃24 + βus · D̃12 + β ′

2
u′

s · D̃24. (43)

Here C′
123 = (0,Cy

123,Cz
123) and likewise for C′

124. Lastly,
C′

421 = C′
421( 1√

2
, 1√

2
, 0) with C′

421 = √
2(Cx

421 + Cy
421), so

only the net component which is collinear with D24 con-
tributes. Hence, the components Cx

123, Cx
124, and Cz

421 do not
contribute to the energy of these magnetic structures. As in the
case of the trimer, we can interpret the different contributions
to the energy as if arising from effective interactions J̃i j

and D̃i j .
The chiral part of the energy can be split into an out-of-

plane contribution,

E z
s (θ, φ) = s D̃z

12(θ ) sin2 θ, (44)

and an in-plane contribution

Ey
+(θ, φ) = −

[
1√
2

D̃y
12(θ ) + 1

2
D̃24(θ )

]
cos φ sin(2θ ),

Ey
−(θ, φ) = 0. (45)

As for the trimer, only one chirality can gain energy from the
in-plane components of the effective DMI.

We now focus on the Fe tetramer, for which J12 =
−25 meV and J24 = −2.4 meV favor a ferromagnetic struc-
ture, and so an opening due to chiral interactions is expected.
For a small opening, we can set α(θ ) ≈ 1 − θ2 and α′(θ ) ≈
1 − 2θ2, so that the second derivative of the isotropic energy
has the coefficients J12 + 2(B12 + B123 + B1234) + 3B124 =
−30 meV and J24 + 2(B24 + B1324) + 3B124 = 2.6 meV,
showing that the isotropic four-spin interactions make a very
important contribution and can even reverse the effective
sign of the interaction. The nearest-neighbor DMI |D12| =
1.3 meV is strongly enhanced close to the ferromagnetic
state to |D̃12| = 3.2 meV, while the next-nearest-neighbor
DMI D24 = 4.4 meV is slightly weakened to D̃24 = 3.7 meV.
When all interactions are taken together, the ground state of
the Fe tetramer on Pt(001) is found to be a ferromagnetic
structure almost perpendicular to the plane of the surface, with
a symmetric canting of all spins (s = +) away from the center
of the tetramer, with θ = 8◦. The main origin of this canting
are the chiral interactions across the diagonals of the tetramer.

The Cr tetramer has strong antiferromagnetic interactions
favoring the collinear antiferromagnetic up-down-up-down
state. By setting θ1 = θ3 = θ and θ2 = θ4 = 180◦ − θ , one
can still use Eq. (43) but with α → −α and taking care of the
change in handedness of some cross products, which leads to

Ey
+(θ, φ) = 0,

Ey
−(θ, φ) =

[
1√
2

D̃y
12(θ ) − 1

2
D̃24(θ )

]
cos φ sin(2θ ). (46)

The out-of-plane contribution from the chiral interactions
is unchanged. The strongest interactions are J12 = 29 meV
and J24 = 12 meV. For a small opening, we can set
α(θ ) ≈ −1 + θ2 and α′(θ ) ≈ 1 − 2θ2, so that the sec-
ond derivative of the isotropic energy has the coefficients
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FIG. 6. Magnetic structure of the Cr tetramer obtained consider-
ing the full set of magnetic interactions. (a) Top view. (b) Side view.
Spherical coordinates: θ1 = θ2 = 92.3◦, θ3 = θ4 = 87.7◦, φ1 = φ4 =
0.1◦, and φ2 = φ3 = 179.9◦.

J12 − 2(B12 + B123 + B1234) + 3B124 = 57 meV and J24 +
2(B24 + B1324) − 3B124 = 16 meV, showing a very strong
contribution from the isotropic four-spin interactions to the
nearest-neighbor part. The nearest-neighbor DMI |D12| =
1.3 meV is strongly enhanced close to the ferromagnetic state
to |D̃12| = 3.4 meV, while the next-nearest-neighbor DMI
D24 = −0.7 meV is reduced to almost zero. When all inter-
actions are taken together, the ground state of the Cr tetramer
on Pt(001) is found to be a slightly canted up-down-up-down
state almost collinear with either the x or y directions, due to
the symmetric anisotropic interactions, and the spins tilt away
from the xy plane by �θ = ±2.3◦. This magnetic structure is
illustrated in Fig. 6.

VII. RELATION TO OTHER WORKS

We now relate our findings to other works addressing
magnetic interactions in very disparate systems, highlighting
common ground and clarifying several aspects concerning the
multisite interactions.

First, we would like to mention that Bornemann et al. [72]
presented an extensive survey of the magnetic properties of
diverse clusters of Fe, Co, and Ni on Ir(111), Pt(111), and
Au(111), using the infinitesimal rotation method based on
the ferromagnetic state as reference. However, direct com-
parison of our data in Table IV with their reported values
is difficult because of their neglect of structural relaxations
and various other computational differences, so we will not
attempt this here. We have previously calculated the magnetic
exchange interactions for Fe trimers on Pt(111), in connection
to scanning tunneling microscopy experiments [60,73]. In
Ref. [73], we employed the infinitesimal rotation method
for the two-spin interactions with a correction due to the
spin polarizability of Pt, obtaining J12 = −54 meV, Dy

12 =
1.3 meV, and Dz

12 = −0.7 meV. As discussed in Sec. VI A,
we should compare J12 from the infinitesimal rotation method
with J12 + 2(B12 + B123) = −44 meV, and the DMI to D̃y

12 =
4.9 meV and D̃z

12 = −0.4 meV, as defined in Eq. (38). We
believe that the discrepancies can be explained by the differ-
ent treatment of the potential: Reference [73] employed the
atomic sphere approximation while our present work makes
no shape approximation to the potential.

To the best of our knowledge, there is only one previous
work addressing isotropic four-spin interactions in magnetic
clusters, Ref. [47], using a different computational geometry
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and approximations, which once again cautions against quan-
titative comparisons. Reference [47] reports for the isotropic
four-spin interactions of Cr3 on Au(111) B12 = −4.4 meV
versus our B12 = −5.1 meV, and B123 = 7.1 meV versus
our B123 = 8.1 meV. Both values are in fair agreement with
ours, also concerning the opposite sign of these interactions.
They also report J12 = 145 meV versus our J12 = 88 meV,
and |D12| = 1.8 meV versus our |D12| = 4.3 meV, both quite
different from ours, so the numerical agreement at the level of
the four-spin interactions might be fortuitous.

Fe chains on Re(0001) were experimentally found to have a
short-period spin-spiral ground state [74,75]. While exploring
the magnetic properties of this system with DFT calculations,
Lászlóffy et al. [52] found an inconsistency between the
noncollinear spin structure obtained via magnetic force the-
orem calculations and the one obtained with an atomistic spin
model containing only two-spin interactions. While trying to
understand the origin of this inconsistency, they introduced on
phenomenological grounds chiral multisite interactions. Our
systematic procedure for constructing chiral multisite inter-
actions fully justifies the phenomenological forms proposed
by these authors. We note, however, that we did not recover
the aforementioned inconsistency when revisiting the same
system without any shape approximation to the potential,
instead finding a spin structure which is consistent with the
experimental one [75].

Grytsiuk et al. [20] investigated theoretically the complex
magnetism of MnGe [34,36]. Given that the Mn atoms in
MnGe are coordinated in triangular plaquettes, the authors
proposed so-called topological-chiral interactions which are
built upon the scalar spin chirality of the three spins forming
one such triangle, χ123 = S1 · (S2 × S3). The chiral-chiral
interaction is a six-spin three-site interaction κCCI

123 (χ123)2

that does not require SOC, while the spin chiral interac-
tion is a four-spin three-site interaction built of terms such
as (CSCI

123 · S1)χ123 and is driven by SOC. DFT calculations
showed that both types of interactions are quite strong in
MnGe. Given our proposed classification of multisite inter-
actions into isotropic (no SOC required) and chiral (SOC
required) interactions, the question arises as to how these
topological-chiral interactions fit this classification. In fact,
we show in Appendix B that the chiral-chiral interaction can
be expressed solely using dot products of the involved spins,
so it is of the generic form of the isotropic interactions,
and that the spin-chiral interaction can be rewritten using
combinations of dot products and cross products, thus being
covered by the chiral four-spin interactions that we discuss in
the present work. However, interactions built solely out of the
scalar spin chirality cannot reproduce all the different types
of interactions that we uncovered in the present work (see
Appendix B), and for a complete spin model our systematic
forms for the interactions should be used.

Cardias et al. [59] recently submitted a preprint titled
“Dzyaloshinskii-Moriya interaction in absence of spin-orbit
coupling.” Our microscopic model and heuristic arguments
concerning the forms of the magnetic interactions unequiv-
ocally show that without SOC the interactions are isotropic,
no cross products of spins appear, and without cross products
there are no DMI-like chiral interactions. We are convinced
that these puzzling findings can be explained using the gen-

eralized atomistic spin model that we discussed in this work,
by identifying the type of isotropic multispin and/or multisite
interactions that lead to the obtained angular dependence of
the energy or its first derivative.

As we mentioned in the introduction, several works have
proposed ways of extending the infinitesimal rotation method
to four-spin interactions [20,22,23,57]. In particular, Ref. [57]
discusses both isotropic and chiral multisite interactions and
derives the corresponding expressions for their calculation in a
DFT context. They showed that the chiral four-spin three-site
interactions do not vanish for centrosymmetric systems with
the example of bcc Fe, in full agreement with our symmetry
analysis of these interactions. The authors also introduce
a chiral three-spin three-site interaction which is defined
through the scalar spin chirality χ123. This kind of interaction
is not time reversal invariant unless the interaction coefficient
also changes sign, and so we believe that the corresponding
calculations need to be reinterpreted in a way that complies
with time-reversal symmetry.

VIII. CONCLUSIONS

In this work, we presented a comprehensive framework
for isotropic and chiral multisite interactions, along with sys-
tematic calculations of these interactions for several magnetic
trimers and tetramers.

First, we imposed the general requirement of time-reversal
invariance of the magnetic energy on the possible form of
the interactions and gave simple heuristic arguments that can
be used to obtain the form of the multisite interactions. We
thus arrived at a generalized atomistic spin model containing
two-spin and four-spin interactions that couple up to four dis-
tinct magnetic sites. Next, we demanded that our interactions
comply with the crystallographic point group symmetry, with
the concrete examples of C3v (trimers) and C4v (tetramers).
Contrary to the one- and two-site interactions, those based
on three or four sites are much less constrained by the point
group symmetry operations. For instance, while the two-site
Dzyaloshinskii-Moriya interaction vanishes if there is an in-
version center in the middle of those two sites, this is not
the case for the chiral three- and four-site interactions. We
also found that the respective chiral interaction vectors can
have components which are forbidden for the DMI due to
Moriya’s rules. The chiral multisite interactions do comply
with a generalized Moriya rule: If all sites connected by the
interaction lie in the same mirror plane, the chiral interaction
vector must be perpendicular to this plane.

After outlining our global mapping scheme from DFT
calculations to a target spin model, we presented our results
on a series of homoatomic trimers and tetramers on several
surfaces with strong spin-orbit coupling. While in most cases
the dominant interaction is the familiar isotropic Heisenberg
exchange, this is not so for the trimers on the Re(0001) sur-
face. For the trimers, we found that the isotropic biquadratic
and three-site interactions tend to counteract each other, while
the chiral biquadratic and three-site interactions more easily
combine due to their vector nature, supporting or hindering
the DMI depending on the magnetic structure and on the
type of atoms forming the trimer. We also discussed the
magnetic structure favored by the non-Moriya component of
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the chiral three-site interactions. For the tetramers on Pt(001),
the isotropic four-spin interactions were found to cooperate
and have a strong contribution for the Cr case, while the
chiral four-spin interactions dominate over the DMI, playing
a leading role in the canting of the ground-state magnetic
structures of the tetramers. Lastly, we briefly addressed recent
proposals for multisite interactions and placed them into the
context of our work.

We believe that our work is a timely contribution to the
growing research activity on materials with complex magnetic
structures, such as multiple-Q states [28–33], for which the
role of the chiral multisite interactions is yet to be explored.
Our detailed exposition of the symmetry properties of the
multisite interactions, as well as concrete examples for their
enumeration, should clarify the bookkeeping which is essen-
tial to properly account for all possible ways of combining
a set of sites with a given type of magnetic interaction.
Our example systems, trimers and tetramers, are ubiquitous
building blocks (triangles and squares, respectively) of many
lattices, which will help transfer our findings to extended
systems, from a single layer to bulk magnets.
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APPENDIX A: SYMMETRIC ANISOTROPY MATRICES

Here, we briefly explain the rationale for the forms of
the one- and two-site anisotropy matrices used in this work.
Consider the following real symmetric matrix:

A =
⎛
⎝Axx Axy Axz

Axy Ayy Ayz

Axz Ayz Azz

⎞
⎠. (A1)

By solving the eigensystem A un = λnun, where λn are the
eigenvalues and un are the normalized eigenvectors (un · un =
1) of the matrix A, one can write

A = λ1u1 ⊗ u1 + λ2u2 ⊗ u2 + λ3u3 ⊗ u3. (A2)

This defines an ellipsoid with principal axes of length given by
the eigenvalues and orientation given by the eigenvectors. As
an example, consider the mirror symmetry M = 1 − 2 n ⊗
n, where n is the unit normal to the mirror plane. If the
anisotropic interaction is invariant under this mirror sym-
metry, MAM = A, then n must be one of the eigenvectors
of A.

Consider now the symmetric anisotropic interactions. For∑
α,β Kαβ

i Sα
i Sβ

i , we have an on-site anisotropy matrix, for
which only the energy differences when the spin is aligned
with each of the principal axes is meaningful. We can thus set
one of its eigenvalues to zero, and we do this with the one
invariant under the mirror plane, say λ3 = 0 if n = u3, which
leaves a finite two-dimensional subspace Ki = λ1u1 ⊗ u1 +
λ2u2 ⊗ u2. This corresponds to the matrix Ki having three

independent parameters, which only reduce to two if the coor-
dinate axes are aligned with the eigenvectors of this matrix. If
i �= j, we have a symmetric anisotropic exchange matrix, and
we cannot a priori set any eigenvalue to zero. We can, how-
ever, rewrite

∑
α,β Jαβ

i j Sα
i Sβ

j = Ji j Si · S j + ∑
α,β �Jαβ

i j Sα
i Sβ

j .
Now the role of the anisotropy is isolated in the matrix �Ji j ,
and we can choose to set to zero the eigenvalue that is invariant
under the mirror symmetry, if the symmetry applies.

First, we discuss the trimer with C3v symmetry; see
Fig. 1(a). We take atom 3 as reference, for which M3K3M3 =
K3 can be used to impose the form

K3 =

⎛
⎜⎝

0 0 0
0 Kyy

3 Kyz
3

0 Kyz
3 Kzz

3

⎞
⎟⎠. (A3)

From this matrix, the remaining ones are generated by K1 =
R+K3R− and K2 = R−K3R+. The symmetric anisotropic
exchange is simplest to specify for atoms 1 and 2. The mir-
ror symmetry replaces S1 → M3S2 and S2 → M3S1, which
leads to �J12 = M3�J12M3 [see Eq. (4)]. In perfect analogy
with the on-site anisotropy, we can thus write

�J12 =

⎛
⎜⎝

0 0 0
0 �Jyy

12 �Jyz
12

0 �Jyz
12 �Jzz

12

⎞
⎟⎠. (A4)

The remaining matrices can be obtained by rotation, �J23 =
R+�J12R−, �J31 = R−�J12R+, etc. The parameters of the
symmetric anisotropic matrices for the trimers are shown in
Table VI.

Now we discuss the tetramer with C4v symmetry; see
Fig. 1(b). The mirror planes M± determine the form of the
on-site anisotropy matrices. These have three independent
parameters as for the trimer, but due to the mirror planes not
being aligned with the Cartesian axes the matrices seem a bit
more complicated. We take atom 3 as reference, for which
M+K3M+ = K3 can be used to impose the form

K3 =
⎛
⎝Kxx

3 Kxx
3 Kxz

3

Kxx
3 Kxx

3 Kxz
3

Kxz
3 Kxz

3 Kzz
3

⎞
⎠, (A5)

with the other matrices being given by K1 = M−K3M−,
K2 = MyK3My, and K4 = MxK3Mx. As �J12 =
Mx�J12Mx, the symmetric exchange matrix for nearest
neighbors �J12 has the same form as given for the trimer in
Eq. (A4), and going around the edges of the tetramer we have
�J14 = M+�J12M+, �J43 = My�J12My, and �J32 =
M−�J12M−. For the next nearest neighbors, we take atoms
1 and 3 as reference, for which �J13 = M+�J13M+ and
�J13 = M−�J13M−, leading to

�J13 =
⎛
⎝�Jxx

13 �Jxx
13 0

�Jxx
13 �Jxx

13 0
0 0 �Jzz

13

⎞
⎠. (A6)

Lastly, �J24 = Mx�J13Mx = My�J13My. The parameters
of the symmetric anisotropic matrices for the tetramers are
shown in Table VII.
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TABLE VI. Parameters of the symmetric anisotropic matrices for the compact top-stacked trimers in units of [meV].

Surface System Kyy
3 Kzz

3 Kyz
3 �Jyy

12 �Jzz
12 �Jyz

12

Pt(111) Cr3 1.02 2.82 −1.08 −0.04 −0.17 0.29
Mn3 −2.68 −1.15 1.00 0.05 −0.72 0.29
Fe3 −0.56 −0.31 2.47 0.68 0.10 −0.65
Co3 −0.74 −4.33 0.40 0.14 −0.07 −0.47

Re(0001) Cr3 0.97 −3.96 −1.21 −0.23 1.43 −0.06

Mn3 1.48 −5.71 −1.82 −1.16 1.04 0.18
Fe3 2.18 2.59 −0.89 −0.33 −0.65 0.05
Co3 −0.95 2.51 0.40 0.00 0.33 −0.27

Au(111) Cr3 0.13 0.38 −0.38 0.03 −0.08 0.09
Mn3 −0.03 1.29 0.78 0.39 −0.00 −0.45
Fe3 −0.27 −1.41 0.46 −0.20 0.26 −0.10
Co3 −2.25 −4.72 −1.81 −0.26 0.49 0.31

APPENDIX B: EQUIVALENT FORMS OF THE CHIRAL
FOUR-SPIN INTERACTIONS AND THE ISOTROPIC

SIX-SPIN INTERACTION

First, we show how to transform the so-called chiral-chiral
interaction [20], κCCI

123 (χ123)2, into combinations of dot prod-
ucts. The scalar chirality can be expressed as the determinant
of a matrix with the spins either as rows or as columns,

χ123 = det

⎛
⎜⎝

Sx
1 Sy

1 Sz
1

Sx
2 Sy

2 Sz
2

Sx
3 Sy

3 Sz
3

⎞
⎟⎠ = det

⎛
⎜⎝

Sx
1 Sx

2 Sx
3

Sy
1 Sy

2 Sy
3

Sz
1 Sz

2 Sz
3

⎞
⎟⎠. (B1)

We can then write, using (det A)(det B) = det(AB),

(χ123)2 = det

⎛
⎜⎝

Sx
1 Sy

1 Sz
1

Sx
2 Sy

2 Sz
2

Sx
3 Sy

3 Sz
3

⎞
⎟⎠ det

⎛
⎜⎝

Sx
1 Sx

2 Sx
3

Sy
1 Sy

2 Sy
3

Sz
1 Sz

2 Sz
3

⎞
⎟⎠

= det

⎛
⎜⎝

1 S1 · S2 S1 · S3

S2 · S1 1 S2 · S3

S3 · S1 S3 · S2 1

⎞
⎟⎠

= 1 + 2(S1 · S2)(S2 · S3)(S3 · S1)

− (S1 · S2)2 − (S1 · S3)2 − (S2 · S3)2. (B2)

It is the sum of a constant, an isotropic six-spin three-site
interaction, and three isotropic biquadratic interactions. The
isotropic six-spin interaction written as sums over triples of
dot products of spins was derived from a Hubbard model in
Ref. [19] (see last row of Table II in that work).

We now address the spin-chiral interaction [20] (SCI)
and its reduction to combinations of dot products and cross
products. In three dimensions, any vector v can be written

TABLE VII. Parameters of the symmetric anisotropic matrices in
different compact tetramers deposited on the Pt(100) surface in units
of [meV].

System Kxx
1 Kxz

1 Kzz
1 �Jyy

12 �Jzz
12 �Jyz

12 �Jxx
24 �Jzz

24

Cr4 0.04 0.10 2.44 −0.29 −1.41 −0.09 0.84 2.75
Fe4 0.62 0.14 −0.66 −0.65 0.35 0.33 0.08 −2.49

using three linearly independent vectors {a, b, c} as

v = v · (b × c)

a · (b × c)
a + v · (c × a)

a · (b × c)
b + v · (a × b)

a · (b × c)
c. (B3)

Using this relation, we can rewrite a generalized spin-chiral-
type interaction as

ESCI
1234 = (

CSCI
1234 · S1

)
S2 · (S3 × S4)

= CSCI
1234 · ((S3 × S4)(S1 · S2) − (S2 × S4)(S1 · S3)

+ (S2 × S3)(S1 · S4)). (B4)

The general chiral four-site form given in Eq. (16) has four
symmetries while the four-site SCI has the six symmetries
of the scalar spin chirality built from 234, so a mapping is
not possible. The three-site restriction of this formula (the one
actually discussed in Ref. [20]) yields

ESCI
1123 = (

CSCI
1123 · S1

)
S1 · (S2 × S3)

= CSCI
1123 · (S2 × S3 + (S3 × S1)(S1 · S2)

− (S2 × S1)(S1 · S3)). (B5)

The first term contributes to the two-spin DMI between
sites 2 and 3, and the remaining two terms fall into the
form of the four-spin three-site chiral interaction given in
Eq. (10). In fact, this corresponds to an antisymmetrized form
of the chiral three-site interaction, C−

312 · (S3 × S1(S1 · S2) −
S2 × S1(S1 · S3)), so it cannot capture the symmetrized re-
mainder of the chiral three-site interaction.

APPENDIX C: SYMMETRY OPERATIONS FOR C3v and C4v

For C3v symmetry, we give two rotation and three mirror
matrices. The 120◦ rotations around the z axis are

R± =

⎛
⎜⎝ − 1

2 ∓
√

3
2 0

±
√

3
2 − 1

2 0
0 0 1

⎞
⎟⎠, (C1)
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R+ being anticlockwise and R− clockwise. The matrices for
the mirror planes in Fig. 1(a) are

M1 =

⎛
⎜⎜⎝

1
2

√
3

2 0
√

3
2 − 1

2 0

0 0 1

⎞
⎟⎟⎠, M2 =

⎛
⎜⎜⎝

1
2 −

√
3

2 0

−
√

3
2 − 1

2 0

0 0 1

⎞
⎟⎟⎠,

(C2)
and M3 = diag(−1, 1, 1) is a diagonal matrix.

For C4v symmetry, we define three rotation matrices and
four mirror planes. The reference rotation matrix is the anti-
clockwise rotation by 90◦ around the z axis,

R =
⎛
⎝0 −1 0

1 0 0
0 0 1

⎞
⎠, (C3)

from which all rotation matrices can be defined by a suitable
power or transpose. We have two mirror planes along the
Cartesian axes,

Mx =
⎛
⎝−1 0 0

0 1 0
0 0 1

⎞
⎠, My =

⎛
⎝1 0 0

0 −1 0
0 0 1

⎞
⎠, (C4)

and two diagonal ones,

M+ =
⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠, M− =

⎛
⎝ 0 −1 0

−1 0 0
0 0 1

⎞
⎠. (C5)
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