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First-passage-time problem for tracers in turbulent flows applied to virus spreading
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We study the spreading of viruses, such as SARS-CoV-2, by airborne aerosols, via a first-passage-time
problem for Lagrangian tracers that are advected by a turbulent flow: By direct numerical simulations of the
three-dimensional (3D) incompressible Navier-Stokes equation, we obtain the time #x at which a tracer, initially
at the origin of a sphere of radius R, crosses the surface of the sphere for the first time. We obtain the probability
distribution function P (R, tg) and show that it displays two qualitatively different behaviors: (a) for R < Ly,
P(R, tg) has a power-law tail ~#,“, with the exponent « = 4 and L; the integral scale of the turbulent flow; (b)
for L; < R, the tail of P(R, tz) decays exponentially. We develop models that allow us to obtain these asymptotic
behaviors analytically. We show how to use P(R, tg) to develop social-distancing guidelines for the mitigation
of the spreading of airborne aerosols with viruses such as SARS-CoV-2.
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I. INTRODUCTION

By 1 June 2020 (14:31 GMT) the COVID-19 coronavirus
pandemic had affected 213 countries and territories and 2
international conveyances; the numbers of cases and deaths
were, respectively, 6 300444 and 374 527 [1]. Social distanc-
ing has played an important role in mitigation strategies that
have been used in several countries to arrest the spread of
COVID-19 [2]. To optimize social-distancing guidelines we
must ask the following: How far, and how fast, do small res-
piratory droplets or virus-bearing aerosols spread in turbulent
flows? Given the ongoing COVID-19 pandemic, it is impor-
tant and extremely urgent to have at least a semiquantitative
answer to this question. SARS-CoV-2, the virus that causes
COVID-19, spreads, principally, in two different ways: (1)
First, respiratory droplets, ejected by the sneeze or cough
of a patient, fall on nearby surfaces or persons; in this case,
approximate estimates of the distance over which droplets are
likely to travel are available [3-5]. (2) Second, transmission of
this virus can occur because of airborne aerosols, such as (a)
a cloud of fine droplets, with diameters smaller than 5 um,
emitted by an infected person while speaking loudly [6],
or (b) the SARS-CoV-2 RNA on fine, suspended particulate
matter [7]. These aerosols may remain suspended in the air
for a long time. Indeed, they have been reported in two
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hospitals in Wuhan [8], and there is growing evidence that
the SARS-CoV-2 virus could also spread via airborne aerosols
[6-10], typically indoors [11]. Other diseases can also spread
because of airborne aerosols; examples include measles [12],
chickenpox [13], tuberculosis [14], and avian flu [15].

The typical sedimentation speed for such aerosols is com-
parable to their thermal speed. Therefore, at the simplest
level, it is natural to model these aerosol particles as neutrally
buoyant Lagrangian tracers, which are advected by the flow
but are passive, in the sense that they do not affect the flow
velocity. We can then study the spread of viruses, such as
SARS-CoV-2, via the airborne-aerosol route, by considering
the advection of such tracers by turbulent fluid flows. There
have been extensive studies of such tracers in the fluid-
dynamics literature [16,17], and models for such tracers have
been used, inter alia, to model the dispersion of pheromones
by lepidoptera [18].

We would like to determine the time that an aerosol particle
(one of the red particles in the schematic diagram of Fig. 1)
takes to travel a distance R from its source (the man at the
center of Fig. 1). In a turbulent flow, this time is random;
furthermore, a tracer particle can go past the distance R,
turn back, and reach R again. It is important, therefore, to
calculate the time it takes for an aerosol particle to reach the
distance R for the first time and to calculate the probability
distribution function (PDF) of the first-passage time of a tracer
in a turbulent flow. We carry out this calculation below.

Specifically, we consider Lagrangian tracer particles that
emanate from a point source in a turbulent fluid. If #z is the
time at which a tracer, initially at the origin of a sphere of ra-
dius R, crosses the surface of the sphere for the first time, what
is the probability distribution function (PDF) P(R, tz)? The
answer to this question is of central importance in both fun-
damental nonequilibrium statistical mechanics [19-23] and in
understanding the dispersal of tracers by a turbulent flow, a
problem whose significance cannot be overemphasized, for
it is of relevance to the advection of (a) airborne viruses, as

Published by the American Physical Society


https://orcid.org/0000-0002-8573-8527
https://orcid.org/0000-0003-0130-6258
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.033239&domain=pdf&date_stamp=2020-08-11
https://doi.org/10.1103/PhysRevResearch.2.033239
https://creativecommons.org/licenses/by/4.0/

VERMA, BHATNAGAR, MITRA, AND PANDIT

PHYSICAL REVIEW RESEARCH 2, 033239 (2020)

FIG. 1. A schematic diagram illustrating how aerosols with
viruses (red points) may be advected by a turbulent flow, from
the person at the center (the source) to other persons at different
distances from the center.

we have noted above, and (b) pollutants in the atmosphere.
First-passage-time problems have been studied extensively
[20-23] and they have found applications in a variety of
areas in physics and astronomy, chemistry [24], biology [25],
and finance [26]. In the fluid-turbulence context, different
groups have studied zero crossings of velocity fluctuations
[27] or various statistical measures of two-particle dispersion,
including exit-time statistics for such dispersion in two- and
three-dimensional (2D and 3D) turbulent flows [28,29]. In
contrast to these earlier studies (e.g., Refs. [28-30]), the
first-passage-time problem we pose considers one tracer in a
turbulent flow that is statistically homogeneous and isotropic.
For such a particle we show, via extensive direct numerical
simulations (DNSs), that P(R, tg) displays a crossover be-
tween two qualitatively different behaviors: (a) For R < Ly,
P(R, tg) ~ tz*, with L the integral scale of the turbulent flow
and the exponent & = 4; and (b) for L; < R, P(R, tg) has an
exponentially decaying tail (Fig. 2). We develop models that
allow us to obtain these two asymptotic behaviors analytically.
Most important, we show how to use P(R,fg) to obtain
estimates of social-distancing guidelines for the mitigation
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of the spreading of airborne aerosols with viruses such as
SARS-CoV-2.

II. MODELS, METHODS, AND RESULTS

The 3D incompressible Navier-Stokes equation is
du+@w-Vu=—-Vp+vViu+f, (1a)
and
V.-u=0. (1b)

Here, u(x, t) is the Eulerian velocity at position x at time
t, p(x, t) is the pressure field, and v is the kinematic viscosity
of the fluid; the constant density is chosen to be unity. Our
direct numerical simulation (DNS) uses the pseudospectral
method [31], with the 2/3 rule for dealiasing, in a triply peri-
odic cubical domain with N* collocation points; we employ
the second-order exponential Adams-Bashforth scheme for
time stepping [32]. We obtain a nonequilibrium statistically
stationary turbulent state via a forcing term f, which imposes
a constant rate of energy injection [33,34], in wave-number
shells k = 1 and k = 2 in Fourier space; this turbulent state is
statistically homogeneous and isotropic.

To obtain the statistical properties of Lagrangian tracers,
which are advected by this turbulent flow, we seed the flow
with A, independent identical tracer particles. If the La-
grangian displacement of a tracer, which was at position rg
at time 1y, is r(¢|r, t), then its temporal evolution is given by

%r = v(t|ro, to) = u(r,t), 2)
where v is its Lagrangian velocity. In Eq. (2), we need the
Eulerian flow velocity at off-grid points; we obtain this by
trilinear interpolation, and we use the first-order Euler method
for time marching (see, e.g., Ref. [32]). We give important
parameters for our DNS runs in Table I. These include the
time step dr, the energy dissipation rate e =2v ), K?E (k),
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FIG. 2. Plots of the complementary cumulative probability distribution functions (CPDFs) Q vs the scaled first- passage time 7 (see text):

(a) Log-log plots of Q8 Teday j““y) for R/L; = 0.06 (blue), R/L; = 0.10 (purple), R/L; = 0.14 (green), and (’R/;““y)

(black dashed line); the

inset shows log-log plots of Q(tz/Teaay) for the same values of R/L;. (b) Semilog plots of Q(tg/Teaay) for R/L; = 1.02 (pink), R/L; = 1.43

(blue), R/L; = 1.84 (purple), and R/L; = 2.04 (green).
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TABLE 1. Parameters (see text for definitions) for our DNS runs: N3 is the total number of collocation points; v is the kinematic viscosity;
dt is the time step; Re, is the Taylor-microscale Reynolds number; € is the energy dissipation rate; 1 is the Kolmogorov dissipation length
scale; kpy is the maximum wave number that we use; L is the integral length scale; T.qqy is the integral-scale eddy-turnover time; 7, = (v/ €)\?
is the Kolmogorov dissipation time scale; and A/, is the number of tracer particles.

N v dt Re;\ € n kmax n A LI Té:ddy Ty _/\/;)
512 1.2 x 1073 2x 107 82 0.67 7.12 x 1073 1.21 0.08 0.49 0.43 423 x 1072 100000
spectrum, the Taylor-microscale A =,/ ZVTE, where the total Eq. (4); then, by integrating over v, we obtain
energy E = ), E(k), the Taylor-microscale Reynolds num- R 2.0 2
ber Re; = Aups/v, where us = +/2E is the root-mean- PR, tr) = C4 tg“ eXp [_R /(tRU )] ©)
square velocity of the flow; L; = ijEgE/Z/)k is the integral

k

length scale and Teqay = Li/ums is the integral-scale eddy-
turnover time; n = (v3/€)/* and 1, = (v/€)'/? are, respec-
tively, the Kolmogorov dissipation length and timescale; and
kmax 1S the maximum wave number that we use in our DNS.

Clearly, tg is the first time at which |r| becomes equal to
R. Instead of computing the PDF (or histogram) of #z numeri-
cally, we calculate the complementary cumulative probability
distribution function (CPDF) Q(tg) by using the rank-order
method [35] to circumvent binning errors. In Fig. 2, we
present log-log and semilog plots of Q(tg) vs tg/Teaay for
several values of R. From Fig. 2(a) we conclude that, for
R < L, Q(IR/Teddy) ~ (Z‘R/nddy)_a-"_l , for large tR/Teddy, with
o =~ 4; note that, in this power-law scaling regime, the com-
plementary CPDFs for different values of R/L; collapse onto
a universal scaling form, if we plot Q(%LL“:'Y). In contrast,
Fig. 2(b) shows that, for L1 S R, the tail of Q(tg/Teaqy) decays
exponentially. For the first-passage-time PDF, these results
imply that

(tr ) Teaay) ™ for R <K L,
PR, 1r/Teazy) ~ {exp[—(ria/nddy)] for L SR
3)
We now develop models that allow us to understand these two
asymptotic behaviors analytically.

For the power-law behavior of P(R, tg), in the range R <
L1, we construct the following natural ballistic model: Tracer
particles emanate from the origin with (a) a velocity whose
magnitude v is a random variable with a PDF p(v), and (b)
when it starts out from the origin, the tracer’s velocity vector
points in a random direction. Tracers move ballistically for
short times. Therefore, for R < Lj, the first-passage time tz =
R/v, and the first-passage PDF is

PR, tg) = /8(tR — R/v)p(v)dv. “)

In statistically homogeneous and isotropic  and
incompressible-fluid turbulence, each component of the
Eulerian velocity has a PDF that is very close to Gaussian
[36], so p(v) has the Maxwellian [37] form

p(v) = Cyvi exp(—v?/o?), ®)

where C; depends on the spatial dimension d, and C; = 47
for d =3, and 0 = / (V%) = ums. We substitute Eq. (5) in

Therefore, in the limit of small R and large tz, the first-
passage-time probability is

PR, tr) ~ R/ty, ford =3; (7)

this power-law exponent is the same as the one we have
obtained from our DNSs above (Table I and Fig. 2).

We can obtain the tail P(R, tr/Teaqy) ~ expl—(tr/Teady)]
for i SR as follows. At times that are larger than the
typical autocorrelation time of velocities in the Lagrangian
description, we follow Taylor [38] and assume that the motion
of a tracer particle is diffusive. Therefore, we consider a
Brownian particle in three dimensions (3D). To calculate
the first-passage-time PDF, we must first obtain the survival
probability S(z, R|0), i.e., the probability that the particle has
not reached the surface of the sphere of radius R up to time ¢,
if it has started from the origin of this sphere. We start with
the forward Fokker-Planck equation [22,39] for the PDF of
finding the particle at a distance r from the origin at time ¢,

0PIE) _ (P 20 PO ©
ar ar2  ror nt

where K is the diffusion constant; this PDF satisfies the initial
condition P(r, 0) = §(r)/(4mr?) and the absorbing boundary
condition P(R,t) = O for all r at » = R. We obtain the follow-
ing solution,

1 [o.¢]
P(r,t) = R ; r;z sin (%) exp(—Kn2JT2t/R2), ©)]
whence we get

R
S(R, tg) = / P(r, )4 r’dr
0

=2 (1) exp(—Kn*7’t/R*),  (10)
n=0

where, in the last step, we have used Eq. (9). The first-passage-
time probability is

d
P(R, tr) = —a—tRS(R, tr)

2Kn? n+l, 2 2.2 2
= Z(—l) n? exp(—Kn’m’tz/R?). (11)
n=0
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FIG. 3. (a) Log-log plots of the complementary CPDFs Q(;—”z) of the scaled first-passage time Y&, for R < L and y = 0.01; the

R/L?

complementary CPDFs, for R/L = 0.0002 (green), R/L = 0.000 35 (blue), and R/L = 0.0005 (orange), collapse onto one curve; (b) semilog
plots of the complementary CPDFs of the scaled first-passage time fz/R?, for L < R and y = 30. The complementary CPDF of f;/R?, for
R/L = 10 (purple), R/L = 14 (green), R/L = 18 (blue), and R/L = 20 (orange), collapse onto one curve. Plots of the complementary CPDFs

Q(ytr) vs ytg are shown in the insets.

At large times, the first term (n = 1) is the dominant one;
therefore,

P(R, tr) ~ (1/R*) exp(—K 7 ’tg /R?), (12)

the exponential form that we have obtained from our DNS
[Fig. 2(b)]; the 1/R? prefactor cannot be extracted reliably
from our DNS data, because this requires much longer runs
than are possible with our computational resources.

We now show that both the small- and large-R /L; behaviors
of P(R, tg)(R, tg) in Eq. (3) can be obtained from one stochas-
tic model for the motion of a particle. The simplest such model
uses a particle that obeys the following Ornstein-Uhlenbeck
(OU) model,

dx;
d—j = v, (13a)
dv; JT
et g (13b)
dt m

Here, y and I' are positive constants; x; and v; are the Carte-
sian components of the position and velocity of the particle; in
three dimensions, i = 1, 2, and 3; ¢;(¢) is a zero-mean Gaus-
sian white noise with (¢;) = 0 and (;(t)¢;(t")) = 8;;6(t —t');
this noise is such that the fluctuation-dissipation theorem
(FDT) holds. Note that there is no FDT for turbulence.
However, for the one-particle statistics that we consider, the
simple OU model is adequate. We use N, = 50 000 particles;
for each particle, the initial-position components x;(f = 0) are
distributed randomly and uniformly on the interval [0, 27 ],
and the velocity components v;(r = 0) are chosen from a
Gaussian distribution. For each particle, we obtain numeri-
cally the time 7z at which it reaches a distance R from the
origin for the first time. We then obtain the first-passage-time
complementary CPDF Q(fg), which we plot in Fig. 3, for

R« L and L <R, where L = %, the natural length scale
for Eq. (13), plays the role of L; in our DNSs above (Table I

and Fig. 2). We find

-4
VIR
P(R, tr) [(R/L)] , forR<L,
- YRR < p.
P(R, tg) ~ exp < (R/L)2>’ for L <R; (14)

these are the OU-model analogs of our DNS results Eq. (3).
We have carried out two OU-model simulations: (a) We have
designed the first, with y = 0.01, to explore the form of
P(R, tg) in the ballistic regime R < L; (b) the second, with
y = 30, allows us to uncover the form of P(R,tg) in the
diffusive regime L < R. [From a numerical perspective, it
is expensive to obtain the precise form of P(R, tg) in both
ballistic and diffusive regimes, with one value of y.] We
now explore in detail the forms of P(R,g) in these two
regimes. In Fig. 3(a), we present log-log plots of the com-
plementary CPDFs of the scaled first-passage time /R, for
R <« Land y = 0.01. The complementary CPDFs of 75 /R, for
R/L = 0.0002, R/L = 0.000 35, and R/L = 0.0005, collapse
onto one curve, i.e., in this regime, #g scales as R, which
is a clear manifestation of ballistic motion. In Fig. 3(b), we
present semilog plots of the complementary CPDFs of the
scaled first-passage time tg/R?, for L < R and y = 30. The
complementary CPDFs of # /R2, for R/L =10, R/L = 14,
R/L =18, and R/L = 20, collapse onto one curve; from this
we conclude that, in this regime, #z scales as R2, which is a
clear signature of diffusive motion.

III. CONCLUSIONS AND DISCUSSION

We have defined and studied a first-passage-time problem
for Lagrangian tracers that are advected by a 3D turbulent flow
that is statistically steady, homogeneous, and isotropic. Our
work shows that the first-passage-time PDF P(R, tg) has tails
that cross over from a power-law form to an exponentially
decaying form as we move from the regime R < Ly to Ly < R
[Eq. (3)]. We develop ballistic-transport and diffusive models,
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FIG. 4. Surface plots of W (R, t), the probability of virus-laden aerosol particles not reaching a person (at a distance R from an infected
person), up until time ¢t (the first-passage time) in (a) vs R and 7, and (b) vs R/L; and ¢ /T , in the diffusive region, for the representative values

K = 0.1 m?/s, Ups = 0.05m/s, and Ly = 2 m.

for which we can obtain these limiting asymptotic behaviors
of P(R, tg) analytically. We also demonstrate that an OU
model, with Gaussian white noise, which mimics the effects
of turbulence, suffices to obtain the crossover between these
limiting forms. Of course, such a simple stochastic model
cannot be used for more complicated multifractal properties
of turbulent flows [29,36,40].

Earlier studies have concentrated on two-particle relative
dispersion by using doubling-time statistics, in 2D fluid tur-
bulence; in particular, they have shown that the PDF of this
doubling time has an exponential tail [28]. Studies of velocity
zero crossings [27], in a turbulent boundary layer, have shown
that PDFs of the zero-crossing times have exponential tails.

The single-particle first-passage-time statistics that we
study still needs to be explored. Furthermore, P(R, tg) can be
used to develop social-distancing guidelines for the mitigation
of the spreading of airborne aerosols with viruses such as
SARS-CoV-2 as we show below.

Given a pseudospectral DNS of the type we have carried
out, we can obtain the integral scale L; and uy,s from the
energy spectrum E(k), as we have noted above. A recent
study of COVID-19 in 320 municipalities in China suggests
that a very large fraction of COVID-19 infections occur be-
cause of indoor transmission of the SARS-CoV-2 virus [11].
Therefore, it is important to study such transmission in rooms
and offices; a comprehensive DNS study of the Navier-Stokes

equation, with the correct boundary conditions enforced at
every wall and surface in the room and accurate forcing
functions (dictated, e.g., by fans and vents), is a considerable
challenge. Furthermore, it is not possible to carry out such a
DNS for every room with a different arrangement of furniture
in it. Hence, it is important to come up with semiquantitative
criteria that help us to understand and mitigate the indoor
transmission of such viruses. Turbulence models have been
used to study the flow of air in rooms and offices [41,42]; from
these models and related experiments we obtain the estimate
Ums =~ 0.05 m/s in a typical office. We must also estimate L,
for it is an important crossover length scale in our analysis of
P(R, tr). In our DNS, L; is ~0.1L, where L is the linear size
of our simulation domain. In a typical office or a train, with
fixed forcing, via fans or vents, we use L to be approximately
a few meters; of course, L; must depend on the degree of
crowding on a train or the number of cubicles in a large office
room. Now consider one infected person who is at a distance
R from another person. The probability of virus-laden aerosol
particles not reaching the second person, up until time t, is
related to P(R, tg) as follows,

P(R9 g = t)
PR, 1g)’

which we calculate, by using Eq. (11), and depict in Figs. 4(a)
and 4(b), in the diffusive regime; Fig. 4(a) is a surface plot of

WR,t)=1— (15)

TABLE II. Table of values of W(R, t), the probability of virus-laden aerosol particles not reaching a person (at a distance R from an
infected person), up until time t (the first-passage time) in the diffusive region, for the representative values K = 0.1 m?/s, ;s = 0.05 m/s,
and Ly =2 m.

t=10s t=30s t=060s t =100s t =120s t =150s t =180s t=240s
R=2m 0.169 0.001 0.000 0.000 0.000 0.000 0.000 0.000
R=3m 0.642 0.074 0.003 0.000 0.000 0.000 0.000 0.000
R=4m 0.917 0.313 0.049 0.004 0.001 0.000 0.000 0.000
R=5m 0.989 0.594 0.187 0.039 0.018 0.005 0.001 0.000
R=6m 0.999 0.805 0.383 0.129 0.074 0.032 0.014 0.002
R=7m 1.000 0.923 0.579 0.263 0.174 0.093 0.049 0.011
R=8m 1.000 0.097 0.739 0.412 0.299 0.182 0.107 0.030
R=9m 1.000 0.099 0.850 0.553 0.428 0.283 0.180 0.059
R=10m 1.000 0.998 0.920 0.673 0.547 0.386 0.260 0.093
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W(R,t) vs R and ¢, for the representative values Ly =2 m
and ums = 0.05 m/s; Fig. 4(b) gives a surface plot of W
versus the dimensionless parameters R/L; and /T, where
T = Ly/ums. (We give similar plots for the ballistic regime in
the Supplemental Material [43].) In Table IT we give the values
of W(R, t) for different values of R and ¢. These figures and
Table II lead to three clear observations:

(1) If the separation R < Lj, i.e., we have to consider
the ballistic regime (see the Supplemental Material [43]),
then W (R, t) goes very rapidly to O (i.e., the aerosol particle
reaches the second person), even if ¢ is very small.

(2) The smaller the separation R between two persons, the
shorter the time ¢ in which W (R, t) becomes very small, i.e.,
the aerosol particles reach from one person to the other.

(3) Our calculation leads to quantitative predictions, e.g.,
if the separation ; < R, i.e., we have to consider the dif-
fusive regime, then W(R,t) goes to O in tens of seconds,
if R=2 m, and in hundreds of seconds, if R — 10 m, for
the representative parameters that we use to obtain Table II.
A recent study [44] has suggested that the SARS-CoV-2
virus remains viable in aerosols for nearly 3 h. Therefore, if
the concentration of virus-laden aerosols is high in a poorly
ventilated room, then we must employ more stringent social-
distancing norms than are in place now, even if people spend

only tens of minutes together in such a room. The methods
that we have developed can be applied, mutatis mutandis, (a)
in sophisticated models for virus particles or droplets, e.g.,
those that use inertial particles [45,46] or multiphase flows
[47,48], and (b) in turbulent flows that are not statistically
homogeneous and isotropic. We will examine these in future
work. At the moment, during this Covid-19 pandemic, it is
important to use our minimal model to obtain semiquantitative
criteria for social-distancing guidelines, as we have done
above.
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