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Sequential nonabsorbing microwave single-photon detector
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We propose a nonabsorbing microwave single-photon detector that uses an artificial atom as a coherent
interaction mediator between a traveling photon and a high-Q resonator, fully exploiting the knowledge of
the photon’s arrival time. Our proposal can be implemented with the current level of technology and achieves
distinguishability (probability of distinguishing between zero and 1 photon) in excess of 98% for realistic
parameters. This is better than any of the similar detector proposals, even the ones using several artificial atoms.
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I. INTRODUCTION

Efficiently detecting traveling microwave photons is an
extremely challenging yet important task for future quantum
technology. Currently, it is still not clear what is the best
approach or whether there even is an approach that can be used
in all situations. From the multitude of different proposals, we
will restrict our attention here to the more versatile nonabsorb-
ing detectors, so that detectors that absorb without reemitting
or reemit the photon at a different frequency [1–9] are out of
scope of this article. There is a number of recent proposals for
the nonabsorbing microwave single-photon detectors [10–14]
that can, in principle, be operated continuously, in the sense
that the detector could be continuously interrogated for the
presence of a photon. This way, both the presence of a photon
and its arrival time could be obtained. The other type of the
nonabsorbing detectors is the one that relies on knowledge of
the photon’s arrival time (or an arrival time window), and this
is the approach taken in the recent experimental realizations
[15,16]. We will call this type of the detectors sequential, since
their principle of operation usually consists of a sequence of
different operations, where the simplest version involves two
distinct steps: (1) interaction between the incident photon and
the detector and (2) interrogation of the detector. For instance,
in Refs. [15,16], step 1 is the controlled-phase gate between
the photon and an artificial atom [17]. Often, trying to perform
step 2 simultaneously with step 1 results in the detector not
working at all, since interrogation will prevent the interaction.
The continuous-mode detectors have various approaches to
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make the interrogation during the interaction time be less
detrimental [12–14].

The line between the continuous-mode and the sequential
detectors is often blurred, however, as the continuous-mode
detectors can also be operated sequentially where the se-
quence consists of “interrogation off” and “interrogation on.”
This is the mode that is used for the calculation of one of the
often used figures of merit for the single-photon detectors—
the distinguishability (also known as “measurement fidelity”),
which is the probability of correctly distinguishing between
zero and one photon. Operationally, this is because the con-
tribution of the signal due to an incident photon is finite,
but the contribution of the (quantum and technical) noise can
always be increased by making the interrogation time longer.
Therefore, the best distinguishability value is obtained when
the interrogation starts from the arrival time of the incident
photon and continues until some later time that is determined
by the response of the detector. In some cases, the proposals,
which we call continuous-mode here, are not even analyzed as
such, and only their sequential mode of operation is quantified
by calculating the distinguishability [12,13]. Even for the
cases when the quantitative continuous-mode analysis is done
[14], the distinguishability is usually playing a very prominent
role in the analysis. The reported distinguishabilities are in the
range 70–96%. Compared to those proposals, our proposed
detector can no longer be operated in a continuous mode
but achieves higher distinguishability with less experimental
complexity (in terms of the number of artificial atoms).

In the telecom wavelengths, operation of the continuous-
mode detectors in the sequential mode (usually called the
gated mode) is widely practiced in quantum communica-
tion [18,19] to reduce noise [20]. In general, the photon’s
arrival time at the detector can be determined whenever
the photon’s emission time is known and the path length
between the source and the detector is constant. Both as-
sumptions hold true for a typical setup involving microwave
photons and superconducting circuits, where deterministic
single-photon sources are available [21,22], and the photons
are routed by fixed transmission lines. Hence, sequential
operation is usually possible, and our results suggest that
a sequential detector that is designed to fully exploit the
knowledge of the photon’s arrival time is preferable over the
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FIG. 1. (a) The usual microwave circuit QED setup. Here with
a persistent-current artificial atom [27] and capacitive couplings,
but many other variations are possible. The coupling capacitance
Ccontrol is relatively small to prevent the artificial atom from decaying
into the control transmission line (right). The coupling capacitance
Cinput is relatively large to facilitate the interaction of the fields
in the input transmission line (left) with the resonator. The decay
rates are indicated next to the respective capacitive coupling that
gives rise to them (γ means both decay rates γ01 and γ12). (b) The
setup employed for our proposed detector. The coupling capacitances
are the same, but the places and the roles of the qubit and the
resonator are reversed. (c) The level diagram of the artificial atom
and indication of the system that the given transition is coupled to
(either the incident photon or the resonator). (d) Wigner function
of the initial coherent state of the resonator. The average photon
number is 〈â†â〉 = 3 [13]. (e) Wigner function of the resonator
state (reduced density matrix) after the interaction with an incident
photon with bandwidth γc/γ01 = 0.1 for a time Tinteract ≈ 92/γ01.
The other parameters are as follows: κ/γ01 = 3.2 × 10−5, γ11/γ01 =
3.2 × 10−3, γ22/γ01 = 6.4 × 10−3, γ12/γ01 = 0.1, δ1/γ01 ≈ −1.380,
δ2/γ01 ≈ −96.89, g/γ01 ≈ 7. Tinteract, δ1 and δ2 were chosen to mini-
mize the error probability PE ,M , giving PE ,M ≈ PE ,opt ≈ 2.2%. (f) The
proposed detection sequence for the setup in (b). The single-photon
field is green and classical drives (displacements and probe) are
black. They are incident from the two different transmission lines
(“Control” and “Input”).

continuous-mode detectors that are operated in the sequential
mode.

We believe that our proposed detector could also be com-
petitive against the existing experimental realizations of the
sequential detectors [15,16] where an artificial atom is used to
store a state that is measured after an initial interaction with
the incident photon, mediated by the resonator [see Fig. 1(a)].
The proposed detector uses the resonator to store a state that is
measured after an initial interaction with the incident photon,
mediated by the artificial atom [see Fig. 1(b)]. Thereby, our
proposed detector reverses the roles of the artificial atom and

the resonator. Technical details complicate the answer with
respect to which approach is better (both give distinguishabil-
ity F = 100% in the idealized limit), but it is usually easier
to achieve long coherence time in resonators [23–25] than in
artificial atoms [26]. Therefore, our proposed detector may be
less susceptible to the errors due to the finite coherence time
of the stored state, which is one of the main sources of error
[15,16].

II. SETUP

The setup of our proposed detector is shown in Fig. 1(b).
It consists of a three-level artificial atom and a resonator.
The artificial atom is coupled both to an input transmission
line and the resonator. From the input transmission line, a
single photon is incident with a carrier frequency that is
detuned from the |0〉 ↔ |1〉 transition by δ1 [see Fig. 1(c)].
The resonator is close in frequency to the transition |1〉 ↔ |2〉,
resulting in a coupling g with detuning δ2. The resonator
frequency is assumed to be far detuned from the transition
|0〉 ↔ |1〉 such that the coupling is negligible. The resonator
is also assumed to not directly couple to the input transmission
line, e.g., due to suppression of the coupling by a Purcell
filter [28] at the resonator frequency attached to the input
transmission line [left in Fig. 1(b), not shown]. Depending
on the bandwidth, the same or a different Purcell filter could
also suppress the decay from the state |2〉 of the artificial
atom, resulting in a small decay rate γ12/γ01 = 0.1 that was
assumed in Ref. [13]. We keep the same γ12/γ01 for an
easier comparison. The resonator is also coupled to a control
transmission line with decay rate κ , making it possible to
perform displacements of the resonator field.

The setup described above is very similar to the setup of
Ref. [13], but with important differences, as described below.
The Hamiltonian for our setup in the interaction picture with
the rotating wave approximation made is

H = h̄δ1σ̂11 + h̄(δ1 + δ2)σ̂22 − ih̄g(âσ̂21 − â†σ̂12), (1)

where σ̂μν = |μ〉〈ν| are the atomic operators and â is the an-
nihilation operator of the resonator. Compared to the Hamil-
tonian of Ref. [13], the above Hamiltonian does not have the
term −ih̄E (â − â†) that describes the always-on drive of the
resonator. This is because in our proposal, the Rabi frequency
E is set to zero during the entire detection sequence, except
for the displacements that assume a large-enough E for the
displacements to happen in a time much shorter than any other
timescale.

The incident photon that arrives from the input transmis-
sion line is modeled by a source resonator with decay rate γc

[11–14], setting the mode shape of the photon to be a decay-
ing exponential in time. The corresponding master equation
is [13]

ρ̇ = Lρ = − i

h̄
[H, ρ] + γcD[ĉ]ρ + γ01D[σ̂01]ρ

+ γ12D[σ̂12]ρ + κD[â]ρ

+√
γcγ01([ĉρ, σ̂10] + [σ̂01, ρĉ†]), (2)

where D[r̂]ρ = 1
2 (2r̂ρ r̂† − ρ r̂†r̂ − r̂†r̂ρ), ĉ is the annihilation

operator of the source resonator, and the terms proportional to
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√
γcγ01 describe the coupling of the source resonator to the

artificial atom using the cascaded systems formalism [29,30].
Setting κ to be much smaller than in Ref. [13] (which used
κ/γ01 = 0.037) is the key difference of our proposal. Ideally,
κ → 0 can be taken, corresponding to the limit of κ being
negligible on the time scales of the detection sequence. Such a
choice of κ prevents the continuous-mode operation (possible
in the proposal of Ref. [13]), because the resonator state
cannot be probed directly. Instead, we propose a detection
sequence [Fig. 1(f)] whose final step is to probe the artificial
atom to gain the information about the resonator state. Before
we go in the details about this procedure, we can explain
the high distinguishability of the detector by considering the
distinguishability of the resonator states for the cases with and
without an incident photon.

The detection sequence starts by initializing the artificial
atom in state |0〉 and the resonator in a coherent state. The
latter could be accomplished by initializing in a vacuum state
and displacing it. We choose the average photon number
〈â†â〉 = 3 [13], resulting in the coherent state of Fig. 1(d).
At this point, an incident photon will change the state into
the one shown in Fig. 1(e) after an interaction time Tinteract.
We believe that the interaction is related to the selective
number-dependent arbitrary phase (SNAP) gates [31], but
with the difference that our scheme uses a single photon rather
than a classical field to drive the interaction. If no photon
is incident and κ → 0, then the resonator state stays the
same, because the coupling of the transition |0〉 ↔ |1〉 of the
artificial atom and the resonator is assumed to be negligible.
For κ > 0, the only change is a decay of the resonator photon
number, i.e., a displacement toward the vacuum state. Since
a complete displacement towards the vacuum state is part of
the detection protocol (as explained below), the error due to
this decay can be compensated for.

We use two different distinguishability measures for the
reduced density matrices of the resonator, ρ0 and ρ1, that
correspond to the vacuum and single-photon inputs, respec-
tively. The first one is the distinguishability Fopt that uses
an (unspecified) optimal measurement and assumes a 50/50
probability of the two states. It can be written Fopt = 1 −
PE ,opt, where [32]

PE ,opt = 1
2 − 1

4‖ρ0 − ρ1‖tr, (3)

with ‖ρ0 − ρ1‖tr being the trace norm of ρ0 − ρ1. For the
second distinguishability measure, we note that we can write
ρ0 = |α〉〈α| for some coherent state |α〉, which is either the
initial state shown in Fig. 1(d) (for κ → 0) or a displaced ver-
sion of it (for κ > 0). We define two measurement operators,
M0 = |α〉〈α| and M1 = I − M0, where I is the identity opera-
tor. Then the distinguishability is FM = 1 − PE ,M , where [33]

PE ,M = 1
2 tr(ρ0M1) + 1

2 tr(ρ1M0), (4)

again assuming a 50/50 probability of the two states ρ0

and ρ1. This second state distinguishability measure is an
idealization of the more realistic measurement procedure that
we will discuss later. Since M0 = ρ0, the term tr(ρ0M1) that
represents the dark count probability in PE ,M vanishes, result-
ing in PE ,M = tr(ρ1M0)/2.

To model the pure dephasing of the artificial atom, we
add the terms γ11D[σ̂11]ρ and γ22D[σ̂22]ρ to the master
equation (2) and set γ22/γ11 = 2 to account for the larger
dephasing rate of the higher energy levels [34]. Assuming
the decay rate γ01 = 2π × 10 MHz and the pure dephasing
time Tφ,AA = 10 μs for the artificial atom, we have γ11/γ01 =
2/(Tφ,AAγ01) ≈ 3.2 × 10−3 and γ22/γ01 ≈ 6.4 × 10−3. For
the resonator, we assume T1,R = 500 μs [35], giving κ/γ01 =
1/(T1,Rγ01) ≈ 3.2 × 10−5. Even longer coherence times are
possible with the 3D resonators [23–25]. For reference, we
also compare to T1,R = 50 μs that represents the 2D res-
onators [36]. The other imperfections in the model are the
nonzero ratio γc/γ01 and the imperfect dispersive interaction.
The latter depends on how close the Hamiltonian (1) is to the
perfect dispersive Hamiltonian

Hdisp = h̄δ1σ̂11 − h̄χσ̂11â†â, (5)

where χ = g2/(δ1 + δ2). We choose g = 7γ01 = 2π ×
70 MHz [35].

Lossy elements like circulators in the path between the
source and the detector can be described by fictitious beam
splitters [12]. A beam splitter with the transmission coefficient
t corresponds to the power loss 1 − t2. By using the beam
splitter relations and tracing over the loss mode, the final state
ρ1 (single-photon input) is modified to t2ρ1 + (1 − t2)ρ0,
while the final state ρ0 (vacuum input) is left unchanged. The
error probability PE ,M with a lossy element can be calculated
in a particularly simple way due to M0 = ρ0 (perfect compen-
sation for κ > 0). We get PE ,M = (1 − t2)/2 + t2 tr(ρ1M0)/2.
For small power loss, we can approximately say that half
of the power loss 1 − t2 gets added to the intrinsic error
probability of the detector.

III. RESULTS

In Fig. 2, we vary γc and plot PE ,M for optimal δ1 and δ2

using both Hamiltonians H and Hdisp. We see that the optimal
detunings are such that χ = g2/(δ1 + δ2) ≈ −0.5γ01 with a
small change for the considered range of γc. This shows that
the ratio between the decay rate of the artificial atom and
the dispersive shift should be (approximately) fixed, similarly
to Ref. [15], where the decay rate of the resonator and the
dispersive shift needed to have a fixed ratio. Additionally,
δ1/χ ≈ 2.75 for the considered range of γc. It is close to
〈â†â〉 = 3, which is the average number of photons in the
resonator state. This shows that the primary function of the
detuning δ1 is to compensate for the static shift of the fre-
quency of the artificial atom due to the dispersive interac-
tion −χσ̂11〈â†â〉. The interaction time Tinteract is varied such
that Tinteract � 10/γc with the smallest PE ,M is chosen. For
example, for κ/γ01 = 3.2 × 10−5 and γc/γ01 = 0.1, Tinteract ≈
92/γ01 ≈ 1.5 μs is chosen. For the optimized parameters,
PE ,opt ≈ PE ,M , which would have lead to completely over-
lapping curves in Fig. 2 (very small difference is visible
for κ/γ01 = 3.2 × 10−4). This is not always the case: If we
used exactly the same parameters as in Ref. [13] except
setting κ = 0 (γc/γ01 = 0.1, γ11 = γ22 = 0, δ1/γ01 = −0.8,
δ2/γ01 = −18, g/γ01 = 2.45), then PE ,M ≈ 6.7% and PE ,opt ≈
4.6%.
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FIG. 2. Error probabilities PE ,M as a function of the input photon
bandwidth γc. Common parameters: γ12/γ01 = 0.1, g/γ01 = 7. Un-
less noted otherwise, Hamiltonian (1) is used, and we set γ11/γ01 =
3.2 × 10−3 and γ22/γ01 = 6.4 × 10−3. The legend indicates the dif-
ferent scenarios: “2D resonator” uses κ = 3.2 × 10−4γ01 (T1,R =
50 μs), “3D resonator” uses κ = 3.2 × 10−5γ01 (T1,R = 500 μs),
“perfect resonator” uses κ = 0, and “γc limited” uses Hamiltonian
(5) with κ = γ11 = γ22 = 0. For each value of γc/γ01, the parameters
δ1, δ2 and Tinteract were chosen to minimize PE ,M .

The solid red curve in Fig. 2 shows our results with
the most complete model of the imperfections that uses
the Hamiltonian (1) with κ/γ01 = 3.2 × 10−5. The states in
Figs. 1(d) and 1(e) correspond to γc/γ01 = 0.1 on this curve.
The dotted black and dashed green curves only differ from
the solid red one in setting κ/γ01 = 3.2 × 10−4 and κ = 0,
respectively. The dash-dotted blue curve represents the almost
ideal case with κ = γ11 = γ22 = 0 and uses the Hamiltonian
(5) so that it is only limited by the nonzero ratio γc/γ01,
achieving FM = 100% for γc/γ01 → 0. Comparison of these
curves illustrates the different effect of the imperfections of
the artificial atom and the resonator. The imperfections of the
artificial atom add a constant term to PE ,M , since the artificial
atom only acts as a mediator of the interaction and effectively
stores every part of the incident photon only for a limited time.
The nonzero κ of the resonator, on the other hand, gives a
larger error with smaller γc/γ01, since the state has to be stored
in the resonator for a longer time.

A realization of the measurement used for FM starts with
an unconditional displacement of ρ0 and ρ1 such that ρ0 =
|vac〉〈vac|, where |vac〉 is the vacuum state of the resonator,
and the ideal measurement operators become M0 = |vac〉〈vac|
and M1 = I − M0. An implementation of these measurement
operators can be done by driving the artificial atom by a
continuous wave field with a frequency close to the transition
|0〉 ↔ |1〉 from the input transmission line (using a switch
[16,37] to change from the single-photon source) and doing
homodyne detection of the reflected field. The idea is that the
dispersive interaction of the artificial atom with the resonator
[see Eq. (5)] shifts the frequency of the transition |0〉 ↔ |1〉
only if the resonator is in a state different from vacuum.
This conditional frequency shift of the transition |0〉 ↔ |1〉
gives a conditional phase shift of the reflected probe field
applied at a fixed frequency. The complete detection sequence
is summarized in Fig. 1(f).

The probing of the artificial atom is described by an
additional Hamiltonian term h̄�(σ̂01 + σ̂10), where � is the
Rabi frequency of the continuous wave drive, and using the
stochastic master equation [11–14]

dρ = Lρdt + √
ηdW (t )H[Ô]ρ, (6)

with H[r̂]ρ = r̂ρ + ρ r̂† − tr(r̂ρ + ρ r̂†)ρ, Ô = e−iφ√
γ01σ̂01,

η being the efficiency of the homodyne detection (η = 1
unless noted otherwise), and dW (t ) being a Wiener process.
Since the interaction time is long relative to the duration of the
incident photon, the atom is negligibly different from being in
state |0〉 at the beginning of probing. The initial system state
for probing is thus taken to be a product state of the artificial
atom being in state |0〉, and the resonator being in the state
determined by the interaction (with and without an incident
photon) and the reverse displacement.

The corresponding homodyne current is

In(t ) = √
η〈Ô + Ô†〉 + dW (t )/dt, (7)

where the subscript n can be 1 or 0, indicating whether a pho-
ton was incident or not, respectively. To filter this homodyne
current, we define Īn(t ) = 〈Ô + Ô†〉 where the expectation
value uses the density matrix evolved with the deterministic
master equation (2). The filtered integrated homodyne current
is then

Sn =
∫ Tinteract+Tprobe

Tinteract

In(t )h(t )dt, (8)

where the filter is h(t ) = |Ī0(t ) − Ī1(t )| and Tprobe is the prob-
ing time. We generate Ntot = 104 trajectories for each of the
cases n = 0 and n = 1, resulting in the integrals Sn, j , where j
is the trajectory index.

The distinguishability is then FM,real = 1 − PE ,M,real,
where (for a 50/50 probability of the two states)

PE ,M,real = 1

2

NS0, j>Sthr

Ntot
+ 1

2

NS1, j<Sthr

Ntot
, (9)

with NS0, j>Sthr (NS1, j<Sthr ) being the number of the integrals S0, j

(S1, j) that are above (below) the threshold Sthr. The threshold
Sthr is chosen such that PE ,M,real is minimized. This definition
assumes that, on average, the integrals S0, j are smaller than
the integrals S1, j . It is the case in Fig. 3 which corresponds
to γc/γ01 = 0.1 on the solid red curve in Fig. 2. The term
NS0, j>Sthr/Ntot in the definition of PE ,M,real is the dark count
probability. We find that for the threshold Sthr ≈ −93 that min-
imizes PE ,M,real in Fig. 3, the term NS0, j>Sthr/Ntot is negligible
compared to NS1, j<Sthr/Ntot, and the resulting error probability
PE ,M,real ≈ 2.4% is determined by the latter term. This implies
that including the effect of lossy elements with power loss
1 − t2 in the path between the source and the detector can be
done in the same way as for PE ,M with the resulting expression
PE ,M,real ≈ (1 − t2)/2 + t2NS1, j<Sthr/(2Ntot ).

The error probability PE ,M,real ≈ 2.4% is slightly larger
than PE ,M ≈ 2.2% for the same interaction parameters. It
might be possible to optimize the probing parameters (see cap-
tion of Fig. 3) further to make the difference smaller. One of
these parameters is the probing time Tprobe = 500/γ01, which
could be either increased to reduce the error probability or
decreased to shorten the total detection time Tinteract + Tprobe =
592/γ01 = 9.4 μs. Imperfect homodyne detection efficiency
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FIG. 3. Histogram of the filtered integrated homodyne currents,
S0 and S1, that correspond to the case without and with an incident
photon, respectively. The parameters correspond to γc/γ01 = 0.1 on
the solid red curve in Fig. 2 (κ/γ01 = 3.2 × 10−5, γ11/γ01 = 3.2 ×
10−3, γ22/γ01 = 6.4 × 10−3, γ12/γ01 = 0.1, g/γ01 = 7, δ1/γ01 ≈
−1.380, δ2/γ01 ≈ −96.89, Tinteract = 92/γ01). The parameters for
probing of the artificial atom are: δ1 = 0.1γ01 φ = π/2, �/γ01 =
0.2, Tprobe = 500/γ01. The total number of the trajectories is Ntot =
104. The resulting error probability is PE ,M,real ≈ 2.4%.

η = 0.5 increases the error probability to PE ,M,real ≈ 3.1%,
showing that our proposal is robust against a nonunit η.

IV. DISCUSSION AND CONCLUSION

The distinguishability of our sequential detector proposal
compares favorably against the distinguishability reported
for the continuous-mode detector proposals [12–14], even if
they use several artificial atoms. Before the comparison, we
note that all the considered setups are such that the photon
to be detected is reflected back into the input transmission
line. Therefore, a circulator is needed to prevent the reflected
photon from going back to the source. Our proposal has
the same behavior. In an experiment, the insertion loss of
the circulator (around 4% power loss [38]) will therefore
affect the distinguishability, and we have explained above
how such loss could be included in the theoretical analysis
for our proposal. However, for an equivalent comparison with

other proposals [12–14], we assume perfect circulators, since
the distinguishability numbers with lossy circulators are not
provided in all references.

As shown in Fig. 2, we report distinguishabilities F =
98% and above for γc/γ01 � 0.1, which are better than the
reported distinguishabilities in Refs. [12–14] (70–96%). In the
other proposals, the artificial atom decay rates may have a
range of values [12], or the collective effects may make the
single artificial atom rate less relevant than the decay rate of
the entire ensemble [14]. In the former case [12], F = 90% is
reported for eight artificial atoms where γc/γ01 varies between
0.5 and 0.1 for the different artificial atoms. In the latter case
[14], γc/γB = 0.1 is used, where γB is the decay rate of the
bright state of the ensemble, resulting in F = 96% for four ar-
tificial atoms and one resonator. The proposal of Ref. [13] uses
γc/γ01 = 0.1 and reports F = 90% for two artificial atoms
and two resonators. Thus, our proposed detector achieves
higher distinguishability with less experimental complexity
(one artificial atom and one resonator). The difference in the
distinguishability is even larger if we compare to a setup
with the same experimental complexity as ours. The setup of
Ref. [13] with one artificial atom, one resonator, and γc/γ01 =
0.1 reports F = 84% for η = 1 and F = 75.5% for η = 0.5.
With the same γc/γ01 = 0.1, our setup achieves F = 97.6%
for η = 1 and F = 96.9% for η = 0.5. This also shows that
our setup is much more robust against a nonunit homodyne
detection efficiency η than Ref. [13].

In conclusion, we propose a nonabsorbing microwave
single-photon detector with a larger distinguishability than in
the similar proposals [12–14]. We accomplish this by com-
pletely removing the option of the continuous-mode operation
(without the knowledge of the photon’s arrival time) in the
proposal of Ref. [13] and introducing a new detection se-
quence. Our proposal is different from the previous sequential
setups [15,16], as the roles of the artificial atom and the
resonator are reversed such that the resonator is used as stor-
age, instead of the artificial atom. This difference may make
our proposal more attractive due to often better coherence
properties of the resonators compared to the artificial atoms.
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