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Effects of collisions on the generation and suppression of temperature anisotropies
and the Weibel instability
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The expansion of plasma with nonparallel temperature and density gradients and the generation of a magnetic
field via the Biermann battery is modeled using particle-in-cell simulations that include collisional effects via
Monte Carlo methods. A scaling of the degree of collisionality shows that an anisotropy can be produced and
drive the Weibel instability for gradient scales shorter than the mean free path. For larger collision rates the
Biermann battery dominates as the cause of magnetic-field generation. When the most energetic particles remain
collisionless the Nernst effect causes the Biermann field to be dragged with the heat flux piled up and enhanced.
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I. INTRODUCTION

Identifying the mechanisms responsible for the generation
of various magnetic fields present throughout the universe
is a major topic of study in astrophysics [1]. Two common
candidates are the Biermann battery [2,3], which is driven by
violent interactions with unmagnetized plasmas that leave the
temperature and density gradients misaligned, and the Weibel
instability [4], driven by temperature anisotropies. The Weibel
instability, in particular, is only possible in collisionless sys-
tems, often found in astrophysics due to high temperatures and
low densities of plasmas in space. In laser-plasma interaction
experiments on earth, both the Biermann battery [3,5–7] and
the Weibel instability [7–10] play an important role. The
sudden heating of the plasma by a laser leads to the gradients
required for the Biermann battery, and although the densities
can be large, the temperatures can be sufficiently high that
the plasma is collisionless, can become anisotropic and, thus,
become unstable to the Weibel instability.

A natural question is as follows: What level of collisional-
ity is required for the Weibel instability to be suppressed? It
was shown in Refs. [11,12] that, for a collisionless system,
the Weibel instability is the dominant magnetic field for
sufficiently large gradient scales L/de > 100, where L is the
temperature or density gradient length scale, de = c/ωpe is
the electron skin depth, ωpe =

√
4πnee2/me is the plasma

frequency, me, e, and ne are the respective electron mass,
charge, and density, and c is the speed of light. However, this
is no longer the case for a sufficiently collisional plasma (e.g.,
Ref. [13]), where the Biermann field becomes the dominant
field. Here, we show, using particle-in-cell (PIC) simulations,
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what level of collisionality is required for the Biermann field
to dominate over the Weibel instability.

Although the original Weibel formulation assumes a col-
lisionless plasma, the instability has been formulated for a
semicollisional system showing a dependence on the electron
collision rate νe [14,15],

γW = γW 0 − A

1 + A
νe. (1)

Here, γW 0 is the collisionless growth rate of the Weibel
instability [4], which depends on the perpendicular electron
temperature Te⊥, ωpe, and the temperature anisotropy A =
Te‖/Te⊥ − 1, where Te‖ and Te⊥ are the two temperatures in a
bi-Maxwellian distribution. Here, parallel is defined by the di-
rection that has a different temperature, and we have assumed
Te‖ > Te⊥. The collisionless growth rate can be calculated
using the dispersion relation,

k2c2 + γ 2
W 0 − ω2

pe[A + (1 + A)ξZ (ξ )] = 0, (2)

where one can solve for the fastest growing wave-number k =
kmax. Here, ξ ≡ iγW 0/k

√
Te⊥/2me and Z (ξ ) is the plasma dis-

persion function. The collision rate is νe = ν0(1 + Z ) where

ν0 =
√

1

me

4πnee4

T 3/2
e

ln �C, (3)

Te ≡ (2Te⊥ + Te‖)/3 is the electron temperature, ln �C is the
Coulomb logarithm, and Z is the degree of ionization. νe

can be divided into electron-electron collisions νee = ν0, and
electron-ion collisions νei = ν0Z .

In this paper, we will focus on an initially isotropic
Maxwellian plasma where the temperature anisotropy is gen-
erated self-consistently via temperature gradients. Although
the plasma does not remain strictly bi-Maxwellian, this ap-
proximation continues to produce growth rates consistent with
theory. In principle, the arguments made here may hold, at
least, qualitatively, in more non-Maxwellian systems, e.g.,
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distributions with a hot streaming population of electrons
[16–18].

It turns out that, in the regime of this paper, among many
others, the modifications to γW due to collisions are not
relevant. The growth rate drops to zero even when these mod-
ifications are negligible because the instability is driven by A
and collisions cause A to decay. The ratio of the collisional
term in Eq. (1) to γW 0 is ∼νe/(ωpvT /c) = (de/LT )νeLT /vT ,
where LT ≡ Te/dTe/dx is the temperature gradient scale and
vT = √

Te/me is the thermal velocity. As long as LT � de, the
collision term can be neglected unless νeLT /vT � 1, which
we will show corresponds to a regime where the Weibel
instability is not expected to develop as collisions prevent A
from building up.

The growth rate drops to zero when the timescale of the
anisotropy generation tAg reaches the timescale of collisional
relaxation time of the anisotropy tAr . Reference [19] showed
that a gradient in an isotropic Maxwellian temperature leads
to a temperature anisotropy A, saturating at a timescale tAg ≈
LT /vT with a value of A ∼ 1. References [20,21] showed that
the relaxation rate is

νA ≡ 1

A

dA

dt
= −νT (A + 3), (4)

where

νT = 2ν0(Te⊥)

15
√

π
(1 +

√
2Z )F2,3/2,7/2[A/(A + 1)], (5)

ν0(Te⊥) is ν0 replacing Te with Te⊥, F2,3/2,7/2(x) = 15/4[−3 +
(x + 3)φ(x)]x−2 is the Gaussian hypergeometric function, and

φ(x) =

⎧⎪⎪⎨
⎪⎪⎩

tan−1(
√

x)√
x

, if x > 0,

1, if x = 0,

tanh−1(
√−x)√−x

, if x < 0.

(6)

The factors of 1 and
√

2Z are a result of the respec-
tive electron-electron and electron-ion collisions. One finds

νA ∼ νe using Eqs. (4) and (5) since F2(3/2)(7/2)(x) is a constant
of order unity (approaching 1 for small A) as long as A � 1.
Remember the anisotropy is expected to reach a maximum of
A ∼ 1. The Weibel instability is, thus, suppressed if

tAg

tAr
= νALT

vT
∼ νeLT

vT
> 1, (7)

i.e., if the gradient scale is bigger than the mean free path of
an electron.

Even if the Weibel instability is fully suppressed, it has
been suggested that an instability known as the thermomag-
netic instability [22] may also generate filamentary magnetic
fields due to a parallel density and temperature gradient due
to a combination of the Righi-Leduc and Biermann battery
effects for collisional systems. However, Ref. [23] showed
that this instability is suppressed due to the Nernst effect and
that the growth of the Biermann battery is reduced. The Nernst
effect, when only the most energetic electrons are frozen into
the magnetic field, is expected to drag Biermann generated
fields in the direction of heat flux allowing them to pile up
[24–30].

II. SIMULATION SETUP

In order to verify and quantify the scalings of Eq. (7),
we performed several simulations of an expanding bubble of
plasma using the OSIRIS framework [31,32], whereas includ-
ing collisional effects [33,34], and varying the collisionality
ν0LT /vT (via the density). The bubble has a peak density n0

and expands into a background nb = 0.1n0 with a peak initial
temperature at the center of the box Te0/mec2 = 0.04 (20.44
keV) varying only along the x direction to a background
temperature Teb = 0.0025Te0 (51.1 eV), and a realistic mass
ratio mi/me = 1836, the same as the simulations in Ref. [12]
with

n =
{

(n0 − nb) cos(πr/2LT )2 + nb, if r < LT ,

nb, otherwise,

vTe =
{

(vTe0 − vTeb) cos(π |x|/2LT )2 + vTeb, if |x| < LT ,

vTeb, otherwise,
where r =

√
x2 + (LT /Lny)2, (8)

and Ln = LT /2. n0 is the reference density used to define ωpe

and de and is used along with the reference temperature Te0

to calculate vT and ν0. The distributions of density and tem-
perature are shown in Fig. 1 with the gradients highlighted.
Unless otherwise specified, each simulation uses 198 particles
per cell on a 12 000×12 000 grid (1500×1500d2

e ). The simu-
lations are run for 1800ω−1

pe , with a time-step dt = 0.07ω−1
pe .

The Coulomb logarithm ln �C is calculated automatically
depending on the local parameters. Only the collisions be-
tween electrons and ions are included. There is an eight-point
average for diagnostic purposes over the generated magnetic
fields.

In realistic experimental setups where collisions become
important, the temperatures are lower, and the system sizes
are larger than we simulate here. As these parameters are
more computationally expensive, we, instead, vary the den-
sity, ranging between 1×1018 and 1×1028 cm−3 separated
by factors of 100 for the simulations with LT /de = 400,
allowing for a scaling to realistic parameters. For example,
our case with ν0LT /vT = 0.837 corresponds to a density
of n0 = 1×1024 cm−3, and, therefore, LT = 2.13 μm (for
LT /de = 400). However, the same result should occur for an
equal ν0LT /vT with lower density but larger LT and lower
temperature. Note that for the parameters that we simulate,
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FIG. 1. Map of the initial (a) density n and (b) electron tempera-
ture Te. The gradients are highlighted in white.

ln �C varies significantly due to the small values if �C . Once
vT /c exceeds 2α (Te > 108 eV), where α is the fine-structure
constant, �C grows more slowly with respect to temperature.
Therefore, for a given collision rate, �C is smaller for higher
temperatures. Furthermore, for larger system sizes, equal col-
lisionalities occur at smaller collision rates and, thus, at larger
�C .

In our simulations, the velocity distribution does not neces-
sarily remain bi-Maxwellian, and we measure the anisotropy
using the temperature tensor Ti j ≡ ∫

(uiu j/γ ) f (u)/
∫

f (u)
calculated in the species rest frame. ui is the proper velocity,
γ = √

1 + u2, and f (u) is the velocity distribution function.
Te‖ and Te⊥ < Te‖ are eigenvalues of the temperature tensor.
We only consider the in-plane temperatures and assume the
out-of-plane temperature is also Te⊥, which has been verified
for our simulations to be a reasonable assumption.

III. SIMULATION RESULTS

In Fig. 2, the out-of-plane magnetic-field Bz for three repre-
sentative collisionalities is presented. The first case [Fig. 2(a)]
is like the previous collisionless studies where the Weibel
magnetic field dominates compared to the fields due to the
Biermann battery. Only the growth rate and the strength of
the saturated field are modified by the collisions. The second
case [Fig. 2(b)] is the transition scale where the Weibel fields
are suppressed but still visible, and the Biermann field is
the dominant field. In the third case [Fig. 2(c)], only the
most energetic electrons remain collisionless, leading to the
pileup of Biermann generated fields via the Nernst effect
[24–30]. We thus demonstrate the Nernst effect using PIC

FIG. 2. Map of magnetic-field Bz at tωpe = 1797.6. The top
panel shows the simulation with a collisionality ν0LT /vT = 0.837
where the Weibel instability still exists but grows slower and satu-
rates at a lower intensity field. The middle panel shows a simulation
with ν0LT /vT = 5.32 where the Weibel instability is significantly
damped, and the Biermann field is visible. The bottom panel shows
a simulation with ν0LT /vT = 26.5 where there are no traces of the
Weibel instability, and a pileup of magnetic flux dragged by the
Nernst effect is present.

simulations. A full demonstration beyond these observations
of the magnetic pileup remains to be presented.

We can make a prediction where to expect the elec-
tron Weibel instability, depending on the gradient length
scale, temperature, density, and charge state of the ions.
The transition occurs when νeLT /vT ≈ 1 as predicted from
Eq. (7). The three cases in Fig. 2 occur at ν0LT /vT = 0.837,
5.32, and 26.5, respectively. We calculate the local νA at
the location where the instability occurs in the collisionless
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FIG. 3. Evolution of the maximum magnetic-field Bz,max (pro-
duced via the Weibel instability) vs time for simulations with var-
ious collisionalities ν0LT /vT = 0.00175 (red), 0.114 (green), 0.837
(blue), and 5.32 (magneta). The measured slopes (at tc where the
slope reaches its maximum) occurring at tcωpe = 907, 946.5, 1047,

and 600 are shown in dashed black.

case (x/de, y/de = 150, 100) by measuring the parameters
averaged within a box of 20×10d2

e at time tcωpe = 907
when the measured growth rate reaches its maximum. Here,
Te⊥,loc/mec2 = 0.0244, A = 0.56, nloc/n0 = 0.385, and the
gradient length scale LT,loc/LT = 0.2563. We, thus, find the
respective cases occur at νA,locLT,loc/vT,loc = 2.09, 13.5, and
63.7. We, therefore, confirm that the Weibel instability is
suppressed when the anisotropy relaxation time is smaller
than the generation time (tAr > tAg), but it is not completely
suppressed until tAr � tAg.

The transition to a regime where no Weibel exists occurs in
the simulation with ν0LT /vT = 5.32 [Fig. 2(b)]. This simula-
tion has no electron-electron collisions, Z = 1, and the local
LT,loc = 55 nm, ln �C = 4.0, and vT,loc/c = 0.170 (Te,loc =
14.8 keV). Using this numerical value of ν0LT /vT and the
scaling from Eq. (7), our simulation result can be scaled
to more experimentally relevant densities and temperatures,
and the general transition density can be expressed in an
engineering formula,

ntr,loc = 5.42 × 1021cm−3

(
Te,loc

1.0 keV

)2

(1 +
√

2Z )−1

×
(

LT,loc

1.0μm

)−1( ln �C

10.0

)−1

. (9)

The other two cases correspond to a density nloc = 0.1ntr,loc

[Fig. 2(a)] and 10ntr,loc [Fig. 2(c)].
We show the effects of collisions on the Weibel growth

in Fig. 3, plotting the evolution of the maximum magnetic
field and exponential fits of the growth rate. There is a
significant change in growth rate between the essentially
collisionless case at ν0LT /vT = 0.00175 and ν0LT /vT =
0.837 (0.0098–0.0065ωpe). The growth rate effectively goes
to zero in the case with ν0LT /vT = 5.32. The measured
growth rates of the magnetic field for each simulation are
reported in Table I along with the local parameters used to
calculate the theoretical Weibel growth rate. Table II shows

TABLE I. Measured growth rate γm and parameters determining
the theoretical growth rate γt at k = kmax [see Eq. (1)] at the location
where the instability occurs (x/de, y/de = 150, 100) averaged within
a box of 20×10d2

e at time tc where the measured growth rate reaches
its maximum. The local density is 0.385n0. For ν0LT /vT = 5.32, the
measured growth rate can be considered 0.

ν0LT /vT ν0/ωpe tcωpe γm/ωpe A Te⊥/mec2 γt/ωpe

0.00175 8.8×10−7 907.0 0.0098 0.56 0.0244 0.0095
0.0145 7.2×10−6 900.6 0.0111 0.56 0.0245 0.0096
0.114 5.7×10−5 946.5 0.0086 0.57 0.0241 0.0097
0.837 4.2×10−4 1047.0 0.0065 0.47 0.0225 0.0072
5.32 2.7×10−3 600.0 0.0001 0.02 0.0224 0.0000
26.5 1.3×10−2 500.0 0.0001 0.02 0.0217 −0.000

the measured wave number of the instability, the predicted
fastest growing wave numbers, and the growth rates calcu-
lated using these wave numbers, providing evidence that the
observed filaments are due to Weibel instability.

The growth rate of the Weibel instability depends on A,
which depends on the collisionality as collisions inhibit the
anisotropy growth. Due to the exponential decay of A pre-
dicted by Eq. (4) for a constant νA, a good approximation of
the A dependence on the local collisionality is as follows:

A ≈ A0 exp

(
−νA,locLT,loc

4vT,loc

)
. (10)

In addition to the simulations presented so far with
LT /de = 400, we have simulated several more simulations
with LT /de = 200 (half the system size with constant resolu-
tion), where we have also measured the growth rate. In Fig. 4,
the measured growth rates normalized to the collisionless
growth rates are presented as a function of the local colli-
sionality νA,locLT,loc/vT,loc. νA,loc is calculated as previously
assuming a constant anisotropy A0 = 0.56 and perpendicular
temperature Te⊥,loc/mec2 = 0.0244. A theoretical prediction
for the growth rate is given by the Weibel growth rate using
the anisotropy from Eq. Eq. (10) (black curve in Fig. 4), which
agrees with the measured results. Figure 4 also gives evidence
that this scaling with collisionality is independent of LT for
constant ν0LT /vT .

TABLE II. The measured wave-numbers k, the theoretical fastest
growing mode kmax, and the theoretical growth rates γt using Eq. (1)
given these wave numbers.

ν0LT /vT kde kmaxde γt (k)/ωpe γt/ωpe

0.00175 0.281 0.2523 0.0094 0.0095
0.0145 0.204 0.2523 0.0091 0.0096
0.114 0.200 0.2546 0.0091 0.0097
0.837 0.208 0.2312 0.0071 0.0072
5.32 0.080 0.0502 −0.000 0.0000
26.5 N/A 0.0502 N/A −0.000
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FIG. 4. Measured growth rate of the Weibel instability normal-
ized to the growth rate measured in the collisionless case for a
range of simulations with different collisionalities. Simulations with
LT /de = 400 (200) are indicated in blue (red). Circles are calculated
from magnetic-field energy, and stars are calculated from the max-
imum magnetic field. A theoretical estimate of the growth rate is
plotted in black using the anisotropy from Eq. (10).

IV. CONCLUSION

Using particle-in-cell simulations, we have placed a limit
where collisions will inhibit the generation of the elec-
tron Weibel instability in the expansion of a hot plasma
when νeLT /vT ∼ 1. Whereas in Ref. [11] it was shown that

magnetic fields from the Weibel instability will be larger
than the Biermann field for LT /de > 100, we now show this
additional limit due to collisions where the Biermann field
again dominates.

Although the simulations presented here are all two di-
mensional (2D), the results should not differ greatly in three
dimensions (3D). For the collisionless case, a 3D simulation
showed similar results for LT /de = 50 [12]. For larger system
sizes, we expect Weibel filaments with wave numbers also out
of the 2D simulation plane, but besides that, the results should
remain similar to 2D.

We do not observe the thermomagnetic instability, con-
firming Ref. [23], but we also do not observe any of the
predicted reduction of the Biermann battery growth. This is
likely because we start from a Maxwellian distribution where
the Biermann battery should grow rather than evolve to a such
a state by plasma heating and expansion.

This still remains a simplified model and assumes that the
laser interaction will generate these temperature gradients on
a quick enough timescale that this model is valid. The effects
of the laser magnetic fields and heating processes often occur
at the same time as the Biermann and Weibel magnetic fields
grow. It has been shown that for an intense short pulse laser
where the plasma becomes relativistically hot, the Weibel field
can be observed [35].
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