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Nonequilibrium RKKY interaction in irradiated graphene
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We demonstrate that the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in graphene can be strongly
modified by a time-periodic driving field even in the weak drive regime. This effect is due to the opening
of a dynamical band gap at the Dirac points when graphene is exposed to circularly polarized light. Using
Keldysh-Floquet Green’s functions, we develop a theoretical framework to calculate the time-averaged RKKY
coupling under weak periodic drives, and we show that its magnitude in undoped graphene can be decreased
controllably by increasing the driving strength, while mostly maintaining its ferromagnetic or antiferromagnetic
character. In doped graphene, we find RKKY oscillations with a period that is tunable by the driving field.
When a sufficiently strong drive is turned on that brings the Fermi level completely within the dynamically
opened gap, the behavior of the RKKY coupling changes qualitatively from that of doped to undoped irradiated
graphene.
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I. INTRODUCTION

The Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling is
the indirect exchange interaction in a magnetically doped
system, in which the coupling between the localized impurity
spins is mediated via the conduction electrons of the host
material [1–3]. As a function of the impurity separation,
it oscillates between positive and negative values indicating
ferromagnetic and antiferromagnetic spin couplings with a
period determined by the host’s Fermi level [4]. The envelope
of these oscillations decays in a power law that depends
on the dimensionality and the specific band structure of the
host material [5–12]. For systems with parabolic bands, the
envelope of the RKKY oscillations decays as R−3 in three
dimensions and as R−2 in two dimensions [1–3].

The two-dimensional (2D) nature and Dirac energy disper-
sion of graphene have spawned the discovery of many unique
and intriguing electronic properties [13,14]. In particular, the
RKKY interaction between magnetic impurities deposited on
graphene exhibits peculiar properties that are quite different
from conventional systems. For undoped graphene, the power
law of the RKKY oscillations is R−3, in contrast to R−2 ex-
pected in two dimensions. In addition, the RKKY oscillations
do not alternate between ferromagnetic and antiferromagnetic
values but can instead display short-ranged fluctuations de-
pending on the locations of the impurity atoms on the honey-
comb lattice [5–8,15]. This dramatic departure from the nor-
mal 2D RKKY behavior is not unexpected since the RKKY
oscillation is fundamentally a Fermi surface phenomenon, and
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undoped graphene is characterized by a pair of Fermi points at
the Dirac nodes. In doped graphene, some of the conventional
2D RKKY behavior is recovered due to the presence of a
finite Fermi surface. Hence, on top of possible short-ranged
fluctuations due to the lattice, its RKKY interaction oscillates
between ferromagnetic and antiferromagnetic values, with the
envelope decreasing as R−2. This makes the RKKY coupling
of doped graphene qualitatively similar to that of a 2D system
with a parabolic dispersion [8,10].

The long-range nature of the indirect exchange interaction
provides an important mechanism in layered magnetic struc-
tures allowing for the controlled storage and transfer of spin-
encoded information [16,17]. The capability to further ma-
nipulate the indirect exchange interaction would add another
dimension toward the possibility of engineering new material
behaviors and functionalities. Over the past two decades, there
has been much interest and progress in the studies of ultrafast
optical control of spin dynamics and magnetic order [18]. An
emerging strategy to achieve this end in magnetically ordered
materials is through optical control of direct exchange cou-
pling [19,20]. In magnetically doped or layered systems, the
RKKY interaction is an important type of exchange coupling
to consider. Optical manipulation of the RKKY interaction
was first studied in semiconductor quantum dot systems and
II-VI diluted magnetic semiconductors [21–24], where the
exchange interaction can be mediated by virtual electron-hole
pairs or excitons generated by a sub-band-gap optical excita-
tion. Manipulation of the RKKY interaction is also possible
through materials engineering of magnetic multilayers, where
the interlayer interaction is predominantly due to RKKY
coupling [25,26]. An applied static electric field [27–31] could
also provide a means to control the RKKY interaction in
materials and structures with considerable spin-orbit coupling
[11,12,32,33].

Recently, there has been a burgeoning interest in the study
of periodically driven Floquet systems and the tantalizing
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possibility to engineer and control such nonequilibrium quan-
tum states [34]. Periodic driving through monochromatic irra-
diation of a solid renormalizes the band structure through non-
perturbative light-matter coupling into Floquet-Bloch bands.
By tuning the intensity and frequency of the radiation, one can
dynamically tune these photon-dressed bands and hence con-
trol the properties of the irradiated system. Besides the control
of direct exchange coupling already mentioned, Floquet dy-
namics also strongly influence transport properties [35–37],
optical properties [38–40], topological phases [41–43], and
interlayer tunneling [44,45].

The dynamic tunability and exquisite level of control
offered by optical driving can provide a significant advan-
tage over other proposed mechanisms for controlling the
RKKY interaction. In this work, we study the nonequi-
librium RKKY interaction in magnetically doped graphene
under illumination of monochromatic circularly polarized
light. Due to their linear dispersion and valley degrees
of freedom, chiral Dirac fermions in graphene couple dis-
tinctively to electromagnetic field compared to Schrödinger
fermions with a parabolic dispersion. Indirect exchange in-
teraction mediated by irradiated Dirac fermions is therefore
expected to display unconventional properties not found in
equilibrium. Our theory is developed using the Keldysh-
Floquet formalism in order to capture the nonperturba-
tive Floquet dynamics of the RKKY interaction. We derive
a formula for the time-averaged RKKY coupling for the
weak drive, off-resonant regime, and we perform analytical
and numerical studies as a function of impurity locations
on the lattice sites and Fermi levels for various driving
strengths. Our results reveal that for undoped graphene, a
weak periodic driving primarily decreases the RKKY ex-
change interaction in proportion to the driving strength,
whereas for doped graphene, increasing the driving strength
increases the period of RKKY oscillation allowing for opti-
cal tuning of indirect exchange coupling. We are also able
to identify a parameter regime where the exchange cou-
pling can be tuned between ferromagnetic and antiferromag-
netic.

Our paper is organized as follows. In Sec. II we introduce
the theoretical model of graphene with magnetic adatoms
under monochromatic illumination. We derive the Floquet
Hamiltonian for irradiated graphene and then use the Keldysh-
Floquet formalism to derive a general formula for the time-
averaged nonequilibrium RKKY interaction. We then special-
ize to the weak drive limit and obtain an approximate Floquet
Hamiltonian under the photon-number representation and the
corresponding expression of the irradiated RKKY coupling.
We next proceed to obtain the explicit analytical formulas
of real-space nonequilibrium Green’s functions in Sec. III.
In Sec. IV we present and analyze our results for the time-
averaged RKKY coupling for the cases of undoped graphene
(Sec. IV A) and doped graphene (Sec. IV B) under different
impurity configurations. These numerical results are eluci-
dated with analytical studies where we obtain approximate
analytic expressions for the irradiated RKKY coupling and
exhibit their dominant dependence on the impurity separation.
Before concluding in Sec. VI, we present a few relevant
remarks on our results and an outlook for a future direction
in Sec. V.

II. FORMULATION

The low-energy electrons in single-layer graphene are de-
scribed by two inequivalent high-symmetry points (K and K ′)
in the Brillouin zone known as the Dirac points. Electrons
in the vicinity of these points disperse linearly and can be
described by a Dirac Hamiltonian [13,14]

H0 = h̄vF (τσxkx + σyky), (1)

where vF = 106 ms−1 is the band velocity and τ = 1 (τ =
−1) corresponds to the K (K ′) Dirac points. vF is related
to the graphene tight-binding model parameters by h̄vF =
3γ a/2 = 6.6 eVÅ, with γ = 3 eV being the nearest-neighbor
hopping amplitude and a = 1.4 Å the carbon-carbon dis-
tance. In the presence of magnetic impurity adatoms, elec-
trons in graphene couple with the impurity spins through
a short-range interaction. In the spirit of standard RKKY
theory, such an interaction is modeled as a local potential at
the impurity site, and the single-particle Hamiltonian takes
the form

H = H0 + λδ(r)S · S1 + λδ(r − R)S · S2, (2)

where S is the electron spin operator, Si (i = 1, 2) are the spin
angular momenta of the magnetic impurities assumed to be
located at the origin and at R, and λ is the coupling between
the itinerant and localized spins. The honeycomb graphene
lattice can be considered as two superposing sublattices A and
B. The location of the two impurity spins can be either at the
sites of the same sublattice A or different sublattices A and B.

We consider normal incidence on the graphene plane
with a circularly polarized (CP) light E = E0[cos (�t )x̂ +
sin (�t )ŷ]/

√
2, with frequency � and field amplitude E0 [see

Fig. 1(a)]. The electric field couples to the Hamiltonian in
Eq. (1) via the minimal coupling scheme, and the result-
ing time-dependent Hamiltonian of the irradiated graphene

(a)

(b)

FIG. 1. (a) Schematic of irradiated graphene sheet deposited with
magnetic impurity adatoms. (b) Tight-binding dispersions of the
π -bands of graphene [13]. The system is driven in the off-resonant
regime at a frequency larger than the bandwidth h̄� > 6γ .
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system becomes

H0(t ) = h̄vF τσxkx + h̄vF σyky

− Aτσx sin (�t ) + Aσy cos (�t ), (3)

where A = vF eE0/(
√

2�).
Due to the time-periodicity of the Hamiltonian Eq. (3),

the Floquet-Bloch theorem is satisfied granting a solution
of the following form to the time-dependent Dirac equation
H0(t )|ψ (t )〉 = ih̄∂t |ψ (t )〉:

|ψl,k(t )〉 = e−iεl,kt/h̄|ul,k(t )〉, (4)

where l ∈ Z labels the Floquet modes and εl,k is the
quasienergy modulo h̄�. The time periodic nature of the Flo-
quet states, |ul,k(t + T )〉 = |ul,k(t )〉, where T = 2π/� is the
driving period, further allows a Fourier series representation
of these states,

|ul,k(t )〉 =
∑

n

e−in�t
∣∣un

l,k

〉
. (5)

Substituting |ψl,k(t )〉 in Eq. (3) maps the time-dependent
Dirac equation into the Floquet Hamiltonian, HF = H0(t ) −
ih̄∂t in the Fourier domain [46], such that∑

n

(Hmn − nh̄�δm,n)
∣∣un

l,k

〉 = εl,k

∣∣um
l,k

〉
, (6)

where HF,mn = Hmn − nh̄�δm,n is the Floquet Hamiltonian
and

Hmn = 1

T

∫ T

0
dtei(m−n)�tH0(t ) (7)

is known as the Floquet matrix [47,48]. For our system, the
Floquet matrix takes a block-tridiagonal form and can be
explicitly written as

Hmn = h̄vF (τσxkx + σyky)δmn + i

2
A[(τσx − iσy)δm,n−1

− (τσx + iσy)δm,n+1], (8)

where τ = + (τ = −) corresponds to the K (K ′) point. Here
we should note that the adoption of the continuum description
of graphene is essential to obtaining the block-tridiagonal
form of the Floquet Hamiltonian of irradiated graphene. The
adoption of this description, however, sets an upper bound
to the light-matter coupling strength A = A/(h̄�), where A
is given in Eq. (3). This upper bound can be seen from the
following consideration, starting first with the tight-binding
model of graphene. The Floquet Hamiltonian can be derived
from this tight-binding description, which consists of a Flo-
quet matrix with every element being generally nonzero. If
we require this to recover the continuum description of the
Floquet Hamiltonian in Eq. (8), all elements of the block-
pentadiagonal and higher-ordered bands of this matrix must
be set to zero (here the terminology “bands” refer to the
bands of the matrix). The matrix elements in those bands are
proportional to Jn�2[

√
2aA/(h̄vF )], where Jn is the Bessel

function of order n. The condition Jn�2[
√

2aA/(h̄vF )] ≈ 0
gives aA/h̄vF � 2 and thus A � 3γ /h̄�. Here a and γ

are defined under Eq. (1). For our numerical calculations in
Sec. IV, we choose h̄� = 6.6γ , which puts the driving field
in off-resonance [see Fig. 1(b)], and A � 0.06 so that both

the above condition and the weak drive condition are satisfied
with A � 3γ /h̄� < 1. The above consideration was first dis-
cussed in the context of irradiated two-dimensional electron
gases in Ref. [49], and it can be seen to apply quite generally
for other systems whenever one tries to obtain a Floquet
Hamiltonian within a continuum low-energy description.

Turning on the driving field at t = 0 starts pumping en-
ergy into the system. Crucially, the electron subsystem in a
solid is always an open system, with energy relaxation path-
ways through various inelastic scattering processes (electron-
electron and electron-phonon scattering) as well as coupling
to extrinsic degrees of freedom in the ambient environment. In
the presence of both energy injection and relaxation, naturally
heat does not build up infinitely over time. We adopt a specific
model to account for energy relaxation by coupling graphene
to an external heat reservoir, which will be specified in more
detail in Sec. III. After initial transients subside, the system
dynamics settles into a nonequilibrium steady state (NESS).
In NESS, time periodicity is restored and the system’s Green’s
functions become periodic in time, GR,A,<

k (r, t + T ; r′, t ′ +
T ) = GR,A,<

k (r, t ; r′, t ′), where GR,A,< denotes the retarded,
advanced, and lesser Green’s function. Periodicity allows
these Green’s functions to be expressed in the Floquet rep-
resentation [48],

[G(r, r′, ω̄)]mn

= 1

T

∫ T

0
dtav

∫ ∞

−∞
dtrele

i(ω̄+m�)t−i(ω̄+n�)t ′
G(r, t ; r′, t ′), (9)

where tav = (t + t ′)/2 and trel = t ′ − t are the average time
and relative time. The frequency variable ω̄ in the above is
defined in the reduced zone ω̄ ∈ (−�/2,�/2]. We will use
the notation ω̄ for reduced-zone frequency and ω ∈ (−∞,∞)
for extended-zone frequency, which will be relevant for the
Green’s functions we will discuss further below.

The RKKY interaction coupling is mediated by the spin
polarization of the graphene electrons induced by the impurity
spins. We use perturbation theory to obtain the interaction
energy up to leading order in S1 · S2. The exchange energy
between impurity spins S1 and S2 is given by the interaction
energy between one impurity spin and the induced electron
spin density due to the other impurity spin,

E (R, t ) = λ

∫
drS2,μδ(r − R)〈δSμ(r, t )〉, (10)

where 〈S(r, t )〉 = −i Tr[SδG<(r, t ; r, t )] is the expectation
value of the induced spin density, with δG<(r, t ; r, t ) denoting
the change in G< due to the perturbation of S1. Dyson’s
equation up to first order in the local potential V (r) = λδ(r)S ·
S1 gives

〈δS(r, t )〉 = −i Tr{SGR(r, t ; r′, t ′)V (r′)G<(r′, t ′; r, t )

+ SG<(r, t ; r′, t ′)V (r′)GA(r′, t ′; r, t )}, (11)

where GR,A,< are the noninteracting Green’s functions of the
irradiated graphene sheet, and the trace is over r′, t ′, and
the spin degrees of freedom. Let the impurity spin S1 be
sitting on the sublattice site β, and let S2 be sitting on α,
where α, β = {A, B}. Then, substituting Eq. (11) in Eq. (10),
expressing the time-dependent Green’s functions in the Flo-
quet representation, and averaging over time, we obtain the
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Floquet representation of the time-averaged exchange energy
for impurity spins located at sublattice sites α and β (for
details, see Appendix A):

Eαβ (R) = −iλ2
∑

μ,ν,a,b

(Sμ)ab(Sν )baS1,μS2,ν

×
∫ h̄�

2

− h̄�
2

dω̄

2π
Tr
{
GR

αβ (R, ω̄)G<
βα (−R, ω̄)

+ G<
αβ (R, ω̄)GA

βα (−R, ω̄)
}
, (12)

where μ, ν are the x, y, z-projections of the impurity spin,
a, b label the electron spin degrees of freedom, ω̄ is the
reduced-zone frequency, and the trace here is over the Flo-
quet index of the Floquet Green’s functions. In the above,
it should be emphasized that all summations are written out
explicitly, and α and β are not summed over. Since the
graphene Hamiltonian Eq. (1) is spin-independent, the trace
over spins is rendered only on the electron spin operators S in
the above equation. We have assumed that the concentration
of the magnetic adatoms (e.g., from transition-metal elements)
is dilute enough not to affect the band structure of graphene
significantly. In the case of sufficient adatom concentration,
graphene electrons could acquire spin-orbit coupling from the
adatoms [50–53], and the calculation here would need to be
generalized to account for spin-orbit coupling.

The explicit summation over spins can be carried out on
the electron spin operator Sμ = (h̄/2)σμ by using the trace
relation Tr{σμσν} = 2δμν for Pauli matrices σμ, yielding

∑
μ,ν,a,b

(Sμ)ab(Sν )baS1,μS2,ν = h̄2

2
S1 · S2, (13)

so that the exchange energy becomes Eαβ (R) = Jαβ (R)S1 ·
S2, where the exchange coupling strength can be written as
[see Appendixes A and D and Eq. (A9) for details]

Jαβ (R) = λ2h̄2
∫ h̄�

2

− h̄�
2

dω̄

2π
Im
{
Tr
[
GR

αβ (R, ω̄)G<
βα (−R, ω̄)

]}
.

(14)

III. QUASIENERGY SPECTRUM AND REAL-SPACE
FLOQUET GREEN’S FUNCTIONS

To compute the RKKY coupling from Eq. (14), in this
section we derive the real-space Floquet Green’s functions
of irradiated graphene. The Floquet Green’s functions can
be obtained directly from the Floquet Hamiltonian. For an
arbitrary driving strength, this generally needs to be done
numerically, and the calculation of Eq. (14) would require
extensive computational effort, and increasingly so toward
stronger driving. In this work, we focus only on the weak
drive regime A � 1, in which the theory becomes analytically
tractable. To this end, we first project the Floquet Hamiltonian
into a new set of basis, which will be called the photon-
number representation, that makes it more physically trans-
parent. Its main idea can be motivated from the observation
that the graphene Floquet Hamiltonian Eq. (8) under CP light
breaks into a set of decoupled two-level systems at k = 0.
For instance, at the K-point, those two levels comprise the

A sublattice component of the n − 1 Floquet mode and the
B sublattice component of the n Floquet mode; they are
coupled via A = vF eE0/(

√
2�) but are decoupled from all

the other Floquet modes. Hence, we can project the entire
Floquet Hamiltonian for all k values into the set of bases that
diagonalize its block-diagonal representation at k = 0. This
method was first introduced in Ref. [54], and we can express
it in the following form consisting of three consecutive unitary
transformations:

H̃F = U †
T,τHFUT,τ with UT,τ = U1,τU2,τU3, (15)

where τ = ±1, and the operators with τ = + (τ = −) act
on the Hamiltonian at the K (K ′) valley. The definitions
of the transformations U1,τ ,U2,τ ,U3 are relegated to Ap-
pendix B. The resulting Hamiltonian H̃F is in the ba-
sis ∪∞

n=−∞{�↑,n,�↓,n}, where the ↑,↓ symbols label new
“isospin” degrees of freedom:

�↑,n = ih+φA,n+1 + h−φB,n,

�↓,n = g+φA,n − ig−φB,n−1 (16)

for the K point and

�↑,n = g+φA,n − ig−φB,n−1,

�↓,n = −ih+φA,n+1 − h−φB,n (17)

for the K ′ point, where

g± = 2A√
4A2 + (∓h̄� +

√
4A2 + h̄2�2)2

,

h± = h̄� ∓
√

4A2 + h̄2�2√
4A2 + (∓h̄� +

√
4A2 + h̄2�2)2

.

One notices that the explicit matrix forms of H̃F for the two
valleys happen to be the same when expressed in the bases
Eqs. (16) and (17). It is also useful to note that the basis of the
K point can be transformed to the basis of the K ′ point via

�y
(
. . . , �K

↑,n,�
K
↓,n, . . .

)T = (
. . . , �K ′

↑,n,�
K ′
↓,n, . . .

)T
, (18)

where �y = iσy ⊗ I∞, I∞ is the identity matrix in Floquet
space, and �K

↑,↓ and �K ′
↑,↓ correspond to �↑,↓ in Eqs. (16) and

(17), respectively.
Up to this point, there has been no approximation and the

transformed Hamiltonian H̃F captures the same physics as the
original Floquet Hamiltonian in Eq. (6), but it provides a more
convenient picture of the phenomena at play. The expression
of H̃F contains the following parameters:

F0 = 1

2
(h̄�/

√
4A2 + h̄2�2 + 1),

F1 = iA/
√

4A2 + h̄2�2, (19)

F2 = 1

2
(1 − h̄�/

√
4A2 + h̄2�2).

Each of these parameters captures a successive photon process
mimicking a tight-binding Hamiltonian in the Floquet-ladder
space: F0 captures the zero-photon process that opens a gap at
k = 0 resulting from time-reversal symmetry breaking (“on-
site”); F1 captures the one-photon resonance resulting from
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the hybridization of the first-nearest-neighbor (|n − m| = 1)
Floquet-ladder bands at k = �/(2vF ); while F2 captures the
two-photon resonance resulting from the hybridization of the
second-nearest-neighbor (|n − m| = 2) Floquet-ladder bands
at k = �/vF . Similarly, there are other coefficients FN>2

describing higher-order photon processes, but they will not be
needed for our present theory.

The values of FN=0,1,2 in the Floquet-ladder tight-binding
Hamiltonian H̃F depend on the driving strength A = A/(h̄�).
For consistency with the regime of validity of the continuum
Floquet Hamiltonian that sets an upper limit on the value of
A [see Eq. (8) and the relevant discussion in Sec. II], in the
following we will focus on the weak drive regime A � 1,
which renders F1 and F2 negligible compared to F0 because
they are smaller by a factor of A and A2. This approximation
is known as the F0 approximation [54]. Hence, H̃F becomes
dependent only on F0 and takes a block-diagonal form H̃F =⊕∞

n=−∞ h̃n, where
⊕

stands for the matrix direct sum over the
Floquet space, with the following 2 × 2 block Hamiltonian h̃n:

h̃n =
[

nh̄� + �/2 eiθk F0 h̄vF k
e−iθk F0 h̄vF k nh̄� − �/2

]
, (20)

where � =
√

4A2 + h̄2�2 − h̄�, and θk is the angle between
k and the K ′ − K direction. Within the F0-approximation, the
Hamiltonian in Eq. (20) captures the photon-induced band gap
� at the K and K ′ points and the photon-induced renormaliza-
tion of the graphene Fermi velocity by F0. The quasienergies
for K or K ′ are simply gapped Dirac dispersions shifted by
integer multiples of h̄�,

εn,k = ±
√

(F0h̄vF k)2 + (�/2)2 + nh̄�. (21)

The dashed line in Fig. 2 shows the quasienergy dispersion for
n = 0.

Here we can make a connection to the approximate Flo-
quet Hamiltonian HFM obtained under the Floquet-Magnus

FIG. 2. Time-averaged spectral function ρ(k, ω) [Eq. (23)] as a
function of k and ω, obtained within the F0 approximation. The side
color bar indicates the magnitude of ρ(k, ω) in logarithmic scale. The
dashed lines indicate the Floquet quasienergy dispersions [Eq. (21)].
Here the system is driven by a field with strength A = A/h̄� = 0.2
and frequency h̄� = 2.2γ .

expansion [55] up to second order that is commonly used
as a starting point for calculation of Floquet dynamics in
the high-frequency off-resonant regime. For irradiated Dirac
system such as graphene, it gives [36] a static gapped Dirac
Hamiltonian with a gap �FM = A2/(h̄�). On the other hand,
the F0 Hamiltonian captures not only the induced gap but
also the Fermi velocity renormalization for all Floquet modes
n ∈ Z. For the case of graphene, one can obtain HFM from the
F0 approximation by expanding Eq. (20) in � and F0 up to
second order in A and then setting n = 0.

Having obtained the Floquet Hamiltonian, we can now
proceed to obtain the real-space Green’s functions in the
photon-number representation under the F0 approximation.
The simple form of the F0 Hamiltonian allows us to obtain
analytically tractable Green’s functions. We start with the
momentum-space Green’s functions and obtain the corre-
sponding real-space counterparts through a Fourier transfor-
mation. The retarded Green’s function in the momentum space
is G̃R = ⊕∞

n=−∞ g̃R
n , where the 2 × 2 block Green’s function

corresponding to the nth Floquet mode is given by g̃R
n (k, ω̄) =

[(ω̄ + iη)Iσ − h̃n]−1. In the following, we write the Green’s
function in terms of the physical, extended-zone frequency
ω = ω̄ − nh̄� with g̃R(k, ω) ≡ g̃R

n=0(k, ω):

g̃R(k, ω) = − 1

D+(k, ω)

[
ω + iη + �/2 h̄vF F0keiθk

h̄vF F0ke−iθk ω + iη − �/2

]
,

(22)

where D±(k, ω) = (�/2)2 + (h̄vF F0k)2 − (ω ± iη)2. The
electronic spectral weight in driven systems can be
characterized by the time-averaged spectral function, which
can be obtained from the Floquet Green’s function in the
original basis as

ρ(k, ω) = − 1

π

∑
α∈{A,B}

Im
{[
GR

αα (k, ω)
]

00

}
. (23)

The color intensity in Fig. 2 shows ρ(k, ω) for valley K
obtained with GR(k, ω̄) = UT,+G̃R(k, ω̄)U †

T,+ in the F0 ap-
proximation.

The real-space Green’s functions for each valley are ob-
tained by their corresponding Fourier transformation of the
momentum-space Green’s functions,

g̃(R, ω) =
∫

dk
(2π )2

eik·Rg̃(k, ω). (24)

Substituting Eq. (22) into the above, we obtain the retarded
Green’s function for each Floquet mode in the photon-number
representation (see Appendix E for details of the derivation),

[g̃R(R, ω)]↑↑,↓↓ = −ζ [ω + iη ± �/2]χ0(R, ω), (25)

[g̃R(R, ω)]↑↓,↓↑ = −ζe±iθRχ1(R, ω), (26)

where + (−) on the right-hand side of Eqs. (25) and (26)
corresponds to ↑↑ (↓↓) and ↑↓ (↓↑) configurations of the
isospins in the left-hand side of these equations [see Eqs. (16)
and (17) for isospin definition], ζ−1 = 2π (h̄vF F0)2, θR is the
angle between R and the x-axis, and

χ0(R, ω) = π i

2
H (1)

0 [κ (ω)R], (27)
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χ1(R, ω) = −π

2
h̄vF F0κ (ω)H (1)

1 [κ (ω)R], (28)

κ (ω) = sgn(ω)

h̄vF F0

√
(ω + iη)2 − �2

4
, (29)

where H (1)
0 and H (1)

1 are the zeroth-order and first-order Han-
kel functions of the first kind, respectively.

We assume that thermalization of the irradiated system is
achieved in NESS through a coupling to an external fermion
bath (e.g., a metallic lead). The Floquet-Keldysh formalism
enables one to determine the Floquet lesser Green’s function
in the momentum space as

G<(k, ω̄) = GR(k, ω̄)�<(ω̄)GA(k, ω̄), (30)

where �< = −�RF + F�A is the lesser self-energy, and
F (ω̄) = ⊕∞

n=−∞ f (ω̄ − nh̄�)Iσ is the Floquet representation
of the equilibrium distribution with f (ω) = 1/[e(ω−μ)/(kBT ) +
1]. In the wide-band approximation for the fermion bath, the
retarded self-energy takes the momentum-independent form
�R = −iηIσ ⊗ I∞, and the lesser self-energy becomes �< =
2iη

⊕∞
n=−∞ f (ω̄ − nh̄�)Iσ .

Transforming to the photon-number representation, we
find the lesser Green’s function

g̃<(k, ω) = 2iηF0 f (ω)g̃R(k, ω)g̃A(k, ω). (31)

The real-space lesser Green’s function is then obtained
from the Fourier transformation of Eq. (31) (see Appendix E),
yielding

[g̃<(R, ω)]↑↑,↓↓

= F0 f (ω)ζ

{
(ω ± �/2)2 + η2

2ω

× [χ0(R, ω) − χ0(R,−ω)] + iη{[1 − B(ω)]χ0(R, ω)

+ [1 + B(ω)]χ0(R,−ω)}}, (32)

[g̃<(R, ω)]↑↓,↓↑ = F0 f (ω)e±iθRζ [χ1(R, ω) − χ1(R,−ω)],

(33)

where B(ω) = (�2/2 − 2ω2 + 2η2)/(4iηω).
With all the required Green’s functions obtained, we return

to the expression of the RKKY coupling in Eq. (14). The main
contribution to the RKKY coupling in graphene comes from
the K and K ′ points. Therefore, the total real-space Green’s
function consists of contributions from both valleys,

G(R, ω̄) =
∫

dk
(2π )2

eik·R[eiK·RG+(k, ω̄) + eiK ′·RG−(k, ω̄)],

(34)

where G+ (G−) denotes the Green’s function associated with
the K (K ′) Dirac points. The above Green’s function G(R, ω),
which enters Eq. (14), is written in the original Floquet rep-
resentation. A crucial observation is that the unitary transfor-
mation UT,± in Eq. (15) for the Hamiltonian is k-independent;
this allows the same transformation to carry over to the trans-
formation for the real-space Green’s function also. Through
this transformation, we can formally express all the Green’s
functions in Eq. (14) from the original Floquet representation
in the photon-number representation. We choose the basis for

the K ′ point, Eq. (17), as the common basis. Then, applying
the transformation UT,− [Eq. (15)] and defining G̃(R, ω̄) =
U †

T,−G(R, ω̄)UT,−, Eq. (34) becomes

G̃(R, ω̄) =
∫

dk
(2π )2

eik·R[eiK·R�yG̃(k, ω̄)�†
y + eiK ′·RG̃(k, ω̄)],

(35)

where we have used Eq. (18) and have written G̃(k, ω̄) ≡
G̃+(k, ω̄) = G̃−(k, ω̄), since G̃±(k, ω̄) have the same ex-
plicit matrix form in the photon-number representation. With
Eq. (35) and the F0 approximation, Eq. (14) takes on the
simplified form (see Appendix D for details)

Jαβ (R) = λ2h̄2F 2
0

∫ h̄�
2

− h̄�
2

dω̄

2π
Im
{
Tr
[
G̃R

αβ (R, ω̄)G̃<
βα (−R, ω̄)

]}
.

(36)

Under the F0 approximation, the Green’s functions in Eq. (36)
are block-diagonal in the Floquet index n consisting of the
2 × 2 Green’s functions g̃n(R, ω̄). This allows us to further
express Eq. (36) in terms of the extended zone frequency ω ∈
(−∞,∞),

Jαβ (R) = λ2h̄2F 2
0

∫ ∞

−∞

dω

2π
Im
{[

g̃R
F0

(R, ω)
]
αβ

× [g̃<
F0

(−R, ω)]βα

}
, (37)

where

g̃F0 (R, ω) = eiK·Rσyg̃(R, ω)σy + eiK ′ ·Rg̃(R, ω), (38)

with g̃(R, ω) given by Eq. (24). In the above, we have used
a common numerical representation {+1,−1} for the pseu-
dospins {A, B} and the K ′ isospins {↑,↓}. In the absence of
irradiation, Eq. (37) can be reduced to its equilibrium limit
[5,7] as shown in Appendix D.

zigzag

armchair

x

y

A

B

FIG. 3. Honeycomb lattice structure of graphene. The filled cir-
cles represent the atoms of sublattice A while the unfilled ones rep-
resent the atoms of sublattice B. The zigzag and armchair directions
in the honeycomb structure are indicated with arrows.
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(a) (b)

(c) (d)

FIG. 4. Time-averaged RKKY coupling J (R)/J0 for undoped graphene under irradiation. The driving field is taken to have a frequency
h̄� = 6.6γ and strength A ∈ [0, 0.06], with A = 0 being the equilibrium case. The panels correspond to cases with the impurities located at
different sublattice sites (A or B) and separated along different directions (zigzag or armchair): (a) AA zigzag; (b) AB zigzag; (c) AA armchair;
(d) AB armchair. The inset in (a) shows the negative values of J (R)/J0 over the full range of R down to the smallest separation. J0 is given in
Eq. (41).

IV. NUMERICAL AND ANALYTICAL RESULTS

Equation (37) allows for efficient numerical and analytical
evaluation of the nonequilibrium RKKY coupling. In this
section, we present numerical results for J (R) and perform
additional approximations to obtain analytic results. We con-
sider both undoped and doped graphene for different values
of A, for impurities located at the same sublattice sites or
at different sublattice sites, with the separation R along the
zigzag or armchair direction (see Fig. 3). In all cases, we also
include results for the undriven case with A = 0, which are
consistent with the equilibrium results [5–8] in the literature.

A. Undoped graphene, EF = 0

The panels of Fig. 4 show our numerically evaluated
RKKY coupling J for different cases of impurity locations
and separation directions for the Fermi level located at the
Dirac point. The choice of the range of driving strength A
is informed by its upper limit A � 3γ /h̄� < 1 (see Sec. II)

for the particular frequency value h̄� = 6.6γ we have chosen.
For this large frequency value, the driving field is off-resonant
and the system is in the weak drive regime.

When the magnetic impurities are located on the same
sublattice (AA or BB) and connected through the zigzag
direction [Fig. 4(a)], J displays short-scale oscillations as
a function of the impurity separation R for all the driving
strengths A studied. This is a general feature in systems with a
multivalley band structure [4,56], and it arises from intervalley
scattering. Graphene’s band structure contains two valleys K
and K ′ that originate from the honeycomb lattice structure. As
such, these short-scale oscillations persist with and without
irradiation and have an intrinsic period that is independent of
the Fermi level. They have a period 2π/|K − K ′| = 3

√
3a/2,

where |K − K ′| is the distance between two adjacent valleys
in the Brillouin zone, and a is given in Eq. (1). It is convenient
to take the kx-axis along an adjacent pair of K and K ′ with
the origin chosen at the M-point between them, such that K −
K ′ = 2K. One may notice that these short-range oscillations
can only manifest for certain choices of impurity separation
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in graphene, namely when the phase difference (K − K ′) ·
�R �= 2π , where �R is the increment that gives the next point
of impurity separation on the lattice, and it is given by the
distance between two adjacent impurity sites along the zigzag
or armchair direction. Along one of these directions, it is the
vector joining adjacent A sublattice sites for impurity spins on
the same sublattice, and the vector joining adjacent A and B
sublattice sites for impurity spins on different sublattices. As
a result, these sharp oscillations appear in the case of the AA
(BB) impurities separated along the zigzag direction, which
has (K − K ′) · �R = 2π/3, in addition to the overall decrease
with increasing R. For weak driving strengths A, we observe
that irradiation suppresses the RKKY coupling for all values
of R while maintaining its sign, hence remaining ferromag-
netic in character J (R) < 0 like in equilibrium. Interestingly,
however, we find that for large enough driving, J (R) can flip
sign and display antiferromagnetic character within a rather
large range of R, as seen for A = 0.06 in Fig. 4(a).

To gain further insights into this behavior, we proceed to
derive approximate analytic results. Our results in the follow-
ing are valid up to O(�2) in the weak drive A � 1 regime
when the gap �/h̄� � A2 � 1. Taking η → 0 in Eq. (37)
with the expressions of the Green’s functions [g̃R(R, ω)]↑↑,↓↓
and [g̃<(R, ω)]↑↑,↓↓ from Eqs. (25) and (32), and defining
z = −α�

√
|(2ω/�)2 − 1|, the RKKY coupling for α = β =

A can be written as J (R) = Ĵ0(R) + J̄0(R) with

Ĵ0(R) = − 4

π
J+F 2

0

( a

R

)3
∫ α�

0
K0(z)I0(z)z

√
z2 + α2

�dz

− 4

π
J−

(
a

2l�

)2( a

R

) ∫ α�

0
K0(z)I0(z)z(z2 + α2

�)−
1
2 dz

(39)

and

J̄0(R) = −2J+F 2
0

( a

R

)3
∫ ∞

α

Y0(z)J0(z)z
√

z2 + α2
�dz

−2J−

(
a

2l�

)2( a

R

) ∫ ∞

α

Y0(z)J0(z)z
(
z2 + α2

�

)− 1
2 dz.

(40)

In Eqs. (39) and (40), J0,Y0 are the zeroth-order Bessel
and Neumann functions, and I0,K0 are the zeroth-order
modified Bessel functions of the first and second kind. We
have also made use of K − K ′ = 2K and defined J± = J0[1 ±
cos (2K · R)] with

J0 = a

2π h̄vF

(
λh̄

4a2

)2

, l� = h̄vF

�
and α� = R

2F0l�
.

(41)

Here l� is a characteristic length introduced by irradiation and
is inversely proportional to the driving strength A. In Eq. (39),
since z < α� � 1, we can use the small argument expansions
of the K0 and I0 and expand the integrands up to second order
in z. After integration, we find that both integrals are ∼(�/2)3

and are negligible, hence J (R) ≈ J̄0(R). In Eq. (40) for J̄0(R),
since �/h̄� is small, α� � 1 will be satisfied for a large
range of R. We can therefore extend the lower integration limit
from α to 0, which incurs an error ∼(�/2)3 that is negligible.

Now J (R) can be written as

J (R) = −2J+F 2
0

( a

R

)3
∫ ∞

0
Y0(z)J0(z)z2dz

− (J+ + 2J−)

(
a

2l�

)2( a

R

) ∫ ∞

0
Y0(z)J0(z)dz, (42)

which is analytically integrable, leading to

J (R)

J0
= −F 2

0

8

( a

R

)3
[1 + cos (2K · R)]

+ 1

2

(
a

2l�

)2( a

R

)
[3 − cos (2K · R)]. (43)

When � = 0 and F0 = 1, Eq. (43) recovers the equilibrium
RKKY coupling, with J (R) decaying as 1/R3 modulated by
the short-range oscillation factor [1 + cos (2K · R)] that arises
from intervalley scattering. Notice that these oscillations do
not cause any sign change in J as a function of R, and
the equilibrium RKKY coupling retains its ferromagnetic
character for all R [5–7]. Irradiation modifies this behavior
in two interesting ways. In Eq. (43), the first term, which is
inherited from the equilibrium contribution, is renormalized
by F 2

0 , which decreases with increasing driving strength A.
The second term is a new contribution due to irradiation. It
decays more slowly as 1/R and increases as �2 with the
driving strength A. It displays the same oscillation period
since this aspect is uniquely determined by the graphene
lattice and the impurity orientation. The interplay between
these two terms in Eq. (43) explains the numerically observed
RKKY coupling in Fig. 4(a) as follows. We notice that the
second term has an opposite sign and partly cancels the first,
ferromagnetic-like term. Increasing A thus suppresses the
RKKY coupling, as we have found numerically. If A is large
enough, the second term becomes more dominant and the
RKKY coupling switches to an antiferromagnetic character.
The persistence of this behavior for large-R values as observed
in Fig. 4(a) is due to the much slower 1/R dependence.

We now consider the case for two impurities located at
opposite sublattice sites (AB or BA) connected through the
zigzag direction. Figure 4(b) shows the numerically calculated
J (R) for the AB zigzag case, which displays short-range oscil-
lations similar to the AA zigzag case since (K − K ′) · �R �=
2π also for this configuration. As opposed to the AA zigzag
case, the exchange coupling for the AB case is antiferromag-
netic in character in equilibrium, and it remains so under weak
driving A � 1. Following similar steps to those in the AA
zigzag case, we obtain the following analytical result for the
AB zigzag RKKY coupling:

J (R)

J0
= [1 − cos (2K · R)]

×
{

3F 2
0

8

( a

R

)3
− 1

2

(
a

2l�

)2( a

R

)}
. (44)

The above recovers the equilibrium case [5–7] in the absence
of irradiation (� = 0 and F0 = 1), showing an antiferromag-
netic coupling. Similar to the AA case, Eq. (44) consists of
two terms, with the second term ∼1/R arising purely from
irradiation. It is opposite in sign and increases as �2 with
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the driving strength, causing a suppression of J (R) with
increasing A. For weak driving in the range of A considered,
this second term does not become large enough to dominate
the first term for all values of R. As a result, J (R) does not
change sign as observed in Fig. 4(b), and the irradiated case
resembles qualitatively the equilibrium case.

The effect of the relative orientation between the two impu-
rities on the graphene lattice is brought out in the case when
the separation is along the armchair direction. Figures 4(c)
and 4(d) show the cases when the impurities are located at
the same sublattice sites AA and different sublattice sites AB.
The separation �R between the two impurities satisfies (K −
K ′) · �R = 2π , and as a result J (R) does not display any
short-scale oscillations. Its smooth decay profile resembles
the RKKY coupling in conventional insulators [57–60]. The
RKKY coupling remains ferromagnetic for the AA case and
antiferromagnetic for the AB case in the weak drive regime,
with magnitudes that decrease with increasing A. We also
obtain the following analytic results for the AA case:

J (R)

J0
= −F 2

0

4

( a

R

)3
+
(

a

2l�

)2( a

R

)
, (45)

and for the AB case:

J (R)

J0
= 3F 2

0

4

( a

R

)3
−
(

a

2l�

)2( a

R

)
. (46)

Except for the absence of the short-range oscillation factors,
the above expressions for the armchair case resemble those
in the zigzag cases, with similar dependence on R, F0, and �

in each of the two constituent terms. Equations (43)–(46) are
obtained under the assumption α� � 1. For a given driving
strength A, this means that our analytic results are expected
to hold for R � 2F0l�. Comparing with Fig. 4, we find
that Eqs. (43)–(46) show good agreement with the numerical
results up to R � F0l� for A � 0.04. For larger R, the analytic
results Eqs. (43)–(46) start to deviate from the numerical
results. When R is large such that α� � 1, our numerical
results of J exhibit an exponential decay with R as e−2α� (see
Appendix E), similar to the case of undoped graphene with a
gap in equilibrium [9,61]. The absence of such an exponential
factor in Eqs. (43)–(46) is due to e−2α� ≈ 1 in the regime
α� � 1.

To summarize the above analyses of different impurity con-
figurations on undoped graphene, we have found that the main
effect of irradiation under weak driving A � 1 is to decrease
the magnitude of the RKKY coupling from its equilibrium
value. Interestingly, for the particular AA zigzag case, we find
that a moderately strong drive (still within A � 1) can result
in a sign change of the RKKY interaction. In the next section,
we will present our results for the doped case with a finite
Fermi energy.

B. Doped graphene, EF �= 0

In our calculations, we take the Fermi level to be fixed
by coupling to the fermion bath (e.g., through attachment
to a metallic lead). In addition to the short-scale oscillations
resulting from intervalley scattering for the zigzag case, the
RKKY interaction displays an additional, longer-range oscil-
lation arising from the intravalley scattering processes near

the Fermi surface of each valley. This long-range RKKY
oscillation is similar to the usual case as it fluctuates between
both signs as a function of R. Figures 5(a) and 5(b) show
the AA and AB zigzag cases, respectively, with a Fermi level
above the photon-induced band gap, EF > �/2. The longer-
range oscillation is due to the q = 2kF intravalley scattering,
and it has a period given by π/kF , where kF is the Fermi
wave vector. While the short-range oscillation period remains
unchanged under irradiation, we find that the longer-range os-
cillation period increases with A. This is due to the increased
photon-induced gap � with A, resulting in a smaller Fermi

surface and a smaller kF =
√

E2
F − (�/2)2/(h̄vF ) when EF

is fixed. Figures 5(c) and 5(d) show the RKKY coupling,
respectively, for impurities at AA and AB along the armchair
direction with a Fermi energy EF > �/2. The oscillation is
marked by the absence of the shorter-range oscillations as in
the undoped case [Figs. 4(c) and 4(d)] and a prevailing period
π/kF that increases with A.

In the following, we derive the approximate analytical
results for the RKKY coupling up to O(�2) for different
impurity configurations when 2EF > �. The total exchange
coupling can be written as a sum of the intrinsic contribution
already obtained for undoped graphene and a second contribu-
tion due to a finite Fermi energy, J (R) = Jint (R) + Jext (R). We
start with the AA zigzag configuration. The intrinsic contribu-
tion Jint (R) is given by Eq. (43). To evaluate the extrinsic con-
tribution, for convenience we define y = α�

√
|(2ω/�)2 − 1|

and write Jext (R) = Ĵ1(R) + J̄1(R), where Ĵ1(R) and J̄1(R)
take the following form:

Ĵ1(R) = 4

π
J+F 2

0

( a

R

)3
∫ α�

0
K0(y)I0(y)y

√
y2 + α2

�dy

+ 4

π
J−

(
a

2l�

)2( a

R

) ∫ α�

0
K0(y)I0(y)

× y(y2 + α2
�)−

1
2 dy (47)

and

J̄1(R) = 2J+F 2
0

( a

R

)3
∫ kF R

α�

Y0(y)J0(y)y
√

y2 + α2
�dy

+2J−

(
a

2l�

)2( a

R

) ∫ kF R

α�

y(y2 + α2
�)−

1
2 Y0(y)

×J0(y)dy, (48)

where the light-induced length scale l� is given by Eq. (39).
Similar arguments for Eqs. (39) and (40) apply here. Ex-
pansions of the integrands in Eq. (47) up to second order
in y < α� � 1 show that both integrals are ∼(�/2)3 and
are negligible. Equation (48) for J̄ (R) can be evaluated by
extending the lower integration limit to 0 with a negligible
error ∼(�/2)3. Then Jext (R) ≈ J̄1(R) can be written as

Jext (R) = 2J+F 2
0

( a

R

)3
∫ kF R

0
Y0(y)J0(y)

(
y2 + α2

�/2
)
dy

+2J−

(
a

2l�

)2( a

R

) ∫ kF R

0
Y0(y)J0(y)dy. (49)
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(a) (b)

(c) (d)

FIG. 5. Time-averaged RKKY coupling J (R)/J0 for doped graphene under irradiation with a Fermi energy EF = 0.065γ . The driving field
is taken to have a frequency h̄� = 6.6γ and strength A = 0 and 0.06. For the latter value of A the photon-induced gap � = 0.71EF . The
panels correspond to cases with the impurities located at different sublattice sites (A or B) and separated along different directions (zigzag or
armchair): (a) AA zigzag; (b) AB zigzag; (c) AA armchair; (d) AB armchair. The insets in (c) and (d) show the negative and positive values of
J (R)/J0, respectively, over the full range of R down to the smallest separation.

The above integrals can be performed analytically, yielding
J (R) = Jint (R) + Jext (R) as

J (R)

J0
= −F 2

0

8

( a

R

)3
[1 + cos (2K · R)][1 + 16M1(kF R)]

+1

2

(
a

2l�

)2( a

R

)
[3 − cos (2K · R)]

× [1 − 2M2(kF R)], (50)

where

M1(x) = x

2
√

π
G2,1

2,4

(
1
2 , 3

2

1, 1, 1, − 1
2

∣∣∣∣x2

)
, (51)

M2(x) = x

2
√

π
G2,1

2,4

(
1
2 , 1

2

0, 0, 0, − 1
2

∣∣∣∣x2

)
, (52)

and Gm,n
p,q is the Meijer G-function [62]. As in the undoped

case, we find that Eq. (50) agrees well with our numerical
results up to R � F0l� for A � 0.04. A more familiar form
of the RKKY interaction can be obtained by considering the

asymptotic regime kF R � 1 when the impurity separation is
long compared to the Fermi wavelength. From the asymptotic
forms of the Meijer G-functions, we find

lim
x→∞M1(x) = − 1

16
+ cos (2x)

8π
+ x sin (2x)

2π
,

lim
x→∞M2(x) = 1

2
− 3 cos (2x)

8πx2
+ sin (2x)

2πx
, (53)

from which we obtain

J (R)

J0
= −F 2

0

π

( a

R

)3
[1 + cos (2K · R)]

×
[

1

4
cos (2kF R) + (kF R) sin (2kF R)

]

+ 1

2π

(
a

2l�

)2( a

R

)
[3 − cos (2K · R)]

×
[

3 cos (2kF R)

4(kF R)2
− sin (2kF R)

(kF R)

]
. (54)
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(a) (b)

(d)

FIG. 6. Time-averaged RKKY coupling J (R)/J0 for doped graphene under irradiation with a Fermi energy EF = 0.0236γ . The driving
field has the same frequency and strengths as in Fig. 5. For A = 0.06 the photon-induced gap � = 1.99EF . The panels correspond to cases
with the impurities located at different sublattice sites (A or B) and separated along different directions (zigzag or armchair): (a) AA zigzag;
(b) AB zigzag; (c) AA armchair; (d) AB armchair. The insets in (c) and (d) show the negative and positive values of J (R)/J0, respectively, over
the full range of R down to the smallest separation.

At equilibrium, the dominant contribution in J (R) for finite
Fermi energy goes as 1/R2 similar to 2D metals [5–7], in
contrast to the 1/R3 dependence in undoped graphene. Under
irradiation, the doped case has a notable distinction from the
undoped case, i.e., the dominant R-dependence in the second
purely nonequilibrium term of Eq. (54) decays more rapidly
going as 1/R2, as compared to 1/R in Eq. (43). As a result,
the effect of this term in suppressing the exchange coupling
becomes less important in the doped case. From Eq. (54)
we can clearly distinguish the lattice, Fermi surface, and
irradiation effects at play in the system. The lattice effect is
reflected by the period of short-range oscillations π/|K| and
is not influenced by irradiation. On the other hand, the Fermi
surface effect is manifested via the longer period π/kF , which
is dependent on � and increases with the driving strength A.

If we keep increasing the driving strength for a fixed R, we
can leave the asymptotic regime and enter into a regime where
kF R becomes smaller than 1, since kF decreases with A. This
can be attained while keeping A � 1. Thus we can consider
the limit kF R � 1 and use the small argument expansions of

the Meijer G-functions to obtain

lim
x→0

M1(x) = 0,

lim
x→0

M2(x) = −2x

π
[1 + γ + ln (x/2)], (55)

where γ is the Euler-Mascheroni constant. Using the above,
we find that Eq. (50) reduces to the same form as Eq. (43)
for irradiated undoped graphene. Physically, when the elec-
trochemical potential is maintained constant in the system,
increasing the driving strength A allows the Fermi sea to
“drain out” via the increase in gap size �. To shed additional
light on this point, we draw a comparison between the two
cases with the Fermi level far above the band gap [Fig. 5(a)]
and just above the band gap [Fig. 6(a)]. Figure 5(a) shows,
for a fixed EF , the nonequilibrium and the equilibrium cases.
Their difference is relatively small since the Fermi momentum
kF under irradiation is still close to the equilibrium value when
EF is large compared to �/2. The difference between the ir-
radiated and equilibrium cases is most dramatically illustrated
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when EF is fixed at a value just above the photon-induced gap
under irradiation. Figure 6(a) shows J (R) for such a value of
EF in and out of equilibrium. The significant difference is due
to the qualitatively distinct scenarios realized by increasing A.
When undriven, the RKKY behavior is that of doped graphene
in equilibrium, which displays long-range RKKY oscillations
with a period π/kF . Under a driving field that induces a value
of � � 2EF , the Fermi surface is drastically reduced and
the RKKY coupling approaches that of irradiated undoped
graphene [Fig. 4(a)]. This drastic change in the behavior of
the RKKY exchange interaction under irradiation reveals a
strong qualitative difference between the equilibrium and the
irradiated cases; furthermore, it implies that by tuning the
laser amplitude and frequency, one can switch between the
two qualitatively distinct regimes of RKKY interactions for
doped and undoped graphene under irradiation.

One can follow similar calculation steps as outlined above
for the AA zigzag case to derive the analytical results for the
AB zigzag and the AA and AB armchair configurations. In the
asymptotic regime kF R � 1, we find, for the AB zigzag case,

J (R)

J0
= [1 − cos (2K · R)]

×
{

F 2
0

π

( a

R

)3
[

5

4
cos (2kF R) + kF R sin (2kF R)

]

−
(

a

2l�

)2( a

R

)[cos (2kF R) + 4kF R sin (2kF R)

8π (kF R)2

]}
,

(56)

whereas for the AA armchair case,

J (R)

J0
= − F 2

0

2π

( a

R

)3
[cos (2kF R) + 4kF R sin (2kF R)]

+ 1

4π

(
a

2l�

)2( a

R

)[3 cos (2kF R)

(kF R)2
− 4 sin (2kF R)

kF R

]
,

(57)

and for the AB armchair case,

J (R)

J0
= F 2

0

π

( a

R

)3
[

5

2
cos (2kF R) + 2kF R sin (2kF R)

]

−
(

a

2l�

)2( a

R

)[cos (2kF R) + 4kF R sin (2kF R)

4π (kF R)2

]
.

(58)

For all these cases, we also find from Eq. (50) that the
kF R � 1 behavior of J (R) reduces to their corresponding
results in the undoped regime under irradiation [AB-zigzag,
Eq. (44); AA-armchair, Eq. (45); AB-armchair, Eq. (46)]. The
underlying reason is already explained above as in the AA
zigzag case.

The effect of the Fermi energy on the nonequilibrium
RKKY interaction can be further elucidated by plotting J (R)
as a function of EF at a fixed R, as shown in Fig. 7(a).
It becomes clear that the RKKY coupling under irradiation
approaches the equilibrium case when the Fermi energy is far
from the conduction-band edge EF � �/2. Departure from
the equilibrium case occurs most considerably in the region of

(a)

(b)

FIG. 7. (a) Dependence of J (R)/J0 on the Fermi energy. In this
case, we consider the impurity spins to be separated by a fixed
distance R = 70

√
3a on the same sublattice sites AA along the zigzag

direction. Panel (b) shows an enlarged view of the small Fermi
energy region marked by the rectangle in (a). The position of the
conduction-band edge at EF = �/2 is indicated by the vertical line.
The driving frequency is the same as in Figs. 4 and 5.

low Fermi energies, which is enlarged as shown in Fig. 7(b). In
particular, one notices that J (R) in the irradiated case remains
constant throughout EF ∈ [0,�/2], because the Fermi level
stays within the photon-induced gap. Thus at a fixed EF > 0,
as one increases the driving strength A from zero, the gap
� increases, and the RKKY coupling changes from having
a predominantly intravalley scattering character to having a
purely intervalley scattering character. For large enough A
when the dynamical gap encloses the Fermi level, the RKKY
coupling remains constant, behaving as irradiated undoped
graphene.

V. DISCUSSION AND OUTLOOK

Our theory applies for dilute concentration of magnetic
impurities located on the graphene sublattice sites. One in-
teresting direction for future consideration is the inclusion
of spin-orbit coupling effects. For sufficient concentration of
magnetic adatoms (e.g., transition-metal elements), the band
structure of graphene becomes strongly modified due to the
induced spin-orbit coupling and Zeeman splitting [50–53].
Our formalism can be further generalized to account for the
induced spin-orbit coupling in the graphene electrons.

In equilibrium, it has been known that the RKKY inter-
action in undoped graphene is antiferromagnetic for impurity
spins located at the same sublattice sites and ferromagnetic at
different lattice sites. This statement is general for bipartite
lattices and is satisfied due to the particle-hole symmetry in
undoped graphene [5]. In the presence of a driving field, one
surprising finding from our study is the sign change of J (R)
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observed for the AA zigzag case when A = 0.06 [Fig. 4(a)],
resulting in a ferromagnetic coupling over a wide range of
R. This is also depicted in Fig. 6(a), in which the A =
0.06 case exhibits essentially the same behavior as undoped
graphene due to the small Fermi surface resulting from a
large induced dynamical gap. Within our analytic approach,
we have shown that this is due to competition between the
equilibrium-like antiferromagnetic contribution and a purely
light-induced ferromagnetic contribution [Eq. (43)]. When A
is large enough, the latter term wins out. An open question
for future investigation would be to fully examine this sign
change under larger values of driving strengths beyond the
weak drive regime.

In doped system, we have demonstrated that the oscillation
period of the RKKY coupling can be tuned by the driving
field. This tunability is due to the dynamical band gap opened
at the Dirac point under circularly polarized light and is more
enhanced in gapless systems like graphene. One can compare
this to the RKKY interaction in intrinsically gapped system
such as doped III-V semiconductors. Because of its large
intrinsic gap, the band-gap increase due to renormalization by
the optical Stark effect under a subgap frequency irradiation
will be relatively small, and the tunability of its RKKY
interaction will be less dramatic. The qualitatively distinct
behaviors of the RKKY coupling for doped and undoped irra-
diated graphene, marked by the presence and absence of long-
range oscillations, respectively, pose a tantalizing prospect
for optical switching of ferromagnetic/antiferromagnetic cou-
pling. Starting from slightly doped graphene at equilibrium,
turning on the laser can switch the coupling from antiferro-
magnetic to ferromagnetic for the AA zigzag case [Fig. 6(a)]
in the impurity separation range of R/a ∼ 100–200, and from
ferromagnetic to antiferromagnetic for the AB zigzag case
[Fig. 6(b)] in R/a ∼ 70–200. A similar sign change can also
be seen for the AA and AB armchair cases [Figs. 6(c) and
6(d)]. This observation suggests that further investigation into
Floquet control of the magnetic ordering in magnetically
doped graphene would be promising.

VI. CONCLUSION

This work has presented a formalism for calculating the
RKKY interaction in graphene irradiated by a circularly po-
larized light. We have obtained a generic expression of the
time-averaged RKKY coupling in terms of Keldysh-Floquet
Green’s functions. By transforming the original Floquet
Hamiltonian into a new basis, we arrived at a new Hamiltonian
that carries a transparent physical meaning as a tight-binding-
like Hamiltonian in the Floquet space, allowing for a system-
atic order-by-order inclusion of different photon processes. In
this work, we focus on the off-resonant, weak drive regime
where only virtual photon absorptions and emissions happen,
which allows us to truncate terms corresponding to first- and
higher-order photon processes. In this framework, we have
obtained the numerical and approximate analytical results for
the time-averaged RKKY coupling under a combination of
different impurity locations and separation directions. When
the Fermi level is at the Dirac point (undoped graphene),
we find that the magnitude of the RKKY coupling is de-
creased by increasing irradiation strength while maintaining

its ferromagnetic or antiferromagnetic character. When the
driving field becomes strong enough, our results suggest that
the ferromagnetic coupling in the case of impurities at the
same sublattice sites and separated along the zigzag direction
can be switched to antiferromagnetic coupling for a wide
range of impurity separation. When the Fermi level is above
the Dirac point (doped graphene), the RKKY coupling is
characterized by long-range oscillations with a period that
can be tuned by the driving field. For large values of driving
strength, the RKKY behavior of doped graphene turns into
that of undoped graphene through the optically induced metal-
insulator transition.
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APPENDIX A: DERIVATION OF THE EXCHANGE
ENERGY

In this Appendix, we provide a detailed derivation of
the formulas for the nonequilibrium exchange energy in
Eqs. (12)–(14). We start by substituting Eq. (11) into Eq. (10)
and obtain

Eαβ (R, t ) = −iλ2
∑

μ,a,b,ν

(Sμ)ab(Sν )baS1,μS2,ν

∫ +∞

−∞
dt ′

× [GR
αβ (R, t, t ′)G<

βα (−R, t ′, t )

+ G<
αβ (R, t, t ′)GA

βα (−R, t ′, t )
]
. (A1)

The time-dependent Green’s functions above can first be
transformed into the Floquet representation and then ex-
pressed as a Fourier series [48],

GR(R, t, t ′) =
∑
m,n

∫ �
2

− �
2

dω̄

2π
e−i(ω̄+m�)t+i(ω̄+n�)t ′

[GR(R, ω̄)]mn.

(A2)

Substituting this Floquet representation of the Green’s func-
tion, Eq. (A1) becomes

Eαβ (R, t )

= −iλ2
∑

μ,a,b,ν

(Sμ)ab(Sν )baS1,μS2,ν

∫ +∞

−∞
dt ′
∫ �

2

− �
2

dω̄ dω̄′

(2π )2

×
∑

m,n,m′,n′
e−i[(ω̄−ω̄′ )+(m−m′ )�]t ei[(ω̄−ω̄′ )+(n−n′ )�]t ′

×{[GR
αβ (R, ω̄)

]
mn

[
G<

βα (−R, ω̄′)
]

n′m′

+[G<
αβ (R, ω̄)]mn[GA

βα (−R, ω̄′)]n′m′
}
. (A3)
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Then we can carry out the integral over t ′ to obtain

Eαβ (R, t ) = −iλ2
∑

μ,a,b,ν

(Sμ)ab(Sν )baS1,μS2,ν

∫ �
2

− �
2

dω̄ dω̄′

(2π )2

×
∑

m,n,m′,n′
e−i[(ω̄−ω̄′ )+(m−m′ )�]t 2πδ[(ω̄ − ω̄′)

+ (n − n′)�]
{[

GR
αβ (R, ω̄)

]
mn

[G<
βα (−R, ω̄′)]n′m′

+[G<
αβ (R, ω̄)]mn

[
GA

βα (−R, ω̄′)
]

n′m′
}
. (A4)

The result of the ω̄′ integral above is nonzero only when n =
n′ as both ω̄ and ω̄′ have to be in the reduced zone. Therefore,

Eαβ (R, t ) = −iλ2
∑

μ,a,b,ν

(Sμ)ab(Sν )baS1,μS2,ν

×
∫ �

2

− �
2

dω̄

2π

∑
m,n,m′

e−i
[

(ω̄−ω̄′ )+(m−m′ )�
]

t

× {[GR
αβ (R, ω̄)

]
mn[G<

βα (−R, ω̄)]nm′

+ [G<
αβ (R, ω̄)]mn

[
GA

βα (−R, ω̄)
]

nm′
}
, (A5)

and finally we take the time average,

Eαβ (R) = 1

T

∫ T

0
dtEαβ (R, t ) (A6)

= −iλ2
∑

μ,a,b,ν

(Sμ)ab(Sν )baS1,μS2,ν

∫ �
2

− �
2

dω̄

2π

∑
m,n,m′

δm,m′

×{[GR
αβ (R, ω̄)

]
mn

[G<
βα (−R, ω̄)]nm′

+ [G<
αβ (R, ω̄)]mn

[
GA

βα (−R, ω̄)
]

nm′
}
, (A7)

and then sum over m′ to arrive at the exchange in the Floquet
representation in Eq. (12).

From the definitions of the real-space Green’s functions
[63], one can show that [GA(−R)]† = GR(R) and [G<(R)]† =
−[G<(−R)], which implies GA

βα (−R)∗ = GR
αβ (R) and

G<
βα (R)∗ = −G<

αβ (−R). These relations can also be seen
explicitly generically from the momentum-space Green’s

functions, e.g.,

[G<(R)]† =
[∫

dk eik·RGR
k �<GA

k

]†

=
∫

dk e−ik·RGR
k (�<)†GA

k

= −
∫

dk e−ik·RGR
k �<GA

k = −[G<(−R)]. (A8)

With these relations we can write the integrand in Eq. (12) as

Tr
{
GR

αβ (R, ω̄)G<
βα (−R, ω̄) + G<

αβ (R, ω̄)GA
βα (−R, ω̄)

}
= 2i Im Tr

{
GR

αβ (R, ω̄)G<
βα (−R, ω̄)

}
, (A9)

which leads to Eq. (14).

APPENDIX B: UNITARY TRANSFORMATIONS FOR THE
PHOTON-NUMBER REPRESENTATION

In this Appendix, we describe the set of unitary transfor-
mations used to obtain the Hamiltonian in the photon number
representation H̃F in Eq. (15) [54]. The first transformation
rotates the original Floquet Hamiltonian HF at k = 0 so
that it becomes block-diagonal. At the K point, this unitary
transformation takes the form

U1,τ=1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

. . .
σx 0 0
0 σx 0
0 0 σx

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

, (B1)

while for the K ′ point this transformation takes the form
U1,τ=−1 = I∞, where I∞ is an identity operator in the Floquet
space.

The second transformation is constructed as the
transformation that diagonalizes the transformed
Floquet Hamiltonian U †

1,τ HFU1,τ at k = 0. If we
denote the spinor eigenvectors corresponding to the
eigenvalues εn,± = ±�/2 + nh̄� as φτ

n,±, then U2,τ =
[. . . , φτ

n−1,+, φτ
n−1,−, φτ

n,+, φτ
n,−, φτ

n+1,+, φτ
n+1,−, . . .], where

� is given in Eq. (20) and τ = + (τ = −) corresponds to the
K (K ′) point. This transformation takes the explicit form

U2,τ=±1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

. . .
g+PA ± ih−PB ±ih+σ+ 0

σ−g− g+PA ± ih−PB ±ih+σ+
0 σ−g− g+PA ± ih−PB

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (B2)

where we have defined the projection operator PA,B for projecting onto the A or B sublattice,

PA =
[

1 0
0 0

]
, PB =

[
0 0
0 1

]
. (B3)

Then we apply this transformation on the Hamiltonian U †
1,τ HFU1,τ for all k to arrive at U †

2,τU †
1,τ HFU1,τU2,τ . Finally, in order

to establish a scalar product structure between the isospin and momentum in the transformed Hamiltonian that mimics the
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equilibrium Hamiltonian of graphene, we apply the valley-independent unitary transformation U3,

U3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

. . .
PA − iPB 0 0

0 PA − iPB 0
0 0 PA − iPB

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

, (B4)

to arrive at the final transformed Hamiltonian U †
3 U †

2,τU †
1,τ HFU1,τU2,τU3 = H̃F in Eq. (15), which takes the explicit matrix form

H̃F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
...

...
...

· · · �/2 − h̄� eiθk F0 h̄vF k −eiθk F1h̄vF k 0 0 0 · · ·
· · · e−iθk F0 h̄vF k −�/2 − h̄� 0 eiθk F1h̄vF k eiθk F2h̄vF k 0 · · ·
· · · e−iθk F1h̄vF k 0 �/2 eiθk F0 h̄vF k −eiθk F1h̄vF k 0 · · ·
· · · 0 −e−iθk F1h̄vF k e−iθk F0 h̄vF k −�/2 0 eiθk F1h̄vF k · · ·
· · · 0 e−iθk F2h̄vF k e−iθk F1h̄vF k 0 �/2 + h̄� eiθk F0 h̄vF k · · ·
· · · 0 0 0 −e−iθk F1h̄vF k e−iθk F0 h̄vF k −�/2 + h̄� · · ·

...
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B5)

APPENDIX C: FLOQUET REAL-SPACE GREEN’S
FUNCTIONS

In this Appendix, we outline the steps used to derive the
real-space Green’s functions in Eqs. (25), (26), (32), and (33).
In the Fourier transform of Eq. (34), we use the Jacobi-Anger
formula to expand eik·R:

eik·R = eikR cos (θR−θk ) =
∞∑

n=−∞
inJn(kR)ein(θR−θk ). (C1)

Integrating over the azimuthal angle for each of the compo-
nents of the Green’s function, one term of the Jacobi-Anger
expansion survives due to orthogonality. For example, con-
sidering the ↑↑ component of the retarded Green’s function,
we get

[g̃R(R, ω)]↑↑ = 1

2π

1

(h̄vF F0)2

∫ ∞

0
dk kJ0(kR)

× ω + iη + �/2

[(ω + iη)2 − �2/4]/(h̄vF F0)2 − k2
.

(C2)

The Bessel function J0(kR) can be written as J0(kR) =
[H (1)

0 (kR) + H (2)
0 (kR)]/2 = [H (1)

0 (kR) − H (1)
0 (−kR)]/2,

where H (1) (H (2)) is the Hankel function of the first (second)
kind. Then by changing variables k → −k for the second
term and simplifying, we get the integral

I =
∫ ∞

−∞
dk

kH (1)
0 (kR)

k2 − [(ω + iη)2 − �2/4]/(h̄vF F0)2
. (C3)

For large |z|, the Hankel function H (1)
0 behaves asymptotically

as

H (1)
0 (z) ≈

√
2

π

√
1

z
ei(z− π

4 ) (C4)

for −π < arg z < 2π . Therefore, the magnitude of this func-
tion satisfies

∣∣H (1)
0 (z)

∣∣ ≈
√

2

π

√
1

|z|e−|z| sin(arg z), (C5)

which goes to zero with |z| → ∞ in the upper half-plane.
Thus the integral can be performed by completing the

contour in the upper half of the complex plane and us-
ing the residue theorem. The contribution from the integral
on the half-circle vanishes as the magnitude of the Hankel
function decays exponentially for |z| → ∞. To determine the
poles in the complex plane, we solve the equation k2 − [(ω +
iη)2 − �2/4]/(h̄vF F0)2 = 0, and we use the pole in the upper
half complex plane for the residue theorem.

We write out the principal value of the square root in an
explicit form,√

(ω + iη)2 − �2/4

=
√

ω2 − η2 − �2/4 +
√

(ω2 − η2 − �2/4)2 + 4η2ω2

2

+
√√

(ω2 − η2 − �2/4)2 + 4η2ω2 − (ω2 − η2 − �2/4)

2

× i sgn(ω). (C6)

Among the two poles of the integrand k =
±
√

(ω + iη)2 − (�/2)2/(h̄vF F0), we can observe that√
(ω + iη)2 − (�/2)2/(h̄vF F0) is in the upper half-plane

with a positive imaginary part when ω > 0, and
−
√

(ω + iη)2 − (�/2)2/(h̄vF F0) is in the upper half-plane
when ω < 0. Then with this procedure we calculate the value
of the residue at the pole and arrive at the result in the main
text [Eq. (25)] for the Green’s function,

[g̃R(R, ω̃)]↑↑ = −ζ [ω + iη + �/2]χ0(R, ω). (C7)
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The other components of the retarded Green’s functions in real
space are calculated in a similar way.

The momentum space representation of the lesser Green’s
function is

g̃<(k, ω) = 2iηF0 f (ω)

D+(k, ω)D−(k, ω)

[
(ω + �/2)2 + η2 + (h̄vF F0k)2 2ωh̄vF F0keiθk

2ωh̄vF F0ke−iθk (ω − �/2)2 + η2 + (h̄vF F0k)2

]
. (C8)

Then for the ↑↑ component, we get

[g̃<(R, ω)]↑↑ = 2iηF0 f (ω)

(2π )2

∫
dk eik·R[g̃<(k, ω)]↑↑

= 2iηF0 f (ω)

(2π )2

∫
dk eik·R

× [ω + (�/2)2 + η2 + (h̄vF F0k)2]

D+(k, ω)D−(k, ω)
. (C9)

We decompose the integrand into partial fractions:

k

D+(k, ω)D−(k, ω)
= k

4iηω

[
1

D+(k, ω)
− 1

D−(k, ω)

]
,

(C10)

k3

D+(k, ω)D−(k, ω)
= 1

2
[1 − B(ω)]

k

D+(k, ω)

+ 1

2
[1 + B(ω)]

k

D−(k, ω)
, (C11)

so that each term can be integrated as in the previous calcula-
tion to get the result in the main text. The calculation of the
other components of the lesser Green’s functions follows a
similar approach.

APPENDIX D: RKKY COUPLING IN THE F0

APPROXIMATION

In this Appendix, we outline the derivation of the nonequi-
librium RKKY coupling Eq. (37) within the F0 approxima-
tion, and then we describe how it can be reduced to the
equilibrium result in the absence of a driving field. We first
transform the Green’s functions in Eq. (14) from the original
Floquet basis to the K ′ photon-number basis within the F0

approximation. Let Pα = Pα ⊗ I∞ be the projection operator
onto the α sublattice in the combined pseudospin-Floquet
Hilbert space, where Pα is given in Eq. (B3). It satisfies the
following properties:

PαPᾱ = 0, PαPα = Pα, (D1)

where ᾱ stands for the complement of α, i.e., ᾱ = B if α = A,
and vice versa.

Then the integrand in Eq. (14) can be written as

IJ = Im Tr
{
GR

αβ (R, ω)G<
βα (−R, ω)

}
= Im Tr{PαGR(R, ω)PβPβG<(−R, ω)Pα}
= Im Tr{PαGR(R, ω)PβG<(−R, ω)}, (D2)

where in the last line we made use of the cyclic property of
the trace. We can express the Green’s functions in the Floquet

representation in terms of the K ′ photon-number basis:

G(R, ω) = UT,−G̃(R, ω)U †
T,−. (D3)

Then Eq. (D2) can be expressed as

IJ = Im{Tr{U †
T,−PαUT,−G̃R(R, ω)U †

T,−PβUT,−G̃<(−R, ω)}}.
(D4)

Within the F0 approximation we find that

U †
T,−1PαUT,−1 = F0Pα. (D5)

It is important to notice that even though the projection
operator Pα appears on both sides of Eq. (D5), they have
different physical meanings as they are expressed in different
bases. Pα on the left-hand side projects onto the α component
of the pseudospin basis of the original Floquet representation,
while Pα on the right projects onto the α component of the
isospin basis of the K ′ photon-number representation. Then
substituting Eq. (D5) in Eq. (D4), we get

IJ = F 2
0 Im Tr{PαG̃R(R, ω)PβG̃<(−R, ω)}. (D6)

Using the projection operator property PαPα = Pα in
Eq. (D1) and the cyclic properties of the trace, we can rewrite
Eq. (D6) as

IJ = F 2
0 Im Tr

{
G̃R

αβ (R, ω)G̃<
βα (−R, ω)

}
. (D7)

By replacing the integrand in Eq. (14) by Eq. (D7), we obtain
Eq. (36) in the main text. The Green’s functions in Eq. (36)
are block-diagonal in the Floquet index n and composed
of the 2 × 2 Green’s functions g̃n(R, ω̄), hence the trace in
Eq. (36) results in a simple sum over n. By writing g̃n(R, ω̄) ≡
g̃(R, ω̄ − nh̄�) for each valley and using Eq. (38), Eq. (36)
can be written as

Jαβ (R) = λ2h̄2F 2
0

∞∑
n=−∞

∫ h̄�
2

− h̄�
2

dω̄

2π
Im
{[

g̃R
F0

(R, ω̄ − nh̄�)
]
αβ

× [g̃<
F0

(−R, ω̄ − nh̄�)]βα

}
. (D8)

Making the change of variable ω = ω̄ − nh̄�, the Green’s
functions in Eq. (D8) become independent of n and the limits
of integration become [−(1/2 + n)h̄�, (1/2 − n)h̄�]. Then,
by performing the sum over the Floquet index n, we arrive at
Eq. (37), where ω ∈ (−∞,∞) in this equation is the extended
zone frequency.

Next, we discuss how the exchange energy in Eq. (37)
reduces to its equilibrium counterpart in the absence of pe-
riodic driving. In the equilibrium limit A → 0, � = 0, we
have F0 = 1 and n = 0, so that the Hamiltonian in Eq. (20)
takes the form of H̃0 = h̄vF (σxkx − σyky) for both the K
and K ′ points. Meanwhile, Eq. (18) gives h− = g+ = 1 and
h+ = g− = 0, and the isospin bases Eqs. (16) and (17)
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Fitted result
Numerical result

Fitted result
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FIG. 8. Fitting result of J (R)/J0 with A = 0.06 and EF = 0 in the regime of α� � 1 for the cases of (a) AA armchair and (b) AB armchair.
J0 is given in Eq. (41).

become (�↑,�↓)T = σx(φA, φB)T for K and (�↑,�↓)T =
σz(φA, φB)T for K ′. Therefore, the equilibrium Hamiltonian
H̃0 in the photon-number representation is related to that
in the original pseudospin basis [Eq. (1)] by the following
unitary transformations:

H0 = σxH̃0σx for K and H0 = σzH̃0σz for K ′. (D9)

It follows that the equilibrium Green’s functions in the
photon-number representation are also related to those in the
original pseudospin basis by

gK = σxg̃σx for K and gK ′ = σzg̃σz for K ′. (D10)

To express Eq. (37) in terms of the Green’s functions gK,K ′

in the original pseudospin basis, we start by recalling that the
Green’s function in Eq. (38) is written in a K ′ isospin basis.
Hence in equilibrium this Green’s function transforms to the
pseudospin basis as σzg̃F0 (R, ω)σz = g(R, ω), such that

g(R, ω) = eiK·Rσzσyg̃(R, ω)σyσz + eiK ′ ·Rσzg̃(R, ω)σz.

(D11)

Since σyσz = −σyσz = iσx, the first term on the right in the
above equation becomes σxgF0σx. Using Eq. (D10), Eq. (D11)
immediately reduces to its expected equilibrium form

g(R, ω) = eiK·RgK (R, ω) + eiK ′ ·RgK ′ (R, ω). (D12)

Hence Eq. (37) in equilibrium becomes

Jαβ (R) = h̄2λ2
∫ ∞

−∞

dω

2π
Im
{
gR

αβ (R, ω)g<
βα (−R, ω)

}
.

(D13)

The above can be further simplified by making use of the
fluctuation-dissipation theorem,

g<(−R, ω) = − f (ω)[gR(−R, ω) − gA(−R, ω)], (D14)

where f (ω) is the Fermi distribution function. By substituting
Eq. ()nd using gA

βα (−R, ω) = gR
αβ (R, ω)∗, the integrand of

Eq. (D13) becomes − f (ω)Im{gR
αβ (R, ω)gR

βα (−R, ω)}. At low
temperatures where the Fermi distribution function f (ω) =
�(EF − ω), we arrive at the well-known form of the RKKY
coupling [7],

Jαβ (R) = −h̄2λ2
∫ EF

−∞

dω

2π
Im
{
gR

αβ (R, ω)gR
βα (−R, ω)

}
.

(D15)

APPENDIX E: ASYMPTOTIC BEHAVIOR IN THE
UNDOPED CASE

We remark on the large-R behavior of our nonequilibrium
results for the undoped case, comparing with the equilibrium
results for gapped graphene in the undoped limit. This com-
parison is facilitated by considering the case with impurities
separated along the armchair direction for which the RKKY
coupling is not complicated by the presence of short-range
oscillations, and long-range analytic results are available in
the literature [9,61,64]. Without irradiation, graphene with a
Dirac mass gap �eq can be characterized by the dimension-
less parameter αeq = �eqR/(2h̄vF ). For αeq � 1, the leading-
order RKKY coupling goes as 1/R3 [61] reducing to the case
of gapless graphene [5]. In contrast, under irradiation our
results Eqs. (45) and (46) show that even the leading term
∼1/R3 inherited from equilibrium gains a light-induced renor-
malization factor F 2

0 . For αeq � 1, the asymptotic large-R
behavior goes as e−2αeq/R3/2 [9,61]. To study the correspond-
ing behavior in our case, we have extended our numerical
calculation for the armchair case to larger values of R for
A = 0.06, so that α� � 1. As shown in Fig. 8, we find that our
numerical results can be fitted to e−2α�/R3/2. The presence of
the exponential decay factor as a function of R is ubiquitous
to indirect exchange interaction in insulators [65,66].
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