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Anomalous dielectric response in insulators with the π Zak phase
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In various topological phases, nontrivial states appear at the boundaries of the system. In this paper, we
investigate anomalous dielectric response caused by such states caused by the π Zak phase. First, by using the
one-dimensional Su-Schrieffer-Heeger model, we show that, when the system is insulating and the Zak phase
is π , the polarization suddenly rises to a large value close to e/2, by application of an external electric field.
The π Zak phase indicates the existence of half-filled edge states, and we attribute this phenomenon to charge
transfer between the edge states at the two ends of the system. We extend this idea to two- and three-dimensional
insulators with the π Zak phase over the Brillouin zone and find similar anomalous dielectric response. We also
show that diamond and silicon slabs with (111) surfaces have the π Zak phase by ab initio calculations, and show
that this anomalous response survives even surface reconstruction involving an odd number of original surface
unit cells. Another material example with an anomalous dielectric response is polytetrafluoroethylene (PTFE),
showing plateaus of polarization at ±e by ab initio calculation, in agreement with our theory.
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I. INTRODUCTION

Topological materials such as topological insulators are
currently under intense investigations due to their unique
properties [1–3]. They are called topological because the k-
space structure of electronic bands has nontrivial topology.
In the topological phase, nontrivial localized states generally
appear at the boundaries of the system, and this important cor-
respondence is called bulk-edge correspondence [2,4]. These
edge/surface states often cause distinctive phenomena such as
quantum spin Hall effect.

In this paper, we focus on topological phases characterized
by the Zak phase. The Zak phase [5] is defined as a special
case of the Berry phase [6]. It is useful to determine presence
or absence of topological edge states in systems with time-
reversal (TR) and space inversion (SI) symmetries. In spinless
systems, the Zak phase is quantized to be 0 or π under such
symmetries and the systems have topological edge states in
the latter case [5,7–12]. The Zak phase is also known to
represent the bulk polarization of the system [13–16], and at
the same time the amount of surface charge on a crystalline
solid [14,15]. In systems with TR and SI symmetries, the
surface charge per unit cell is quantized to be 0 or e/2 modulo
e due to the quantization of the Zak phase where −e is the
electron charge. For one-dimensional systems, no edge charge
accumulates at both ends when the Zak is 0 and the charge
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e/2 (mod e) accumulates at each edge when the Zak phase is
π . For two- or three-dimensional insulating systems with TR
and SI symmetries, in which the Zak phase is constant over
the Brillouin zone, no edge charge per unit cell accumulates at
both surfaces when the Zak is 0 and the charge e/2 (mod e) per
unit cell accumulates at both surfaces when the Zak phase is
π . These huge surface charges do not contradict the inversion
symmetry because an equal amount of charges is accumulated
at both ends. In half-filled one-dimensional insulating systems
with the π Zak phase, the edge states at both ends of the
system are half-filled under SI symmetry. These edge states
are expected to respond sensitively to an external field which
breaks the symmetry.

In this paper, we apply a static electric field to such
insulators with the π Zak phase and calculate their dielectric
response. As a result, we find a sudden uprise of the polar-
ization even for a very weak electric field. First we show this
phenomena in a one-dimensional Su-Schrieffer-Heeger (SSH)
model with a Zak phase equal to π , which in turn has topo-
logical in-gap edge states of the chain. We also confirm that
this anomalous phenomenon is attributed to the topological
edge states. In two- and three-dimensional insulating systems
with π Zak phase, we find a similar anomalous behavior of the
polarization when the edge or surface bands are sufficiently
flat. Insulators with the π Zak phases have actually been
found, such as silicon and diamond [15], and some topological
electrides [17,18]. For example, diamond and silicon slabs
with the (111) surfaces have the π Zak phase and relatively
flat midgap states. We also show such a dielectric response
of polytetrafluoroethylene (PTFE) with plateaus at P ∼ ±e by
ab initio calculation, in agreement with our theory. Our results
are expected to be applicable to such materials.

The organization of the paper is as follows. In Sec. II, we
first confirm that the anomalous dielectric response occurs
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in the one-dimensional SSH model and also confirm that
the phenomenon is caused by the topological edge states.
In Sec. III, we also show similar phenomena in a three-
dimensional model. We discuss several points on realizing
anomalous dielectric responses in Sec. IV. In Sec. V, we show
that diamond and silicon slabs with the (111) surfaces have the
π Zak phase leading to midgap surface states. We also show
an anomalous dielectric response of polytetrafluoroethylene
(PTFE). We then discuss the relationship between our results
and the bulk polarization described in the modern theory of
polarization in Sec. VI. We summarize our result in Sec. VII.
Throughout the paper, we consider systems with weak spin-
orbit coupling, and ignore it. Thus the polarizations and
surface charges in the subsequent results should be doubled,
in order to include the spin degree of freedom.

II. ONE-DIMENSIONAL MODEL (MODEL I)

In this chapter, we show anomalous dielectric response
in the SSH model [19], which we call model I. This model
becomes a one-dimensional topological insulator by adjusting
its parameters. This topological insulator phase is character-
ized by the value of the Zak phase equal to π and this model
has topological edge states.

A. Previous research

We first review the definition of the Zak phase and its
connection with electric polarization. For one-dimensional
crystalline insulators, the Zak phase is defined as

θ = −i
occ.∑

n

∫ 2π/a

0
dk 〈un(k)| ∂

∂k
|un(k)〉, (1)

where a is the lattice constant, k is the wave number, un(k)
is the periodic part of the Bloch wave function of the nth
eigenstate, and the summation is over the occupied states.
This Zak phase is defined modulo 2π . It is quantized as 0
or π under the SI symmetry [9]. When θ = π , there exist two
degenerated edge states in the gap when the system preserves
chiral symmetry [7]. According to the modern theory of po-
larization [14,15], the electric polarization P0 can be obtained
from the Zak phase in the following equation;

P0 = −e
θ

2π
(mod e). (2)

This equation indicates that the polarization is e/2 (mod e)
in the system with the π Zak phase. We note that in one-
dimensional systems, the polarization, which is an electric
dipole moment per unit length, has the unit of charge.

In this section, we consider the SSH model. It is a tight-
binding model on a one-dimensional lattice with two sites Ai

and Bi in the ith unit cell and with different intracell (−t1)
and intercell (−t2) hopping amplitudes between A and B sites
as shown in Fig. 1(a). We set t1 and t2 to be positive. The
distance between the adjacent A site and B site is set to be
a/2. The Bloch Hamiltonian is given by

Hbulk(k) =
(

0 −t1 − t2e−ika

−t1 − t2eika 0

)
. (3)

FIG. 1. SSH model. (a) Infinite SSH chain. The shaded square
represents a unit cell. Hopping amplitudes alternate between the
intracell hopping t1 (red lines) and the intercell hopping t2 (blue
lines). (b) Finite open SSH chain. There are 2N sites in the chain.
(c) Band structure for t1 = 0.5, t2 = 1 (red) and t1 = 2, t2 = 1
(blue). (d) Dielectric polarization of the SSH model. Here we set
N = 20 and the number of sites is 2N = 40. The hopping amplitudes
are t1 = 0.5, t2 = 1 for the red line and t1 = 2, t2 = 1 for the blue
line. In the former case, P(ε) rapidly changes toward ±e/2 in the
vicinity of ε = 0.

This model has chiral symmetry, and therefore the spectrum
is symmetric with respect to E = 0. The energy eigenvalues
are given by E = ±

√
t2
1 + t2

2 + 2t1t2 cos ka and the band gap
exists when t1 �= t2 [see Fig. 1(c)]. When t1 and t2 are equal,
the gap closes at k = π/a.

Here we focus on the case of t1 �= t2, where the system is
insulating. We set the Fermi energy to be E f = 0, i.e., the
system is half-filled. The Zak phase of the SSH model is
calculated by substituting the eigenstates of (3) into (1), and
we get

θ =
{

0 (t1 > t2)

π (t2 > t1)
. (4)

This value of the Zak phase can be calculated from the par-
ity eigenvalues at time-reversal invariant momenta (TRIM),
k = 0 and k = π :

eiθ =
occ.∏

n

ξn(k = 0)ξn(k = π ), (5)

where ξn(k) is the parity eigenvalue of the nth band at k, and
the product is taken over the occupied bands. In the present
case of the SSH model, from the inversion operator at the
center of the unit cell P̂ = (0 1

1 0), we get

ξ (k = 0) = 1, ξ (k = π ) =
{

1 t1 > t2
−1 t2 > t1

(6)

and we reproduce the result (4). This also means that the
bands are inverted at k = π when t1 is changed across the gap
closing at t1 = t2.

From Eq. (2), Eq. (4) indicates that an electric charge
e/2 (mod e) accumulates at both ends when t2 > t1 meaning
that each of the topological edge states are half filled [14,15].
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In order to have such topological edge states due to the π Zak
phase, the chain should be fully covered by the chosen unit
cells. In this way, in order to see bulk-edge correspondence
for the Zak phase, the termination of the crystal is related
with the choice of the unit cell with which the Zak phase
is calculated. We note that appearance of the polarization
P0 does not contradict the inversion symmetry because P0 ≡
e/2 ≡ −e/2 (mod e).

B. Dielectric response

We next consider the dielectric polarization in a finite SSH
chain [see Fig. 1(b)]. The chain consists of 2N sites, and each
site is represented as Ai and Bi(i = 1, 2, . . . , N ) as shown in
the figure. The Hamiltonian of the finite SSH chain is given
by

H0 = −t1

N∑
n=1

a†
nbn − t2

N−1∑
n=1

a†
n+1bn + H.c., (7)

where a†
i and b†

i are creation operators at the Ai and Bi sites,
respectively. The Hamiltonian with static electric field ε is
given by

H = H0 + Hε, (8)

Hε = εea
N∑

n=1

[(
−3

4
− N

2
+ n

)
a†

nan

+
(

−1

4
− N

2
+ n

)
b†

nbn

]
. (9)

The dielectric polarization is given by

P(ε) = − 1

a(N − 1/2)

N∑
n=1

∂En

∂ε
, (10)

where En with n = 1, 2, . . . , N are the energy eigenvalues of
(8) below E f = 0 and a(N − 1/2) is the length of the chain.
Note that unlike the electric polarization P0 determined from
the bulk wave function, the dielectric polarization P(ε) is
defined for a chain with a finite length N , and is dependent
on N . The results for two cases of t1 = 0.5, t2 = 1 and t1 = 2,
t2 = 1 are shown in Fig. 1(d), with the band structures given
in Fig. 1(c).

The result shows that the dielectric polarization takes an
anomalously large value of P(ε) = ±e/2 even for a very weak
electric field when t1 < t2. This behavior is dramatically dif-
ferent from that in the other case t1 > t2, where P(ε) linearly
increases with a small slope. We note that in the previous
work [20] the polarization of the Rice-Mele model, which is
the SSH model with a staggered potential added, is calculated
with the same formalism, and its relation to the Zak phase is
discussed. Nonetheless, an abrupt change of the polarization
as a function of the electric field in the SSH model, which
we find in this paper, is not studied in Ref. [20]. Differences
between the present work and Ref. [20] will be discussed in
Sec. VI.

The π Zak phase indicates presence of topological edge
states, and we attribute this anomalous dielectric response
to these edge states. Because of the chiral symmetry, the
edge state at each end of the chain is at the zero energy,

FIG. 2. Dielectric response of the SSH model (model I). [(a) and
(b)] Schematic picture of the anomalous dielectric polarization for
t2 � t1. In such a case, the levels in each dimer formed by the strong
bonds are split by the hopping t2, and there appears an isolated state
at each end of the chain. The orange circles represent electrons and
red semicircle represents a half of an electron. In (a), the electric field
ε is zero, and the states at each end is half-filled. In (b), the electric
field is applied, and there appears a difference between the levels at
the two ends, and a half of an electron charge is carried from one end
to the other. (c) Schematic picture of the effective two-site model.
[(d1)–(d4)] Dielectric polarization for the SSH model (red lines) and
effective two-site model (blue lines). The hopping amplitudes are
taken as t1 = 1 and (d1) t2 = 1.2, (d2) t2 = 1.3, (d3) t2 = 1.4, and
(d4) t2 = 1.5.

when hybridization between the edge states at the two ends is
neglected. These edge states are half filled. Thus, at an either
edge, there appears an edge charge equal to e/2 as shown in
Fig. 2(a). We attribute the anomalous dielectric response for
the insulating phase with the π Zak phase to these charges
at the edge states. When a small electric field ε is applied,
the two edge states will have different energies as shown
in Fig. 2(b), giving rise to an immediate transfer of charges
from one end to the other. This concept is verified using
an effective two-site model [Fig. 2(c)]. This model consists
of two sites, each of which corresponds to one of the two
edge sites of the SSH model. The parameter t∗ represents an
effective hopping amplitude between the two sites, L and R,
representing the left and right ends of the chain, respectively.
Let |R〉 = (1, 0)T [|L〉 = (0, 1)T ]) denote the state where the
electron is at the R [L] site. Then, the effective Hamiltonian
with the electric field takes the form

H∗ =
(

εea(2N − 1)/4 −t∗

−t∗ −εea(2N − 1)/4

)
. (11)
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We put one electron into the model. The effective dielectric
polarization is given by

P∗(ε) = e

2
[〈R|−〉 〈−|R〉 − 〈L|−〉 〈−|L〉]

= −sgn(ε)
e

2
√(

2t∗
(N−1/2)aeε

)2 + 1
, (12)

where |−〉 is the eigenstate of Eq. (11) with the negative
eigenvalue. The hopping parameter t∗ is determined by fitting
Eq. (12) for P∗(ε) to our numerical result P(ε) within the
region of a weak electric field. The comparisons between (10)
and (11) are shown in Fig. 2(d). We can see the two graphs
fit well even for a strong electric field and evolve in the same
way as t2/t1 changes. This result confirms that the anomalous
dielectric response is caused by the topological edge states.
We also note that this response around ε ∼ 0 becomes sharper
for a longer chain, because in Eq. (12) t∗ becomes smaller and
N − 1/2 becomes larger for a longer chain.

III. THREE-DIMENSIONAL MODEL (MODEL II)

The discussion in the previous section on a one-
dimensional model can be extended to higher dimensions. In
this section, we show that a jump of the dielectric response
also appears in a simple three-dimensional tight-binding
model on the diamond lattice with anisotropic hopping am-
plitudes, which we call model II. In addition, we show other
examples showing the similar effect, two two-dimensional
models and one three-dimensional model in Appendices A
and C, respectively. In three-dimensional systems, the polar-
ization, which is an electric dipole moment per unit volume,
has the unit of charge divided by an area.

The diamond lattice and its slab with (111) surfaces are
shown in Figs. 3(a) and 3(b). The lattice consists of two
sublattices A and B. Let a denote the distance between two
neighboring A sites. The nearest bond vectors d i=1,2,3,4 from
an A site to the adjacent B sites are given by

d1 =
√

6a

4
(0, 0, 1), d2 =

√
6a

4

(
−2

√
2

3
, 0,−1

3

)
,

d3 =
√

6a

4

(√
2

3
,

√
6

3
,−1

3

)
,

d4 =
√

6a

4

(√
2

3
,−

√
6

3
,−1

3

)
, (13)

as shown in Fig. 3.

A. Zak phase and dielectric polarization for
three-dimensional systems

First, we review the Zak phase and its connection with
electric polarization in three-dimensional systems. When we
take the integration path along the reciprocal lattice vector G⊥,
the Zak phase is defined as

θ (k‖) = −i
occ.∑

n

∫ |G⊥|

0
dk⊥ 〈un(k)| ∂

∂k⊥
|un(k)〉, (14)

FIG. 3. Model II on the diamond lattice. (a) Diamond lattice. The
lattice constant is a and the nearest bond vectors from site A to B are
d i=1,2,3,4. (b) Slab of the model on the diamond lattice with a (111)
surface. The red dotted line shows the unit cell. (c) Schematic figure
of the model with anisotropic hopping amplitude (model II). The
hopping amplitude −t2 on the bond along (111) direction is different
from that along other directions, −t1. (e) Dielectric polarization of
a slab of model II on a diamond lattice with (111) surfaces. The
polarization P(ε) rapidly changes toward ±e/(2S) in the vicinity of
ε = 0. S is the area of the surface unit cell. Here we set N = 10 and
the number of sites in the unit cell is 20. The hopping amplitudes are
(t1, t2) = (1, 4).

where k = k⊥n + k‖, n = G⊥/|G⊥|, and k‖ ⊥ G⊥. The Zak
phase is related with the polarization for the systems with
surface perpendicular to G⊥. This phase is quantized as 0 or
π modulo 2π under both the TR and SI symmetries [9]. In the
region of the surface Brillouin zone where the Zak phase is
π , there exist degenerated surface states at zero energy when
the chiral symmetry is present [7]. The electric polarization P0

along n can be obtained from the Zak phase as shown in the
following equation;

P0 = −e
∫

k‖∈2DBZ

d2k‖
(2π )3

θ (k‖) (mod e/S), (15)

where S is the area of surface unit cell, and the integral is over
the two-dimensional Brillouin zone for k‖.

B. Model II: Anisotropic tight-binding model
on the diamond lattice

We consider a model as shown in Fig. 3(c). The system has
anisotropic hopping amplitudes; −t2 is the hopping amplitude
along the bonds along the (111) direction, and −t1 is that
along the other directions. We set t1 and t2 positive. The
Hamiltonian is given by

H0 = −
∑
〈i j〉

ti jc
†
i c j, (16)

where ti j is the hopping amplitude from site i to j. First, we
consider a bulk system to calculate the Zak phase. The bulk
Bloch Hamiltonian is given by

Hbulk(k) =
(

0 R(k)
R∗(k) 0

)
, (17)

R(k) = −t1e−ik·d1 − t2(e−k·d2 + e−ik·d3 + e−k·d4 ), (18)
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where k = (kx, ky, kz ). The band gap is open when t2 > 3t1
[21], and it is around E = 0. We set the Fermi energy to be
E f = 0. Now we calculate the Zak phase θ (k‖) along G⊥ =
(0, 0,

√
6π/a) for k‖ = (kx, ky). Because of the time-reversal

and inversion symmetries, the Zak phase is quantized as 0 or
π modulo 2π . As an example, we calculate θz(k‖ = 0) from
the products of the parity eigenstates at the � (k = 0) and the
L (k = (0, 0,

√
6π/(2a)) points in the following way [22]:

eiθz (k‖=0) =
occ.∏

n

ξn(�)ξn(L) = −1, (19)

because these two points are time-reversal invariant momenta
on the k‖ = 0 line. In this calculation, the unit cell is taken to
be a pair of the A and B sites displaced by d2, as determined
from the crystal termination in this case, and the inversion
center is in the middle of the unit cell. Therefore this equation
indicates θz(k‖) ≡ π for any k‖ because the Zak phase is
constant in the two-dimensional Brillouin zone for k‖ when
the band gap is open.

The Hamiltonian of the slab with the (111) surfaces
[Figs. 3(b) and 3(c)] is given by

H0(k‖) = −
[

t2

N−1∑
n=2

eid̃1·k‖a†
k‖,n+1bk‖,n

+ t1

N∑
n=1

(eid̃2·k‖ + eid̃3·k‖ + eid̃4·k‖ )a†
k‖,nbk‖,n

]

+ H.c., (20)

where a†
k‖,n(b†

k‖,n) is the creation operator of an electron with
the Bloch wave vector k‖ at the nth A(B) site in the unit cell
and d̃ i = (dix, diy ). When we apply an electric field of strength
ε along the z axis, the Hamiltonian is given by

H (k‖) = H0(k‖) + Hε(k‖), (21)

Hε(k‖) =
√

6

4
aeε

N∑
n=1

[(
4

3
n − 2

3
N − 5

6

)
a†

k‖,nak‖,n

+
(

4

3
n − 2

3
N − 1

2

)
b†

k‖,nbk‖,n

]
, (22)

The dielectric polarization is given by

P(ε) = − 1

a(4N/3 − 1)

N∑
n=1

∫
k‖∈2DBZ

d2k‖
(2π )2

∂En(k‖)

∂ε
, (23)

where the integral is taken over the two-dimensional Brillouin
for k‖, En(k‖) is the nth lowest eigenvalue of (21), and
a(4N/3 − 1) is the thickness of the system. The calculation
results are shown in Fig. 3(e). The dielectric polarization takes
a value P(ε) ∼ ±e/2S even for a very weak electric field,
where S is an area of the surface unit cell. This indicates
that a half of an electron per surface unit cell is accumulated
on each surface whenever t2 > 3t1, and the response of this
surface charge gives rise to the anomalous behavior of the
polarization. Thus the anomalous dielectric response occurs
in this system when it is insulating.

IV. REMARKS ON VARIOUS EFFECTS ON
THE ANOMALOUS DIELECTRIC RESPONSES

We have discussed several models in one, and three dimen-
sions with the π Zak phase, and demonstrated that there is
an abrupt jump in the dielectric response. Because they are
idealized models, we make several remarks in order to see
how the anomalous dielectric responses in general systems
including in real materials.

A. Effect of surface-state dispersion

Here, we discuss flatness of surface-state dispersions and
its relation to anomalous dielectric response. In the models in
Secs. II and III and in Appendices A and C, the edge/surface
states are exactly at the zero energy and are dispersionless,
which is due to chiral symmetry and particle-hole symmetry
in these models. Under the chiral symmetry the energy band
becomes symmetric with respect to E ↔ −E , which means
that the energy eigenvalues satisfy En,k = −Em,k. Under the
particle-hole symmetry the energy eigenvalues satisfy En,k =
−Em,−k. Because of the inversion symmetry of the sysem,
both the chiral symmetry and the particle-hole symmetry are
preserved here, which makes the topological boundary states
to be exactly at the zero energy. Therefore, as we discussed
so far, their response under a small electric field becomes
anomalous, since even for a small electric field, the energies
of all the states on one surface become positive, while those
on the other surface become negative, and all the surface
charges are transferred at the same time. In contrast, general
systems do not have chiral or particle-hole symmetry, and
the edge/surface states have dispersions. This edge-/surface-
state dispersion will make the dielectric response less abrupt,
because upon the application of the electric field, not all
the charges in these edge/surface states are carried from one
end to the other at the same time. Thus depending on the
dispersion of the edge/surface states, the response becomes
less anomalous. We show several examples for dispersions of
surface states in real materials with the π Zak phase in the
next section.

Thus far we have seen that the polarization jumps to e/(2S)
by a weak electric field when the surface-state dispersion is
flat. In this discussion, we do not take into account elec-
tron correlation. If we take electron-electron interaction into
account, the dielectric response may change. When a weak
electric field is applied, the electrons at the surface may
segregate and form a superstructure, so that the correlation
energy may overcome the potential difference of the surface
states at the both ends of the slab. Such kinds of formation
of charge segregation will make the dielectric response less
abrupt. We do not argue this phenomena any further here,
because it should be sensitive to various details of the system
such as the form and the strength of the electron-electron
interaction, dispersion of the surface states, and so on.

B. Effect of the depolarization field

So far we have ignored an influence of the depolarization
field. When an electric field is applied and a polarization is
induced, the induced polarization generates a depolarization
field. This depolarization field depends on the geometry of the
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FIG. 4. Effect of depolarization field for an ideal case, where
the Zak phase equal to π and the dispersion of the topological
surface states is flat. (a) Polarization P versus the electric field ε.
(b) Polarization P versus the external electric field εext .

system. Particularly when the shape of the system is an ellip-
soid or a large thin slab, the influence can be easily calculated
because the depolarization field is uniform, represented by the
depolarization factor.

The electric field ε used in the discussion so far represents
the total electric field felt by the electrons. It is a sum of the
external electric field εext and the depolarization field εdep.
The depolarization field εdep is expressed as εdep = −LP/ε0,
where P is the dielectric polarization, L (0 � L � 1) is the
depolarization factor, and ε0 is the permittivity of vacuum.
Therefore the total electric field ε takes the form

ε = εext + εdep = εext − LP(ε)/ε0, (24)

Here, the dependence of P(ε) on ε has been discussed so far
in this present paper. Now, we focus on the case with the Zak
phase equal to π for any value of k‖, and for simplicity we
assume that the topological surface states have flat dispersion.
Then, the response of the polarization P to the electric field ε

is given by

P = e

2S
sgn(ε), (25)

where S is an area of the surface unit cell, as shown in
Fig. 4(a). From this equation, and Eq. (24), the dielectric
response P versus the external electric field εext is shown in
Fig. 4(b). Thus the slope around εext ∼ 0 is ε0/L.

The present system corresponds to a dielectric with the di-
electric constant ε = ∞, because a nonzero polarization arises
in response to an infinitesimal electric field. As a comparison,
let us consider a uniform dielectric with a dielectric constant
ε. Then by including the effect of the depolarization field, with
the depolarization factor L, its dielectric response is given by

P = (ε − ε0)ε, ε = εext − LP

ε0
. (26)

Thus the ratio of the polarization to the external electric field
εext, is given by P/εext = ε0(ε−ε0 )

L(ε−ε0 )+ε0
. By comparison with our

result in Fig. 4(b), the present system indeed corresponds to
the dielectric with ε = ∞.

C. Dynamical dielectric response in an insulator
with the π Zak phase

So far we have discussed how anomalous dielectric re-
sponse appears in a static case. We here discuss dynamical
response; we suppose there is no electric field when the time

L R

-t *E

-V
+V

V(T)

T

T

T

T

FIG. 5. Dynamics of polarization under the electric field.
(a) Schematic figure of the setup. (b) External electric field used
in the calculation, which is turned on at T = 0. [(c)–(e)] Time
dependence of the dynamical polarization with t∗ = 10−2 and ε̄ =
(c) 10−3, (d) 10−2, and (e) 10−1. The solid lines show the dynamic
response P∗

dyn(T ) and the broken lines show the static response P∗
stat .

T is in T < 0, and then we apply a constant electric field when
T � 0. To study dynamical response we study the following
model, representing the two states at the two ends of the
one-dimensional system similar to Eq. (11):

H =
(

V (T ) −t∗

−t∗ −V (T )

)
. (27)

Here, we set |R〉 = (1, 0)T [|L〉 = (0, 1)T ]) to denote the state
at the right (left) end, similarly to Eq. (11), as shown in
Fig. 5(a). In addition, −t∗ (t∗ > 0) is the hopping between
the two states at the two ends, and ±V (T ) are the energies
of these two states, due to the external electric field. Here
t∗ is an exponentially decaying function of the chain length.
When T < 0, the external electric field is zero and V (T ) = 0,
and when T > 0, the external electric field is applied and
V (T ) = ε̄, where ε is a constant proportional to the electric
field [Fig. 5(b)]. We set the Fermi energy EF = 0 so that only
one state is occupied. At the time T = 0, the occupied state is
expressed as

ψ (T = 0) = 1√
2

(
1
1

)
. (28)
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The evolution of this state is described by the time-dependent
Schrödinger equation

ih̄
∂

∂T
ψ (T ) = Hψ (T ), (29)

Through a straightforward calculation, we obtain

ψ (T ) = 1

2
√

2A

(
e−iAT/h̄(A − t∗ + ε̄) + eiAT/h̄(A + t∗ − ε̄)

e−iAT/h̄(A − t∗ − ε̄) + eiAT/h̄(A + t∗ + ε̄)

)
,

(30)

for T > 0, where A = √
ε̄2 + t∗2. Thus the probablity for

the electron to reside at the left (right) end of the chain is
calculated as

nR(L)(T ) = 1

2

(
1 ∓ 2t∗ε̄

A2
sin2 2AT

h̄

)
. (31)

Therefore the dynamical polarization P∗
dyn is given by

P∗
dyn(T ) = − e

2
(nR − nL ) = e

2

2t∗ε̄
A2

sin2 2AT

h̄
. (32)

On the other hand, the static polarization is also calculated
in response to the static electric field, similarly to Sec. II B.
By putting V ≡ ε̄, the occupied state is given by


 = 1√
2A(A + ε̄)

(
t∗

A + ε̄

)
, (33)

Thus the probablity for the electron to reside at the left (right)
end of the chain is calculated as

nR(L) = 1

2

(
1 ∓ ε̄

A

)
. (34)

Therefore the static response of the polarization P∗
stat is given

by

P∗
stat = − e

2
(nR − nL ) = e

2

ε̄

A
. (35)

The dynamical and static polarizations are shown in Fig. 5, for
t∗ = 10−2 and ε̄ = 10−3, 10−2, and 10−1.

The dynamical polarization P∗
dyn undergoes Rabi oscilla-

tions. When ε̄ = 10−3 � t∗, the polarization oscillates with
its time average almost equal to the static value 〈P∗

dyn(T )〉 ∼
P∗

stat ∼ e
2

ε̄
t∗ On the other hand, when ε̄ = 10−1 � t∗, the dy-

namical polarization with the Rabi oscillation is much smaller
than the static value. This Rabi oscillation appears due to
the interference between two eigenstates. Therefore, when
we include dissipation to other degrees of freedom such as
phonons, the state showing the Rabi oscillation will gradually
relax to the lowest-energy state of the static Hamiltonian,
and this oscillating polarization P∗

dyn will gradually approach
the value of the static one P∗

stat . Nonetheless, in the present
context, the overlap between the two states at the two ends of
the chain is small, and the dissipation from the higher-energy
state to the ground state is very slow. Thus it may take a long
time to approach the static value of the polarization, which
shows anomalous behaviors proposed in the previous sections.

V. PROPOSALS FOR REAL MATERIALS

In this section, we propose some materials whose Zak
phase has a quantized value of π along some direction. In
such cases, there exist topological in-gap states, similar to
the in-gap states at the two ends of the SSH model within
the topological regime. To search for candidate materials, we
point out that the π Zak phase typically means existence of
dangling bonds. One can see it from the simple example of
the SSH model. The π Zak phase and resulting in-gap states
appear when the bond within each dimer is cut at the end of the
system. This is nothing but a dangling bond. It is also similar
in two and three dimensions. The π value of the Zak phase
is realized when the Wannier orbitals are “cut into halves” at
the surfaces. In covalent crystals, where the Wannier orbitals
are in the middle of the bonds, this typically leads to dangling
bonds. On the other hand, if the Wannier orbitals are at the
atomic sites, one cannot cut the crystal at the center of the
Wannier orbitals. Thus realization of a surface supporting the
in-gap surface states with π Zak phase is not straightforward
from the viewpoint of stability of materials.

Here we propose three classes of materials, which circum-
vent this obstacle against realizing the in-gap surface states
due to the π Zak phase. One is a cubic semiconductor with
the (111) surface, such as diamond and silicon. In this case,
the surface has in-gap surface states due to the π Zak phase, if
the surface reconstruction is absent. In reality, dangling bonds
exist at the surface, leading to surface reconstructions. Nev-
ertheless, as we show later, when the surface reconstruction
leads to the formation of surface superstructure with enlarged
surface unit cell by M times, where M is an integer, the Zak
phase becomes Mπ modulo 2π . Therefore, when M is odd,
the Zak phase remains π and the topological in-gap states
survive.

Another example is a carbon nanotube. In this case, the
covalent bond of the sp2 hybrid orbital gives rise to the π Zak
phase. In nanotubes, existence of a gapless state and symmetry
of the system change depending on the chirality (m, n). Here,
we focus on a zigzag nanotube with chirality (m, 0) with m
being an odd number other than a multiple of 3, so that it is
insulating and the Zak phase is π .

The other material is Sc2C, one of the topological elec-
trides [18]. It is a layered material, and the Wannier orbitals
reside between the atomic layers; therefore, one can create
the surface by cutting the system between the atomic layers,
leading to the π Zak phase.

A. Diamond and silicon

In this section, we show that diamond and silicon have the
π Zak phase along the [111] direction over the entire two-
dimensional Brillouin zone along the (111) surface, similarly
to Sec. III. In fact, this was first pointed out in Ref. [15]. In
Ref. [15], various cubic semiconductors are studied, and it was
found that their (111) and (1̄1̄1̄) surfaces have one half of an
electron per 1 × 1 surface unit cell (excluding the spin degree
of freedom), corresponding to the π Zak phase.

In the following, we show how the topological surface
states in diamond and silicon appear, based on the general-
ized gradient approximation (GGA) of the density functional
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FIG. 6. Band structures of (a) diamond and (b) silicon.

theory (DFT) and discuss physical origins for the topological
nature of the bands. The computational condition is shown
in Appendix D. Their band structures are shown in Fig. 6.
Although diamond has a larger gap than silicon, both have
qualitatively the same band structure. The valence and con-
duction bands near the Fermi level originate from sp3 hybrid
orbitals. The energy gap originates from covalent bonds of the
sp3 hybrid orbitals.

As we explain here, the Zak phase is related with dangling
bonds at the surface. The Zak phases of these materials along
[111], [111], [001], and [110] directions are calculated by
ab initio calculation. Table I shows the calculation results of
the Zak phase for diamond and silicon. It shows that the Zak
phases along [111] and along [111] directions are π modulo
2π , while those along [001] and along [110] directions are
0 modulo 2π . In these covalent crystals, the value of the
Zak phase θ = π (θ = 0) coincides with an odd number (an
even number) of dangling bonds per surface unit cell on each
surface. This is because one dangling bond per surface unit
cell supports one surface mode, which adds π to the Zak
phase. In the following, we confirm this for the diamond
lattice. The energy bands of diamond slabs with (111) and
(111) surfaces are shown in Fig. 7. Figure 7(a) shows the band
structure when a periodic boundary condition is imposed.
Here, dangling bonds do not exist and there is no surface
state. On the other hand, Fig. 7(b) shows the band structure
for a slab with (111) surfaces. There is a dangling bond per
unit cell, supporting one surface mode on each surface. Thus
the two surfaces of the slab support two surface modes, as
Fig. 7(b) shows. On the other hand, for the (111̄) surfaces [see
Fig. 7(c)], there are three dangling bonds per unit cell on each
surface, and as a result, there exist six surface modes in the
gap.

Here, we discuss flatness of surface-state dispersions and
its relation to anomalous dielectric response. As we discussed
in Sec. V A, the models discussed in Secs. II– IV have disper-
sionless topological surface states due to chiral symmetry, and

TABLE I. Zak phase of diamond and silicon. The Zak phase is π

along [111] and along [111̄].

n Zak phase Number of dangling bond

[111] π 1
[111̄] π 3
[001] 0 2
[110] 0 2

an anomalous dielectric response is expected. In contrast, real
materials do not have chiral symmetry. As a result, in silicon
and diamond, the surface states protected by the π Zak phase
have dispersions. In such cases, the two surface modes on the
two surfaces are half filled and are metallic. Under a small
electric field, the surface remains metallic; in other words,
there is still an overlap in energy between the surface states
on one surface and those on the other surface. Therefore an
abrupt charge transfer does not take place, and the polarization
does not jump. The strength of the electric field has a threshold
fro a charge transfer from one surface to the other, leading
to the uprise of the polarization. In silicon, we see from
Figs. 7(b) and 7(c) that the band structure of the edge states
are almost flat in the slab with (111) surfaces, while far from
flat with (111̄) surfaces. Therefore the anomalous dielectric
response is expected in the slab with (111) surfaces.

Since any system in the atomic limit is always in a topolog-
ically trivial phase, topological phase transition should occur
when the interatomic distance in diamond is extended from
the topological insulator phase with a π Zak phase. We show
the change of band structure in diamond with various lattice
constant in Fig. 8. We set the lattice constant to be the original
one times 1.0, 1.2, 1.3, and 1.4. These figures show that the
band inversion occurs when the lattice constant is extended by
1.3 times. If we further enlarge the lattice constant, it becomes
a filling-enforced semimetal, because threefold degenerate
states at the � point are at the Fermi energy, and they bridge
between the valence and conduction bands.

B. Surface reconstruction

Thus far, we have ignored the surface reconstruction. Since
the electron energy in a dangling bond is higher than that in the
valence band, the atoms on the surface are generally displaced
so as to reduce the number of dangling bonds. It is called
surface reconstruction. The effect of surface reconstruction
has been discussed in Sec. III D in Ref. [15]; when the surface
unit cell is multiplied by M times by surface reconstruction,
where M is an integer, the polarization is defined modulo
e/(MS) instead of e/S. Here we discuss the Zak phase and re-
sulting topological surface states after surface reconstruction.
It is well known that the silicon (111) surface forms 7 × 7
structure [23]. In this structure, 49 original surface unit cells
form one new unit cell. The Zak phase is multiplied by 49
times, because the surface Brillouin zone is folded down by a
factor of 1/49. We note that the integrand in the formula of the
Zak phase remains the same because the Zak phase is a bulk
quantity independent of the details of the surface. Thus as a
result the Zak phase changes from θ = π to θ = 49π ≡ π

modulo 2π , and the bulk polarization for a weak electric
field is expected to be e/(2S × 49) = e/(98S) mod e/(49S)
per original surface unit cell. Here 49S is the area of the
surface superstructure. In general, when M unit cells form a
superstructure, the Zak phase θ is given by

θ ≡ Mπ ≡
{
π (mod 2π ) (M = odd),
0 (mod 2π ) (M = even).

(36)

Here, θ does not depend on the wave vector k‖ because we
consider only insulators. This result agrees with a count-
ing argument of dangling bonds. When M = even, all
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FIG. 7. Band structures for a slab of diamond along (111) plane. The unit cell of the slab contains 60 atoms. (a) Slab with periodic boundary
condition. The system has no surface, and therefore surface states do not appear. (b) Slab with (111) surfaces. There is one dangling bond per
surface unit cell, and there are two degenerated surface states in the gap. The dispersion of the surface states is almost flat. (c) Slab with
(111) surfaces. There are three dangling bonds per surface unit cell, and there are six surface states in the gap. They are doubly degenerate.
Dispersion of edge states in this direction is large compared with that in the (111) direction in (b).

dangling bonds form pairs with covalent bonds, and there
are no surface states in the gap, and the Zak phase becomes
zero. Thus the dielectric response is normal. Meanwhile

when M is odd, the electric polarization converges to P =
e/(2MS) mod e/(MS), where MS is a surface area of the
superstructure.

FIG. 8. Changes in the band structure of diamond with increasing the lattice constant. We set the lattice constant to be the original one
times (a) 1.0, (b) 1.2, (c) 1.3, and (d) 1.4. The gap closing and band inversion occurs at � in (c).
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FIG. 9. Topological edge states in a zigzag carbon nanotube. (a) Crystal structure of the zigzag carbon nanotube with the (7,0) chirality.
(b) Electronic band structure of the (7,0) nanotube. The Fermi energy is at E = 0. (c) Eigenenergies of the (7,0) nanotube with a finite length,
containing 10 unit cells, i.e., 280 carbon atoms. (d) Distribution of the electron density for the eigenstate at the Fermi level of the (7,0) nanotube
with finite length. It is localized at the edge of the nanotube.

The previous studies show the correspondence between the
survival of surface states and the parity of the number of
unit cells constituting the superstructure in silicon [24,25].
In particular in Ref. [25], the density of states of the silicon
(111) surfaces with surface reconstructions 2 × 2,

√
3 × √

3,
5 × 5 and 7 × 7 is shown. Among these four cases, only for
the 2 × 2 surface, where M = 2 × 2 = 4 is even, the surface
states have a gap, whereas in the other three cases with odd
M, the surface is metallic, suggesting existence of half-filled
midgap surface states. These results are in perfect agreement
with our results in this paper.

C. Carbon nanotube

Next, we show the result of a carbon nanotube. While a car-
bon nanotube of the armchair type is always semimetallic, that
of the zigzag type has a gap when the chirality is (3i + 1, 0) or
(3i + 2, 0) (i = 1, 2, . . . ). As we limit ourselves on insulating
systems, we focus on the (m, 0) zigzag nanotube, with m not
an integer multiple of three. As the number of dangling bonds
in this nanotube is m, we restrict ourselves to the case with odd
m, so that the Zak phase is π . Figure 9(a) shows a structure
of zigzag nanotube with a chirality of (7,0). The pz orbitals
forming the π bonds have a small gap around the Fermi level
[Fig. 9(b)]. Because the blue region in Fig. 9(a) has about
twice as much transfer as the red region, the Wannier center of
the π covalent bond are located at the blue region. Therefore
the pz orbital forming the π bonds has no polarization in the
unit cell corresponding to the zigzag edge. On the other hand,
since σ covalent bonds are cut at the (m, 0) zigzag edge, the
Zak phase is π when m is an odd integer. Figure 9(c) shows
the eigenenergies of a finite nanotube with 10 unit cells in
length. Half-filled edge states exist at the Fermi level. These
are topological states originated from the π Zak phase and are
localized at the edges [Fig. 9(d)].

D. Topological electrides

In our previous work [18], we proposed that the electrides
can be good candidates for topological materials. Among such
topological electrides, we proposed that Sc2C is an insulator
with π Zak phase along the [111] direction. It is a layered
material and it is a two-dimensional electride, where the

Wannier orbitals reside between the atomic layers along the
(111) plane. It can be cleaved along the (111) plane, which
cuts the Wannier orbitals into half. This is similar to the SSH
model on the topological regime, and it leads to in-gap surface
states, which is a remnant of the electronic states between the
atomic layers. Since existence of electronic states at interstitial
regions is a hallmark of the electrides, this characteristic of
the electrides is the key to realize the surface with the π Zak
phase.

The π Zak phase in this topological electride shows that the
notion of the Zak phase has wider applicability than counting
of dangling bonds at the surface. In Sec VI A, we have
discussed that in covalent crystals, the number of dangling
bonds being even and odd corresponds to the Zak phase 0 or
π , respectively. On the other hand, in Sc2C, we can make the
(111) surface without appearance of dangling bonds. Even in
such crystals we can adopt the notion of the Zak phase, and
indeed we can see appearance of midgap topological surface
states on the (111) surface of Sc2C.

E. Ab initio calculation for dielectric response

Here we show the ab initio calculation for the dielectric
response. First, we calculate the dielectric response of PTFE
[C2F4]n. Figure 10(a) shows the crystal structure of the PTFE.
The one-dimensional band structure of the PTFE has a large
band gap [Fig. 10(b)]. Such a large gap is suitable for the
anomalous dielectric response [see Figs. 2(a) and 2(b)]. The
C atoms are connected by the σ bonds originating from the
sp3 orbitals [Fig. 10(c)]. Because the two orbitals per each
site form covalent bondings, this system is regarded as a
superposition of two SSH models with dimers at different
positions, as shown in Fig 10(c). Therefore the Zak phase is
always π regardless of the choice of the unit cell.

Next, we calculate the energy eigenvalues of a finite system
of the PTFE [Fig. 10(d)]. The topological edge states originat-
ing from the π Zak phase exist at the Fermi level [E = 0 in
Fig. 10(d)]. Next we apply the electric field along the C chain
to finite systems and calculate the polarization [Fig. 10(e)].
We here discuss a condition for the system length to exhibit
the anomalous dielectric response. If the length of the PTFE
is too short, the hybridization between edges become large,
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FIG. 10. Dielectric response of the PTFE. (a) Structure of the
PTFE. (b) Electronic band structure of the PTFE. The Fermi energy
is at 0. (c) Covalent bonds of the PTFE. (d) Enegy eigenvalues
of [C2F4]8. (e) Dielectric response of the finite PTFE. P is the
polarization. (f) LUMO of [C2F4]8 under the electric field ε = 9
(GV/m).

which makes the dielectric response less sharp [Fig. 2(c)]. On
the other hand, if the length of the PTFE is too long, the energy
loss of the Coulomb interaction causes a gradual charge trans-
fer in the system to locally satisfy charge neutrality. Therefore,
in a realistic system with a finite bulk gap, the length of the
system should be moderate in order to exhibit the anomalous
response. From the above reasons, we calculate the dielectric
response of [C2F4]6, [C2F4]8, and [C2F4]12 in Fig. 10(e),
where the magnitude of P is shown. The electric response
becomes flat around P ∼ ±e in all the three cases. It perfectly
agrees with Fig. 2(d), considering the spin degeneracy (=2).
Moreover, the slope of the dielectric response becomes sharp
for a longer chain, which also agrees with our theory. We show
the lowest unoccupied molecular orbital (LUMO) of [C2F4]8

under the electric field ε = 9 (GV/m) in Fig. 10(f), which
corresponds to one of the topological edge states originating
from the π Zak phase. When the electric field becomes even
larger, the electrons in the bulk region participate in screening
the polarization, and the dielectric response becomes linear
again [see Fig. 2(d)].

We also calculate the dielectric response of a (111) dia-
mond slab with 1 × 1 surface structure discussed in Sec. V A.
We find that the polarization does not show an anomalous
response but has a linear dependence on the electric field.
We attribute the absence of the anomalous behavior of the di-
electric response to the weak k dependence of the topological
surface states in diamond (111) surface with 1 × 1 structure
[Fig. 7(b)], as discussed in Sec. IV A. On the other hand,
in the silicon with realistic 7 × 7 surface reconstruction, the
anomalous dielectri response is more likely because of the
two reasons. One is because the topological surface bands
are almost flat, and the other is because the larger unit cell

leads to the smaller energy increase of Coulomb repulsion per
two-dimensional unit cell associated with the charge trans-
fer, making the bulk region less likely to participate in the
anomalous response. Therefore nanometer-sized silicon with
the surface reconstruction would be promising to realize the
anomalous response.

VI. BULK PHYSICS VERSUS SURFACE PHYSICS

In this section, we discuss how the anomalous dielectric
response is related with the bulk polarization, described in
the modern theory of polarization. In the modern theory of
polarization [13–16], the notion of the bulk polarization is
introduced, and it is formulated in term of the Zak phase, in
the absence of an electric field. A dielectric response to an
electric field is also discussed along the same line [20,26,27].
In these works, the dielectric response is studied as a bulk
effect, which is considered to be valid in the thermodynamic
limit.

We need some care in comparing our results with those in
the previous works on bulk dielectric responses [20,26–29].
In particular, the dielectric response is formulated by con-
structing the Wannier-Stark ladder perturbatively for a weak
electric field in Ref. [20], and a similar result on dielectric
response is obtained in Ref. [30] as well. In Ref. [20], this
formalism is applied to the Rice-Mele model; because the
SSH model is a special case of the Rice-Mele model, we can
directly compare those results with ours in this paper. As we
explain later in detail, in the results in Ref. [20] for the SSH
model with the π Zak phase, there is no divergence in the
dielectric response χ ≡ dP

dε
, which seems to contradict our

result.
This discrepancy is related with an interplay between the

bulk and surface physics. To explain this, we focus on degrees
of freedom in the choices of the crystal terminations and
those of the unit cell [15,31]. Let us consider 1D systems
with inversion symmetry, such as the SSH model in Sec. II.
In this case, as mentioned earlier, the unit cell should be
invariant under inversion symmetry. There are two choices
of the inversion center, displaced by a half of the primitive
translation vector, and correspondingly, we have two choices
of unit cells. It is shown in Figs. 11(a1) and 11(b1). This
correspondence between the inversion center and the unit cell
is required for the relationship between the Zak phase and
inversion parities in Eq. (5). By changing the choice of the
unit cell, the parity at k = π changes sign, and the value of
the Zak phase is switched between 0 and π . In Ref. [15],
it is discussed that the crystal termination is related to the
choice of the unit cell so that the unit cell, with displacement
by crystal translation vectors, should fully cover the whole
system with surface termination. Thus there are two ways of
terminations for the SSH model, shown in Figs. 11(a2) and
11(b2), and they correspond to the choices of the unit cells
shown in Figs. 11(a1) and 11(b1), respectively. By employing
this correspondence, the relationship between the 0 (π ) Zak
phase and absence (presence) of the in-gap boundary states is
guaranteed.

We now turn to the Rice-Mele model studied in
Refs. [15,20]. In Ref. [20], this model is defined on a lattice in
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FIG. 11. Choice of the unit cell and corresponding crystal termi-
nation in the SSH model. (a1) and (b1) show two choices of unit
cell shown as a grey box. (a2) and (b2) are the SSH chain with
terminations corresponding to (a1) and (b1), respectively. In each
case, the star represents the corresponding inversion center.

Fig. 1(a), and is described by a 2 × 2 Bloch Hamiltonian

H (k) =
(


 2t
(

cos k
2 − iδ sin k

2

)
2t

(
cos k

2 + iδ sin k
2

) −


)
(37)

in the basis of A and B sublattices, where t (1 ± δ) represents
the alternating hopping, and 
 is a staggered on-site potential.
If we start from our SSH model in Eq. (3), this Rice-Mele
model is realized by putting t1 = −t (1 + δ), t2 = −t (1 − δ),
and by adding a staggered on-site potential ±
 at the A and
B sublattices. In Ref. [20], the spontaneous magnetization and
susceptibility is studied for the values of parameters t = 1,

 = 0.6 cos θ and δ = 0.6 sin θ with a parameter θ . We note
that θ = 3π/2 corresponds to the SSH model with the π Zak
phase. It is found that the dielectric response χ ≡ dP

dε
has no

singularity even at θ = 3π/2, and that the bulk spontaneous
polarization, defined modulo e, has no anomaly at θ = 3π/2.
It means that there is no anomalous dielectric response in the
bulk polarization even at θ = 3π/2. On the other hand, the po-
larization for a finite chain is also calculated in Refs. [15,20],
and it has a jump between e/2 and −e/2 at θ = 3π/2. This
implies that the system is at the verge between the states
with polarizations +e/2 and −e/2, and that a tiny electric
field can easily drive the system to obtain polarization ±e/2.
Thus the bulk polarization is defined only modulo e, while the
polarization for a finite chain is not modulo e. The latter can
be determined without ambiguity once the finite-length chain,
including its terminations, is fixed. The bulk polarization and
the polarization for a finite chain are identical only modulo
e (if we ignore small finite-size effect, which converges to
zero for a long-chain limit). Thus the jump of the polarization
between −e/2 and e/2 never appears in the bulk polarization,
because of its “mod e” nature. In other words, in the SSH
model, the anomalous dielectric response discussed in the
present paper depends on the terminations, and in the case
|t2| > |t1|, it appears only in the termination in Fig. 11(a2) but

not in the termination in Fig. 11(b2). Thus it is natural that
the bulk polarization does not have a singularity for the SSH
model with the π Zak phase (i.e., θ = 3π/2), where we have
shown the anomalous dielectric response.

VII. CONCLUSION

To summarize, we have shown anomalous dielectric re-
sponse in insulators with the π Zak phase. We demonstrated it
in various tight-binding models in one, two and three dimen-
sions. In each model, the polarization suddenly rises to a large
value close to e/2 per edge or surface unit cell by application
of an external electric field when the Zak phase is π over
the entire Brillouin zone. By using effective models, we have
confirmed that the topological surface states protected by the
π Zak phase give rise to this phenomenon. We also show,
by using ab-intio calculation, that diamond and silicon slabs
with (111) surfaces have the π Zak phase over the entire
Brillouin zone and relatively flat midgap states. Our results
are expected to be applicable to these materials even when
surface reconstruction occurs. We also show such a dielectric
response of the PTFE with plateaus at P ∼ ±e by ab initio
calculation, in agreement with our theory.

We have also discussed that this anomalous dielectric
response do not appear for the bulk polarization described by
the modern theory of polarization, because this effect depends
on the termination of the system, and therefore is attributed to
the surface effect.
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APPENDIX A: TWO-DIMENSIONAL MODELS
(MODELS III AND IV)

In Sec. II, we have seen that the dielectric polarization in
the SSH model abruptly increases up to ±e/2 in response to
a weak electric field when the Zak phase is π . We expect
similar phenomena in two-dimensional insulators. To confirm
that, we consider two tight-binding models on the honeycomb
lattice: the model III with anisotropic hopping amplitude and
model IV with three orbitals per lattice site. In both models,
the lattice consists of two sublattices A and B. Let a denote
the distance between the two nearest A sites, and we set
the nearest bond vectors from the A site to the adjacent B
sites d i=1,2,3 to be d1 = a√

3
(0, 1), d2 = a√

3
(−

√
3

2 ,− 1
2 ), d3 =

a√
3
(
√

3
2 ,− 1

2 ) as shown in Fig. 12(a). We note that in two-
dimensional systems, the polarization, which is an electric
dipole moment per unit area, has the unit of charge divided
by a length.
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FIG. 12. Two-dimensional models III and IV. (a) Honeycomb
lattice. The lattice constant is a and the nearest-neighbor bond
vectors from the A site to the B site are d i=1,2,3. (b) Zigzag-edge
nano ribbon. The red dotted line shows the unit cell in the ribbon.
(c) Schematic figure of the model with anisotropic hopping am-
plitudes (model III). (d) Schematic figure of the model with three
orbitals per lattice site (model IV). (e) Band structure for model II
with t1 = 1 and t2 = 3. The bands are shown along high-symmetry
lines shown in red in the two-dimensional Brillouin zone in the right
panel. (f) Dielectric polarization P(ε) of model III in a nanoribbon
with zigzag edges. P(ε) rapidly changes toward ±e/2a in the vicinity
of ε = 0. Here we set N = 10 and the number of sites in the unit cell
is 20. The hopping amplitudes (t1, t2) are (1,3) for the red line and
(1,10) for the blue line. As the anisotropy increases, the change in
the polarization becomes sharper.

1. Zak phase and dielectric polarization for
two-dimensional systems

First, we review the Zak phase and its connection with
electric polarization in two-dimensional insulators. The Zak
phase with an integration path along a reciprocal lattice vector
G⊥ is defined as

θ (k‖) = −i
occ.∑

n

∫ |G⊥|

0
dk⊥ 〈un(k)| ∂

∂k⊥
|un(k)〉, (A1)

where k = k⊥n + k‖l and n = G⊥/|G⊥|, n ⊥ l, |l | = 1. This
Zak phase is related with a polarization in a ribbon geometry

with its edges along l , defined at k‖ in the surface Brillouin
zone. The Zak phase θ (k‖) is quantized as 0 or π modulo
2π under both the TR and SI symmetries [9]. Therefore, in
insulators, this quantized value of θ (k‖) is constant for any k‖.
In the region of the surface Brillouin zone where θ (k‖) = π ,
there exist degenerated edge states at zero energy when the
system has chiral symmetry [7]. The electric polarization P0

across the ribbon can be obtained from

P0 = −e
∫ 2π/a

0

dk‖
(2π )2

θ (k‖) (mod e/a), (A2)

where a is the lattice constant along the edge parallel to l .
This equation indicates that the polarization takes a large value
of e/(2a) in the system with the π Zak phase for any k‖.
This nonzero value of the polarization P0 does not contradict
the inversion symmetry of the system, because P ≡ e/(2a) ≡
−e/(2a) (mod e/a).

2. Model III: Anisotropic tight-binding model
on the honeycomb lattice

In this section, we consider an anisotropic tight-binding
model on the honeycomb lattice. The hopping amplitudes be-
tween the nearest-neighbor sites are anisotropic. The hopping
amplitude along d1 is −t2 and those along other directions are
−t1, as shown in Fig. 12(c). t1 and t2 are set to be positive. The
Hamiltonian is given by

H0 = −
∑
〈i j〉

ti jc
†
i c j, (A3)

where ti j is the hopping amplitude from site i to j. First, the
bulk Hamiltonian is given by

Hbulk(k) =
(

0 R(k)
R∗(k) 0

)
, (A4)

R(k) = −t2e−ik·d1 − t1(e−k·d2 + e−ik·d3 ). (A5)

The energy eigenvalues are given by

E2
k =

(
t2 + 2t1 cos

kxa

2
cos

√
3kya

2

)2

+ 4t2
1 cos2 kxa

2
sin2

√
3kya

2
. (A6)

A band gap exists when t2 > 2t1 [see Fig. 12(e)] [21,32]. Thus
we can define the dielectric polarization only when t2 > 2t1.
By taking n = (0, 1) and l = (1, 0), the Zak phase along the
y axis is given by

θy(kx ) =
{
π

(
cos kxa < t2

2t1

)
0 (otherwise)

. (A7)

When the band gap is open, i.e., t2 > 2t1, the Zak phase equals
to π in the whole Brillouin zone. The π Zak phase represents
the polarization e/(2a)(mod e/a) along the y axis [8]. Here,
thanks to the SI symmetry, the Zak phase θy(kx ) with kx being
one of the one-dimensional TRIM, i.e., kx = 0 and kx = π/a,
can be obtained from parity eigenvalues of the occupied states
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at TRIM. Namely,

eiθy (kx=0) =
occ.∏

n

ξn(0, 0)ξn

(
0,

2π√
3a

)
, (A8)

eiθy(kx= π
a ) =

occ.∏
n

ξn

(
π

a
,

π√
3a

)
ξn

(
π

a
,− π√

3a

)
, (A9)

where ξn(k) is the parity eigenvalue of the nth eigenstate. It
reproduces the result in Eq. (A7). Here, the unit cell for the
bulk used in the calculation of ξn is taken as a pair of a A
site and a B site, displaced by d2, so that the unit cell covers
the whole ribbon by translating the unit cell by the translation
vectors, and the inversion center is located at the midpoint of
the unit cell.

We next study the dielectric polarization for a ribbon with
zigzag edges as shown in Figs. 12(b) and 12(c). There are 2N
sites in the unit cell of the zigzag-edge nano ribbon. Let Ai

and Bi (i = 1, 2, . . . , N ) denote the 2N lattice sites in the unit
cell as shown in Fig. 12(b). The Hamiltonian of this system is
given by

H0(kx ) = −t1

N∑
n=2

e−id̃1kx b†
kx,n−1akx,n

− t2

N∑
n=1

(e−id̃2kx + e−id̃3kx )b†
kx,n

akx,n + H.c. (A10)

where a†
kx,n

(b†
kx,n

) and akx,n(bkx,n) are the creation and annihi-
lation operators of an electron with Bloch wave vector kx at
the An (Bn) site in the unit cell, and d̃i (i = 1, 2, and 3) is the
x component of d i. When an electric field of strength ε along
the y axis is applied, the Hamiltonian is given by

H (kx ) = H0(kx ) + Hε(kx ), (A11)

Hε(kx ) = aeε√
3

N∑
n=1

[(
3

2
n − 3

4
N − 1

)
a†

kx,n
akx,n

+
(

3

2
n − 3

4
N − 1

2

)
b†

kx,n
bkx,n

]
, (A12)

Then the dielectric polarization is given by

P(ε) = − 2√
3a(N − 2/3)

N∑
n=1

∫
dkx

2π

∂En(kx )

∂ε
, (A13)

where En(kx ) is the nth lowest eigenvalue of H (kx ), and√
3a(N − 2/3) is the width of the ribbon. We set the Fermi

energy to be E f = 0. The calculation results are shown in
Fig. 12(f). It shows that when t2 > 2t1, the dielectric polar-
ization takes a value P(ε) ∼ ±e/(2a) even for a very weak
electric field. This indicates that a half of an electron per unit
cell of an edge is accumulated at the edge whenever t2 > 2t1.
Thus the anomalous dielectric response occur in this system
when it is insulating.

We attribute this phenomenon to topological edge states.
To confirm this, we use an effective model which describes
the present model at a fixed value of kx, similar to Sec. II. It
consists of two sites, each of which corresponds to one of the
edge sites of the ribbon. We call the two sites L and R, and the

state with the electron occupying the R[L] site is represented
as |R〉 = (1, 0)T [|L〉 = (0, 1)T ]) [see Fig. 12(b)]. Then, the
effective Hamiltonian is given by

H∗(kx ) =
(√

3(N − 2/3)aε/4 −t∗(kx )
−t∗(kx ) −√

3(N − 2/3)aε/4

)
,

(A14)

where t∗(kx ) is the effective hopping amplitude. Since t∗(kx )
depends on the wave vector kx, it cannot be determined in the
same way as in the previous section. Instead, we analytically
calculate the edge states of the model, by applying the method
in Ref. [33] to our anisotropic model. The edge states when
t2 > 2t1 is given by

∣∣
1
edge(kx )

〉 = CN

N∑
n=1

(−1)n sinh[ηk (N + 1 − n)a†
kx,n

|0〉,

∣∣
2
edge(kx )

〉 = CN

N∑
n=1

(−1)N+1−n sinh[ηkn]a†
kx,n

|0〉, (A15)

where

|CN |2 = 2[sinh(ηkN ) cosh(ηk (N + 1))/ sinh(ηk ) − N]

(A16)

is a normalization constant. Here, ηk is a non-zero solution of

−t1 sinh ηkx N − gk sinh ηkx (N+1) = 0, for 0 < |akx| < π,

−t1 sinh ηkx N + gk sinh ηkx (N+1) = 0, for π < |akx| < 2π,

(A17)

where gk = −2t1 cos ka
2 , and we assume t2 > 2t1 and N � 1.

The derivation of this equation is shown in Appendix B. One
can evaluate the effective hopping amplitude t∗(kx ) as

t∗(kx ) = −〈L(kx )| H0(kx ) |R(k)〉

= (−1)N+12N |CN |2
[

t1

(
cosh(ηkN ) − sinh(ηkN )

sinh(ηk )

)

+ t2 cos
kx

2

(
cosh(ηkN ) − sinh(ηk (N + 1))

sinh(ηk )
+ 1

)]
.

(A18)

The effective dielectric polarization is given by

P∗(ε) =
∫ 2π/a

0

dkx

2π
p∗(ε, kx ), (A19)

p∗(ε, kx ) = e

2
[〈L|−〉 〈−|L〉 − 〈R|−〉 〈−|R〉]

= sgn(ε)
e

2
√

(2t∗(kx )/(3N/2 − 1)aeε)2 + 1
,

(A20)

where |−〉 is the eigenstate of (A14) at kx with a negative
eigenvalue. We plot the polarization of this effective model in
Fig. 13. It agrees well with the result from model II, meaning
that our scenario of the anomalous polarization is valid.
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FIG. 13. Dielectric polarization of model III (red lines) and that
of the effective two-site model (blue lines). We set N = 10 for model
II. The hopping amplitudes are taken as t1 = 1, (a) t2 = 2.5, (b) t2 =
3, (c) t2 = 3.5, and (d) t2 = 4.

3. Model IV: Model with three orbitals per
lattice site on the honeycomb lattice

Next, we consider a tight-binding model with three or-
bitals, s, px and py, per lattice site as shown in Fig. 12(d).
The Hamiltonian is given by

H0 = −
∑
〈i j〉

∑
α,β=s,x,y

t i j
αβc†

iαc jβ, (A21)

where s, x, and y represent s, px, and py orbitals, respec-
tively. c†

iα and ciα are creation and annihilation operators
for an electron in the α orbital at the i site. The hopping
integral t i j

αβ is determined from the Slater-Koster parameters
[34] Vssσ ,Vspσ ,Vppσ and Vppπ as shown in Table II. In the
same way as in the previous section, we can obtain the
bulk Hamiltonian Hbulk (k) in a 6 × 6 matrix form. Using its
eigenstates, we numerically confirmed that the gap is open
around E = 0 and the Zak phase along the y axis becomes π

in the whole Brillouin zone when (Vssσ ,Vspσ
,Vppσ ,Vppπ ) =

(4.43,−3.79,−5.66, 1.83). These values are taken from
those for carbon atoms in diamond obtained by fitting from
the values of the first-principles calculation [35] in the unit
of eV. We set the Fermi energy to be E f = 0. Therefore an
anomalous dielectric response is expected with these Slater-
Koster parameters.

TABLE II. Expression of t i j
αβ for models IV and V [36]. The

table shows the hopping amplitude t i j
αβ from the α orbital at the

site i to the β orbital at the site j (α, β = s, px, py, pz ). Here, li j ,
mi j , and ni j are the x, y, and z components of the direction cosines
measured from site i to j. Other components such as t sy

i j , t yy
i j , and t yz

i j

are obtained from the components in the table by a replacement with
the correspondence, x ↔ li j , y ↔ mi j , and z ↔ ni j .

t i j
αβ

t ss
i j li jVss

t sx
i j = −t xs

i j li jVsp

t xx
i j l2

i jVppσ + (1 − l2
i j )Vppπ

t xy
i j li jmi j (Vppσ − Vppπ )

FIG. 14. Dielectric polarization of model IV in a zigzag-edge
nanoribbon. The model is on the honeycomb lattice with anisotropic
hopping amplitudes. P(ε) rapidly changes toward ±e/(2a) in the
vicinity of ε = 0. Here we set N = 10 and the number of sites
in the unit cell of the ribbon is 20. The Slater-Koster parameters
(Vss,Vsp,Vppσ ,Vppπ ) = (4.43, −3.79, −5.66, 1.83).

The Hamiltonian of this system is given by

H (k) = H0(k) + Hε(k), (A22)

Hε = aeε√
3

∑
α

N∑
n=1

[(
3

2
n − 3

4
N − 1

)
a†

k,α,nak,α,n

+
(

3

2
n − 3

4
N − 1

2

)
b†

k,α,nbk,α,n

]
, (A23)

where a†
k,α,n(b†

k,α,n) is the creation operator of an electron with
the Bloch wave vector k in the α orbital at the nth A(B) site.
H0(k) is the Bloch form of the Hamiltonian H0 with the Bloch
wave vector k along the x axis. The dielectric polarization is
given by

P(ε) = − 2√
3a(N − 2/3)

3N∑
n=1

∫ 2π/a

0

dk

2π

∂En(k)

∂ε
, (A24)

where En(k) is the nth lowest eigenvalue of (A22). The calcu-
lation results are shown in Fig. 14. The dielectric polarization
takes a value P(ε) ∼ ±e/(2a) for a very weak electric field.
Thus an anomalous dielectric response occurs even in this
case, and it is also attributed to midgap edge states as is similar
to models I and II.

APPENDIX B: ANALYTICAL DERIVATION OF
THE EDGE STATES FOR MODEL III

In this section, we show the derivation of the eigenstates
of (A10). In Ref. [33], the wave functions for the edge states
of model II in an isotropic case are analytically derived. Here
we extend this method to an anisotropic case. According to
Ref. [33], the eigenstates of the model on the anisotropic
honeycomb lattice in a nanoribbon are expressed as

|
(kx )〉 =
N∑

n=1

[an(kx ) |An(kx )〉 + bn(kx ) |Bn(kx )〉], (B1)

where kx is the wave number along the edge, and
an(kx )[bn(kx )] denotes the coefficient for the wave function at
An[Bn] site, |An(kx )〉 [|Bn(kx )〉]. By using Eqs. (A10) and (B1),
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the matrix elements of the Hamiltonian are given by

〈Bn(kx )| H0(kx ) |An(kx )〉 = −2t1 cos
ka

2
≡ gk,

〈Bn−1(kx )| H0(kx ) |An(kx )〉 = −t2. (B2)

Here, we impose a boundary condition

aN+1(kx ) = b0(kx ) = 0. (B3)

The Schrödinger equation H0(kx ) |
(kx )〉 = Ekx |
(kx )〉 gives
the following equations:

gkan(kx ) − t2an+1(kx ) = Ekx bn(kx ),

gkbn(kx ) − t2bn−1(kx ) = Ekx an(kx ). (B4)

Because it can be expressed as an eigenvalue problem of a
2N × 2N matrix, it has 2N solutions. We assume the follow-
ing forms for an(kx ) and bn(kx ):

an(kx ) = Aeipan + Be−ipan,

bn(kx ) = Ceipan + De−ipan. (B5)

From the boundary condition, the coefficients B and D are
determined as B = −Az2 and D = −C with z = eip(N+1). Sub-
stituting these values into Eq. (B4), we get

M

(
A
C

)
= 0, M =

(
m11 m12

m21 m22

)
, (B6)

where the matrix elements are

m11 = −Ekx (eipan − z2e−ipan),

m12 = eipan(gk − t1e−ipa) − e−ipan(gk − t1eipa),

m21 = eipan(gk − t1eipa) − e−ipanz2(gk − t1e−ipa),

m22 = −Ekx (eipan − e−ipan). (B7)

Equation (B6) has nontrivial solutions only when det M =
0. Then we get the following two equations:

E2
kx

= (gk − t2eipa)(gk − t2e−ipa), (B8)

E2
kx

(1 + z2) = (gk − t2e−ipa)2z2 + (gk − t2eipa)2. (B9)

By eliminating Ekx from these equations, we obtain an equa-
tion for p:

F (p, N ) ≡ −t2 sin paN + gk sin pa(N + 1) = 0. (B10)

This equation holds when pa = 0,±π . However, this cor-
responds to the trivial solutions an = bn = 0 for all n, and
should be discarded. As shown in Ref. [33], there are only
2N − 2 solutions which correspond to the bulk states for p
when

|gk| � N

N + 1
t2. (B11)

The remaining two solutions are expected to correspond to the
edge states. These edge states can be obtained by analytical
continuation as

pa =
{
π ± iηkx = pπ , kL

c a < |kxa| < π,

0 ± iηkx = p0, π < |kxa| < kR
c a,

(B12)

where the wave vectors kL
c and kR

c are defined as

cos
kL

c a

2
= t2

2t1

N

N + 1
,

cos
kR

c a

2
= − t2

2t1

N

N + 1
. (B13)

Substituting (B12) into (B10), we get

−t1 sinh ηkx N − gk sinh ηkx (N + 1) = 0, for pπ ,

−t1 sinh ηkx N + gk sinh ηkx (N + 1) = 0, for p0. (B14)

There exists one solution for ηkx each equation in Eq. (B14)
when Eq. (B11) is satisfied. When t2 > 2t1 and in the limit of
large N , Eq. (B14) is always satisfied and the two edge states
are given by Eq. (B12).

Since we focus on the edge states, we consider only the
solution of (B14). Then the coefficients an and bn are given by

an(kx ) = ±(−1)N+1−nCN sinh ηkx (N + 1 − n), (B15)

bn(kx ) = (−1)nCN sinh ηkx n, (B16)

where CN is the normalization factor expressed in (A16). The
two edge states |
+

edge(kx )〉 and |
−
edge(kx )〉 are obtained by

substituting these into (B1). These edge states |
±
edge(kx )〉 are

not localized at one edge, but are symmetric and antisym-
metric linear combinations of edge states at an either end.
Therefore, to obtain approximate edge states at one edge, we
take linear combinations as follows:∣∣
1

edge(kx )
〉 = (|
+

edge(kx )〉 + |
−
edge(kx )〉)/

√
2, (B17)∣∣
2

edge(kx )
〉 = (|
+

edge(kx )〉 − |
−
edge(kx )〉)/

√
2. (B18)

These are given in Eq. (A15) and represent states localized at
one end.

APPENDIX C: THREE-DIMENSIONAL MODEL V:
MODEL WITH FOUR ORBITALS PER LATTICE SITE

ON THE DIAMOND LATTICE

In this section, we show the anomalous dielectric response
in a three-dimensional tight-binding model (model V) on the
diamond lattice, with four orbitals per unit cell. As is similar
to model II, we use the diamond lattice and its slab with (111)
surfaces are shown in Figs. 3(a) and 3(b). Then, we consider
a tight-binding model with four orbitals, s, px, py, and pz,
per site on the diamond lattice as shown in Fig. 15(d). The
Hamiltonian is

H0 = −
∑
〈i j〉

∑
α,β=s,x,y,z

t i j
αβc†

iαc jβ, (C1)

where s, x, y, and z represent s, px, py, and pz orbitals,
respectively. Here, c†

iα and ciα are creation and annihilation
operators for an electron with the α orbital at i site. The hop-
ping integrals t i j

αβ are taken as the Slater-Koster form shown
in Table II. We can obtain the bulk Hamiltonian Hbulk (k) as
an 8 × 8 matrix form. Using its eigenstates, we numerically
confirmed that the gap is open and that the Zak phase along
the z-axis becomes π in the whole Brillouin zone when
(Vssσ ,Vspσ

,Vppσ ,Vppπ ) = (4.43,−3.79,−5.66, 1.83), which
are obtained by fitting from the values of the first-principles
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FIG. 15. Model V on the diamond lattice. (a) Schematic figure
of the model with four orbitals s, px, py and pz orbitals per lattice
site (model V). (b) Dielectric polarization of a slab of the Model V
on a diamond lattice with the (111) surfaces. P(ε) rapidly changes
toward ±e/(2S) in the vicinity of ε = 0, where S is an area of the
surface unit cell. Here we set N = 10 and the number of sites in the
unit cell is 20. The Slater-Koster parameters are (Vss,Vsp,Vppσ ,Vppπ )
= (4.43, −3.79, −5.66, 1.83).

calculation with the unit of eV [35]. We take the Fermi energy
to be E f = 0. Therefore the anomalous dielectric response is
expected when the Slater-Koster parameters take these values.

The Hamiltonian of the slab with the (111) surfaces is
given by

H (k‖) = H0(k‖) + Hε(k‖), (C2)

Hε(k‖)

=
√

6

4
aeε

N∑
n=1

∑
α=s,x,y,z

[(
4

3
n − 2

3
N − 5

6

)
a†

k‖,α,nak‖,α,n

+
(

4

3
n − 2

3
N − 1

2

)
b†

k‖,α,nbk‖,α,n

]
, (C3)

where a†
k‖,α,n(b†

k‖,α,n) is a creation operator of an electron with
a Bloch wave vector k‖ in the α orbital of the nth A(B) site in
the unit cell. The dielectric polarization is given by

P(ε) = − 1

a(4N/3 − 1)

4N∑
n=1

∫
k‖∈2DBZ

d2k‖
(2π )2

∂En(k‖)

∂ε
, (C4)

where En(k‖) is the nth lowest eigenvalue of (C2). The
calculation results are shown in Fig. 15(f). The dielectric
polarization takes a value P(ε) = ±e/(2S) even for a very
weak electric field. This indicates that a half of an elec-
trons are accumulated at the surface per unit cell. Thus the
anomalous dielectric response occurs in this system when it is
insulating.

APPENDIX D: COMPUTATIONAL CONDITIONS

The electronic structures of diamond, silicon, carbon nan-
otube, and PTFE are obtained from the GGA of the DFT.
We use the ab initio code OPENMX based on localized basis
functions and norm-conserving pseudopotentials. We use the
Perdew-Burke-Ernzerhof (PBE) functional in the GGA [37].
We employ the 8 × 8 × 8 and 8 × 8 × 1 k-point mesh for
the bulk and the slab calculation for diamond and silicon,
respectively, and the 1 × 1 × 16 k-point mesh for carbon
nanotube and PTFE. The valence orbital set is s2p2d1 for C,
s2p3d1 for Si, and s2p2d1 for F. The energy cutoff for the
numerical integrations is 150 Ry.
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