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Non-Abelian fractional quantum Hall state at 3/7-filled Landau level
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We consider a non-Abelian candidate state at filling factor ν = 3/7 state belonging to the parton family. We
find that, in the second Landau level of GaAs (i.e., at filling factor ν = 2 + 3/7), this state is energetically
superior to the standard Jain composite-fermion state and also provides a very good representation of the ground
state found in exact diagonalization studies of finite systems. This leads us to predict that if a fractional quantum
Hall effect is observed at ν = 3/7 in the second Landau level, it is likely to be described by this new non-Abelian
state. We enumerate experimentally measurable properties that can verify the topological structure of this state.
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I. INTRODUCTION

It is a remarkable, and perhaps somewhat surprising, fact
that the fractional quantum Hall effect (FQHE) in the second
Landau level (LL) of semiconductor quantum wells often
has a different origin from that in the lowest LL (LLL). A
compressible state is seen at the half-filled LLL (ν = 1/2),
whereas the FQHE is seen at ν = 5/2, i.e., the half-filled
second LL (SLL) [1]. The former is well understood as a
Fermi sea of composite fermions (CFs) [2–4], whereas the
latter is believed to be a paired state of composite fermions,
described by the Moore-Read Pfaffian wave function [5,6] or
its particle-hole conjugate [7,8]. The FQHE at ν = 2/5 in the
LLL is a Jain CF state [9], whereas at ν = 2/5 in the second
LL (i.e., ν = 12/5) it is not [10–12]; it is likely described by
the particle-hole conjugate of a Read-Rezayi wave function
[13–17]. Even the applicability of the Laughlin wave function
[18] to the 1/3 FQHE in the second LL (ν = 7/3) has been
debated [19–26].

In recent years, Balram and collaborators have demon-
strated that some of Jain’s parton states [27] are reasonable
candidates for the second LL FQH states, such as those at ν =
5/2 [28], ν = 7/3 [25], ν = 12/5 [29], and ν = 2 + 6/13
[30,31]. (We stress here that the n = 1 LL of monolayer
graphene behaves differently from the SLL of ordinary semi-
conductors such as GaAs. The physics of the n = 1 LL of
monolayer graphene is similar to that of the LLL of GaAs,
described very well in terms of the CF theory [32].) Certain
other states from the parton construction have been proposed
for higher graphene LLs [33,34] and wide quantum wells [35].
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Many of these states support non-Abelian quasiparticles, as
shown by Wen [36,37].

In this article, we study the competition between two
members of the parton family, labeled by 3̄3̄111 and 311
(the meaning of which is explained below), both of which
are candidate states at ν = 3/7. The 311 state represents
the familiar integer quantum Hall (IQH) state of composite
fermions [9], has Abelian quasiparticles, and is known to
describe the 3/7 FQHE in the LLL. In contrast, the 3̄3̄111
state is believed to support non-Abelian quasiparticles that
have sufficiently rich braid statistics to allow, in principle,
universal topological quantum computation (similar to what
is believed for the 12/5 FQHE). Our principal result is to
show that in the SLL of GaAs, i.e., at ν = 2 + 3/7, the 3̄3̄111
state is variationally superior to the 311 state, and it is also
an excellent representation of the ground state found in exact-
diagonalization studies for finite systems.

It is worth remarking on the current experimental status of
the nature of the state at ν = 2 + 3/7. An earlier experimental
work [38] reported a shoulder in Rxx near ν = 2 + 3/7 in
GaAs quantum wells, suggesting an incipient FQHE, but ex-
periments in better quality samples and at lower temperatures
[39–41] show an RH = h/(2e2) IQH plateau (“reentrant IQH
state”) at ν = 2 + 3/7, indicating the formation of presum-
ably a bubble crystal that is pinned by the disorder. Evidence
for 10/7 and 11/7 FQHEs has recently been seen in bilayer
graphene (BLG) [42], although it is unclear at the moment
if the LL orbital hosting this state is more similar to the
lowest or the second LL of semiconductor quantum wells.
(The band structure and hence the Landau level structure
of bilayer graphene is known under some assumptions. The
“zeroth” LL consists of doublets labeled as |0〉 and |1〉. The
state |0〉 is identical to the LLL state of GaAs. The state |1〉
is an “admixture” of the LLL and SLL states of GaAs, where
the relative importance of the two components is controlled by
parameters such as the magnetic field. As the magnetic field is
increased, the state |1〉 goes from being similar to the SLL of
GaAs to being similar to the n = 1 LL of monolayer graphene;
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the physics of the latter is well described in terms of weakly
interacting composite fermions [32], producing the standard
Jain CF state at ν = 3/7.) A bump in the incompressibility has
also been observed in BLG in the n = 1 LL at 4/7 filling [43].
If this is indeed confirmed as an FQHE state, the hole partner
of our 3/7 parton state should be the leading candidate for its
explanation.

Our numerical studies do not rule out the possibility that
the actual ground state at ν = 2 + 3/7 is an FQHE liquid.
This possibility would be consistent with experiments if the
FQHE state is masked by disorder, given that disorder favors a
crystal over a liquid; in that scenario, an FQHE at ν = 2 + 3/7
would reveal itself in still better quality samples. The other
possibility, of course, is that the true ground state at ν =
2 + 3/7 is a bubble crystal. However, our numerical results
suggest that the incompressible 3̄3̄111 liquid state is very
competitive and might be stabilized by changing the effective
interaction between electrons, which can be accomplished by
changing the width of the quantum well and/or the density, or
LL mixing, or by screening the interaction with the help of a
nearby metallic layer. If an FQHE is observed at ν = 2 + 3/7,
the considerations of this article should be relevant.

II. THE PARTON CONSTRUCTION

The parton construction [27] provides a theoretical frame-
work for constructing new candidate FQH states from known
QH states. In the parton construction, one considers break-
ing the electrons into m species of fictitious particles called
partons, with the parton species labeled by λ. Because the
density of each parton species must be the same as the electron
density [given by ρ = eνB/(hc), where B is the external
magnetic field], we must have eν = eλνλ, indicating that the
charge of the λ-parton is given by eλ = ν/νλ in units of the
electron charge (−e). Because the parton charges must add to
the electron charge, we have

∑m
λ=1 eλ = −e. It follows that

electron filling ν is related to the parton fillings {νλ} as ν =
[
∑m

λ=1 ν−1
λ ]−1. A candidate incompressible state is produced

when each parton species occupies an incompressible state, in
particular an IQH state with filling νλ = nλ. We label the in-
compressible parton states by their integer fillings n1n2 · · · nm.
This leads to trial wave functions of the form

�n1n2···nm = PLLL

m∏
λ=1

�nλ
({zk}), (1)

where �n is the Slater determinant wave function for n filled
Landau levels of noninteracting particles, zk = xk − iyk are
the complex coordinates of the kth electron, and PLLL is the
lowest Landau level projector. Note that all the partons have
the same coordinate as their parent electrons. This “gluing”
procedure removes the artificial degrees of freedom intro-
duced by breaking the electrons into partons. We also intro-
duce the notation n̄ to denote negative fillings (i.e., negative
magnetic field), which correspond to factors of �n̄ = �∗

n in
the trial wave functions. Parton states can be Abelian or non-
Abelian. The Abelian Jain CF wave functions [9] are a subset
of the parton theory; they are states of the form n11 · · · . States
with repeated factors of �nλ

, where |nλ| � 2, are non-Abelian
[36,44,45].

A non-Abelian state at ν = 3/7

At filling factor ν = 3/7, the parton theory provides a non-
Abelian candidate state 3̄3̄111 described by the wave function

� 3̄3̄111
ν=3/7 = PLLL[�3̄]2�3

1 =
[
�CF

3/5

]2

�1
. (2)

In the second equality above, we have used �CF
3/5 =

PLLL�3̄�
2
1 to define the LLL projection of � 3̄3̄111

ν=3/7 in a specific
fashion; past work has indicated that different ways of accom-
plishing LLL projection yield very similar wave functions,
and in particular they do not alter the topological nature of
the state [46]. A nice feature of the 3̄3̄111 wave function
as expressed in Eq. (2) is that it can be evaluated for large
system sizes, which allow a reliable extrapolation of its ther-
modynamic energy. This relies on the fact that the CF states
can be evaluated for hundreds of electrons using the Jain-
Kamilla (JK) method of projection [3,47–50]. For the n̄11
states, which involve reverse flux attachment (i.e., negative
filling factors), it is time-consuming to evaluate the states for
systems sizes larger than 50 electrons since the wave-function
calculation requires high-precision arithmetic, which slows
down the computation considerably; nonetheless, as we see
below, reliable thermodynamic limits can be obtained with
systems accessible to numerical evaluation. We note that the
wave functions we consider are always constructed in the LLL
since they can readily be evaluated in this form. The second
LL physics will be simulated in the LLL by using an effective
interaction whose Haldane pseudopotentials in the LLL are
very nearly the same as the second LL pseudopotentials of the
Coulomb interaction.

The 3̄3̄111 state has a Wen-Zee [51] shift S = −3 in the
spherical geometry, defined below. Due to repeated factors
of 3̄, the 3̄3̄111 state is a non-Abelian state hosting quasi-
particles whose non-Abelian fusion rules are described by an
SU(2)−3 Chern-Simons (CS) theory [29,36,52]. The braiding
properties of these so-called Fibonacci anyons are rich enough
to potentially carry out universal fault-tolerant topological
quantum computation [53,54].

III. NUMERICAL RESULTS

We perform variational Monte Carlo (VMC) and exact-
diagonalization (ED) calculations in the spherical geometry
[55] wherein N electrons are confined to the surface of a
sphere. The radial magnetic field is generated by a magnetic
monopole placed at the center of the sphere. The strength of
the magnetic monopole is denoted by the integer 2Q, which
produces a magnetic flux of 2Qφ0, where φ0 = hc/e is the
magnetic flux quantum. The radius of the sphere is given
by

√
Q�, where � = √

h̄c/(eB) is the magnetic length. On
the sphere, the single-particle orbitals in the Landau level
indexed by n = 0, 1, . . . are eigenstates of the orbital angular
momentum operator with eigenvalue l = |Q| + n, and they
can be labeled by the z-component of their orbital angular
momentum, lz, which ranges from −(|Q| + n) to |Q| + n. For
incompressible states, the strength of the magnetic monopole
is the sum of the effective magnetic monopoles required to
create each parton species’ IQH effect (IQHE), i.e., 2Q =
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FIG. 1. Thermodynamic extrapolations of the per-particle Coulomb energies for the 311 (red circles) and the 3̄3̄111 (blue triangles) states
at ν = 3/7. Panels (a), (b), and (c) show energies in the n = 0 LL, n = 1 LL of GaAs, and in the n = 1 LL of monolayer graphene,
respectively. The extrapolated energies, obtained from a linear fit in 1/N , are quoted in Coulomb units of e2/(ε�) in the plot, and the
number in the parentheses indicates the uncertainty in the linear fit. These energies include contributions of the electron-background and
background-background interaction, and they are density-corrected [57]. In panel (b), we have added a quadratic fit in 1/N (green dashed line)
to demonstrate that the ordering of states does not depend on the extrapolation method. The Coulomb energies for the Jain 311 state in the
n = 0 and 1 LLs of monolayer graphene have been reproduced from Refs. [60] and [32].

∑
λ 2Q∗

λ = ∑
λ (N/nλ − nλ). In constructing states on the

sphere, we note the shift [51] is given by S = ν−1N − 2Q.
The incompressible states are uniform on the sphere, i.e., they
have total orbital angular momentum L = 0.

Throughout this work, we assume that the magnetic field is
sufficiently large to fully spin-polarize the electrons. We also
neglect the effects of LL mixing and disorder. We will assume
zero width for most of our work, but we will also consider how
a finite quantum-well width affects our results. In the LLL, we
use the bare Coulomb interaction to calculate the energy of the
zero-width system. For the n = 1 LL of GaAs and graphene,
we use the effective interactions employed in Refs. [56] and
[32], respectively, to simulate the physics of the n = 1 LL in
the LLL.

A. Ground state

In Fig. 1 we compare the VMC energies of the 3̄3̄111 and
the 311 wave functions at ν = 3/7 in the LLL and the n = 1
LLs of GaAs and monolayer graphene. These energies include
the electron-electron, electron-background, and background-
background contributions [the last two collectively contribute
−N2/(2

√
Q�) to the total energy]; we further multiply these

energies by
√

2Qν/N , which corrects for the finite-size devi-
ation of the density from its thermodynamic value and thus
minimizes finite-size effects [57]. All energies are given in
units of e2/(ε�), where ε is the dielectric constant of the
host material. As anticipated, in the LLL the 311 state has
lower energy than the 3̄3̄111 state. In contrast, in the SLL of
GaAs, we find that the 3̄3̄111 state has lower energy. In the
n = 1 LL of monolayer graphene, we find the 311 state has
lower energy, consistent with the fact that FQHE states in the
n = 1 LL of monolayer graphene conform to the CF paradigm
[32,58,59]. Under our working assumption of neglecting the
effects of finite width and LL mixing, the results for the n = 0
LL of graphene are identical to those in the LLL of GaAs.

Next, we present results obtained from ED at the appro-
priate flux of 2Q = 7N/3 + 3. The exact ground states in the
SLL for the three smallest systems of N = 9, 12, 15 electrons
are all uniform, i.e., they have L = 0. The next system size
of N = 18 electrons, which has a Hilbert space dimension
of above 25 billion, is not accessible to ED. The exact SLL

Coulomb ground state has an overlap of 0.92 with the 3̄3̄111
state for N = 9. (For this purpose, we have obtained an exact
Fock-space representation of the 3̄3̄111 state using the method
described in Ref. [61].) This overlap is small compared to
those we encounter for n11 states in the LLL, but quite high
for typical comparisons in the SLL; for example, the 7/3
Coulomb ground state for N = 9 electrons has an overlap of
0.48 with the Laughlin 111 state. The calculation of the Fock-
space representation of the 3̄3̄111 state with N � 12 is beyond
our computational reach, which precludes a determination of
its overlap with the exact ground state for these systems.

We next compare the pair-correlation function of the exact
SLL Coulomb ground state with that of the 3̄3̄111 state for
N = 15 electrons (see Fig. 2). The pair-correlation functions
of both states show oscillations that decay at long distances,
which is a typical characteristic of an incompressible state
[62,63]. Moreover, both states show a “shoulder”-like feature
in the pair-correlation function at short distances, which is a
signature of clustering in non-Abelian states [13,64]. Further-
more, these two pair-correlation functions are in remarkably
good agreement with each other. To test whether the results
depend sensitively on the choice of the pseudopotentials, we
have also evaluated the exact ground state in the SLL with the

FIG. 2. The pair correlation function g(r) as a function of the arc
distance r on the sphere for the exact second Landau level Coulomb
ground state (red filled dots), and the 3̄3̄111 state of Eq. (2) (blue
open circles) for N = 15 electrons at a flux of 2Q = 38.
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truncated planar disk pseudopotentials for N = 15 electrons.
The overlap between the ground states obtained using the disk
and spherical pseudopotentials is 0.9792, which shows that
the two ground states are quite close to each other.

For the N = 15 system, the exact energy for the effective
interaction we use to simulate the physics of the n = 1 LL in
the LLL is −0.3826. In comparison, the 3̄3̄111 state has an
energy of −0.3809(1) for the same interaction. (The number
in the parentheses is the statistical uncertainty in the Monte
Carlo estimate of the energy of the 3̄3̄111 state.) This level of
agreement is on par with that of other trial states in the second
Landau level [31]. For completeness, we have also evaluated
the exact LLL Coulomb ground state for the same system. The
ground state in the LLL is not uniform (it has L = 4), which
indicates that the natures of the ground states in the two LLs
are quite different from each other for this system.

These studies show that the 3̄3̄111 state is variationally
better than the 311 state in the SLL, and it also provides a very
good approximation for the exact ground state for systems
accessible to ED. These facts establish the plausibility of the
3̄3̄111 state for FQHE at ν = 2 + 3/7 in the SLL of GaAs.

B. Excitation gaps

We can extract the charge and neutral gaps for the three
smallest systems that are accessible to exact diagonalization.
The charge gap here is defined as 
c = [E (2Q =
7N/3 + 4) + E (2Q = 7N/3 + 2) − 2E (2Q = 7N/3 + 3)]/3,
where E (2Q) is the ground-state energy at flux 2Q, and the
factor of 3 in the denominator accounts for the fact that the
addition or removal of a single flux quantum produces three
fundamental quasiholes or quasiparticles in the 3̄3̄111 state.
The neutral gap 
n is defined as the difference between
the two lowest energies at the flux of 2Q = 7N/3 + 3. The
density-corrected charge and neutral gaps, which include
the background contribution, for the individual systems are
reported in the table inset in Fig. 3. The charge and neutral
gaps do not fit well to a linear function of 1/N and thus we
do not have a reliable estimate of them in the thermodynamic
limit. Also, the neutral gap is larger than the charge gap for
these systems, which indicates strong finite-size effects in the
SLL. (We expect the charge gap to be larger than or equal to
the neutral gap in the thermodynamic limit.)

We have also attempted to estimate the charge gap via
a VMC. To do so, we create a quasihole-quasiparticle pair
by promoting one particle in one factor of �3̄ to the fourth
� level (�L). (�Ls are the Landau-like levels occupied by
partons at their respective effective magnetic field.) We assign
the z-component of the orbital angular momentum of the
single-particle state for the quasihole in the third �L to be at
the maximal value, namely lz = (|Q∗

−3| + 2), while the single-
particle state of the quasiparticle in the fourth �L is placed in
the state with the minimal z-component, lz = −(|Q∗

−3| + 3).
Thus, the quasiparticle and quasihole are as far separated as
possible to minimize the contribution of their interaction to
the total energy. The excited state is modeled using the parton
wave function

�exciton
3/7 = PLLL

[
�exciton

3

]∗
[�3]∗�3

1 = �CF-exciton
3/5 �CF

3/5

�1
, (3)

FIG. 3. Charge gap 
c calculated from the difference in energies
of the trial wave functions presented in Eqs. (3) and (2). The gap
shows strong finite-size fluctuations, precluding a clear extrapolation
to the thermodynamic limit, but is finite for all N considered. The
lack of a clear trend with 1/N is likely the result of the large overlap,
and thus a significant interaction, of the quasiparticle and quasihole
for small system sizes (see the text and Fig. 6). We estimate from this
calculation that the charge gap should be of the order 0.01e2/(ε�).
For comparison, the inset shows the charge and neutral gap 
n

(see the text for definition) for small systems evaluated from exact
diagonalization.

where the superscript “exciton” refers to the creation of a
quasiparticle and quasihole in this factor. The gap does not fol-
low a linear fit in 1/N , indicating strong finite-size corrections,
and we only roughly estimate it to be of order 0.01 e2/(ε�)
as shown in Fig. 3. The reason for strong finite-size effects
is that, as we show below, the quasihole and quasiparticle
are very large, and for the system sizes that we can access,
they overlap significantly. (As shown below, we need to go
to systems with 90 particles before we see a well-separated
quasiparticle and quasihole.) We have not attempted to evalu-
ate the charge gap using the standard procedure of inserting
or removing a flux quantum since doing so creates three
quasiholes or three quasiparticles in the 3̄3̄111 state, which
would overlap strongly and thus the interactions between
them cannot be neglected. As a result, we cannot place the
particles on the sphere so that they are well separated for any
reasonably sized system accessible by the JK projection.

C. Stability of the 3̄3̄111 state

Next, we test the stability of the 3̄3̄111 state in the SLL to
small perturbations in the interaction. We consider two start-
ing unperturbed interactions: the spherical pseudopotentials
and a set of truncated disk pseudopotentials (remember that
the interaction is fully defined by the pseudopotentials). We
then add small deviations to the V1 and V3 pseudopotentials
for each case. We diagonalize these systems to find the charge
and neutral gaps, as well as the overlap with the 3̄3̄111 state.
In Figs. 4 and 5, we present color plots for each quantity
in the δV1-δV3 plane for the spherical and truncated disk
pseudopotentials, respectively. We find that for a wide range
of perturbations, the overlap between the 3̄3̄111 state and the
ED ground state remains high, and the state also supports
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FIG. 4. Overlap and density-corrected gap maps obtained in the spherical geometry using exact diagonalization of N = 9 electrons with
the 3̄3̄111 state at ν = 3/7 by perturbing V1 and V3 around the second Landau level (SLL) spherical pseudopotentials. The system of N = 9
electrons at a flux of 2Q = 24 aliases with the Laughlin state; therefore, for comparison, in the top right panel we show the overlap map for the
ν = 1/3 Laughlin state for the same system. The center dot denotes the exact SLL Coulomb point (V1 = 0.4642 and V3 = 0.3635) for which
the values in the four panels are (a) |〈� 3̄3̄111

3/7 |�SLL
3/7 〉| = 0.92, (b) |〈�Laughlin

1/3 |�SLL
1/3 〉| = 0.48, (c) neutral gap 
n = 0.022, and (d) charge gap


c = 0.010.

finite neutral and charge gaps. Since for N = 9 particles the
3̄3̄111 state occurs at the same flux as the 1/3 Laughlin state,
we have also calculated the overlap of the ground states with
the Laughlin state. As the upper right panels of Figs. 4 and 5
show, the Laughlin state has a lower overlap than the 3̄3̄111
state at the SLL Coulomb point, but the Laughlin overlap
grows as the pseudopotentials become more like the LLL, i.e.,
as V3 decreases relative to V1.

While the aliasing with the Laughlin state for N = 9 makes
the situation somewhat complicated, the fact that 3̄3̄111 does
better than a very plausible competing state makes it all
the more compelling. As of now, it has not been possible
to calculate overlaps for the next system, namely N = 12,
for which we have not been able to obtain the Fock space
representation of the 3̄3̄111 state.

D. Fractional charge of the quasiparticles

The parton theory predicts that the minimal charge quasi-
particle of the 3̄3̄111 state is obtained by creating a quasi-
particle in the 3̄ factor. This excitation carries a charge of
(−e)/7. It is interesting to note that the non-Abelian nature
of the 3̄3̄111 state does not cause a further fractionalization of

its quasiparticle charge. (Another example of a non-Abelian
state where the charge does not fractionalize further is the
2̄2̄2̄1111 state at ν = 2/5 [29].) Accessibility to large system
sizes allows us to microscopically evaluate the charge of the
quasiparticle in the 3̄3̄111 state. In Fig. 6 we show the density
profile ρ(r) of the 3̄3̄111 state at ν = 3/7 with an exciton
where the constituent quasiparticle is located at the north pole
and the quasihole at the south pole of the sphere. We consider
a system of N = 90 particles in this calculation. This state is
modeled by the wave function given in Eq. (3). Close to the
equator, the density of the state goes to the density ρ0 of
the uniform 3̄3̄111 state. Note that the density distributions
of the quasihole and quasiparticle are not identical since they
reside in different �Ls. Furthermore, the quasiparticle and
quasihole of 3̄3̄111 have a wider extent compared to their 311
counterparts. To demonstrate that the smallest charge quasi-
particle (quasihole) of the parton ansatz 3̄3̄111 has a charge
equal to one-seventh (minus one-seventh) of the electron
charge, we calculate the integrated cumulative charge Q(r) =
(−e)

∫ r
0 d2 �r1[ρ( �r1) − ρ0] from the north (south) pole to the

equator. Doing so for the system of N = 90 electrons shown
in Fig. 6, we obtain a charge of magnitude 0.145e, which is
close to the expected value in the thermodynamic limit of

FIG. 5. Same as Fig. 4 but with results obtained using the second Landau level (SLL) truncated disk pseudopotentials. The center dot
denotes the exact SLL Coulomb point (V1 = 0.4154 and V3 = 0.3150) for which the values in the four panels are |〈� 3̄3̄111

3/7 |�SLL
3/7 〉| = 0.90,

|〈�Laughlin
1/3 |�SLL

1/3 〉| = 0.64, neutral gap 
n = 0.021, and charge gap 
c = 0.010.
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FIG. 6. (a) Density profile ρ(r) of a state with a far-separated
quasihole and quasiparticle at ν = 3/7 modeled by the parton wave
function given in Eq. (3) for N = 90 electrons on the sphere. The
quasiparticle is located at the north pole and the quasihole is located
at the south pole. The quantity shown is [ρ(r) − ρ0]/ρ0, where ρ0 is
the density of the uniform 3̄3̄111 state at ν = 3/7. (b) The quasihole
(quasiparticle) cumulative charge Q(r) = (−e)

∫ r
0 d2 �r1[ρ( �r1) − ρ0]

[for the quasiparticle we show −Q(r)] as a function of the distance r
measured along the arc from the south (north) pole to the equator
in units of the magnetic length �. The quasihole (quasiparticle)
cumulative charge approaches −1/7 (1/7), in units of the electron
charge (−e), near the equator.

e/7 = 0.143e; the small discrepancy arises from the fact that
even for a system with N = 90 particles the quasiparticle and
quasihole have a finite overlap.

E. Effect of finite well width

We have also considered the effect of the finite well width
w of the quantum well in the LLL and SLL of GaAs. The
LLL finite width interaction is obtained via a self-consistent
LDA method for a given well width and electron density
[65]. We explore parameters ranging from w = 18 to 70
nm and electron densities ρ ranging from 0.1 × 1011 to 3 ×
1011 cm−2. Representative thermodynamic extrapolations for

several different densities at the fixed quantum-well width of
70 nm are shown in the left panel of Fig. 7. The Jain 311
state has lower energy in the LLL for all parameters we have
studied.

In the SLL, we use an effective interaction parametrized
by the well width in units of magnetic length for an infinite
square-well confinement potential, described in detail by Töke
et al. [56]. (Well widths considered correspond to those
presented in Table I of [56].) We have calculated energies for
well widths, w, up to 5�, shown in the right column of Fig. 7.
We find that the 3̄3̄111 state has lower energy in the SLL for
the entire range of widths considered. A better LDA treatment
of the finite width in the SLL is possible and will be needed
should experiments observe a phase transition as a function of
width; we have not pursued that in this article.

IV. DISCUSSION AND EXPERIMENTAL RAMIFICATIONS

Our exact diagonalization studies in the spherical geometry
for systems with up to N = 15 particles are consistent with a
non-Abelian FQHE at ν = 2 + 3/7. We note that competition
between an FQHE liquid and a charge density wave state
such as a Wigner or a bubble crystal can be quite subtle
[66]. The spherical geometry favors a liquid for finite systems,
and a crystal may be stabilized in the thermodynamic limit.
However, our calculations make a strong case that the 3̄3̄111 is
very competitive here, and if an FQHE is seen at ν = 2 + 3/7,
it likely represents a new non-Abelian state.

One may ask how the 3̄3̄111 state may be distinguished
from the 311 state. We end the article with a comparison of
the various topological properties of the two states.

The minimally charged quasiparticle carries a charge of
magnitude e/7 for both the 3̄3̄111 and the 311 states. How-
ever, the quasiparticles of the 3̄3̄111 state obey non-Abelian
braid statistics [36], in contrast to the Abelian quasiparticles
of the 311 state.

The Hall viscosity of FQH states is expected to be quan-
tized [67]: ηH = h̄ρ0S/4, where ρ0 = (3/7)/(2π�2) is the
electron density and S = −3 is the shift of the 3̄3̄111 state.
In contrast, the Hall viscosity of the 311 state is given by
ηH = (5/4)h̄ρ0, corresponding to shift S = 5.

FIG. 7. Thermodynamic limits for several finite width systems in the lowest Landau level (LLL) (left panel) and the second LL (right
panel). The LLL results are for a 70 nm well for several densities ρ quoted in units of 1011 cm−2 in the plot. The second LL finite width
interaction is parametrized only by the width of the well w in units of magnetic length.
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Due to the presence of the 3̄ factors, the 3̄3̄111 state
possesses upstream neutral modes that can be detected in
shot noise experiments [68–71]. Recently, thermal Hall mea-
surements have been carried out at many filling factors in
the lowest as well as the second LL of both GaAs [72,73]
and monolayer graphene [74]. These thermal Hall experi-
ments can distinguish between the 3̄3̄111 and 311 states. In
particular, the thermal Hall conductance κxy of the 3̄3̄111
state is −(11/5)[π2k2

B/(3h)]T , which is different from what
one would expect from the 3/7 CF state, which has κxy =
3[π2k2

B/(3h)]T (note that filled LLs provide an additional
contribution to the thermal Hall conductance).

The parton state at ν = 3/7 suggests the sequence of n̄n̄111
states described by the wave functions

� n̄n̄111
ν=n/(3n−2) = PLLL[�n̄]2�3

1 =
[
�CF

n/(2n−1)

]2

�1
. (4)

The n̄n̄111 state occurs at filling factor n/(3n − 2) and has
a shift of S = 3 − 2n. The n = 1 member lies in the same
universality class as the standard ν = 1 IQHE [46]. The n =
2 member describes a wave function that lies in the same
topological phase as the ν = 1/2 anti-Pfaffian state [28].
We considered the n = 3 member in detail in this work.
The n = 4, 5, . . . members provide wave functions at ν =
2/5, 5/13, . . . , which might be relevant for certain interac-
tions. We leave a detailed exploration of their properties to
future work.

We have not performed an energetic comparison with the
bubble crystal state. We have not investigated whether the
3̄3̄111 state at ν = 3/7 may occur in a higher LL of monolayer
graphene. The state is unlikely to occur in the n = 0 and 1 LLs
of monolayer graphene, whose physics is well described in
terms of weakly interacting composite fermions [32], through
observation of the standard Jain states at ν = n/(2pn ± 1)
(see, for example, Refs. [34,58,75]). In the n = 2 LL of
monolayer graphene, FQHE has been seen [34] at ν = 1/5
and 2/9. It is possible that the 3̄3̄111 state may occur in n = 2
or a higher LL of monolayer graphene.

Before closing, we mention other candidate states at 3/7.
A non-Abelian candidate state was put forth by Jolicoeur [76].
The Jolicoeur wave function is given by

�Jolicoeur
3/7 = PLLL

[
�bosonic-RR

3/2

]∗
�3

1, (5)

where the bosonic version of the three-cluster Read-Rezayi
(RR) state [13] is defined as

�bosonic-RR
3/2 = S

⎡
⎣ ∏

l=1,2,3

∏
il < jl

(zil − z jl )
2

⎤
⎦. (6)

Here S denotes the operation of symmetrization of the N par-
ticles into three clusters of N/3 particles each. The Jolicoeur
3/7 wave function has a shift of S = 1, which is different
from our parton state and therefore represents a different

topological phase from the parton state. The Jolicoeur wave
function is not easily amenable to a numerical calculation, and
thus we have not considered it in our work.

Hermanns’s hierarchical construction also produces a non-
Abelian state at ν = 4/7 [77]. This state is described by
an su(3)2/u(1)2 conformal field theory (CFT) [77,78]. The
particle-hole conjugate of this state occurs at ν = 3/7 and
a shift S = −3, which is the same as the parton state. Just
like the Jolicoeur state, the microscopic wave function of the
Hermanns’s hierarchical state is not readily amenable to a
numerical calculation to allow us to compare energies and
overlaps.

Sreejith et al. considered a bipartite CF state at 4/7 [79]
that likely lies in the same universality class as the Her-
manns hierarchy state. Sreejith et al. showed that the bipartite
CF state provides a good representation of the exact SLL
Coulomb ground state. These results suggest that the particle-
hole conjugate of the 4/7 Hermanns’s hierarchical state is
possibly in the same universality class as our parton state.

Simon, Rezayi, and Regnault [80] constructed a family of
wave functions at ν = 3/7 based on S3 CFTs. These states
occur at a shift S = 5, which is different from our parton state,
and therefore represent a different universality class from our
parton state.

In summary, we have considered the feasibility of the
non-Abelian 3̄3̄111 state for FQHE at ν = 2 + 3/7, i.e., when
the second Landau level is 3/7 occupied. We have shown that
this state has lower energy than the Abelian 311 state, and
also has a high overlap with the exact ground state for small
systems. We have also proposed experimental measurements
that can reveal the underlying non-Abelian topological order
of the 3̄3̄111 state and distinguish it from the Abelian 311
state.
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