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Viscoelastic multiscaling in immersed networks
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Rheological responses are the most relevant features to describe soft matter. So far, such constitutive relations
are still not well understood in terms of small scale properties, although this knowledge would help the design
of synthetic and biomaterials. Here, we investigate, computational and analytically, how mesoscopic-scale
interactions influence the macroscopic behavior of viscoelastic materials. We design a coarse-grained approach
where the local elastic and viscous contributions can be controlled. Applying molecular dynamics simulations,
we mimic real indentation assays. When elastic forces are dominant, our model reproduces the Hertzian
behavior of contact. However, when friction increases, it restores the standard linear solid model. We show
how the response parameters depend on the microscopic elastic and viscous contributions. Besides, we show
that the contact Hertz model is equivalent to the virial stress, an atomistic approach of the continuum Cauchy
stress tensor. In addition, relaxation experiments were performed on polyacrylamide gels with an atomic force
microscopic in order to validate our numerical relaxation curves. The bisacrylamide concentration in the gel has
a clear impact on the equivalent elastic and viscous contributions of the sample. Moreover, our findings also
suggest that the relaxation times, obtained in relaxation and oscillatory experiments, obey a universal behavior
in viscoelastic materials.

DOI: 10.1103/PhysRevResearch.2.033222

I. INTRODUCTION

One big challenge in science and engineering is the so-
called multiscale modeling, namely, how constitutive relations
of a material depend on its smaller scale interaction and com-
position [1,2]. Such emergence problem, as described by P. W.
Anderson [3], is even more remarkable in soft matter, where
mesoscopic structures combine the atomistic and macroscopic
frameworks and are responsible to the material elasticity and
viscosity [4,5]. In fact, the link among features of different
scales forming the matter is highly nontrivial and subjected
to intense research [6]. The seminal work of H. Hertz about
mechanical contacts, for instance, is still used nowadays to
measure elastic properties of materials by analyzing how
samples are deformed under applied stresses [7]. Although
it is one of the most used models to investigate the stiffness
of a material, it fails to relate the macroscopic behavior with
its inner parts. Besides, well-known analytical approaches
such as the Maxwell, Kelvin-Voigt, and standard linear solid
models apply circuit analogies to propose a simple manner of
how elastic and viscous terms mix up in viscoelastic materials
[8]. Again, these rheological models neglect any downscaling
analysis.
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Currently, many sophisticated methods have been devel-
oped to study the viscoelasticity of materials. Nanoindentation
experiments, for instance, such as those with atomic force
microscopy, are extensively applied to investigate the me-
chanical properties at micrometer scale. Besides condensed
matter, such technique has also been used to investigate soft
materials [9–12]. The way the sample responses to external
stresses depends on its elastic and viscous terms. However,
the complex structure and composition in soft matter systems
make it challenging to investigate accurately the distribution
of applied stresses through their interior. Many soft matter
systems hold large colloidal aggregations or long polymeric
chains, which have an essential mechanical role [4]. In living
cells, for example, the cytoskeleton and the cytoplasmic fluid
are constantly exchanging momentum with the extracellular
surroundings [13,14]. The knowledge of why these organelles
influence the cell stiffness differently in healthy and sick cells,
may lead to treatments for several diseases [15].

To investigate the link between mesoscopic and macro-
scopic features, we employ a molecular coarse-grained ap-
proach to reproduce rheological behavior of soft matter. We
design a viscoelastic material composed of a particle-spring
network immersed in a viscous medium where the contribu-
tion of elastic and viscous interactions can be controlled at the
mesoscopic level. This is compatible with suspended poly-
mer chains, colloidal aggregations, and other load-bearing
structures as commonly found in soft materials [4]. Although
real materials unlikely present purely quadratic potentials,
for small deviations, molecular interactions displaying a po-
tential well can be described appropriately by a spring-like
interaction. For instance, the equivalent spring constant of the
Lennard-Jones potential can be calculated as 72ε0/�

2
0, where

2643-1564/2020/2(3)/033222(10) 033222-1 Published by the American Physical Society

https://orcid.org/0000-0001-5101-6246
https://orcid.org/0000-0001-8262-237X
https://orcid.org/0000-0001-5810-031X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.033222&domain=pdf&date_stamp=2020-08-07
https://doi.org/10.1103/PhysRevResearch.2.033222
https://creativecommons.org/licenses/by/4.0/


J. L. B. DE ARAÚJO et al. PHYSICAL REVIEW RESEARCH 2, 033222 (2020)

FIG. 1. Particle-spring network arranged in an FCC (face-
centered cubic) lattice with height H and immersed in a viscous
medium (not shown in the figure). Particles are bonded to their 12
nearest neighbors. A spherical indenter of diameter σs is used to press
down the top surface of the network.

ε0 is the height of the potential well and �0 the equilibrium
distance between molecules [16]. Moreover, our model is
easily changed to support a more realistic potential in order
to study more complex materials. We also consider the spring
network as a regular lattice. Although complex structures
may influence rheological properties of a material, simple
geometries have been successfully applied to a large number
of problems in mesoscopic models of condensed [17,18] and
soft materials [19–21].

II. NUMERICAL MODEL

Our computational model consists of N spherical particles
of diameter σ and mass m arranged in a face-centered cubic
(FCC) lattice with a height given by H and a bottom and top
plane given by 20σ × 20σ sin(π/3). Every particle interacts
with its 12 nearest neighbors by a spring potential. This elastic
network is immersed in a medium of viscosity μ. Viscous
effects are taken into account by considering friction between
the particles and the medium. The network is indented by a
hard sphere of diameter σs, as shown in Fig. 1. This spherical
indenter moves down with constant speed until a maximum
indentation depth δ0 is achieved. To avoid nonlinearities, we
consider δ0 = σ , i.e., the maximum indentation is equal to
the thickness of one layer of particles. Once in contact, the
indenter applies a stress onto the particles. The bottom layer
of the network is in contact to a hard substrate, where particles
cannot move down but are free to slide horizontally. The
viscous flow when the fluid is squeezed is not considered.
However, it has been shown that such effects in deforming
porous media become relevant only in the very beginning of
the force ramp, at small timescales [14,22]. After that, rhe-
ological macroscopic response is dominated by viscoelastic
properties.

The equation of motion of the ith particle is given by the
following Langevin-like equation [23]:

m
d2�ri

dt2
= −γ �vi − ∇Ui, (1)

where �ri and �vi are the position and velocity vectors of particle
i, respectively. The term γ �vi, known as Stoke’s law, describes
the drag force acting on spherical bodies, where the coefficient
of friction is given by γ = 3πσμ [24]. Although similar,
it is not exactly the Langevin equation since the random
forces applied to the particles are not due to the molecules
of the fluid, but, instead, to other particles in the medium. The
potential Ui of particle i due to the neighboring particles and
the indenter is given by

Ui =
∑

j

ki j (ri j − �)2

2
+ ε

(
σ

ris − (σs − σ )/2

)α

, (2)

where ri j = |�ri − �r j | is the distance and � the equilibrium
distance between particles i and j, bonded by the spring
constant ki j . The last term of Eq. (2) applies only to surface
particles in contact with the indenter, where ris = |�ri − �rs|
is the distance between the particle i and the indenter, ε is
a constant of energy, and α regulates the hardness of the
indenter. The particles and the indenter exclusively interact
through this hard-sphere potential with a high value of α. See
the constants used in Appendix A.

The equations of motion shown in Eq. (1) are solved
through molecular dynamics simulations with a time integra-
tion done by the velocity Verlet algorithm with a time step
of 0.001, and periodic boundary conditions applied to the
horizontal plane [25,26]. The contact force F is the sum of
all collisions on the indenter, computed at each time as the
indenter slowly presses down the network. F increases with
the indentation depth δ since more collisions occur on the
indenter. The indentation is divided in 120 microindentation
steps, until δ0 is reached. These collisions cause a fluctuation
in F , but an equilibrium state is reached in around 105 time
steps. After equilibrium, we perform an additional 2 × 105

time steps to average the quantities of interest.

III. INDENTATION ASSAYS IN ELASTIC NETWORKS

Before viscoelastic materials, we explore networks without
local friction (γ = 0). Initially, we study homogenous net-
works, where all bonds have the same spring constant, ki j = k,
and later we investigate the role of heterogeneities of local
elasticity in the global behavior.

A. Homogeneous networks

The distribution of stress into an elastic sample, due to an
indentation δ, can be described by the Cauchy stress tensor
[27], whereas the force experienced by a spherical indenter is
well described by the Hertz model

FH = 8
√

2

9
E

√
σsδ

3/2, (3)

where E is the effective elastic modulus of the material [28].
The contact forces computed in elastic networks perfectly
agree with the Hertz model, where E can be obtained by
fitting the numerical data with Eq. (3), keeping the other pa-
rameters fixed. The results for homogeneous elastic networks
are shown in Fig. 2. As expected for this simple network,
the effective modulus of elasticity scales linearly with k.
In addition, E is proportional to the sample height in the
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FIG. 2. (a) The contact force, F , probed by a spherical indenter
as a function of the indentation depth, δ, in homogeneous elastic
networks for different value of k and H = 15σ . The elastic modulus
E is computed by fitting our numerical data with the Hertz model
(straight lines), shown in Eq. (3), in different elastic networks. (b) As
expected for homogeneous materials, E displays a linear behavior
with k. Moreover, E is proportional to the sample height in the form
E ∝ H−ζ , where ζ depends on the indenter geometry. Spherical and
flat indenters, for instance, give ζ = 1/3 (main graph) and 1 (inset),
respectively.

form E ∝ H−ζ , where the exponent ζ = 1/3, for spherical
indenters, and ζ = 1, for flat indenters. In the latter case,
the deformation is uniaxial where E represents the Young’s
modulus of the material and ζ can be found analytically with
springs in series. However, for spherical indenters, E seems to
take into account also the shear modulus of the material.

B. Comparison to virial stress

In the general form, the second-order stress tensor ¯̄σ in a
continuum medium can be written as

¯̄σ =
⎛
⎝σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎞
⎠,

where element σpq measures the rate at which q-directed
momentum is transported in the direction p.

The virial stress is an atomistic definition for stress that
is equivalent to the continuum Cauchy stress in which each
element of the tensor is composed of a kinetic part and a
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FIG. 3. (a) The zz element of the virial stress tensor σzz vs the
indentation to the power of 3/2, δ3/2, for different values of k
and γ = 0. The straight lines represent the Hertz behavior. (b) The
contact force F vs σzz at the maximum indentation δ = δ0 and k =
500. The solid line is a straight line showing linear relation.

potential part averaged over all particles, as follows:

σpq = 1

V

⎛
⎝m

N∑
i

vipviq + 1

2

N∑
i �= j

ri jqτi jq

⎞
⎠,

where m is the mass and V the volume occupied by each
particle, vip is the component p of the velocity of particle i,
ri jq is the component q of the vector �ri j separating particles i
and j, τi jq is the component q of the force exerted on particle
i by particle j [29]. For instance, the zz element is written as

σzz = 1

V

⎛
⎝m

N∑
i

v2
iz + 1

2

N∑
i �= j

(zi − z j )τi jz

⎞
⎠,

where zi is the position z of particle i.
In order to show that the virial stress in our system is

equivalent to the Hertz model we compare the component of
the virial stress tensor σzz to the total force F on the indenter,
since F obeys the Hertzian deformation theory and that, in
our computational experiment, the indenter is pushing the soft
sample in z direction. Figure 3(a) shows that σzz holds the
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same power-law behavior than that of the Hertz model as the
indentation increases. We also show that σzz is proportional
to F at the maximum indentation, see Fig. 3(b). These two
behaviors are strong evidences that our microscopic model re-
produces well the elastic response predicted by the continuum
solid deformation theory.

C. Heterogeneous networks

For simplicity, we consider heterogeneous networks made
of only two types of bonds with spring constants given by
k1 and k2, respectively. Moreover, this binary network is built
in two fashions depending on the distribution of k1 and k2,
namely, the double-layered and the binary random network.
In the first, two homogenous layers, with spring constants
given by k1 and k2, respectively, are deposited one on the top
of the other. In the second, ki j is randomly assigned to k1 or
k2 according to probabilities φ1 and φ2, respectively. In both
cases, φ1 and φ2 also stand to the fraction of each bond and
φ1 + φ2 = 1. For the limit cases of φ1 = 0 and φ1 = 1, both
the double-layered and the binary random networks become
homogeneous with spring constant k2 and k1, respectively.

The effective elastic modulus in heterogenous network
as a function of φ1 is shown in Fig. 4. In double-layered
networks, E grows with a cubic function given by E = a +
bφ + cφ2 + dφ3. On the other hand, when k1 and k2 are
randomly distributed over the network, E follows a straight
line, E = a + eφ. The constants a, b, c, d , and e depend on k1

and k2 as well as on geometrical parameters. Interestingly, the
random distribution of local stiffness vanishes those polyno-
mial higher order found in double-layered networks.

IV. RELAXATION ASSAYS IN VISCOELASTIC
NETWORKS

In order to study the effects of viscous forces (γ > 0)
in macroscopic rheological behaviors, we perform relaxation
and oscillatory assays in homogenous viscoelastic networks.
In relaxation experiments, the indenter is initially located
above the network and moving down into the top surface.
Before touching the sample, the contact force is zero. After
contact, at time t1 = 0, the force rises until the maximum
indentation depth, δ0, is achieved, at t3. Figure 5(a) shows
the time evolution of the normalized contact force, f , for k =
500 and several values of γ . The loading time, τl = t3 − t1,
is the time the indenter pushes the sample. After reaching
δ0, the indenter stops moving, but the sample particles may
continue to move subjected to friction (the dwell stage). When
viscous forces are negligible (elastic networks), the particles
immediately rearrange themselves to an equilibrium state and
thus f becomes nearly constant, except for some noise due
to the perpetual undamped movement of the particles. On
the other hand, in viscoelastic networks, this noise quickly
vanishes while f decreases continuously to the value of the
undamped case, at t4, since particles need time to relax into
the equilibrium state. For long times, networks with the same
elastic properties experience the same contact force, regard-
less of the viscous contribution.

Our numerical results are compatible with the Standard
Linear Solid (SLS) model composed of a Maxwell material
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FIG. 4. The effective modulus of elasticity, E , as a function of
the fraction of k1-bonds in heterogeneous elastic networks, φ1, for
k2 = 500 and several values of k1. The double-layered network is
shown in (a) while the binary random network in (b). The snapshots
in the insets shows how k1 and k2 are distributed in the each network.
The black dashed lines in each graph represent the elastic modulus
of homogeneous networks, for k1 = k2 = 500, with E = 570.75. E
decreases with φ1 for k1 < k2, but increases with φ1 for k1 > k2,
regardless the distribution of k1 and k2. Cubic functions and straight
lines, shown in colored solid lines, are used to fit each set of points in
(a) and (b), respectively. In double-layered networks, E grows with
a cubic function given by E = a + bφ + cφ2 + dφ3. On the other
hand, when k1 and k2 are randomly distributed over the network, E
changes according to the straight line E = a + eφ. The constants
a = 570.75, b, c, d, and e depend on k1 and k2 as well as on
geometrical parameters.

(i.e., a spring of elastic modulus E0 in series with a dashpot
of viscosity η) in parallel to another spring of elastic mod-
ulus E∞, see Fig. 5(b). Such analytical model successfully
describes rheological behaviors of a large number of soft
materials, such as polymers [30], soft gels [31], and living
cells [32,33]. The relaxation function of this model is know
as R(t ) = E∞ + E0e−t/τ , where the relaxation time is given
by τ = η/E0. Initially, the effective modulus of elasticity is
given by the sum of E∞ and E0, but, for long times, the
influence of E0 vanishes, leaving E∞ to dominate the elasticity
of the material, regardless of the relaxation time. Notice that
E∞ corresponds to the elastic modulus computed previously
in elastic networks. The analytical force curves in the SLS
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FIG. 5. Relaxation experiments in viscoelastic networks, for k =
500 and different values of γ , are shown in (a). The contact force
increases in the loading stage and decreases in the dwell stage. The
force is normalized by geometric constants; see Appendix B. Our
numerical results are compatible with the standard linear solid (SLS)
model given in Eqs. (4). The inset shows the numerical and the
analytical results diverging a little for small times before converging
again (for t � 20). A schematic illustration of the SLS model is
shown in (b), with a dashpot of viscosity η and two springs of elastic
moduli E0 and E∞.

model with a spherical indenter can be obtained separately
in the loading and dwell stages, respectively, as follows (see
Appendix B)

fl (t ) = a1t3/2 + a2

√
t + a3 er f

(√
t

τ

)
e−t/τ , t � τl ,

fd (t ) = a4 + a5e−(t−τl )/τ + a6e−t/τ , t � τl , (4)

where er f (t ) is the error function and the constants are given
by

a1 = E∞
τ

3/2
l

, a2 = 3

2

τ

τ
3/2
l

E0, a3 = −3

4

√
πE0

(
τ

τl

)3/2

,

a4 = E∞, a5 = 3

2

τ

τl
E0, a6 = a3 er f

(√
τl

τ

)
.

Combining our numerical results with Eqs. (4) allows us
to find the relations between macroscopic (τ and E0) and
microscopic parameters (k and γ ) in viscoelastic networks.
As shown for elastic networks, E∞ increases linearly with k
and does not depend on γ . We find that τ decreases with k
and increases with γ [see Fig. 6(a)]. On the other hand, E0

increases with k but decreases with the local dissipation [see
Fig. 6(b)]. Interestingly, high values of k leads to the same
value of τ , regardless of γ , as high values of γ leads to the

200 400 600 800 1000
k

0

2

4

6

E
0

(x
10

3 )

γ = 20
γ = 40
γ = 60
γ = 80

20 40 60 80 100
γ 

0

2

4

6

E
0

(x
10

3 ) k = 200
k = 400
k = 600
k = 800

(b)

200 400 600 800 1000
k

0

5

10

15

20

25

τ

γ = 80
γ = 60
γ = 40
γ = 20

30 60 90
γ 

0

5

10

15

τ

k = 200
k = 400
k = 600
k = 800

(a)

FIG. 6. The macroscopic properties τ and E0, in (a) and (b),
respectively, as a function of microscopic parameters, k and γ , in
viscoelastic networks under relaxation assays.

same value of E0, regardless of k. Due to the linear deforma-
tion regime and the harmonic interactions, the presence of a
thermal bath would only rise fluctuations (see Appendix C).
Nonlinear effects, however, should lead to intriguing results.

Comparison to atomic force microscopic measurements

In order to validate our numerical results, we performed
atomic force microscopic (AFM) experiments in polyacry-
lamide gels immersed in water, where different mechanical
properties can be achieved by tuning the concentration of
bisacrylamide. In particular, it was recently demonstrated that
polyacrylamide gels are well described by the standard linear
solid model [34,35].

Polyacrylamide gels were prepared from the stock solution
of 30% acrylamide (by weight) in two different concentrations
of N,N-bis acrylamide, namely, 0.2% and 0.8% in volume.
The final gels have a concentration of 0.375 M Tris-HCL,
with pH 8.8. The gels were polymerized chemically by the
addition of 10 μL of tetramethylethylenediamine (Temed) and
0.1 mL of 15% ammonium persulfate solution/10 mL of gel
solution. Conventional force curves were then measured in an
AFM (MFP-3D, Asylum-Research, Santa Barbara, CA, USA)
coupled to an inverted optical microscope Nikon IX51. Soft
cantilevers with nominal spring constant of 0.02 N/m were
used to probe the gels. AFM tips have pyramidal shapes with
half-opening angles of 38◦. To reduce adhesion effects in the
cantilever, the force measurements were performed in distilled
water at room temperature such that the gel and the AFM tip
were fully immersed in water. We obtained gels with average
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FIG. 7. Experimental relaxation curves of two samples of poly-
acrylamide gels with different concentration of bisacrylamide. The
experimental curves (black lines) are compared with relaxation
curves obtained numerically (red lines) in our model with specific
values of k and γ . The force f is normalized by f∞, the value of
f for long times, whereas the time t is normalized by the loading
time τl . Sample 1 (in the main graph) is best fitted for k = 420 and
γ = 18, while sample 2 (in the inset) for k = 642 and γ = 27. The
average of k and γ over several samples are shown in (b).

stiffness of approximately 8 kPa and 39 kPa for the gels with
0.2% and 0.8% of bisacrylamide, respectively.

Figure 7(a) shows the comparison between experimental
and numerical force curves for two samples with different
concentration of bisacrylamide: “sample 1” for 0.2%, and
“sample 2” for 0.8%. The experimental relaxation curves
present a good agreement with those obtained numerically,
where the equivalent k and γ can be found for each sample.
Figure 7(b) shows k and γ averaged over different samples for
each concentration considered. The concentration of bisacry-
lamide clearly increases the average of both k and γ .

V. OSCILLATORY ASSAYS IN VISCOELASTIC
NETWORKS

In oscillatory experiments, instead of stoping the indenter
after δ0 is achieved, a sinusoidal strain is imposed with the in-
dentation depth following the function, δ(t ) = δ0 + δasin(ωt ),
where δa (δa = σ ) is the amplitude and ω the angular fre-
quency of oscillation. The response force also presents a
periodic behavior but with a time delay that depends on
viscoelastic properties, F = F0 + Fa sin(ωt + λ), where F0 is
the force at δ0, Fa is the amplitude of the force, and λ is the

0.6

0.8

1.0

δ(
t)

400 450 500
t 

1

2

F
 (

x1
03 )  γ = 0

 γ = 50
 γ = 100

2π/ωλ/ω

0
200
400
600

20 40 60 80 100

0
200
400
600

0 0.3 0.6

γ

k
k

tan(λ)

(a)

(b)

(c)

(d)

FIG. 8. Oscillatory experiments in homogeneous viscoelastic
networks. A sinusoidal indentation, δ, shown in (a) is applied to the
network for k = 500 and different values of γ . Corresponding re-
sponse forces, F , are shown in (b). The orange dashed lines highlight
the phase lag, λ, between F and δ, which depends on viscoelastic
properties. We also show color maps of tan(λ) for different values of
k and γ for ω = 0.02 (c) and for ω = 0.04 (d).

phase lag between force and indentation. Some of these curves
are shown in Figs. 8(a) and 8(b). The phase lag vanishes for
γ = 0, as it is expected for elastic materials, but increases with
γ , for viscoelastic materials.

The tangent of λ defines the ratio between the loss modu-
lus, G′ = δa

Fa
sin(λ), and the storage modulus, G′′ = δa

Fa
cos(λ),

and also represents a quantitative way to define the fluidity
of viscoelastic materials, i.e., tan(λ) < 1 leads to solidlike
materials while tan(λ) > 1 to fluid-like materials. High values
of ω favor the fluidity of the material, as shown in the panel
of Fig. 9 for several values of γ . Figures 8(c) and 8(d) shows
color maps of tan(λ) for more values of k and γ . We only ob-
serve viscoelastic solids in all cases of k and γ considered in
this work. Fluidlike behavior should be observed for very high
values of ω, which requires a time step too small compared to
the time of the experiment. Moreover, viscoelastic materials
may present different relaxation times regarding of how the
sample is deformed.

In this work, we obtained τ and τo in relaxation and os-
cillatory conditions, respectively. Standard linear solids under
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FIG. 9. In oscillatory experiments, the tangent of the phase lag
λ as a function of ω is shown in the panel for k = 500 and different
values of γ . Our results recover in a good agreement the analytical
behavior of tan(λ) given in Eq. (5), where the relaxation time in
oscillatory experiments, τo, is obtained. The relaxation times, τ and
τo, obtained in different experiments of deformation, depend on each
other as follows, τ = 0.466(e0.08τo − 1) (shown in black solid line),
regardless of k and γ , as shown in the main graph.

oscillatory strain leads to the following behavior [8]

tan(λ) = A
ωτo

1 + ω2τ 2
o

, (5)

which is used to fit those numerical data in Fig. 9 in order to
obtain τo, where A is a material constant. The main graph in
Fig. 9 shows that τ and τo depend on each other by the follow-
ing exponential relation, τ = 0.466(e0.08τo − 1). Each point in
the graph represents a different material, with different k and
γ , but they all collapse on that relation, suggesting some kind
of universal behavior.

The behavior of Eq. (5) shows that the loss tangent in-
creases from zero to a maximum value and then gradually
decreases to zero. The reason is that as the frequency increases
the relative motion between the fluid and the particles also
increases which in turn yields increased dissipation. However,
beyond the peak, the drag forces on the particles become so
great that the fluid and the network move together and the
dissipation decreases [36]. In our model, the lack of the fluid
redistribution through the network may lead to an undervalua-
tion of viscous effects at high frequencies. However, the very
satisfactory agreement (shown in the panel of Fig. 9) between
our numerical data and the analytical behavior of viscoelastic
solids, given by Eq. (5), suggests this misestimation is not
relevant for the set of parameters used in this work. In fact,
the frequencies used here are much lesser than the peak value,
and the loss tangent is far away to reach the maximum.

VI. CONCLUSION

In conclusion, we performed different indentation exper-
iments to study macroscopic rheological behaviors in vis-
coelastic soft materials in terms of their microscopic elastic
and viscous constituents, namely, the local stiffness and the

coefficient of friction. We showed that homogeneous elastic
networks recover the Hertz theory of mechanical contact and
that the effective modulus of elasticity, E , changes with the
network height, H , as follows E ∝ H−ζ , where the exponent
depends on the indenter geometry. Heterogeneous elastic
networks were built with only two spring constants, k1 or
k2. When k1 and k2 are separated in layers, E follows a
cubic function with the fraction of k1 bonds, φ1, however,
when k1 and k2 are randomly distributed over the network,
the higher order terms vanish and E changes linearly with
φ1. Viscoelastic networks are compatible with the analytical
standard linear solid (SLS) model, described by two elastic
moduli, E0 and E∞, and a relaxation time, τ . Therefore, our
work applies to all those materials described by the Hertz
and SLS models, such as polymers, gels and living cells.
Besides, our results were validated both by experiments and
by analytical description of continuum media. In oscillatory
experiments, the phase lag, λ, between force and indentation
and the relaxation time, τo, are computed. We showed how all
these macroscopic properties (E0, E∞, τ , λ, and τo) depend on
the microscopic parameters. In addition, the interplay between
τ and τ0, obtained in different experiments, follows an ex-
ponential relation, regardless of the mesoscopic interactions.
All viscoelastic networks studied here collapsed on this curve,
suggesting a universal behavior in viscoelastic materials. A
future work shall unveil why it presents an exponential form.
However, this brings to light an internal mechanism of how
soft matter works in different scales. We believe our com-
putational model is a robust framework being able to lay the
groundwork to investigate even more complex and nonlinear
soft materials.
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APPENDIX A: PARAMETERS USED
IN THE NUMERICAL MODEL

It is usual in molecular dynamics (MD) simulations to
describe quantities in dimensionless form. The following are
some values used in this work. Network parameters: σ =
1; m = 1; � = 1; H = 15σ , except in Fig. 2(b), where H
is changed; and N = 7580, except in Fig. 10 where N is
changed. The indenter radius is σs = 11σ (see Fig. 10). In the
particle-indenter interaction: ε = 1 and α = 800. The reason
for the high value of α is to mimic the discontinuous behavior
of hard-core potentials, typically found in very narrow-ranged
interactions. Such numerical artifact has been used in several
works [37–39].

In order to simulate real materials, one may scale MD
parameters based on actual forces curves. Doing this, we can
adopt the following strategy: AFM force curves are fitted with
Eqs. (4) to determine the loading time τl , relaxation time τ ,
and the rheological parameters E0 and E∞. The maximum
indentation depth, δ0, is also known from the experiment. In
our MD simulations, the maximum indentation depth is equal
to σ (the diameter of a pseudoatom) and a typical simulation
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FIG. 10. The contact force F between a spherical indenter and
an elastic network, for height H = 15σ and different numbers of
particles, N . F is a power law of the indentation depth, F ∝ δβ ,
where the exponent β depends on the indenter geometry [28]. This
theory is based on the assumption that the sample is an elastic
continuum half-space and the sample deformation is within the linear
elastic regime. For conical, spherical and flat indenters, β is given by
2, 3/2, and 1, respectively. For large σs, the sample experiences a
force compatible with a flat indenter whereas the exponent of δ ap-
proaches the unity, while for small σs, the sample experiences a force
compatible with a conical indenter and the exponent approaches 2.
In our model, we find that σs = 11σ is an intermediate value that
recovers the exponent 3/2 for spherical indenters.

takes Nt = 120 MD time steps. Thus we adopt σ = δ0 as our
length scale and t0 = τl/Nt as the length of the MD time steps.

In scaled units, the force, elasticity moduli, spring constant,
friction coefficient, and the time step take, respectively, the
following forms F0 = ε

σ
, E = ε

σ 3 , k = ε
σ 2 , γ = εt0

σ 2 , and t0 =
σ
√

m0
ε

, where ε is a dimensionless unit of energy used to set

interacting potential between pseudo-atoms. To qualitatively
reproduce the AFM forces curves measured in polyacrylamide
gels with MD simulations, we obtain the following quantities
in physical dimensions σ = 3.8933 × 10−7 m, m0 ≈ 2.9 ×
10−12 kg, t0 ≈ 7 × 10−4 s, ε = 576.35 × 10−21 J, k ≈ 4 ×
10−3 N/m, and γ ≈ 8 × 10−8 N s m−1.

APPENDIX B: FORCE CURVES DETERMINATION IN THE
STANDARD LINEAR SOLID MODEL

The indentation force curve, at a time t , is obtained by
solving the following integral:

F (t ) = �(β )
∫ t

0
R(t − t ′)

dδβ (t ′)
dt ′ dt ′, (B1)

where β and �(β ) are parameter related to the indenter ge-
ometry (see Table I) and R(t ) is the time-dependent relaxation
function. During load stage, when the sample is pressed down
by the indenter with constant velocity, F increases. After
reaching the maximum indentation, the indenter stops and the
sample relaxes due to its viscoelastic properties leading F to
decrease.

For a relaxation experiment, the load (l) and dwell (d)
curves are given, respectively, by

fl (t ) =
∫ t

0
R(t − t ′)

d δ̄
β

l (t ′)
dt ′ dt ′, t � τl , (B2)

fd (t ) =
∫ τl

0
R(t − t ′)

d δ̄
β

l (t ′)
dt ′ dt ′

+
∫ t

τl

R(t − t ′)
d δ̄

β

d (t ′)
dt ′ dt ′, t � τl , (B3)

where τl is the loading time. The indentation history δ(t ) is
normalized by the maximum indentation δ0 achieved at t = τl ,
such that δ̄(t ) = δ(t )/δ0, and the force at each stage is also
normalized by geometric constants

f (t ) = F (t )

�(β )δβ

0

.

In order to solve Eq. (B1), we consider R(t ) from the so-
called standard linear solid model, given by

R(t ) = E∞ + E0e−t/τ , (B4)

where τ is the relaxation time, and E∞ and E0 are elastic
moduli. The load δl (t ) indentation profile is well described
by a linear function in time, while the dwell profile δd (t ) is
represented by a smooth increasing function in time g(t ) (such
that dg/dt ≈ 0). More specifically, one can write

δl (t ) = δ0
t

τl
, δd (t ) = δ0[1 + g(t − τl )],

such that the last term of Eq. (B3) vanishes.
Replacing (B4) in (B1), we obtain the behavior of force

during the load and relaxation processes

fl (t � τl ) =
∫ t

0
(E∞ + E0e−(t−t ′ )/τ )

3

2τ
3/2
l

t ′1/2dt ′,

fd (t � τl ) =
∫ τl

0
(E∞ + E0e−(t−t ′ )/τ )

3

2τ
3/2
l

t ′1/2dt ′,

which lead to Eqs. (4).

TABLE I. Dependence of the parameters β and �(β ) on the indenter geometry. Below, ν represents the Poisson ratio and δ is the
indentation. We assume ν = 0.5.

Geometry β �(β ) contact radius Obs.

flat cylinder 1.0 2R
(1−ν2 )

R R is the indenter radius

spherical 1.5 4
3

√
R

(1−ν2 )

√
Rδ R is the indenter radius

conical 2.0 2
π

tan �

(1−ν2 )
δ tan � � is the half-opening angle
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FIG. 11. The force curves for three values of θ in viscoelastic
networks, for k = 500 and γ = 50. The fluctuations increase with θ ,
but the mean is clearly the same. The inset graph shows part of these
curves, in the beginning of the decay.

APPENDIX C: RELAXATIONS IN VISCOELASTIC
NETWORKS: EFFECTS OF A THERMAL BATH

In our study, we addressed attention only to the linear
regime where the indentation is never higher than a single
layer of particles. Because of this, and the type of bond
interaction (harmonic potential), the effect of temperature
is only to rise fluctuations of the particles and the contact
force around the values calculated from our original approach

(without thermal bath). In fact, the indentation injects energy
into the system, which deforms the lattice. This energy is ei-
ther removed by the friction (when viscous forces are relevant,
γ > 0) or kept in the system (for γ = 0), increasing thermal
agitation.

Here we perform additional simulations to study the in-
fluence in our results due to the presence of a thermal bath.
We run our model with a random noise term in the Langevin
approach to represent the presence of a thermal bath, as
follows:

m
d2�ri

dt2
= −γ �vi − ∇Ui + �ξi,

where i runs over all particles in the system. These are the
same equations of motion shown in Eq. (1). The novelty here
is the presence of the noise term �ξi which corresponds to an
uncorrelated, normally distributed stochastic force with zero
mean and finite variance θ .

Figure 11 shows that the inclusion of this thermal noise
leads to results similar to the previous ones even when friction
takes place (although increasing the agitation of the particles).
If the thermal energy is high enough, the particles will vi-
brate in the lattice’s final configuration (final position of the
indenter). Therefore, in the linear regime, the omission of the
thermal bath in the force curves is not a great issue. A more
general approach, however, with nonlinear effects is a relevant
problem that should be investigated in a future work.
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