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Efficient and robust signal sensing by sequences of adiabatic chirped pulses
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We propose a scheme for sensing of an oscillating field in systems with large inhomogeneous broadening and
driving field variation by applying sequences of phased, adiabatic, chirped pulses. These act as a double filter
for dynamical decoupling, where the adiabatic changes of the mixing angle during the pulses rectify the signal
and partially remove frequency noise. The sudden changes between the pulses act as instantaneous π pulses in
the adiabatic basis for additional noise suppression. We also use the pulses’ phases to correct for other errors,
e.g., due to nonadiabatic couplings. Our technique improves significantly the coherence time in comparison
to standard XY8 dynamical decoupling in realistic simulations in NV centers with large inhomogeneous
broadening. Beyond the theoretical proposal, we also present proof-of-principle experimental results for quantum
sensing of an oscillating field in NV centers in diamond, demonstrating superior performance compared to the
standard technique.
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I. INTRODUCTION

Magnetometry experiments require the measurement of a
signal whose characteristics are related to a magnetic field to
be sensed. Pulsed and continuous dynamical decoupling have
already been applied for quantum memories and for sensing
of oscillating (AC) fields in various systems, e.g., trapped
ions, nitrogen-vacancy (NV) centers in diamond, rare-earth
doped solids [1–34]. However, the sensitivity is reduced in
systems with large inhomogeneous broadening and field inho-
mogeneities also limit efficiency. Then, only a small fraction
of the sensor atoms contribute to the signal due to the limited
bandwidth of the control field.

Adiabatic chirped pulses perform robust population flips
by rapid adiabatic passage (RAP) even with inhomogeneous
broadening, a weak driving field, and significant amplitude
fluctuations [35–39]. They have been applied for rephasing
[40–45] and combined with composite pulses [46–48] for
improved population transfer [49–52].

In this work, we propose sequences of phased RAP pulses
for dynamical decoupling (DD) and sensing of an AC field,
where the signal can be sensed in systems with large field
inhomogeneity and varying transition frequencies. This is
especially important for sensing in NV containing nanodia-
monds in cells, which have different atom orientations with
respect to the quantization axis, low-temperature experiments
when heating limits the applicable Rabi frequency, e.g., in SiV
centers [53,54], ensembles of NV centers with high concentra-
tion and inhomogeneous broadening [55,56], rare-earth doped
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solids [34,40–42,50]. Other applications include experiments
with high field inhomogeneities, e.g., due to geometry, stray
fields or amplitude noise. The RAP sequences act as a double
filter for DD, where the population transfer during a pulse
rectifies the signal and partially removes frequency noise. The
sudden changes in the mixing angle between the pulses act
as fast π pulses in the adiabatic basis for additional noise
compensation. Finally, we use the pulses’ phases as control
parameters to correct for other errors, e.g., due to nonadiabatic
couplings. We demonstrate the superior performance of the
RAP protocol with the XY8 sequence (RAP-XY8) in com-
parison to the widely used XY8 sequence [5] with rectangular
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FIG. 1. Scheme for AC magnetometry with RAP pulses, follow-
ing the Allen-Eberly (AE) model [57]. The pulses can be phase-
shifted for improved performance. Our goal is to sense an oscillating
signal with ωs = π/(Tpulse + τ ). The RAP pulses perform population
transfer and modulate the signal. The transition time Ttr characterizes
the time scale of population transfer. When Ttr � Tpulse + τ , its effect
can be neglected and the rectified signal takes the bottom shape.
Usually, it is advantageous to take τ = 0 and increase Tpulse to
match ωs, keeping Ttr constant, as this improves adiabaticity without
affecting the modulation function.
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FIG. 2. (a) RAP mechanism. (Top) Rabi frequency and detuning for the AE model with �0 = 2π × 10 MHz, chirp range R = 2π ×
50 MHz, and Tpulse = 10T = 5 μs. (Middle) Eigenenergies in the bare (dashed lines) and adiabatic (solid lines) bases. The composition
of the adiabatic states changes, leading to population transfer in the bare basis due to a level crossing. (Bottom) Simulation of population
transfer, characterized by the transition time Ttr = 1/|ν ′(tc )| = 4T �0/R = 0.4 μs. Scheme for sensing of the amplitude of an AC field with
(b) standard XY8 and (c) RAP-XY8. In both, the atoms are prepared initially in |1y〉. Corresponding numerical simulations of the population
in the |1y〉, observed directly in the bare basis at time intervals of 8 μs with DD by (d) XY8 with rectangular pulses with �(t ) = �0 =
2π × 10 MHz, duration Tpulse = 50 ns and pulse separation τ = 0.95 μs, and (e) RAP-XY8 with �0 = 2π × 10 MHz, a target chirp range R =
2π × 95 MHz, characteristic time T = 0.2 μs, pulse duration Tpulse = 1 μs, and pulse separation τ = 0. The sensed field has an amplitude of
g = 2π × 4.34 kHz, initial phase ξ = 0 and angular frequency ωs = 2π × 0.5 MHz. The peak Rabi frequency is the same in both protocols and
Tpulse + τ = π/ωs. The slight delay in the ideal, theoretical gray curve with RAP from p = cos(χ (t ))2 is mainly due to the noninstantaneous
transition time, which is taken into account in the simulation.

pulses with the same peak Rabi frequency for realistic simula-
tions. Finally, we present data from a demonstration quantum
sensing experiment in an ensemble of NV centers in diamond.
As the simulations and experimental data show, RAP sensing
significantly outperforms the standard protocol.

II. THEORY OF RAP SENSING

We consider a two-state system, described by the Hamilto-
nian in the rotating-wave approximation

Hs(t ) = −	̃(t )

2
σz + �̃(t )

2
σx + gσz cos (ωst + ξ ), (1)

where 	̃(t ) ≡ 	(t ) − 	ε (t ) is the detuning, which depends
on the target detuning 	(t ) and an error 	ε (t ). The Rabi
frequency is �̃(t ) = �(t )[1 + ε�(t )] = μB̃(t ), where ε�(t ) is
an error term. The amplitude, angular frequency, and initial
phase of the sensed AC field are g, ωs, and ξ . The Hamiltonian
in the adiabatic basis is [35,36]

Had,s(t ) = − �̃eff(t )

2
σz + gcos (ωst + ξ )

× [cos (2̃ν(t ))σz + sin (2̃ν(t ))σx], (2)

where ν̃(t ) = arctan [− 	̃(t )
�̃(t )

+
√

1 + 	̃(t )2

�̃(t )2 ] is the mixing angle

[35], �̃eff(t ) =
√

�̃(t )2 + 	̃(t )2, and we applied the adiabatic

approximation [|̃ν ′(t )| � �̃eff(t )]. One can obtain intuition
about the effect of a RAP pulse by considering the adiabatic
and bare bases [see Fig. 2(a) and Appendix A]. Adiabatic
evolution with population inversion is not necessarily optimal
for DD due to noise in �̃eff(t ) (see Appendices B and C). Thus
we consider sequences of RAP pulses where the detuning flips
between the pulses, e.g., from large positive to large negative
values, resulting in shifts of the mixing angle by 	ν ≈ π/2.
This is equivalent to applying instantaneous π pulses in the
adiabatic basis, which compensate the noise in �̃eff(t ). The
time scale of the shifts is limited by the sampling rate of the
microwave control synthesizer, e.g., an arbitrary waveform
generator, so subnanosecond shifts are readily achievable.

We incorporate such changes in the definition of our inter-
action basis, and obtain the Hamiltonian (see Appendix C 2)

Hint,tog,s(t ) = − f̃ (t )gcos (ωst + ξ )σz, (3)

where we neglected fast oscillating terms, assuming
ωs � �̃eff(t ) and |̃ν ′(t )| � �̃eff(t ). The modulation function
f̃ (t ) = f (t ) cos (2̃ν(t )) is affected only by adiabatic changes
in the mixing angle (see Fig. 1). The function f (t ) takes
values f (t ) = −1 ( f (t ) = 1) during the odd (even) pulses and
accounts for the nonadiabatic shifts of 	ν ≈ π/2 between
the pulses. The signal frequency matches half the pulses’ rep-
etition rate for sensing (see Fig. 1). It is preferable to use zero
pulse separation and longer pulses to improve adiabaticity. If
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the RAP transition time [58] is short, the modulation function
approaches a step function (see Fig. 1 and Appendix A 7), the
sensor qubit performs Ramsey oscillations and accumulates
a phase 2χ (t ), where χ (t ) ≡ ∫ t

0 g| cos (ωst ′)|dt ′ ≈ 2
π

gt (see
Appendix C). In contrast to standard DD, where we have an
echo after every pulse, we observe the signal stroboscopically
in the bare basis after every second RAP pulse. Then, the
dynamic phase due to �̃eff(t ) and its noise are compensated
by the nonadiabatic shifts in the mixing angle. However, these
do not compensate nonadiabatic couplings, which usually
commute with the Hamiltonian during the shifts and 	ν

might also differ from π/2. We use the pulses’ relative phases
to correct for such and other errors (see Appendix B), e.g.,
using the popular XY, KDD, or UR sequences [22–25,49,51].
These are based on composite pulses and improve population
transfer and rephasing [22,49,50,52].

We compare the performance of standard rectangular and
RAP pulses by a numerical simulation for DD in a two-state
system subject to magnetic noise and driving field fluctuations
that follow an Ornstein-Uhlenbeck process [59,60] and are
typical for experiments in NV centers [26,61]. We assume
an inhomogeneous broadening, leading to dephasing time of
T ∗

2 ≈ 20 ns and a Hahn echo T2 ≈ 13 μs (see Appendix G).
We choose the Allen-Eberly model for RAP amplitude and
detuning due to its preferable adiabaticity (see Appendix A 6)
with �(t ) = �0sech[(t − tc,k )/T ], where tc,k is the kth pulse
center, 	(t ) = (R/2) tanh [(t − tc,k )/T ], R is the chirp range
[57,62,63].

Figures 2(b)–2(e) shows the scheme and simulated evo-
lution of the population in the |1y〉 state in the bare basis
for sensing with rectangular and RAP pulses with identical
peak Rabi frequency and the phases of the widely used XY8
sequence. Due to the inhomogeneous broadening the contrast
is lost quickly with the standard XY8, which has a T2 ≈ 14 μs
and is increased by more than two orders of magnitude to T2 ≈
1.7 ms with RAP-XY8. The remaining decay for RAP-XY8
is mainly due to high frequency components of the noise and
imperfect adiabaticity. The coherence time with RAP-XY8
approaches the population lifetime of an NV center, which can
reach up to 6 ms [64] and is not considered in the simulation.

III. EXPERIMENTAL DEMONSTRATION

We experimentally demonstrate our scheme in an en-
semble of NV centers in diamond. The measurements are
performed in a home-built confocal fluorescence microscope
at a magnetic field of 332 Gauss. The system and exper-
imental setup are described in Figs. 3(a) and 3(b) and in
Ref. [65]. Modulated microwave control fields are created
using an arbitrary waveform generator (AWG - Tektronix
AWG70002A - 16 Gs). The measurements are performed
on a standard-grade diamond sample (Element Six) with an
NV density of ∼10 ppb. The NV spin properties are mea-
sured T1 = 5.8 ± 0.6 ms, T �

2 = 34 ± 14 ns, Hahn echo T2 =
198 ± 18 μs, inhomogeneous broadening of 2π × (2.1 ±
0.1) MHz. The NV is initially prepared in state |0〉 by optical
pumping.

We carried out three sets of experiments at (i) high Rabi
frequency (2π × 5 MHz), (ii) high Rabi frequency with ar-
tificially added amplitude errors with a Gaussian distribution

with a width of 0.2�0, and (iii) low Rabi frequency (2π ×
1.7 MHz), comparable to the bandwidth of the inhomoge-
neous broadening. Each set included regular XY8 and RAP
XY8. We performed two measurements for each data point
with a rectangular π/2 (half RAP) X pulse for initialization
and ±X before optical readout that match the corresponding
parameters of the XY8 (RAP-XY8) DD pulses. We recorded
the fluorescence difference between the two measurements.
The RAP chirp range and characteristic time were optimized
experimentally (see Appendix H).

First, we measured the NV electron spin coherence time
with DD. RAP-XY8 achieved T2 	 1943 μs for all experi-
ments and was robust to amplitude noise and inhomogeneous
broadening (see Appendix H). The coherence time for the
standard XY8 had T2 	 1811 μs only for the optimized high-
Rabi experiment but it degraded by about 40% with ampli-
tude noise (T2 	 1192 μs) and lower Rabi frequency (T2 	
1057 μs). As expected from theory, RAP-XY8 performed
better for the nonideal cases. The coherence times of standard
XY8 is expectedly longer than in the simulation in Fig. 2 due
to the lower inhomogeneous broadening in the experiment.

Next, we performed quantum sensing by adding an ex-
ternal magnetic field to characterize the magnetic sensitivity
under RAP and regular control pulses. The AC magnetic
signal was generated using a home-built coil, driven by a
function generator (Rigol 5252). The presence of the external
field reduced the coherence time by ∼30% using standard
XY8 [see Fig. 3(d)]. We attribute this effect to the rotation
of the NV electron spin state in the XY plane of the Bloch
sphere due to the field, so the system is more sensitive to
pulse imperfections. While this effect should be negligible
in the small-field limit [66], it does not adversely affect
RAP even for larger fields [Fig. 3(e)]. We note a slight shift
towards smaller amplitudes (longer oscillation period) for
XY8 with rectangular pulses, which is mainly due to inho-
mogeneous broadening, as also observed in the simulation in
Fig. 2.

Next, we analyzed the sensitivity to an AC field, defined as
η = σ

∂S/∂B

√
Tm [66], where σ is the standard deviation of the

single point fluorescence data, ∂S/∂B is the maximal slope
in the curve of fluorescence signal vs. magnetic field, and Tm

is the time of a single measurement. Figure 3(f) shows the
robust sensitivity of RAP-XY8 as a function of the number
of pulses when extracted indirectly from the data. Direct
measurements of the sensitivity in Fig. 3(g) under optimized
conditions exhibit a ∼30% improvement for RAP sequences
over regular XY8. Standard XY8 is affected by pulse errors,
so sensitivity is strongly suppressed when we apply many
pulses. In contrast, RAP-XY8 remains robust with a nearly
constant value over a large range of applied pulses. This
indicates that RAP allows for sensing of weaker fields and
improved precision due to the longer achievable coherence
times. We note that in our experiments the inhomogeneous
broadening was relatively low (	2 MHz), and thus we simu-
lated a larger broadening by applying either weak driving (low
Rabi frequency of 	1.7 MHz) or added driving noise. The
parameters still correspond to limited broadening, yet clearly
demonstrate a significant improvement in both coherence
time and magnetic sensitivity of RAP compared to standard
sensing.
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FIG. 3. (a) Energy level diagram of the NV center. The NV is excited with off-resonant green light (532 nm), coherently manipulated
using microwave fields, and optically read-out through spin-dependent fluorescence between states |0〉 and |±1〉. (b) Experimental setup
scheme. (c) Measurement of population transfer by a RAP pulse with �0 = 2π × 5 MHz, duration Tpulse = 11.4 μs, a target chirp range
R = 2π × 40 MHz, and characteristic time T/Tpulse = 0.17. The transition time is short compared to the pulse duration (Ttr ≈ 0.07Tpulse), as
expected from theory. The time between the dashed lines depicts the theoretical transition time 4�0T/R (see Appendix A 7). Coherence decay
curves in presence of an artificial external magnetic AC field with amplitude of 52 nT and frequency of 14.5 kHz for the low Rabi frequency
experiment �0 = 2π × 1.7 MHz (see Appendix H) for (d) XY8 and (e) for RAP-XY8. The estimate of the oscillation period allows for sensing
of the field amplitude (see text). The error terms for the estimates of T2 and η are their standard deviations. (f) Sensitivity vs. number of cycles,
corresponding to the number of pulses, (g) Direct measurement of sensitivity experiment: variation of fluorescence vs. amplitude of the sensed
magnetic field for a direct measurement of the sensitivity at its optimal points, marked with a circle in (f), i.e., for 16 (40) cycles for XY8
(RAP-XY8). We fit to a sin function with the steeper curve slope at zero field with RAP-XY8 showing improved sensitivity; the slightly lower
contrast with RAP-XY8 is due to the higher pulse number.

IV. DISCUSSION

RAP improved performance is due to its broad bandwidth
and robustness. Its transition probability error depends on the
pulse shape [36] and can be estimated [67] (see Appendix D)

εRAP ∼ εrect
ω2

s

�2
0

where εrect ∼ 	2
inh/�

2
0 is the rectangular pulse

error. Thus RAP sensing improves performance when �0 <

	inh and ωs � �0. It is also less sensitive to amplitude varia-
tion. The frequency range of RAP sensing can be estimated as

π ( b2

12̃τ
)
1/3 � ωs � π2�2

0
4	inh

(see Appendix D), where the lower
limit depends on the homogeneous broadening noise spectrum
S(ω) = b2

π

1/̃τ

(1/̃τ )2+ω2 , where τ̃ is the correlation time of the
environment and b is the bath coupling strength. The upper
limit can increase significantly by using appropriate pulse
shapes or phased sequences, e.g., XY8.

When the RAP transition time condition Ttr � ωs/π is not
fulfilled, there can be a slight shift in the amplitude of the
detected AC field in the noiseless case (see Fig. 2). Imperfect
preparation and readout by standard π/2 pulses can be im-
proved by, e.g., using adiabatic half passage (see Appendix F),
robust composite π/2 pulses [46], adiabatic robust pulses
[37–39], single-shot shaped pulses [68,69], optimal control

[70–75]. Finally, we note that other methods [19,20,24,29–
31,33] also allow for significant increase in the coherence
times in NV centers in diamond but typically require detuning
or amplitude errors to be smaller than the Rabi frequency.
RAP sensing is more robust, leading to improved performance
(see Appendix E).

V. CONCLUSION

We theoretically developed and experimentally demon-
strated robust and efficient signal sensing by sequences of
phased RAP pulses. The technique is robust to large errors
in field amplitudes and transition frequencies, e.g., due to
inhomogeneous broadening. We showed that RAP-XY8 sig-
nificantly outperforms the standard XY8 protocol with rect-
angular pulses in a realistic simulation. We also performed a
proof-of-principle experimental demonstration of RAP sens-
ing in ensembles of NV centers and demonstrated its ad-
vantages for systems with inhomogeneous broadening and
imperfect, nonuniform microwave driving fields. The robust-
ness and flexibility of the technique makes it applicable for
a wide range of experimental platforms, e.g. NV ensembles,
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SiV centers, NVs in nanodiamonds in living cells, rare-earth
doped solids, trapped ions.
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APPENDIX A: DETAILED THEORY OF RAPID
ADIABATIC PASSAGE

1. The system

We provide a description of rapid adiabatic passage (RAP)
in this section. We note that basics of RAP theory have been
covered in previous work [35–42] but we describe it here
again for completeness and consistency of notation with the
theory of RAP sensing. We consider a two-state quantum
system with an (angular) transition frequency ω̃0(t ) subject to
a control field with a time-dependent carrier frequency ω(t ),
where we have assumed that the transition frequency ω̃0(t ) =
ω0 + 	ε (t ) might vary by 	ε (t ) from its expected value ω0,
e.g., due to inhomogeneous broadening or magnetic field
fluctuations. The evolution of the system without a sensed
field is governed by the Hamiltonian (h̄ = 1)

H̃ (t ) = ω̃0(t )

2
σz + �̃(t )σx cos

(∫ t

t0

ω(t ′)dt ′ + φ

)
, (A1)

where �̃(t ) = μB̃(t ) is the Rabi frequency, which depends on
the dipole moment μ and the envelope of the applied control
field B̃(t ). The actual Rabi frequency can also be presented
as �̃(t ) = �(t )[1 + ε�(t )], where �(t ) is the target Rabi fre-
quency we want to apply and ε�(t ) is an error term, e.g., due
to amplitude fluctuations and/or inhomogeneity. Additionally,
φ is the initial phase of the control field at the time t0 at the
beginning of the interaction, σx and σz are the respective Pauli
matrices. Usually only the relative changes of φ are important.

The angular frequency of the control field can also be
presented in terms of its detuning 	(t ) from the expected
transition frequency of the atom as ω(t ) ≡ ω0 + 	(t ), so the
Hamiltonian takes the form

H̃ (t ) = ω0 + 	ε (t )

2
σz + �̃(t )σx cos (ω0t + δ(t )), (A2)

where δ(t ) ≡ ∫ t
t0

	(t ′)dt ′ is an accumulated phase due to

the detuning 	(t ), �̃(t ) ≡ �(t )(1 + ε�(t )) is the actual Rabi
frequency of the driving field, and we took φ = 0 without loss
of generality.

It is advantageous to move to the rotating frame with re-
spect to ω(t )σz/2 and apply the rotating-wave approximation
(|�̃(t )| � ω(t )) to obtain the Hamiltonian

H (t ) = − 	̃(t )

2
σz + �̃(t )

2
σx, (A3)

where 	̃(t ) ≡ 	(t ) − 	ε (t ) is the actual detuning, experi-
enced by a sensor atom, which depends on the detuning 	(t )
of the driving field from ω0 and the variation of the actual
transition frequency of the atom 	ε (t ) from ω0. We will use
this Hamiltonian further on in the analysis and will call the
quantum states in this basis the bare states.

2. The adiabatic basis

It proves useful to consider the evolution of the system
in the adiabatic (dressed) basis by making another transfor-
mation d(t ) = Rad(t )c(t ), where d(t ) = [d−(t ), d+(t )]T are
the probability amplitudes of the adiabatic states and c(t ) =
[c1(t ), c2(t )]T are the probability amplitudes of the bare states
[35]

Rad(t ) =
[

cos ν̃(t ) − sin ν̃(t ),
sin ν̃(t ) cos ν̃(t )

]
,

ν̃(t ) = arctan

⎡⎣−	̃(t )

�̃(t )
+

√
1 + 	̃(t )2

�̃(t )2

⎤⎦. (A4)

One can show that tan[2̃ν(t )] = �̃(t )/	̃(t ), so the mixing
angle can in principle also be expressed by the more in-
tuitive ν̃(t ) = (1/2) arctan [�̃(t )/	̃(t )] [36]. However, the
definition in Eq. (A4) is more general as the principal
value of arctan [�̃(t )/	̃(t )] lies in the range [−π/2, π/2],
so we cannot distinguish between the values of the an-
gle 2̃ν(t ) = arctan [�̃(t )/	̃(t )] = 0 and π . Thus a definition
ν̃(t ) = (1/2) arctan [�̃(t )/	̃(t )] does not allow us to distin-
guish between ν̃(t ) = 0 and π/2.

Then, the Hamiltonian in the adiabatic basis becomes

Had(t ) = Rad(t )H (t )Rad(t )† − iRad(t )(∂t Rad(t )†),

Had(t ) =
[̃
ε−(t ) −ĩν ′(t )

ĩν ′(t ) ε̃+(t )

]
, (A5)

where ε̃±(t ) = ± 1
2

√
�̃(t )2 + 	̃(t )2 are the eigenenergies of

the adiabatic states and ν̃ ′(t ) is the nonadiabatic coupling.
When ν̃(t ) changes very slowly, i.e.,

|̃ν ′(t )| � ε̃+(t ) − ε̃−(t ) = �̃eff(t ), (A6)

where the effective Rabi frequency �̃eff(t ) ≡√
�̃(t )2 + 	̃(t )2, we can neglect the effect of the nonadiabatic

couplings, so the evolution becomes adiabatic and the
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FIG. 4. Numerical simulation of an example for population transfer with RAP for three different detuning errors 	ε (t ) = 2π 	ε (blue),
0 (green), −	ε (red) with 	ε = 2π × 15 MHz. (a) Time dependence of the respective parameters, used in the simulation: Rabi frequency
�̃(t ) = �0sech(t/T ), where the peak Rabi frequency �0 = 2π × 10 MHz, detuning 	̃(t ) = 	(t ) + 	ε (t ) with 	(t ) = (R/2) tanh (t/T ),
where R = 2π × 50 MHz is the target chirp range, T = 0.5 μs. Time evolution of (b) the mixing angle ν̃(t ), (c) the population of the bare
state |1〉, (d) the population of the bare state |2〉 for the respective values of 	ε (t ). The population transfer efficiency is very robust to detuning
errors even though they are greater than the peak Rabi frequency but the flip of the quantum state happens at different times for each value of
	ε (t ), i.e., the transfer process is centered at the time when the respective mixing angle is ν̃(t ) = π/4.

Hamiltonian takes the form

Had(t ) ≈ − �̃eff(t )

2
σz =

[−�̃eff(t )/2 0
0 �̃eff(t )/2

]
. (A7)

As the adiabatic Hamiltonian is diagonal, there will be no
population changes in the adiabatic basis, i.e., the populations
will stay constant with time and the quantum state will only
accumulate a phase. We note that the effective Rabi frequency
includes noisy terms

�̃eff(t ) =
√

(	(t ) − 	ε (t ))2 + �(t )2(1 + ε�(t ))2, (A8)

which would in general cause dephasing in the adiabatic basis.
However, we will show later that these can be compensated
when we apply sequences of chirped adiabatic pulses.

3. Mechanism of rapid adiabatic passage

Usually, our quantum system is initially prepared (e.g., by
optical pumping) with all the population in the bare state |1〉,
i.e., P1(t0) = 1, P2(t0) = 0 at the initial time t0. If our goal is
to transfer all the population from state |1〉 to state |2〉, i.e.,
P1(t1) = 0, P2(t1) = 1 at time t1 at the end of the interaction.
We note that the relation between the populations of the two
states and the probability amplitudes in the bare basis are
given by Pn(t ) = |cn(t )|2.

In order to demonstrate the mechanism for rapid adiabatic
passage, we consider the composition of the probability am-

plitudes of the adiabatic states in terms of the ones of the bare
states:

d−(t ) = c1(t ) cos ν̃(t ) − c2(t ) sin ν̃(t ),

d+(t ) = c1(t ) sin ν̃(t ) + c2(t ) cos ν̃(t ). (A9)

We apply an adiabatic chirped pulse from time t0 to time t1
where the detuning changes adiabatically from a very large
negative to a very large positive value, such that

−∞ t0←t←−− 	̃(t )

�̃(t )

t→t1−−→ +∞, (A10a)

π/2 = arctan (+∞)
t0←t←−− ν̃(t )

t→t1−−→ arctan (0) = 0

(A10b)

−c2(t0)
t0←t←−− d−(t )

t→t1−−→ c1(t1) (A10c)

c1(t0)
t0←t←−− d+(t )

t→t1−−→ c2(t1). (A10d)

It is evident that initially all the population is in state |+〉
in the dressed basis as it is aligned with state |1〉, i.e.,
P1(t0) = P+(t0) = 1. As the evolution is adiabatic, the adi-
abatic Hamiltonian Had(t ) is diagonal, so there will be no
transitions between the dressed states and their populations
stay constant, so P+(t1) = P+(t0). However, the mixing angle
ν changes from π/2 to 0 (see Fig. 4). As a result, the
dressed state |+〉 is aligned with the state |2〉 at the final
time t1. Thus P2(t1) = P+(t1) = P+(t0) = P1(t0) = 1 and all
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the population is transferred adiabatically from state |1〉 to
state |2〉. We note that the chirp direction is not important for
the population transfer, i.e., the mixing angle can also change
from 0 to π/2–then the population transfer will take place via
the dressed state |−〉 instead of |+〉 if the system is initially
in state |1〉. It is evident that as the evolution is adiabatic, the
population transfer efficiency will depend only on the initial
and final values of the mixing angle and will be quite robust
to amplitude and frequency fluctuations.

Figure 4 shows an example for adiabatic passage with a
chirped pulse for three different detuning errors 	ε (t ). It is
evident that the population transfer efficiency is very robust to
such errors even though they are greater than the peak Rabi
frequency. However, the times when the flip of the quantum
state takes place differ for each value of 	ε (t ). Specifically,
the transfer process is centered at the time when the respective
mixing angle is ν̃(t ) = π/4.

One can obtain additional intuition about RAP by consid-
ering the time evolution of the energies of the adiabatic and
bare states. The time evolution in the adiabatic basis leads
to an avoided crossing, where the adiabatic eigenenergies
ε̃±(t ) = ± 1

2

√
�̃(t )2 + 	̃(t )2 approach each other with the

minimum separation at the point when 	̃(̃t ) = 0 but cannot
cross due to the interaction (�̃(̃t ) �= 0, see Fig. 2 in the main
text). Meanwhile, the bare basis energies ±	̃(t ) cross at a
particular time t = t̃ , which leads to the population transfer
as the mixing angle ν̃(t ) changes from π/2 to 0. We note that
adiabatic evolution is not a sufficient condition for population
transfer. For example, if no crossing of the bare energies
occur, the mixing angle will start at π/2 and make a return
to π/2 at the end of the interaction, so we will observe a
complete population return instead of complete population
transfer [36].

4. Propagator of a RAP pulse

When our goal is not simply to flip the population of the
bare states, it proves useful to derive explicitly the propagator
or a chirped adiabatic pulse. We consider the evolution of
the system from a starting time t0 to a later time t . In the
approximation of perfect adiabaticity, it is described by the
propagator in the adiabatic basis

Uad(t, t0) = exp

[
−i

(∫ t

t0

�̃eff(t
′dt ′

)
σz

]
= σ0 cos (�̃/2) + iσz sin (�̃/2), (A11)

where �̃ = ∫ t
t0

�̃eff(t ′)dt ′ is the dynamic phase. The propaga-
tor in the bare basis then takes the form

U (t, t0) = Rad(t )†Uad(t, t0)Rad(t0)

= cos (�̃/2)[σ0 cos (̃νr ) + iσy sin (̃νr )]

+ i sin (�̃/2)[σz cos (̃νs) − σx sin (̃νs)], (A12)

where ν̃r ≡ ν̃(t ) − ν̃(t0) and ν̃s ≡ ν̃(t ) + ν̃(t0). For example,
when the evolution is perfectly adiabatic the transition proba-
bility, i.e., the probability that the qubit will be transferred to
state |2〉 if it was initially in state |1〉 in the bare basis, takes

the form

p = cos (�̃/2)
2

cos (̃νr )2 + sin (�̃/2)
2

sin (̃νs)2. (A13)

Assuming that we apply an adiabatic chirped pulse from time
t0 to time t where the detuning changes from a very large
negative (̃ν(t0) = π/2) to a very large positive value (̃ν(t ) =
0), the propagator in the bare basis becomes

URAP = −i(σy cos (�̃/2) + σx sin (�̃/2))

=
[

0 −ei�̃/2

e−i�̃/2 0

]
(A14)

and the transition probability is p = 1. In comparison, the
propagator of a perfect resonant π pulse around the x axis
of the Bloch sphere is Uπ = −iσx. It is evident that the prop-
agator of the perfect RAP pulse performs perfect population
inversion of the bare states like a perfect π resonant pulse but
adds an additional phase rotation by the generally unknown
(varying) dynamic phase �̃ + π in the xy plane of the Bloch
sphere of the qubit.

5. Conditions for rapid adiabatic passage

There are two main conditions for RAP and we will discuss
them separately. First, the evolution should be adiabatic, so
no transitions take place in the adiabatic basis. Second, the
mixing angle ν̃(t ) should change from π/2 to 0 (or vice
versa).

a. Adiabatic condition

The first requirement is that the nonadiabatic coupling is
much smaller than the energy separation between the adia-
batic states, so no transitions occur

|̃ν ′(t )|
ε+(t ) − ε−(t )

� 1, (A15)

which can be simplified to [36]

| ˙̃�(t )	̃(t ) − �̃(t ) ˙̃	(t )|
2(	̃(t )2 + �̃(t )2)3/2

� 1. (A16)

The exact formula for this condition depends on the specific
time-dependence of �̃(t ) and 	̃(t ). Usually, adiabaticity is
worst at the moment of level crossing of the bare energies, i.e.,
when 	̃(tc) = 0, so it is determined by the element �̃(t ) ˙̃	(t )
in the numerator in Eq. (A16). We note that when the chirp
range is small (but nonzero), e.g., of the order of the peak
Rabi frequency, the element ˙̃�(t )	̃(t ) can become significant
for certain pulse shapes. However, we are usually be interested
in the case of smooth pulses when peak Rabi frequency is too
weak to cover the inhomogeneous broadening, which requires
a large chirp range. Then, �̃(t ) ˙̃	(t ) is dominant and the
condition simplifies to

| ˙̃	(tc)|
2�̃(tc)2

� 1, (A17)
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FIG. 5. Numerical simulation of single RAP pulse transition
probability vs. peak Rabi frequency �0 and target chirp range R. We
assume a two-state quantum system interacting with a driving field
with a Rabi frequency �̃(t ) = �0sech( t−tc

T ) and detuning 	̃(t ) =
	ε + (R/2) tanh ( t−tc

T ) with pulse duration Tpulse = 1 μs and char-
acteristic time T = 0.1 μs for (left) zero static detuning 	ε = 0 and
(right) 	ε = �0. The black dotted/dashed/solid lines correspond to
p of 0.5/ 0.95/ 0.99, respectively. The vertical, white, dashed lines
correspond to pulse areas of π , 3π , and 5π . The top solid white
line corresponds to the adiabaticity parameter �̃(tc )2/| ˙̃	(tc )| = 3.33
[see Eq. (A27)]. The bottom solid line corresponds to (a) the chirp

range condition R sinh (Tpulse/2T ) = �0

√
2

εmax
− 4 for εmax = 0.01

[see Eq. (A22)] and (b) R = 2	ε . As expected from theory, the good
performance of RAP pulses takes place in the region between the
white solid lines and can be achieved even for moderate pulse areas.

or equivalently to the so called lower boundary adiabatic
condition

�̃(tc)2

| ˙̃	(tc)|
� 1, (A18)

where ˙̃	(tc) is the chirp rate at the time tc of the crossing
of the bare states energies (	(tc) = 0). Figure 5 includes an
example for the lower boundary condition, which shows that
even moderate levels of the order of 3.3 are enough to reach
transition probabilities of the order of 0.9. As the chirp rate
is usually bounded by the chirp range, given a fixed pulse
duration, this requirement imposes a condition for a maximum
chirp range.

b. Condition for mixing angle evolution

The second condition for population transfer requires that
the mixing angle ν̃(t ) changes from π/2 to 0 (or vice versa),
which in turn imposes a condition on a minimum chirp range.
In case of perfect adiabaticity, it can be shown that the
transition probability in Eq. (A13) can also be presented as
[36]

p = 1

2
− 	̃(t1)	̃(t0)

2�̃eff(t1)�̃eff(t0)
− �̃(t1)�̃(t0)

2�̃eff(t1)�̃eff(t0)
cos �̃,

(A19)

This expression can be simplified further if we assume that
the magnitude of the Rabi frequency at the beginning and the
end of the interaction is much smaller than the detuning and
thus than the effective Rabi frequency, i.e., �̃(tk ) � �̃eff(tk ),

k = 0, 1. Then, we can neglect the fast-oscillating last term
and obtain

p ≈ 1

2
− 	̃(t1)	̃(t0)

2�̃eff(t1)�̃eff(t0)
≈ 1

2

(
1 + 	̃(t1)2

�̃eff(t1)2

)
, (A20)

where we assumed in the last equality that the Rabi frequency
is a symmetric function with respect to the center of the pulse,
i.e., �̃(t1) ≈ �̃(t0), and the detuning is an antisymmetric func-
tion, so 	̃(t1) ≈ −	̃(t0). This is a feasible assumption if the
magnitude of target detuning |	(t )| � |	ε | at the beginning
and the end of the interaction. Thus we obtain

p ≈ 1 − 1

2

�̃(t1)2

�̃eff(t1)2
= 1 − 2

4 + (R/�̃(t1))2
, (A21)

where R ≈ 	̃(t1) − 	̃(t0) ≈ 2|	̃(t1)| is the magnitude of the
target chirp range. It is evident that perfect population transfer
requires that the ratio R/�̃(t1) � 1. If we require the error
in the population transfer efficiency ε ≡ 1 − p � εmax, the
condition becomes

R

�̃(t1)
�

√
2

εmax
− 4, (A22)

where εmax is the maximum error in the transfer efficiency,
which we assumed to be ε � 1/2 by requiring that the initial
and final detunings have opposite signs. For example, an
error in the population transfer efficiency of ε � 0.1 requires
R/�̃(t1) � 4, while ε � 0.01 implies R/�̃(t1) � 14.

We note that the condition 	̃(t1) ≈ −	̃(t0) might not be
satisfied in systems with large inhomogeneous broadening and
the chirp range requirement needs to be modified to cover the
shift in the initial and final detuning. If 	̃(t0) = −(R/2) + 	ε

and 	̃(t1) = (R/2) + 	ε , we obtain

p ≈ 1

2
− 	̃(t1)	̃(t0)

2�̃eff(t1)�̃eff(t0)

= 1

2

(
1 + 1 − x2√

((1 − x)2 + y2)((1 + x)2 + y2)

)
, (A23)

where x ≡ 2	ε/R and y ≡ 2�̃(t1)/R and we assumed that
�̃(t0) = �̃(t1). We require 	ε < R/2 in order for the detuning
	ε to lie within the chirp range, which implies x < 1. Usually,
the Rabi frequency is much smaller than the detuning at the
beginning and the end or the pulse, so in the approximation
y → 0 the error in the transition probability becomes

ε ≈ 1 + x2

2(1 − x2)2
y2. (A24)

This implies that for ε � εmax, we require

R

�̃(t1)
� 1

1 − x2

√
2(1 + x2)

εmax
. (A25)

The formula converges to the one in Eq. (A22) when x =
0 and in the limit εmax → 0. For example, when 	ε/R =
0.25, i.e., x = 0.5, the error ε � 0.01 implies R/�̃(t1) � 21.1,
which is higher than the value of 14 in the noiseless case.
Thus, in the presence of detuning errors, we require a larger
ratio of R/�̃(t1) to reach the same transfer efficiency.
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In summary, the adiabatic condition requires a small chirp
rate (and thus a small chirp range) while the condition that
the mixing angle ν̃(t ) changes from π/2 to 0 (or vice versa)
requires a large chirp range. Next, we show an example for
RAP conditions for the pulse shape of the Allen-Eberly model
[57,62], which we use in the manuscript.

6. Example: Allen-Eberly model

We describe the conditions for RAP for the Allen-Eberly
(AE) model [57,62], which is characterised by a Rabi fre-
quency and a detuning with the following shapes [see Fig. 2
(top) in the main text]

�(t ) = �0 sech(t/T ), (A26a)

	(t ) = 	0 tanh (t/T ), t ∈ [−Tpulse/2, Tpulse/2], (A26b)

where T is a characteristic time of the RAP pulse and Tpulse

is the RAP pulse duration and we dropped the noisy terms
for simplicity of presentation and assumed that the pulse is
centered at time tc = 0.

The lower boundary adiabatic condition for this model
simplifies to

�(tc)2

	̇(tc)
= �2

0T

	0
� 1, (A27)

where tc is the moment of level crossing (	(tc) = 0). Equiv-
alently, this criterion can be given in terms of the target chirp
range R = 2	0:

R

�0
� �0T

2
. (A28)

We note that when the RAP pulse duration Tpulse → ∞, the

pulse area A = ∫ Tpulse/2
−Tpulse/2 �(t )dt = π�0T , so the ratio between

the maximum chirp range and the peak Rabi frequency is
simplified to R/�0 � 2A/π . Another important advantage
of the AE model in comparison to the standard Landau-
Zener-Stückelberg-Majorana model with a constant drive and
a linear chirp [67] is that the pulse area (and thus the energy
input into the system) is limited, no matter how long is the
pulse duration Tpulse.

Next, we consider the condition for mixing angle evolution
for this model. First, we note that the actual chirp range
is given by 	(Tpulse/2) − 	(−Tpulse/2) = R tanh (Tpulse/2T )
and approaches the target chirp range only when (Tpulse/T →
∞). We note that this is not very restrictive but one needs
an interaction time of several times T to ensure that the
actual chirp range is similar to the maximum one and there
is negligible truncation of the Rabi frequency function. For
example, the truncation is quite small for Tpulse/T = 10
when �(Tpulse/2) ≈ 0.013�0 and the actual chirp range is
≈ 0.9999R. The condition for mixing angle evolution is then
given in Eq. (A22) and takes the form

R sinh (Tpulse/2T )

�0
�

√
2

εmax
− 4. (A29)

An example of the relevance of the mixing angle condition as
a lower boundary of the chirp range is given in Fig. 5(a). Then,
both conditions can be summarized to obtain the following

double inequality for the ratio between the target chirp range
and the peak Rabi frequency:

1

sinh (Tpulse/2T )

√
2

εmax
− 4 � R

�0
� 2

π
A. (A30)

Thus RAP requires a minimum ratio of the chirp range and
the peak Rabi frequency (R/�0) to ensure sufficient change
in the mixing angle to ensure a transition probability error
no greater than εmax (left inequality). Additionally, the ratio
(R/�0) should be much smaller than the pulse area A to
ensure adiabaticity (right inequality). The relevance of both
conditions is demonstrated in Fig. 5(a), where the region
of high transition probability lies between the white solid
lines that describe them. We note that this model requires a
smaller ratio between the maximum chirp range and the peak
Rabi frequency than the standard Landau-Zener-Stückelberg-
Majorana model with a constant drive. This, in turn, leads to
lower requirements for pulse area (and energy input) although
the interaction time T can be kept the same.

Next, we note that this particular model can be solved
analytically in the limit when Tpulse/T → ∞ even without
assuming adiabaticity, giving the transfer efficiency [63]

p → 1 − sech

(
πT R

4

)2

cos

⎛⎝πT
√∣∣R2 − 4�2

0

∣∣
4

⎞⎠2

. (A31)

Finally, we discuss briefly the case when an additional
detuning error is present, e.g., due to inhomogeneous broad-
ening. Then, 	̃(t ) = 	ε + 	(t ) and the dynamics are more
complex. Then, the time of the level crossing is shifted by
T arctan (−2	ε/R) in comparison to the noiseless case due
to the detuning error (see Fig. 4). The lower boundary adia-
baticity condition and, thus, the right inequality in Eq. (A30),
is not affected by this shift for the AE model since the ratio
�(t )2/	̇(t ) = 2�2

0T/R is independent of t , i.e., the moment
of the level crossing (see Fig. 5). We note that this would
usually not the case for other pulse shapes.

However, we need to modify the required chirp range in
accordance to Eq. (A25) and obtain

1

sinh (Tpulse/2T )

1

1 − x̃2

√
2(1 + x̃2)

εmax
� R

�0
� 2

π
A, (A32)

where x̃ = 2	ε/(R tanh (Tpulse/2T )). In other words, one has
to apply a slightly longer pulse or increase the chirp range to
reach the same transfer efficiency as in the noiseless case.

We note that the particular model with additional static
detuning, such that 	(t ) = 	ε + 	0 tanh (t/T ) can be solved
analytically in the limit when Tpulse/T → ∞ even without as-
suming adiabaticity. It is then termed Demkov-Kunike model
and the transfer efficiency is [63]

p → 1 − |̃ε|2, where

ε̃ = �
(

1
2 + i(δ + χ )

)
�

(
1
2 + i(δ − χ )

)
�

(
1
2 +

√
α2 − χ2 + iδ

)
�

(
1
2 −

√
α2 − χ2 + iδ

) ,

α = �0T/2, δ = 	εT/2, χ = 	0T/2. (A33)
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FIG. 6. Example of transition time Ttr in RAP. We perform a
numerical simulation of a two-state quantum system interacting
with a driving field with a Rabi frequency �̃(t ) = �0sech( t−tc

T ),
where the peak Rabi frequency �0 = 2π × 10 MHz and T = 0.5 μs,
detuning 	̃(t ) = (R/2) tanh ( t−tc

T ), where R = 2π × 50 MHz is the
target chirp range, the initial and end times are t = 0 and t = Tpulse =
5 μs. We show the time evolution of (green) the transition proba-
bility p(t ) in the bare states basis, (red) the function |̃ν ′(tc )|(t − tc ),
where tc = 2.5 μs is the center of the pulse. The transition time
is Ttr = 4�0T/R = 0.4 μs. As expected from theory, the transition
probability at t = tc + Ttr/2 is p = (2 + √

2)/4 ≈ 0.854.

7. RAP transition time

We discuss now the transition time in RAP, i.e., this is
the characteristic time, which describes the duration of the
population transfer from state |1〉 to state |2〉 in RAP. We use
a definition of transition time, which was proposed previously
by Boradjiev et al. [58] in the context of stimulated Raman
adiabatic passage. The transition time is defined as

Ttr = 1

|∂t p(ν(tc))| = 1

|̃ν ′(tc)| =
∣∣∣∣2�̃(tc)

	̃′(tc)

∣∣∣∣, (A34)

where tc is the time when the detuning 	̃(t ) crosses resonance
and the mixing angle becomes ν̃(tc) = π/4. The transition
time is inversely proportional to the nonadiabatic coupling at
the moment of level-crossing in the bare basis and depends on
the specific model for RAP. In case of the Allen-Eberly model
[57] in Eq. (A26), the transition time takes the form

Ttr = 4�0T

R
, (A35)

where �0 is the peak Rabi frequency, reached at time tc of the
level-crossing in the bare basis, R is the maximum chirp range,
and we assumed no noise (see Fig. 6 for an example). In the
presence of noise, e.g., due to inhomogeneous broadening, we
observe a shift in the detuning to 	̃(t ) = 	ε + 	(t ), which
changes the moment when the 	̃(t ) crosses resonance. Then,
the Rabi frequency can be lower than its peak value and
the derivative of 	̃(t ) can also differ, which modifies the
transition time. For the example model in Eq. (A26), which we
use in our work, the moment of resonance crossing is shifted
by T arctan (−2	ε/R) in comparison to the noiseless case and

the modified transition time becomes

Ttr = 4�0T√
R2 − 4	2

ε

. (A36)

The transition probabilities at times tc ± mTtr/2 can be
calculated exactly for this model and are given by

p = 1

2
± 1

2

(
1 + k2

sinh (mk)2

)−1/2

, k ≡ 2�0/R, (A37)

where m � 0. The lower bound of the transition probability
is achieved for k → 0, i.e., infinitely large chirp range with
respect to the peak Rabi frequency, and takes the form

pmin = 1

2

(
1 ± m√

1 + m2

)
, (A38)

Thus the lower bound of the transition probability for m = 1,
i.e., at time tc + Ttr/2, is pmin = (2 + √

2)/4 ≈ 0.854, while
for m = 2: pmin = 1/2 + 1/

√
5 ≈ 0.947.

APPENDIX B: ROBUST SEQUENCES OF RAP PULSES

1. Dynamic phase compensation

We consider sequences of RAP pulses in this section. First,
we note that the dynamic phase �̃ of a RAP pulse can be
compensated completely when we apply two RAP pulses,
as long as it is the same during the first and the second
pulses and they perform perfect population inversion. Then,
the propagator in the bare basis is URAPURAP = −σ0, where
σ0 is the identity matrix, which is independent from �̃.

It proves useful to consider the compensation mechanism
by analyzing the evolution in the adiabatic basis when we
apply two RAP pulses. During the first RAP pulse from time
t0 to time t1 the Hamiltonian in the adiabatic basis is given
by Eq. (A5). We then assume for simplicity that there is
no pulse separation between the RAP pulses. Then, at the
start of the second RAP pulse, we need to apply a very
fast, (approximately) instantaneous change in the sign of the
target detuning from 	(t ) → −	(t ). This leads to a sudden
change in the mixing angle from 0 to π/2, i.e., 	ν̃ = π/2.
The Hamiltonian in the adiabatic basis during this change
is dominated by the nonadiabatic coupling and is given by
Had(t ) ≈ ν̃ ′(t )σy, where ν̃ ′(t ) has an (approximately) delta
function behavior and its integral is the change in the mixing
angle 	ν̃ = π/2. Thus the evolution in the adiabatic basis in
the infinitesimal time between the two RAP pulses is given
by the propagator exp (−i	ν̃σy) = −iσy. Thus the adiabatic
states are interchanged. It is evident that the sudden change in
the mixing angle plays the role of a π pulse around the y axis
in the adiabatic basis. As a result, the phase evolution during
the second RAP pulse compensates the one during the first
RAP pulse, as long as the accumulated dynamic phase is the
same during both RAP pulses.

We can incorporate the transitions due to the sudden
changes of the mixing angle in the basis itself. Thus we can
define a new basis, which we term “adiabatic, toggling”
basis. The transformation matrix from the adiabatic to the
“adiabatic, toggling” basis for times during the kth RAP pulse
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is given by

Rad,tog(t ) = exp [i(k − 1)	ν̃σy], t ∈ (tk−1, tk ),
(B1)

Had,tog(t ) = Rad,tog(t )Had(t )Rad,tog(t )†,

where tk−1 is the beginning and tk is the end of the kth RAP
pulse. The Hamiltonian in the “adiabatic, toggling” basis in
the adiabatic approximation then takes the form

Had,tog(t ) = f (t )�̃eff(t )σz/2, (B2)

where f (t ) = −1 during the odd-numbered RAP pulses and
f (t ) = 1 during the even-numbered ones, and we assumed
that 	ν̃ = π/2 between two RAP pulses. Thus the accumu-
lated dynamic phase, including the effect of the frequency and
amplitude noise, is compensated during every second RAP
pulse as long as it is the same as in the previous pulse, i.e.,
the correlation time of the noise is long in comparison to the
duration of two RAP pulses.

2. Phased sequences of RAP pulses

Perfect RAP pulses are difficult to achieve in real ex-
perimental realizations because the adiabaticity condition is
hard to fulfill and/or the mixing angle might take a very
long time to change from ν̃(t0) = π/2 to ν̃(t1) = 0 during
a single RAP pulse. In order to compensate these errors,
we will use the relative phases of the RAP pulses φk as
additional control parameters and apply robust sequences
of pulses. For example, we can choose the phases of the
individual RAP pulses to correspond to the popular XY, KDD,
or UR sequences [22,23,49,51]. These are based on composite
pulses, which have been shown to improve the efficiency of
population transfer and rephasing with imperfect RAP pulses
[22,49,50,52].

The propagator of a pulse (not necessarily RAP) in the bare
basis can be parameterized by [22,51,52]

U =
[ √

εeiα
√

1 − εe−iβ

−√
1 − εeiβ √

εe−iα

]
, (B3)

where p ≡ 1 − ε is the transition probability, i.e., the prob-
ability that the qubit will be transferred to state |2〉 if it
was initially in state |1〉, ε ∈ [0, 1] is the unknown error
in the transition probability, α and β are unknown phases.
For example, when the evolution is perfectly adiabatic the
transition probability is given by Eq. (A13). In case of a
perfect RAP pulse, the transition probability becomes p = 1
and ε = 0. However, this is often not the case, e.g., due to
imperfect adiabaticity or insufficient change in the mixing
angle during a RAP pulse. For example, imperfect adiabaticity
due to, e.g., fast change in the mixing angle or insufficient
pulse area, can make ε �= 0. Such errors can be compensated
by applying phased sequences of pulses, where the phases of
the subsequent pulses are chosen to cancel the errors of the
individual pulses up to a certain order [22,51,52].

If the pulses are time separated, the propagator of the whole
cycle [free evolution for time τ/2 − pulse− free evolution for
time τ/2] changes by taking α → α̃ = α + 	ετ , where we
assumed that the detuning variation 	ε is constant during one
[τ/2 − pulse − τ/2] period. Additionally, a shift in the phase
φk at the beginning of a pulse [see Eq. (A1)] causes β → β +

φk [22,51]. Thus the propagator of the kth pulse in the bare
basis takes the form

U (φk ) =
[ √

εeĩα
√

1 − εe−i(β+φk )

−√
1 − εei(β+φk ) √

εe−ĩα

]
. (B4)

Assuming coherent evolution during a sequence of n pulses
with different initial phases φk , the propagator of the compos-
ite sequence then becomes

U (n) = U (φn) . . .U (φ1), (B5)

and the phases φk of the individual pulses can be used as
control parameters to achieve a robust performance. We can
evaluate the latter by considering the fidelity [22,23]

F = 1
2 Tr

[(
U (n)

0

)†
U (n)], (B6)

where U (n)
0 is the propagator of the respective pulse sequence

when ε = 0, i.e., when the pulse performs a perfect population
inversion. For example, the fidelity of a single pulse is given
by F = √

1 − ε. We note that this measure of fidelity does not
take into account variation in the phase β, which is important
when we apply an odd number of pulses. However, the latter is
fully compensated when we apply an even number of pulses
with perfect transition probability. Thus we use the fidelity
measure in Eq. (B6) as it usually provides a simple and
sufficient measure of performance when we apply an even
number of pulses. We can obtain the fidelity of a sequence
of eight pulses with zero phases, i.e., φk = 0, which is given
by

F(φk=0) = 1 − 32 cos (̃α)4ε − O(ε2). (B7)

Additionally, the fidelity of the widely used XY8 sequence
[23] with phases (0, 1, 0, 1, 1, 0, 1, 0)π/2 is

FXY8 = 1 − 4[cos (̃α) + cos (3α̃)]2ε3 − O(ε4). (B8)

Usually the transition probability error is quite small, i.e., ε →
0, so the error in the fidelity (1 − F ) of the XY8 sequence
(∼ε3) will be much smaller than the one of the sequence with
constant zero phases (∼ε). Similarly, one can show that we
can obtain a robust performance and even better fidelity with
other sequences of phased pulses, e.g., by using the KDD or
UR sequences [22,23,51].

We note that we made no assumption of the pulse shape
and detuning time dependence during this analysis, except
for the RWA to obtain the Hamiltonian in Eq. (G1), coherent
evolution, and the assumption that effect of the pulse and
free evolution before and after the pulse on the qubit is the
same during each pulse (except for the effect of the phase
φk). Thus the analysis is applicable for sequences of RAP
pulses [52]. We note that when the detuning 	̃(t ) is an
antisymmetric function of time with respect to the center of
a RAP pulse (e.g., when 	ε = 0), the phase α̃ = 0, which
allows for additional simplification, as used in Ref. [49].

Finally, we provide an example of the effect of the phases
for quantum sensing in Fig. 7. It compares RAP sensing with
simple X pulses and with the XY8 sequence and shows that
the coherence time is shorter by three orders of magnitude
without the additional XY8 phases, making sensing practi-
cally impossible. Detection of weak signals requires long co-
herence times and many pulses, e.g., the RAP sensing protocol
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FIG. 7. Scheme for sensing with (a) RAP-X and (b) RAP-XY8. In both, the atoms are prepared initially in |1y〉. Corresponding numerical
simulations of the population in the |1y〉, observed directly in the bare basis at time intervals of 8μs with DD by (c) RAP-X and (d) RAP-XY8,
where the only difference between the two are the phases of the poulses, which have the following characteristics for both simulations:
�0 = 2π × 10 MHz, a target chirp range R = 2π 95 MHz, characteristic time T = 0.2 μs, pulse duration Tpulse = 1 μs, and pulse separation
τ = 0. The sensed field has an amplitude of g = 2π × 4.34 kHz, initial phase ξ = 0 and angular frequency ωs = 2π × 0.5 MHz. The peak
Rabi frequency is the same in both protocols and Tpulse + τ = π/ωs.

uses 2000 pulses in the simulation in this work and is typical
for sensing experiments. Thus even small RAP infidelity, e.g.,
due to imperfect adiabaticity or other systematic errors, leads
to the observed fast decay impossibility to detect the signal.
Therefore the combination of RAP with phased sequences is
essential for optimal sensing.

APPENDIX C: DETAILED THEORY OF RAP SENSING

In this section, we show how we can apply RAP for
sensing. Our goal is to sense the amplitude of an oscillating
(AC) field. We consider the Hamiltonian

H̃s(t ) = ω̃0(t )

2
σz + �̃(t )σx cos [ω0t + δ(t ) + φ]

+ gσz cos (ωst + ξ ), (C1)

where g is the amplitude of the oscillating sensed field, ωs is
its angular frequency, and ξ is its initial phase.

We move to the rotating frame with respect to the carrier
frequency ω(t )σz/2, apply the rotating-wave approximation
(|�(t )| � ω) and obtain the Hamiltonian

Hs(t ) = −	̃(t )

2
σz + �̃(t )

2
σx + gσz cos (ωst + ξ ), (C2)

where we took φ = 0 without loss of generality. We now move
to the adiabatic basis, as defined in sec. A. The Hamiltonian
takes the form

Had,s(t ) = − �̃eff(t )

2
σz + gcos (ωst + ξ )

× [cos (2̃ν(t ))σz + sin (2̃ν(t ))σx], (C3)

where we applied the adiabatic approximation, assuming
|̃ν ′(t )| � �̃eff(t ). It proves useful to incorporate any instan-
taneous changes to the mixing angle by moving to the “adi-
abatic, toggling” basis, as defined in Eq. (B1), where the
Hamiltonian becomes

Had,tog,s(t ) = f (t )
�̃eff(t )

2
σz − f (t )gcos (ωst + ξ )

× [cos (2̃ν(t ))σz + sin (2̃ν(t ))σx]. (C4)

If no sudden changes in the mixing angle occur, the “adiabatic,
toggling” basis is the same as the standard adiabatic basis
and f (t ) = −1. If we apply sequences of RAP pulses where
	ν = π/2 between the pulses, then f (t ) = −1 during the
odd-numbered RAP pulses and f (t ) = 1 during the even-
numbered ones. Finally, we move to the interaction basis with
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respect to f (t )�̃eff(t )/2 and obtain the Hamiltonian

Hint,tog,s(t ) = − f (t )gcos (ωst + ξ )[cos (2̃ν(t ))σz

+ sin (2̃ν(t ))(ei
∫ t

t0
f (t ′ )�̃eff (t ′ )dt ′

σ+ + H.c.)].
(C5)

We assume that ωs � �̃eff(t ) and that the adiabatic approxi-
mation is valid, i.e., |̃ν ′(t )| � �̃eff(t ), so we can neglect the
fast oscillating second term and obtain.

Hint,tog,s(t ) = − f̃ (t )gcos (ωst + ξ )σz, (C6)

where the modulation function f̃ (t ) = f (t ) cos (2̃ν(t )). We
note that the modulation function f̃ (t ) would stay the same if
the mixing angle changes suddenly by 	ν = ±π/2 between
two RAP pulses because the function f (t ) and the element
cos (2̃ν(t )) change their signs simultaneously then. Thus the
modulation function f̃ (t ) is affected only by adiabatic changes
in the mixing angle during the RAP pulses (see Fig. 1 in the
main text). Next, we consider two approaches for sensing,
using adiabatic coherent control.

1. Adiabatic evolution sensing

We first consider the case when the evolution is adiabatic
during the whole interaction without sudden changes in the
mixing angle. For example, this will be the case if the mixing
angle stays constant or changes adiabatically from π/2 to
0, then back, etc. As the evolution is adiabatic during the
whole interaction, there will be no population changes in the
adiabatic basis. Thus f (t ) = −1 during the whole interac-
tion and the modulation function will be given by f̃ (t ) =
− cos (2̃ν(t )). Then, the Hamiltonian in the interaction, tog-
gling basis takes the form

Hint,tog,s(t ) = cos (2̃ν(t ))gcos (ωst + ξ )σz, (C7)

If the mixing angle ν̃(t ) stays constant, e.g., if we apply a
driving field with a constant Rabi frequency and detuning, the
effect of the sensed signal will be canceled. We note that one
can do AC sensing with a simple continuous drive but this
requires ωs = �̃eff(t ) [26–28] and we consider the case when
ωs � �̃eff(t ) in this work. However, if the mixing angle 2̃ν(t )
changes with a rate, which corresponds to π/ωs, we will be
able to sense the signal. For example, a maximum contrast is
achieved when the modulation function cos (2̃ν(t )) changes
its sign at the time when cos (ωst + ξ ) does this (see Fig. 1 in
the main text). If the RAP transition time is very short, i.e.,
Ttr � π/ωs, where Ttr = 2�̃(tc)/	̃′(tc) (see Appendix A 7)
and tc is the time of level crossing in the bare basis, the
modulation function can be considered approximately equal
to a step function. Then, the Hamiltonian in Eq. (C8) can be
approximated by

Hint,s(t ) ≈ −g| cos (ωst )|σz (C8)

where we assumed that ξ = 0 for maximum contrast and
ν(t0) = π/2 without loss of generality. As a result of the
signal, the sensing qubit will accumulate a phase 2χ (t ) in
the interaction, toggling basis similarly to standard pulsed DD
with instantaneous resonant π pulses. The phase is propor-

tional to g and takes the form (we assume g � ωs)

χ (t ) ≡
∫ t

0
g| cos (ωst

′)|dt ′ ≈ 2

π
gt (C9)

and the effective propagator in this basis is

Uint,s(t, t0) = cos χ (t )σ0 + i sin χ (t )σz. (C10)

Thus the sensing qubit accumulates a phase and performs
Ramsey oscillations in this basis, similarly to standard pulsed
DD.

However, we note that this method for adiabatic sensing
is not optimally robust. For example, if we apply a field
with a constant drive and change the target detuning 	(t )
adiabatically from positive to negative and vice versa at a rate
π/ωs, the method will suffer from noise in the effective Rabi
frequency �̃eff(t ), which defines the basis of the Hamiltonian
in Eq. (C8). This can be seen directly if one considers the
effective propagator in the adiabatic basis, which takes the
form

Uad,s(t, t0) = cos

(
�̃(t )

2
+ χ (t )

)
σ0 + sin

(
�̃(t )

2
+ χ (t )

)
σz

=
[

ei( �̃(t )
2 +χ (t )) 0

0 e−i( �̃(t )
2 +χ (t ))

]
. (C11)

where the phase �̃(t ) = ∫ t
t0

�eff(t ′)dt ′ depends on noise
terms, which will cause the dephasing. We note that
the change of the mixing angle reduces the effect of this noise
partially. Specifically, if we assume that the frequency noise
is characterized by 	ε (t ) = 	ε > 0 and the target detuning
	(t ) changes from a very low negative value to a very high
positive one, we can obtain 	̃(t ) = 	(t ) − 	ε (t ) and the
effective Rabi frequency �̃eff(t ) =

√
	̃(t )2 + �̃(t )2 during a

RAP pulse by

�̃eff(t ) → |	̃(t )| = |	(t )| + 	ε, ν̃(t ) → π/2, (C12a)

�̃eff(t ) → |�̃(t )|, ν̃(t ) → π/4, (C12b)

�̃eff(t ) → |	̃(t )| = |	(t )| − 	ε, ν̃(t ) → 0. (C12c)

Thus the detuning noise due to 	ε can be compensated if
the time period when ν̃(t ) → π/2 is equal to the one when
ν̃(t ) → 0. However, the accumulated phase �̃(t ) remains
susceptible to amplitude noise and higher order frequency
noise terms when the mixing angle is changing. Additionally,
even in the noiseless case, the dynamic phase due to 	(t )
and �(t ) is not zero and should be taken into account when
performing measurements in the bare basis.

2. Sensing by sequences of RAP pulses

We consider now an improved protocol when we apply se-
quences of RAP pulses for sensing. Then, the sudden changes
in the mixing angle between RAP pulses cause flips of the
states in the adiabatic basis, which nullify the dynamic phase
and its noise as long as the they occur frequently enough.
We consider again the Hamiltonian in the interaction, toggling
basis, as defined in Eq. (C6).

Hint,tog,s(t ) = − f̃ (t )gcos (ωst + ξ )σz, (C13)
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where the modulation function f̃ (t ) = f (t ) cos (2̃ν(t )). We
note that we assume that ν̃(t )) changes adiabatically from
π/2 to 0 during every RAP pulse and then instantaneously
from 0 to π/2 between the pulses (or vice versa for both
changes). We already noted that f̃ (t ) is not affected by sudden
changes in the mixing angle when 	ν = ±π/2. Thus the
modulation function of the sensed field will be the same
as in the case of adiabatic evolution without such changes.
Then, if a RAP pulse duration corresponds to π/ωs, we will
again be able to sense the signal. Similarly to the case of
adiabatic evolution sensing, a maximum contrast is achieved
when the modulation function f̃ (t ) changes its sign at the time
when cos (ωst + ξ ) does this (see Fig. 1 in the main text).
The main difference from continuous RAP sensing is that
the interaction, toggling basis itself is much more robust to
frequency and amplitude noise as it is defined with respect to
f (t )�eff(t ) and f (t ) changes its sign during every subsequent
RAP pulse. Explicitly, the effective propagator in the adiabatic
basis takes the form

Uad,s(t, t0) =
[

ei( �̃c (t )
2 +χ (t )) 0

0 e−i( �̃c (t )
2 +χ (t ))

]
, (C14)

where �̃c(t ) = ∫ t
t0

f (t ′)�eff(t ′)dt ′. It is evident that �̃c(t ) = 0
and the accumulated dynamic phase, including the effect of
the frequency and amplitude noise, is compensated after every
second RAP pulse as long as the correlation time of the noise
is long in comparison to the duration of two RAP pulses.
Furthermore, the phase evolution in the adiabatic, toggling
basis can then be observed stroboscopically directly in the
bare basis after every second RAP pulse. We note that as
the instantaneous changes in the mixing angle do not affect the
modulation function f̃ (t ) [but only f (t )], the RAP pulses can
also be truncated and separated by free evolution time τ (see
Fig. 1 in the main text). Then, the sensing condition becomes
Tpulse + τ = π/ωs. However, unless experimental limitations
require such truncation, it is usually beneficial to use longer
RAP pulses and τ = 0 as this improves adiabaticity.

Finally, we note that while the instantaneous changes in the
mixing angle play the role of instantaneous π pulses around
the y axis in the adiabatic basis, they do not compensate
errors due to nonadiabatic couplings. The reason is that the
Hamiltonian term due to the latter is proportional to ∼ν ′(t )σy

and commutes with the Hamiltonian during the sudden change
of the mixing angle. Additionally, the changes in the mixing
angle during/between RAP pulses might differ from π/2.
In order to compensate for these imperfections, we apply
phased sequences of RAP pulses and use their relative phases
additional control parameters to improve the fidelity of the
process, as discussed in Appendix B 2.

APPENDIX D: DETAILED COMPARISON OF RAP
SENSING AND SENSING WITH RECTANGULAR PULSES

Sensing by sequences of RAP pulses allows to obtain an
improved contrast in comparison to sensing with rectangular
π pulses. This is due to the greater bandwidth and robustness
to amplitude errors of the RAP, e.g., for systems with large
inhomogeneous broadening. Specifically, it can be shown that
the obtained contrast in sensing experiments with a Hahn echo

with an imperfect pulse is proportional to the transition prob-
ability ∼p of the latter [5]. The relation is more complicated
with longer phased sequences, e.g., XY8 (see Appendix B),
but higher p in general leads to improved contrast and coher-
ence times.

Standard rectangular π pulses require a peak Rabi fre-
quency of �0 � 	inh in order to have sufficient bandwidth
to cover the full width of the inhomogeneous broadening.
Specifically, the error in the transition probability is given by

εrect = 1 − �2
0

�2
eff

sin (�effTpulse/2) ∼ 	2
inh

�2
eff

≈ 	2
inh

�2
0

, (D1)

where �0 is the Rabi frequency, Tpulse is the pulse duration,
	inh is the detuning of the applied field from the frequency of
the sensor qubit, e.g., due to inhomogeneous broadening. Fi-
nally, �eff =

√
�2

0 + 	2
inh is the effective Rabi frequency, with

the last approximations valid for small detunings. One can
see that the error in the transition probability with rectangular
pulses can be significant when 	inh is large in comparison to
�0 or in case of variation of the Rabi frequency, so that the
effective pulse area �effTpulse �= π .

RAP pulses are robust to frequency and amplitude varia-
tion and their transition probability depends on the particular
pulse shape and time dependence of the detuning [36]. One
can obtain an approximate estimate of the transition probabil-
ity error by considering the probability for nonadiabatic tran-
sitions if we assume that the mixing angle changes from π/2
to 0 during a pulse. The transition probability in the adiabatic
basis is determined from the Hamiltonian in Eq. (A5) and can
be approximated by

εRAP ∼
(

	̇(tc)

�(tc)2

)2

=
(

R/2

�2
0T

)2

∼
(

R

�2
0Tpulse

)2

, (D2)

where tc is the time of the level crossing, and the second
equality is valid for the Allen-Eberly (AE) model (see below)
with R—the target chirp range, T ∼ Tpulse—the characteristic
time of the chirped pulse. As another example, in the case
of widely used pulse with a constant Rabi frequency and
a linear chirp i.e., the standard Landau-Zener-Stückelberg-
Majorana (LZSM) [67], the error in the transition probability
in the limit of very long pulse duration is given by εRAP =
exp (−π�2

0Tpulse

2R ) [63] and we again obtain a dependence on the
parameter R/(�2

0Tpulse). The sensing condition with chirped
pulses requires Tpulse ∼ π/ωs and R ∼ 	inh in order for the
chirp range to cover the inhomogeneous broadening, so one
can obtain

εRAP ∼ R2

�2
0

ω2
s

�2
0

∼ 	2
inh

�2
0

ω2
s

�2
0

≈ εrect
ω2

s

�2
0

. (D3)

Thus the error in the transition probability is lowered by
∼ω2

s /�
2
0. As a result, the RAP sensing protocol would im-

prove performance significantly in comparison to rectangular
pulses when �0 < 	inh and ωs � �0. It is also less sensitive
to variation in the effective pulse area in comparison to the
rectangular pulses, so it would also be applicable in the case
of Rabi frequency inhomogeneity.

Next, we discuss the AC signal frequency range, which can
be sensed with RAP pulses. The latter are typically longer
than the standard rectangular pulses, so they are preferable
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for sensing of low frequency AC signals. The upper limit of
the sensed frequency can be determined from the estimated
error in the transition probability, e.g., of the LZSM model

εRAP = exp (−π�2
0Tpulse

2R ) � 1 [63], which requires

ωs � π2�2
0

2R
∼ π2�2

0

4	inh
, (D4)

where we used that ωs = π/Tpulse. We note that this limit can
increase significantly by using other pulse shapes or phased
sequences of chirped pulses that improve the fidelity of the
process, e.g.,the fidelity error of the XY8 sequence with
chirped pulses is ∼ε3

RAP � εRAP (see Appendix B).
The lower limit of the sensed frequency is determined by

the T2 time of DD with ideal, instantaneous π pulses with a
pulse separation π/ωs, e.g., due to homogeneous broadening.
For example, if we assume that the homogeneous broadening
noise spectrum is given by the Lorentzian S(ω) = b2

π

1/̃τ

(1/̃τ )2+ω2 ,
where τ̃ is the correlation time of the environment and b
is the bath coupling strength (see Appendix G), the decay
of the signal after a single pulse can be approximated by

∼ exp (− b2T 3
pulse

12̃τ
) [7]. Thus we require

ωs � π

(
b2

12̃τ

)1/3

. (D5)

Thus the sensing frequency range of RAP sequences is
determined by the repetition rate of the RAP pulses. As they
are typically long to ensure adiabaticity, the resulting slower
repetition rate (in comparison to rectangular pulses) makes
the protocol sensitive to high frequency noise. Additionally,
when the condition that the RAP transition time Ttr � ωs/π

is not fulfilled, there can be a slight shift in the amplitude
of the detected AC field but it is straightforward to be taken
into account. Finally, when the inhomogeneous broadening is
large, the transitions of the different sensor atoms happen at
different times, i.e., not at the moment when the sensed field
is zero, which can lead to a slightly lower contrast.

We also note that in some cases the amplitude and fre-
quency inhomogeneities can also affect the preparation and
readout efficiency of the sensing protocol, e.g., leading to
a lower contrast. For example, π/2 rectangular pulses are
typically applied to prepare the system in the |1x,y〉 state and
read it out after the sensing experiment. However, one cannot
prepare efficiently all atoms when the inhomogeneous broad-
ening is much greater than the bandwidth of the simple π/2
pulse. One way to address this problem is to use adiabatic half
passage pulses for preparation and readout (see Appendix F
for details). Various other techniques can also be applied to
improve the preparation and readout efficiency even further,
e.g., robust composite π/2 pulses [46], adiabatic robust pulses
[37–39], single-shot shaped pulses [68,69], and pulses de-
signed by optimal control [70–75].

Adiabaticity requirements can be relaxed by the applica-
tion of phased RAP pulses, similarly to the ones used in
this work. Furthermore, the pulse repetition rate is usually
determined by the sensed (Larmor) frequency, which cannot
be increased in some cases. Finally, the variation in transition
times for the different sensor atoms can be used to design
more complex filter functions for sensing and dynamical de-
coupling. Thus sensing with phased RAP pulses can provide
significant advantages in a broad range of applications.

APPENDIX E: COMPARISON WITH OTHER
METHODS FOR SENSING

In the main text, we opted to compare RAP sensing with
XY8 sensing with rectangular pulses because it is usually the
standard technique for experimental sensing applications, e.g.,
in NV centers in diamond. In the following, we compare with
two other techniques and demonstrate the advantage of RAP
sensing.

Figure 8 compares RAP-XY8 to sensing with rectangular
pulses with the more advanced Knill dynamical decoupling
(KDD), nested in the XY8 sequence. KDD is based on a
composite pulse, intially proposed by Tycko et al. [47], and it

FIG. 8. Numerical simulations of the population in the |1y〉, observed directly in the bare basis at time intervals of 8μs with DD by
(a) KDD in XY8 pulse sequence with rectangular pulses with �(t ) = �0 = 2π × 10 MHz, duration Tpulse = 50 ns and pulse separation
τ = 0.95μs, and (b) RAP-XY8 with �0 = 2π × 10 MHz, a target chirp range R = 2π × 95 MHz, characteristic time T = 0.2 μs, pulse
duration Tpulse = 1 μs, and pulse separation τ = 0. The sensed field has an amplitude of g = 2π × 4.34 kHz, initial phase ξ = 0 and angular
frequency ωs = 2π × 0.5 MHz. The peak Rabi frequency is the same in both protocols and Tpulse + τ = π/ωs.
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FIG. 9. Numerical simulations of the population (a) in the |1z〉 state with double drive continuous dynamical decoupling with the first drive
with a Rabi frequency �1(t ) = �0 = 2π × 10 MHz, and second drive �2(t ) = 0.1�1(t ), observed stroboscopically at time intervals of 2 μs.
The red (gray) curve shows the evolution with (without) inhomogeneous broadening, frequency and amplitude noise. The lower oscillating
frequency in comparison to RAP-XY8 without noise is expected from theory as we sense the amplitude of the oscillating field in the second
order interaction basis, where it is reduced [19]. (b) Sensing with RAP-XY8 with parameters described in Fig. 8(b).

has been applied in multiple experiments for robust dynamical
decoupling [23]. It is also the basis for the AXY-8 sequence
for individual spin addressing in Ref. [24]. As expected from
theory, Fig. 8 shows that RAP-XY8 outperforms significantly
KDD in XY8 with rectangular pulses due to the limited
bandwidth of the rectangular pulses that cannot be offset by
the error-compensating mechanism of the phases.

Figure 9 compares RAP-XY8 to sensing with double
drive continuous dynamical decoupling (CDD) [19]. CDD
is designed to compensate frequency noise by applying a
driving field, which is much stronger than the bandwidth of
the inhomogeneous broadening. As expected from theory, our
simulation shows that the coherence time of CDD is several
orders of magnitude lower because of the high inhomoge-
neous broadening. We note that we sense the amplitude of an
AC field, which is reduced in the second interaction basis of
the double drive CDD, which leads to the slower oscillations
in case of no noise, as expected from theory [19].

APPENDIX F: ROBUST PREPARATION AND READOUT

As noted in the main text, applying RAP pulses for sensing
increases significantly the contrast and coherence time in
systems with large driving field variation and inhomogeneous
broadening. In some cases, these inhomogeneities can also
affect the preparation and readout efficiency of the sensing
protocol. For example, a simple π/2 pulse cannot prepare
efficiently all atoms in an ensemble when the inhomogeneous
broadening is much greater than the pulse bandwidth.

Various techniques can be applied to improve the effi-
ciency and robustness of preparation and readout, e.g., one
can apply robust composite π/2 pulses [46], adiabatic robust
pulses [37–39], single-shot shaped pulses [68,69], and pulses
designed by optimal control [70–75]. Figure 10 shows an ex-
ample for sensing with RAP pulses with a robust preparation
and readout where we replace the simple π/2 pulses in the
standard sensing scheme with adiabatic half passage pulses
(half-RAP) pulses. We note that although the preparation and
readout efficiency is better with half-RAP than with rectan-

gular pulses, it still reduces contrast slightly in comparison to
the case with perfect preparation and readout in Fig. 3 in the
main text. This is expected from theory as the inhomogeneous
broadening is much larger than the Rabi frequency, so not
all atoms are prepared in equal coherent superposition states.
Nevertheless, the RAP-XY8 scheme has both better contrast
and longer coherence times than the standard XY-8 sensing
with rectangular pulses. We note that in standard pulsed DD
experiments it is also common to apply measurements with a
3π/2 readout pulse and take the difference (contrast) from the
measured population with a standard π/2 readout pulse. The
robust RAP sensing alternative of the 3π/2 readout pulse can
be achieved by adding and additional RAP pulse at the end of
the sequence in Fig. 10. Finally we note that the preparation
and readout protocol can be improved further, e.g., by some
of the techniques mentioned above, but this goes beyond the
scope of this work.

APPENDIX G: NUMERICAL SIMULATION

In order to compare sensing with rectangular and RAP
pulses, we perform a numerical simulation. The results from
the latter are shown in Fig. 3 in the main text and compare
the performance of the XY8 and RAP-XY8 protocols in
a realistic conditions for sensing in NV centers with large
inhomogeneous broadening. Specifically, we apply dynamical
decoupling by sequences of phased RAP pulses in a two-state
system with a Hamiltonian in the bare basis

Hs(t ) = − 	̃(t )

2
σz + �̃(t )

2
(cos [φ(t )]σx + sin [φ(t )]σy)

+ gσz cos (ωst + ξ ), (G1)

where 	̃(t ) ≡ 	(t ) − 	ε (t ) is the actual detuning, experi-
enced by a sensor atom, where 	(t ) is the target detuning and
	ε (t ) is noise in the transition frequency of the qubit, e.g.,
due to inhomogeneous broadening or frequency fluctuations.
Next, the actual Rabi frequency is �̃(t ) = �(t )[1 + ε�(t )],
where �(t ) is the target Rabi frequency we want to apply
and ε�(t ) is an error term, e.g., due to amplitude fluctuations
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FIG. 10. (a) Scheme for sensing with preparation and readout for (a) the standard XY8 sequence of rectangular pulses and (b) the RAP-XY8
sequence of phase shifted, chirped, adiabatic pulses. In both schemes we assume that the atoms are initially in the ground state |1z〉, so we
need to prepare the system in a coherent superposition state, e.g., by a π/2 pulse, perform sensing and then readout. Corresponding numerical
simulations of the population of the excited state |1−z〉 in the bare basis for quantum sensing, observed stroboscopically directly in the bare
basis at time intervals of 8 μs with dynamical decoupling with (c) XY8 with rectangular pulses, and (d) RAP-XY8 with chirped pulses.
The experimental parameters are the same as in Fig. 3 in the main text with the only difference that we apply π/2 and half-RAP pulses for
preparation and readout, respectively. The light gray curve shows the respective theoretical evolution in an ideal system without inhomogeneous
broadening, frequency and amplitude noise. The red curve shows the evolution with inhomogeneous broadening, frequency and amplitude
noise. We note that the slight delay in the ideal, theoretical curve with RAP pulses from p = cos(χ (t ))2, defined in Eq. (C9), is expected and
due mainly to the noninstantaneous transition time, which is taken into account in the simulation. Both the coherence time and the contrast are
much higher with the RAP-XY8 protocol.

and/or inhomogeneity. Additionally, φ(t ) is a time-dependent
phase of the control field, which takes discrete values during
each pulse. Finally, g is the amplitude of the oscillating sensed
field, ωs is its angular frequency, and ξ is its initial phase.

First, the target Rabi frequency and detuning of the kth
RAP pulse follow the time-dependence of the Allen-Eberly
(AE) model [57,62,63]

�(t ) = �0 sech

(
t − tc,k

T

)
, (G2a)

	(t ) = 	0 tanh

(
t − tc,k

T

)
, (G2b)

for t ∈ [tc,k − Tpulse

2 , tc,k + Tpulse

2 ], where tc,k is the center of
the kth pulse, T is its characteristic time, and Tpulse is
the RAP pulse duration. The peak Rabi frequency and
detuning are, respectively, �0 and 	0 = R/2 with R the
target chirp range. We note that one can apply chirped
pulses with other shapes and detunings, e.g., the stan-
dard Landau-Zener-Stückelberg-Majorana model with a con-

stant drive and a linear chirp [67]. We choose the AE
model due to its excellent adiabaticity with respect to
peak Rabi frequency and chirp range (see Appendix A 6),
allowing for high flexibility of applications.

We assume detuning noise 	ε (t ) and uncorrelated ampli-
tude fluctuation ε�(t ) of the driving field. The parameters of
the noise have the characteristics for typical experiments in
NV centers, as described in Refs. [26,61]. Specifically, we
assume that the magnetic noise has a constant and a dynamic
component 	ε (t ) = 	ε,c + 	ε,d (t ). The constant component
	ε,c follows a Gaussian distribution with a zero expectation
value and a FWHM of π × 26.5 MHz (T �

2 = 20 ns). The
dynamic component 	ε,d (t ) has a Lorentzian power spectrum
S(ω) = b2

π

1/̃τ

(1/̃τ )2+ω2 , where τ̃ is the correlation time of the

environment and b = √
c̃τ/2 = 2π × 50 kHz is the bath cou-

pling strength with c the diffusion constant. The component
	ε,d (t ) is modelled as an Ornstein-Uhlenbeck (OU) process
[59,60] with a zero expectation value 〈	ε,d (t )〉 = 0, corre-
lation function 〈	ε,d (t )	ε,d (t ′)〉 = (1/2)c̃τ exp (−γ |t − t ′|),
τ̃ = 1/γ = 20 μs is the correlation time of the noise. The OU
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process is implemented with an exact algorithm [60]

	ε,d (t + 	t ) = 	ε,d (t )e− 	t
τ̃ + ñ

√
c̃τ

2

(
1 − e− 2	t

τ̃

)
, (G3)

where ñ is a unit Gaussian random number. The driving
fluctuations are also modelled by uncorrelated OU processes
with the same correlation time τ� = 500 μs and a relative
amplitude error ε� = 0.005 with the corresponding diffusion
constant c� = 2δ2

�i
�2

i /τ�, i = 1 and 2.
Then, we calculate numerically the propagator

Ũs(t, t0) = T exp

(
−i

∫ t

t0

H̃s(t
′)dt ′

)
(G4)

for the particular noise realisation of 	ε (t )and ε�(t ) and the
chosen DD sequence. We use a time discretization with a
time step of 0.1 ns, which is comparable to the resolution of
available arbitrary wave-form generators. We note that the OU
noise characteristics are not affected by this choice of 	t , as
Eq. (G3) is exact.

We then make use of the calculated Ũs(t, t0) and obtain the
time evolution of the density matrix

ρ(t ) = Ũs(t, t0)ρ(t0)Ũ †
s (t, t0), (G5)

where ρ(t0) = ρy ≡ (σ0 + σy)/2 is the initial density matrix.
We assume in the simulation in Fig. 3 in the main text
that ρ(t0) = ρy ≡ (σ0 + σy)/2, which corresponds to perfect
preparation of the system in the state |1y〉. We note that the
initial state can also be |1x〉 or any other state, which has
components that do not commute with a ∼σz Hamiltonian
in order to sense the signal. The expected density matrix
ρ(t ) is calculated by performing the simulation 2500 times
for different noise realizations and averaging the result. The
simulation results in Fig. 3 in the main text show the aver-
age population in state |1y〉, which is calculated as P1y(t ) =
(1/2) + Im(ρ21(t )).

The simulation in Fig. 10 assumes ρ(t0) = ρy ≡ (σ0 +
σy)/2 and takes into account imperfect preparation and read-
out. We calculate the expected density matrix ρ(t ) and show
the average population in state |1−z〉, which is determined by
P1−z(t ) = ρ22(t ).

APPENDIX H: ADDITIONAL EXPERIMENTAL RESULTS

In the following section, we give more details of the
performed experiments for RAP sensing. In a first experiment,
we optimized experimentally the RAP pulse parameters for
the Allen-Eberly model [57]. The procedure is also applicable
for the optimization of RAP pulses with other shapes. An
example for this optimization for the high Rabi experiment
is shown in Fig. 11, where we optimize the characteristic time
T and the target chirp range R. In this specific example, we
first fix the peak Rabi frequency �0 = 2π × 5 MHz, which
is usually determined by the experimental limitations. We
assume RAP pulse duration Tpulse = 11.4 μs, which is deter-
mined by the frequency of the sensed field in a subsequent
experiment. As a next step, we optimize the RAP chacteristic
time T , which determines the extent of truncation of the RAP
pulse. We initialize the system in the |0〉 state and perform
population inversion by a RAP pulse, measuring the observed
fluorescence (see Fig. 3 c in the main text), which is correlated

FIG. 11. RAP experimental optimization for the high Rabi exper-
iment with peak Rabi frequency �0 = 2π × 5 MHz and pulse dura-
tion Tpulse = 11.4 μs. (a) Fluorescence vs. ratio characteristic time
T/Tpulse for a single RAP pulse. The lower the fluorescence the more
efficient is the population from |0〉 to |1〉 (see Fig. 3(c) in the main
text). The chirp range is taken R = 2π × 40 MHz. (b) Optimization
of the target chirp range R for a characteristic time T/Tpulse = 0.17
for the RAP-XY8 DD sequence, repeated once.

to the population distribution between the |0〉 and |1〉 states at
the end of the interaction. We choose a chirp range, which is
expected to perform well in theory and scan T while keeping
Tpulse constant. In this way, we obtain an optimum ratio
T/Tpulse = 0.17 [see Fig. 11(a)]. Next, we use this T/Tpulse

and optimize the target chirp range R by performing DD
by RAP-XY8, repeated once, in order to maximize the DD
efficiency. Figure 11(b) shows that we obtain the optimum
R = 2π × 40 MHz. We note that in all DD experiments,
including for the R optimization, we obtain the difference in
fluorescence from two measurements in which the phase of
the last half RAP pulse is X and −X . As we plot a fluorescence
difference in Fig. 11(b), the values are expectedly lower in
comparison to Fig. 11(a), where we plot the fluorescence
after a single measurement. The optimization can also be
performed by a 2D scan of these parameters but our results
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FIG. 12. Fluorescence vs interaction time for XY8 and RAP-XY8 without an artificial AC field for (a) high Rabi experiment with a peak
Rabi frequency �0 = 2π × 5 MHz and Tpulse + τ = 11.4 μs. The rectangular pulses in standard XY8 have a duration Tpulse = π/�0 = 100 ns,
τ = 11.3 μs; for RAP-XY8: Tpulse = 11.4 μs, τ = 0, target chirp range R = 2π × 40 MHz, characteristic time T/Tpulse = 0.17. (b) high Rabi
with noise: the same pulse parameters as in (a) plus added amplitude noise with σ = 0.2 �0. The coherence time T2 of standard XY8 decreases
by ∼35% in comparison to the high Rabi case while remaining approximately the same with RAP-XY8. (c) low Rabi experiment with peak
Rabi frequency �0 = 2π × 1.7 MHz, Tpulse + τ = 34.46 μs. The rectangular pulses in standard XY8 have a duration Tpulse = π/�0 = 294 ns,
τ = 34.166 μs; for RAP-XY8: Tpulse = 34.46 μs, τ = 0, target chirp range R = 2π × 20 MHz, characteristic time T/Tpulse = 0.19. The
coherence time T2 of standard XY8 decreases by ∼40% in comparison to the high Rabi case while remaining approximately the same with
RAP-XY8. All experiments show fluorescence difference from two measurements in which the phase of the last π/2 or half RAP pulse is X
and −X . The error terms for the estimates of T2 are given as ± one standard deviation.

show that slight variations of T and R do not affect the results
significantly, so we use this simplified optimization.

Next, we carried out three sets of experiments: (i) at high
Rabi frequency (2π × 5 MHz), which we term high Rabi in
all figures; (ii) at high Rabi frequency with artificially added
amplitude error for each sequence repetition, which follows a
random Gaussian distribution with a zero mean and a width
of 0.2�0, which we term high Rabi with noise; (iii) at low
Rabi frequency (2π × 1.7 MHz), which we term low Rabi.
Each set included regular XY8 (“hard,” rectangular pulses)
and RAP XY8 sequences where the pulse and detuning shape
follow the Allen-Eberly model in Eqs. (G2) with the above-
mentioned values of the Rabi frequency corresponding to the
peak Rabi frequency. We performed the measurement twice
for each sequence: without an external field to be sensed (a
decoherence measurement, see Fig. 12) and with an applied
oscillating magnetic field (acting as the signal to be sensed,
see Fig. 13).

In the first series of experiments, we measured the coher-
ence time (T2) of the DD sequences without applying an arti-
ficial oscillating magnetic field (see Fig. 12). Specifically, we
measured the change in fluorescence, which varies depending
on the population of the electron spin of the NV center. This
allowed us to measure the decoherence of the electron spin
as a function of time, while applying DD with pulses at a
constant repetition rate (so, that the number of pulses changes
with time). As shown in Fig. 12(a) the coherence time with the
standard XY8 sequence with rectangular pulses is around 1.8
ms with strong, rectangular pulses. As expected from theory,
the standard XY8 DD protocol does not perform well when
we introduce amplitude noise and the coherence time drops
to about 1.2 ms in Fig. 12(b). Similarly, in Fig. 12(c), we
observe a drop in the coherence time to about 1 ms as we
apply a low Rabi frequency of �0 = 2π × 1.7 MHz, which
is less than the FWHM of the inhomogeneous broadening
of 2π × ×(2.1 ± 0.1) MHz, so the rectangular DD pulses

cannot cover efficiently the full bandwidth of transition fre-
quencies of the NVs in the ensemble. The coherence times
improve with the RAP-XY8 sequence and reach T2 ≈ 1.94
ms. In addition, RAP XY8 is robust to amplitude and fre-
quency variation as the coherence times remain approximately
the same for all experimental variants. Specifically, they are
insensitive to added amplitude noise and perform well even
when the Rabi frequency is lower than the inhomogeneous
broadening and the standard approach does not work effi-
ciently [see Figs. 12(b) and 12(c)]. In order to find if the differ-
ence between the coherence times is statistically significant,
we use a z test for the difference between the estimates of the
T2 values from the two experiments. The z test is calculated as

z = T̂2,RAP-XY8 − T̂2,XY8√(
σ 2

RAP-XY8 + σ 2
XY8

) , (H1)

where T̂2,(RAP-)XY8 and σ(RAP-)XY8 are the estimated coherence
times and their standard deviations for the XY8 (RAP-XY8)
sequence. We obtain z ≈ 0.96 for Fig. 12(a), which shows
that the difference T̂2,RAP-XY8 − T̂2,XY8 > 0 is not statistically
significant at a probability p = 0.01 in the decoherence ex-
periment for the high Rabi case. In contrast, z ≈ 3.7 for
Fig. 12(b), which shows that in the high Rabi with Noise case,
the T̂2,RAP-XY8 − T̂2,XY8 > 0 is statistically significant with a
probability to reject the null hypothesis when it is actually
correct at p = 10−4 for a one-tailed test. Similarly, z ≈ 4.25
for Fig. 12(c), which shows that the T̂2,RAP-XY8 − T̂2,XY8 > 0
is statistically significant at p = 10−5 for a one-tailed test.
Thus the experimental data from the decoherence experiments
confirm that the improvement of coherence times with RAP-
XY8 is statistically significant for the high Rabi with noise
and the low Rabi cases.

In the second series of experiments, we performed quan-
tum sensing by adding an external AC magnetic field in order
to characterize the magnetic sensitivity of our system under
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FIG. 13. Fluorescence vs interaction time for a quantum sensing experiment with (top) XY8 and (bottom) RAP-XY8 with an artificial
AC field with a frequency corresponding to half the pulse repetition rate. The pulse parameters are the same as in Fig. 12. The magnitude
and angular frequency of the artificial sensed field are respectively (a) 78 nT and ωs = 2π 43.8 kHz, (b) 52 nT and ωs = 2π 43.8 kHz, and
(c) 52 nT and ωs = 2π 14.5 kHz. The lower sensed frequency ωs in the low Rabi case (c) is due to the slower repetition rate and longer duration
of the RAP pulses, needed to maintain some minimum adiabaticity (see the Discussion section in the main text). The slight difference in the
artificial field magnitudes does not affect significantly the coherence times and sensitivity. The coherence time T2 of standard XY8 in the high
Rabi with noise experiment decreases by ∼40% in comparison to the high Rabi case while remaining approximately the same with RAP-XY8.
The corresponding drop of T2 of standard XY8 is ∼45% for the low Rabi case while again remaining approximately the same with RAP-XY8.
All experiments show fluorescence difference from two measurements in which the phase of the last π/2 or half RAP pulse is X and −X . The
error terms for the estimates of T2 are given as ± one standard deviation.

regular control pulses and RAP. We measured the change in
fluorescence, which varies depending on the population of
the electron spin of the NV center, as a function of time. We
also applied pulsed DD to decouple from the noise from the
environment. The frequency of the AC field was matched to
half DD pulse repetition rate, which was kept constant (such
that the number of pulses changes with time). The presence
of the external field reduced the coherence time of the NV
electron spin by ∼30% using standard XY8 [see Fig. 13(a),
top]. We attribute this effect to the rotation of the NV electron
spin state in the XY plane of the Bloch sphere due to the field,
so the system is more sensitive to pulse imperfections. While
this effect should be negligible in the small-field limit [66], it
does not adversely affect RAP sequences even for larger fields
(Fig. 13(a), bottom). As expected from theory, the standard
XY8 DD protocol does not perform well when we introduce
amplitude noise and the coherence time drops by about 40%
in Fig. 13(b), top. Similarly, in Fig. 13(c), top, we observe
a drop in the coherence time by about 45% in comparison
to the high Rabi case as we apply a low Rabi frequency
of �0 = 2π × 1.7 MHz, which is less than the FWHM of
the inhomogeneous broadening of 2π × ×(2.1 ± 0.1) MHz.
Thus the rectangular DD pulses cannot cover efficiently
the full bandwidth of transition frequencies of the NVs in
the ensemble and the coherence time drops. In contrast to

the standard XY8 sensing, the coherence times with the RAP-
XY8 sequence are not affected by the presence of an artificial
field [see Fig. 13(a), bottom]. They are also insensitive to
the added amplitude noise and perform well even when the
Rabi frequency is lower than the inhomogeneous broadening
and the standard approach does not work efficiently [see
Figs. 13(b) and 13(c), bottom]. In the AC sensing experi-
ments, we obtain z ≈ 2.82 for Fig. 7(a), which shows that the
difference T̂2,RAP-XY8 − T̂2,XY8 > 0 is statistically significant
even for the high Rabi case with p = 0.0024 for a one-tailed
test. This is in contrast to the simple decoherence experiment
without an AC field, as explained above. Additionally, z ≈ 6.3
for Fig. 7(b), which shows that in the high Rabi with Noise
case, the T̂2,RAP-XY8 − T̂2,XY8 > 0 is statistically significant
with p < 10−6 for a one-tailed test. Similarly, z ≈ 4.9 for
Fig. 7(c), which shows that the T̂2,RAP-XY8 − T̂2,XY8 > 0 is sta-
tistically significant with p < 10−6 for a one-tailed test. Thus,
in confirmation to theory, RAP XY8 is robust to amplitude and
frequency variation and can be especially useful for sensing in
systems with large inhomogeneous broadening and amplitude
inhomogeneity.

Finally, we analyzed the sensitivity to an AC field directly
by using its definition η = σ

∂S/∂B

√
Tm [66], where σ is the

standard deviation of the single point fluorescence data in
the experiment, ∂S/∂B is the maximal slope in the curve
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FIG. 14. Sensitivity vs number of cycles, where each cycle consists of free evolution for time τ/2 before a pulse—the pulse duration—free
evolution for time τ/2 after the pulse. Thus the number of cycles corresponds to the number of applied pulses. The free evolution time is zero
for these examples of RAP sensing. The pulse parameters and characteristics of the artificial AC field as in Fig. 13. The error terms for the
estimates of η are given as ± one standard deviation.

of fluorescence signal versus magnetic field, and Tm is the
time for a single measurement. We used this direct method
in Fig. 3(g) in the main text, where we obtained the sensitivity
from its definition. The data were fitted with CURVE FITTING

TOOLBOX of MATLAB to a y = a sin (bx) function with y the
fluorescence and x the magnetic field amplitude.

Second, we also used an indirect calculation of sensitivity,
which follows [76] and is based on the data in Fig. 13. Our
goal is to calculate the sensitivity for every point. Similarly to
the direct method, we obtain the values of σ and Tm directly
from the data for each measurement point. In addition, we es-
timate the shape of the curve of fluorescence vs. magnetic field
for each of the measurement points in Fig. 13, i.e., similarly
to the curve in the experiment in Fig. 3(g) in the main text.
We expect the curve to be a sin function with its height de-
termined by the contrast and its width inversely proportional
to the sensed magnetic field amplitude, as demonstrated in the
experiment in Fig. 3(g) in the main text. In the following, we
provide more details about how we extract the slope of this
curve from our data. The contrast is taken from the envelope
part of the fit function, and the total magnetic field is the
constant amplitude times the numbers of cycles. Specifically,
the phase accumulated due to the external magnetic field is
(see also the main text) [76]:

χ (Tm) = 2

π
gTm = 4γ BTm, (H2a)

B = χ (Tm)

4γ Tm
, (H2b)

where in the first equality we used that g = 2π × γ B
is the amplitude of the sensed magnetic field in angu-
lar frequency units, γ is the gyromagnetic constant of the
NV center, B is the external magnetic field amplitude,
Tm = N (τ + Tpulse) with τ + Tpulse the duration of one cy-
cle (free evolution for time τ/2 - pulse for time Tpulse -
free evolution for time τ/2) and N the number of cycles.
We note that in standard DD with rectangular pulses Tpulse �
τ and the pulse duration can be neglected. This is not the case
with RAP sensing, where often τ = 0, so the duration one
cycle is equal to the duration of the RAP pulse, as shown in

our simulations and experiments. The envelope part of the fit
is assumed to decay exponentially:

A = a exp(−t/T2) = a exp(−Tm/T2). (H3)

Now, if we take this two equations we obtain the slope:

∂S

∂B
= Aχ (Tm)

B
= a exp(−Tm/T2)4γ Tm. (H4)

Then, we calculate indirectly the sensitivity as function of
number of cycles:

η(N ) = σ

∂S/∂B

√
Tm = σ

4γ
√

Tma exp(−Tm/T2)
(H5a)

= σ

4γ
√

N (τ + Tpulse)a exp(−N (τ + Tpulse)/T2)
. (H5b)

The standard deviation of η can be calculated based on the
standard deviation of the coefficients a and T2:

	η =
√(

∂η

∂a
	a

)2

+
(

∂η

∂T2
	T2

)2

(H6a)

= σ
√

	a2 + (a/T2)2	T2
2

4γ
√

Tma2 exp(−Tm/T2)
. (H6b)

Figure 14 shows the robust sensitivity, i.e., lower η, of the
RAP-XY8 as a function of the number of pulses when ex-
tracted indirectly from the data, in all three experiments. The
optimal points Figs. 14 and 3(f) in the main text were the
minima of sensitivity versus number of cycles for the curves
for the standard XY8 and the RAP-XY8 sensing. The possible
variation in the number of cycles, and thus the accuracy of
the minima, is eight cycles for both protocols due to fact
that the XY8 sequence contains eight pulses. The sensitivity
of RAP-XY8 does not change significantly if we choose a
different number of cycles in the neighborhood of the mini-
mum point due to the flatness of the curve. Thus the choice
of the minimum is not critical for the RAP-XY8 sensing
in contrast to standard XY8 sensing, which is one of the
advantages of the former. The difference with standard XY8
is smallest in the high Rabi case, as expected from theory,
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while the improvement with RAP-XY8 is significant in the
presence of amplitude inhomogeneity and low Rabi frequency
(inhomogeneous broadening). We note that the slight decrease
in ηmin,RAP with the added amplitude noise in comparison to
the noiseless case is not statistically significant. In addition,

there is a small increase in the contrast: 0.2 → 0.23 in the
experiment in the Fig. 13(b) in comparison to Fig. 13(a),
which contributes to the observed results. Thus, as expected
from theory, the introduction of amplitude noise does not
affect significantly the sensitivity.
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