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We investigate dynamics of 2D chiral solitons of semivortex (SV) and mixed-mode (MM) types in spin-
orbit-coupled Bose-Einstein condensates with the Manakov nonlinearity, loaded in a dual-core (double-layer)
trap. The system supports two novel manifestations of Josephson phenomenology: one in the form of persistent
oscillations between SVs or MMs with opposite chiralities in the two cores, and another one demonstrating
robust periodic switching (identity oscillations) between SV in one core and MM in the other, provided that
the strength of the intercore coupling exceeds a threshold value. Below the threshold, the system either creates
composite states, which are asymmetric with respect to the two cores, or collapses. Robustness of the chirality
and identity oscillations against deviations from the Manakov nonlinearity is investigated too. These dynamical
regimes are possible only in the nonlinear system. In the linear one, exact stationary and dynamical solutions for
SVs and MMs of the Bessel type are found. They sustain Josephson self-oscillations in different modes, with no
interconversion between them.
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I. INTRODUCTION

Josephson oscillations, induced by tunneling of wave func-
tions between weakly coupled cores, is a ubiquitous effect
in macroscopic quantum systems [1]. It has been predicted
and observed in superconductors separated by a thin insulat-
ing layer [2–12], superfluid 3He [13], atomic Bose-Einstein
condensates (BECs) [14–21], optical couplers [22–25], and
exciton-polariton waveguides [26]. Among other applications,
the Josephson effect in superconductors may be used for de-
sign of qubits [27,28]. Josephson oscillations of angular mo-
mentum between annular BECs was investigated too [29–38].
In these contexts, chirality of the wave functions may play an
important role [29], [39–44].

In its linear form, the Josephson effect only gives rise to
plasma waves in superconducting junctions. The most signif-
icant modes in the junctions are topological solitons (fluxons)
supported by the nonlinear Josephson relation between the
tunneling current and phase difference across the junction.
Both classical [7–10] and quantum [11] fluxons, as well as
superfluxons, i.e., kink excitations in fluxon chains [12], were
studied theoretically and experimentally.

New possibilities for realization of dynamical effects in
BEC are offered by binary (pseudo-spinor) condensates with
spin-orbit coupling (SOC) between their components [45–48].
In particular, SOC affects the Josephson tunneling between
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annular condensates [49]. Stable 2D solitons, which include
vortex components, were predicted in the SOC system of
the Rashba type [50] with attractive nonlinear interactions. In
terms of optics, these interactions are represented by self- and
cross-phase-modulation (SPM and XPM) terms in the under-
lying system of coupled Gross-Pitaevskii equations. While in
the absence of SOC, attractive cubic terms in 2D equations
always lead to collapse [51,52] (i.e., the system does not have
a ground state), the interplay of the attractive SPM and XPM
terms with SOC gives rise to ground states, in the form of
solitons of the semivortex (SV, alias half-vortex [53,54]) or
mixed-mode (MM) types, provided that, respectively, the SPM
nonlinearity is stronger or weaker than its XPM counterpart.
SVs are composed of a vortex in one component and zero-
vorticity soliton in the other, while MMs combine vortical and
zero-vorticity terms in both components. In the experiment,
such states can be created by using helical laser beams that
resonantly couple to one component only, and thus transfer
the angular momentum onto that component, without exciting
the other one [55–57]. Two or several 2D solitons in the
system’s plane can be created too, by means of an initially
applied cellular in-plane potential, which cuts the condensate
into lateral fragments, and is lifted afterwards [58].

If the SV soliton is the ground state, the MM is an unstable
excited one, and vice versa. Similar results were reported [59]
for more general SOC systems, of the Rashba-Dresselhaus
[60] type. Two-dimensional SV solitons exist in the form of
two different chiral isomers (right- and left-handed ones),
with vorticity sets in their components being, respectively,
(S+, S−) = (0, 1) or (−1, 0) (mirror images of each other).
Similarly, there exist two different chiral forms of MMs,
which are introduced below in Eq. (22).

2643-1564/2020/2(3)/033214(10) 033214-1 Published by the American Physical Society

https://orcid.org/0000-0002-1085-227X
https://orcid.org/0000-0001-5323-1847
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.033214&domain=pdf&date_stamp=2020-08-07
https://doi.org/10.1103/PhysRevResearch.2.033214
https://creativecommons.org/licenses/by/4.0/


CHEN, LI, AND MALOMED PHYSICAL REVIEW RESEARCH 2, 033214 (2020)

In the experimental realization of SOC in binary BEC, two
components are represented by different hyperfine states of
the same atom, with nearly equal strengths of the SPM and
XPM interactions, suggesting one to consider the Manakov
nonlinearity [61], with equal SPM and XPM coefficients. In
such a case, the system is invariant with respect to rotation
of the pseudo-spinor wave function in the plane of its two
components. The 2D system combining SOC and the Man-
akov nonlinearity gives rise to an additional soliton family,
which embeds the SV and MM solitons into a continuous set
of intermediate states [53]. The family is a degenerate one,
in the sense that all solitons with a fixed total norm share
common values of the energy and chemical potential. The
family is dynamically stable against small perturbations, but
structurally unstable, as a deviation from the SPM = XPM
condition breaks the intermediate states, keeping only the SV
and MM solitons as robust modes.

The subject of this work is a junction formed by a pair
of Josephson-coupled 2D layers (cores), each one carrying
spin-orbit-coupled BEC. In the experiment, a two-layer setup
can be realized by loading the condensate in two adjacent
valleys of a deep 1D optical lattice, which illuminates the
setting in the perpendicular direction (see, e.g., Ref. [62]). In
a general form, a dual-core 2D BEC system was introduced
in Ref. [63]. In that work, 2D solitons, built of components in
the two layers, were stabilized by a spatially periodic in-plane
potential, while SOC was not considered. The problem ad-
dressed in Ref. [63] was spontaneous breaking of the intercore
symmetry in the solitons, but not Josephson oscillations. Here,
we consider oscillations between Josephson-coupled 2D SOC
condensates, of both SV and MM types, in the dual-core
system. In its linear version, Bessel-shaped exact solutions
are found in an analytical form, for stationary states and
Josephson oscillatory ones alike. These solutions demonstrate
solely intrinsic oscillations in the two components of the
condensate, which do not mix states of the SV and MM
types, nor different chiral isomers in each type. In the full
nonlinear system, solutions for self-trapped states are obtained
in a numerical form. They readily demonstrate robust periodic
oscillations between components of the 2D solitons with
opposite chiralities in the two layers. Furthermore, Josephson-
type identity oscillations, i.e., periodic mutual interconversion
between solitons’ components of the SV and MM types in the
two layers, are reported too.

The rest of the paper is structured as follows. The model
is formulated in Sec. II, in which basic types of the consid-
ered states are introduced too, including new solutions for
the Bessel-shaped SV and MM modes in the linear system.
Results for the Josephson oscillations are collected in Sec. III.
It includes exact solutions obtained in the linear system, and
a summary of the systematic numerical analysis of Joseph-
son oscillations in 2D solitons of different types in the full
nonlinear system. The numerical results make it possible to
identify robust regimes of oscillations of the chirality (right
� left) and identity (SV � MM) between the coupled layers.
The paper is summarized in Sec. IV, where we also give
estimates of the predicted effects in physical units, and discuss
directions for the further work; one of them may be the use
of beyond-mean-field effects [51] for the stabilization of the

2D system against the critical collapse [52], when its norm
exceeds the respective threshold value.

II. THE MODEL: COUPLED GROSS-PITAEVSKII
EQUATIONS

A. The single-layer spin-orbit-coupled (SOC) system

For the single effectively two-dimensional layer, the sys-
tem of coupled Gross-Pitaevskii equations for components φ±
of the pseudospinor wave function, coupled by the spin-orbit
interaction of the Rashba type, is written as [53,59]

i∂tφ+ = −[
1
2∇2 + (|φ+|2 + γ |φ−|2)

]
φ+ + (∂x − i∂y)φ−,

(1)

i∂tφ− = −[
1
2∇2 + (|φ−|2 + γ |φ+|2)

]
φ− − (∂x + i∂y)φ+,

(2)

where t and x, y are scaled time and coordinates, the SPM and
SOC coefficients (the latter one is the coefficient in front of
the first-order spatial derivatives) are set to be 1 by scaling,
and γ is the relative XPM strength. We will chiefly address
the Manakov nonlinearity, with γ = 1, which is close to the
experimentally relevant situation [45–48]; effects of deviation
from the Manakov’s case are considered too. Equations (1)
and (2) do not include an external trapping potential, which is
necessarily present in the experiment, but its effect on stable
solitons is usually negligible [53].

Stationary self-trapped states of the pseudo-spinor conden-
sate (solitons) with chemical potential μ < 0 are looked for as

φ±(x, y, t ) = �±(x, y)e−iμt , (3)

with the 2D norm

Nφ = N+ + N− ≡
∫∫

[|�+(x, y)|2 + |�−(x, y)|2]dxdy. (4)

Two isomers of solitons of the SV type, with right- and
left-handed chiralities, are defined, respectively, by vorticity
sets (S+, S−) = (0,+1) and (S̄+, S̄−) = (−1, 0) in the two
components. Numerical solutions for them are produced, sev-
erally, by the following inputs:

φ
(0)
+ = A1 exp(−α1r2), φ

(0)
− = A2r exp(iθ − α2r2), (5)

φ
(0)
+ = −A2r exp(−iθ − α2r2), φ

(0)
− = A1 exp(−α1r2), (6)

which are written in polar coordinates (r, θ ), with real A1,2 and
α1,2 > 0. These inputs are natural, as Eqs. (1) and (2) are fully
compatible with the substitution of SV Ansätze with opposite
chiralities [53],

{φ+, φ−}SV = e−iμt { f (r), eiθg(r)}, (7)

{φ+, φ−}SV = e−iμt {−e−iθ g(r), f (r)}, (8)

where radial form-factors f (r), g(r) obey equations[
μ + 1

2

(
d2

dr2
+ 1

r

d

dr

)
+ 2( f 2 + g2)

]
f

−
(

1

r
g + dg

dr

)
= 0, (9)
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[
μ + 1

2

(
d2

dr2
+ 1

r

d

dr

)
+ 2( f 2 + g2)

]
g

−
(

1

2r2
g − df

dr

)
= 0. (10)

More general soliton modes are introduced below.

B. Exact Bessel modes of the linearized single-layer system

Equations (9) and (10) give rise to solitons if μ belongs to
the respective semi-infinite band gap, μ < −1/2 [see Eq. (33)
below, with κ = 0]. At r → ∞, the linearization of Eqs. (9)
and (10) readily predicts that exponentially decaying tails of
solitons’ form-factors f (g) and g(r) are built as combinations
of terms

( f , g)tail ∼ r−1/2 exp(−
√

−(2μ + 1)r){cos r, sin r}. (11)

Furthermore, the linearized equations make it possible to find
exact solutions for weakly localized Bessel-shaped modes
(with a diverging total norm) in the propagation band (at μ >

−1/2), which resemble exact nondiffracting states in linear
optics, cf. Refs. [64–66]). At μ > 0, the solutions of the SV
type are

flin(r) = A(0)J0(r/ρ), glin(r) = A(0)sJ1(r/ρ) (12)

with arbitrary amplitude A(0), Bessel functions J0,1, sign factor
s = ±1 (this sign is independent from subscripts in φ±,ψ±),
and

ρ = ρs ≡ (
√

1 + 2μ + s)/(2μ). (13)

In the remaining part of the propagation band, −1/2 < μ < 0,
solution (12) is relevant only for s = −1, while expression
(13) is replaced by

ρ = ρ± ≡ (1 ±
√

1 + 2μ)/(−2μ), (14)

with another independent sign ±.
At the edge of the semi-infinite gap, μ = −1/2, Eq. (14)

gives a single solution with ρ = 1,

f (1)
lin

(
r; μ = − 1

2

) = A(0)J0(r),

g(1)
lin

(
r; μ = − 1

2

) = −A(0)J1(r), (15)

instead of two, produced inside the gap at μ > −1/2. How-
ever, the loss of one solution is compensated by the existence
of an additional one, precisely at the edge of the gap. Its
components are

f (2)
lin

(
r; μ = −1

2

)
≡ lim

μ+1/2→+0

flin(r; ρ+) − flin(r; ρ−)

2
√

1 + 2μ

= −A(0)rJ1(r),

g(2)
lin

(
r; μ = −1

2

)
≡ lim

μ+1/2→+0

glin(r; ρ+) − glin(r; ρ−)

2
√

1 + 2μ

= A(0)[rJ2(r) − J1(r)]. (16)

Exact linear SV states with the opposite chirality are
generated from expressions (12)–(16) as per Eq. (8). Next,
MMs states, as exact solutions of the linear SOC system, are

constructed from the SVs pursuant to Eqs. (22) and (23). It is
also relevant to mention that, for the Rashba SOC replaced by
the Dresselhaus form [60], the exact linear solutions for the
SV and MM modes are essentially the same as found here for
the Rashba system.

In addition to solution (12), which represents the basic SV
state in the linear system, it is possible to construct exact
solutions for excited states, obtained by injection of extra
integer vorticity �S = 1, 2, . . . in both components of the SV
state. Such solutions are obtained replacing Eqs. (12), (15),
and (16), severally, by

flin(r) = A(0)J�S (r/ρ), glin(r) = A(0)sJ1+�S (r/ρ), (17)

f (1)
lin

(
r; μ = − 1

2

) = A(0)J�S (r),

g(1)
lin

(
r; μ = − 1

2

) = −A(0)J1+�S (r), (18)

f (2)
lin

(
r; μ = − 1

2

) = A(0)[�S · J�S (r) − rJ1+�S (r)],

g(2)
lin

(
r; μ = − 1

2

) = A(0)[rJ2+�S (r) − (1 + �S)J1+�S (r)],

(19)

while Eqs. (13) and (14) keep the same form as above, as
well as the possibility to construct the SV with the opposite
chirality and MMs, according to Eqs. (8), (22), and (23).

It is relevant to mention that similarly defined excited states
of SV and MM solitons are unstable in the nonlinear system,
unlike the ground states with �S = 0 [53]. On the other hand,
the excited-state solitons may be made stable in a model
with self-trapping provided by the local repulsive nonlinearity
growing fast enough from the center to periphery [67].

C. Soliton families

The Manakov’s nonlinearity makes it possible to construct
a general family of solitons, including SVs, MMs, and inter-
mediate states. The creation of such states is initiated by a
combination of inputs (5) and (6) with the opposite chiralities,

φ± = Mφ
(0)
± +

√
1 − M2 · φ

(0)
± , (20)

where the weight factor takes values −1 � M � 1. Because
integrals of cross-products, generated by Ansätze (5) and (6)
vanish, ∫∫

(φ(0)
+ )∗φ(0)

− dxdy = 0, (21)

the norm of input (20), defined as per Eq. (4), does not depend
on M, hence this input gives rise to a family of solitons with
the same norm.

The choice of M = +1/
√

2 or −1/
√

2 in Eq. (20) cor-
responds to MMs with opposite chiralities. Stationary MM
solitons of the Manakov system are produced by the following
exact Ansatz, which is compatible with the underlying system
of equations (1) and (2) [cf. Eq. (7), that produces the exact
Ansatz for SV modes]:

{φ+, φ−}MM = 1√
2

e−iμt { f (r) − e−iθ g(r), f (r) + eiθ g(r)}

≡ 1√
2

({φ+, φ−}SV + {φ+, φ−}SV). (22)
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FIG. 1. (a) Angular momenta per particle (Lz = Lφ or L±, as
indicated in the panel), which are defined by Eqs. (25) and (26),
are shown as functions of norm ratio Rφ [see Eq. (24)], for the
continuous family of stable SOC solitons, numerically generated by
input (20), with fixed norm Nφ = 4, in the single-core system. Linear
dependence Lφ (Rφ ) follows Eq. (27). The energy and chemical
potential of all solutions belonging to the degenerate family are
Eφ = −2.4 and μ = −0.87. Cross-sections of two components of
the 2D solitons, marked in (a), are displayed for the following values
of integral quantities (24) and (25), (26): Rφ = −0.2, Lφ = −0.4
(b); Rφ = −0.12, Lφ = −0.24 (c); Rφ = 0, Lφ = 0 (d); Rφ = 0.11,
Lφ = 0.22 (e); and Rφ = 0.2, Lφ = 0.4 (f).

Here, f and g are the same real functions which are introduced
above as solutions to Eqs. (9) and (10). Another chiral MM
isomer is produced by a different Ansatz,

{φ+, φ−}MM = 1√
2

e−iμt { f (r) + e−iθ g(r),− f (r) + eiθ g(r)}

≡ 1√
2

({φ+, φ−}SV − {φ+, φ−}SV), (23)

with radial form-factors f and g obeying the same equations
(9) and (10). The exact linear relations between the MM and
SVs in Eqs. ( 22) and (23) are admitted by the symmetry of
the Manakov nonlinearity. These relations entail an equality
for the total norms (4): NMM(μ) = NSV(μ). To the best of our
knowledge, the exact MM Ansätze represented by Eqs. (22)
and (23) were not reported earlier.

The solitons are characterized by the norm ratio between
the components,

Rφ = (Nφ+ − Nφ− )/(Nφ+ + Nφ− ), (24)

and by the angular momentum per particle in each component
and in the entire system,

L± = N−1
±

∫∫
φ∗

±L̂zφ±dxdy, (25)

Lφ = N−1
φ

∑
+,−

∫∫
φ∗

±L̂zφ±dxdy, (26)

where the angular-momentum operator is L̂z = −i(x∂/∂y −
y∂/∂x) ≡ −i∂/∂θ , and the norms are taken as per Eq. (4).
For the family generated by Ansatz (20), a typical relation
between L and Rφ is displayed in Fig. 1(a). The linear Lφ (Rφ )
dependence, observed in the figure, is explained by the fact
that the input in the form of Eqs. (5)–(20), leads, taking into
regard the orthogonality of φ

(0)
+ and φ

(0)
− [see Eq. (21)], to

relations Rφ (M ) = (2M2 − 1)R(SV)
φ and

Lφ (Rφ ) = (
1 − R(SV)

φ

)(
2R(SV)

φ

)−1
Rφ, (27)

where R(SV)
φ is given by Eq. (24) for the SV soliton corre-

sponding to M = 1 in Eq. (20)) [in Fig. 1(a), a numerically
computed value is R(SV)

φ = 0.2].
Both Rφ and Lφ vanish for solitons of the MM type, due

to the overall symmetry between the components in this state.
Terminal points of the curves in Fig. 1(a) correspond to |M| =
1 or M = 0 in Eq. (20), i.e., SV solitons, in which either
L+ = ±1 and L− = 0, or vice versa. Numerical data yield
Lφ = ±0.4 in Eq. ( 27) at the terminal points. In other states,
which correspond to 0 < |M| < 1 in Eq. (20), the numerical
results give −0.4 < Lφ < 0.4. Examples of solitons belong-
ing to the family are presented in Figs. 1(b)–1(f). In particular,
SVs are shown in panels (b) and (f), while (d) displays an
MM. The stability of the entire family was established in
direct simulations. The solitons of all types exist in ranges
0 < −μ < ∞ and 0 < Nφ < Ncoll ≈ 5.85, where Ncoll is the
well-known threshold for the onset of the critical collapse,
predicted by the single Gross-Pitaevskii equation [52]. In fact,
the stability of the 2D spin-orbit-coupled solitons is predicated
on the fact that their total norm takes values N < N coll, thus
securing them against the onset of the collapse [53].

D. The Josephson-coupled dual-core system

The pair of Josephson-coupled layers, each carrying
pseudo-spinor BEC, are modeled by the system of equations
for four components of wave functions, φ± in one layer and
ψ± in the other:

i∂tφ+ = −[
1
2∇2 + (|φ+|2 + γ |φ−|2)

]
φ+

+ (
∂x − i∂y

)
φ− − κψ+, (28)

i∂tφ− = −[
1
2∇2 + (|φ−|2 + γ |φ+|2)

]
φ−

− (∂x + i∂y)φ+ − κψ−, (29)

i∂tψ+ = −[
1
2∇2 + (|ψ+|2 + γ |ψ−|2)

]
ψ+

+ (∂x − i∂y)ψ− − κφ+, (30)

i∂tψ− = −[
1
2∇2 + (|ψ−|2 + γ |ψ+|2)

]
ψ−

− (∂x + i∂y)ψ+ − κφ−, (31)

cf. Eqs. (1) and (2), where κ is the Josephson-coupling
strength, which is defined to be positive. Note that the Joseph-
son interaction does not linearly couple components φ± to
ψ∓, as ones with opposite subscripts represent two distinct
atomic states, and the tunneling between the parallel layers
does not include a mechanism which would lead to mutual
transformation of different atomic states.

The system of Eqs. (28)–(31) conserves the total norm,
Nφ + Nψ , where Nψ is a counterpart of the φ norm for the
ψ layer, see Eq. (4). Other dynamical invariants of the system
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are the total energy,

E =
∫∫ ⎧⎨

⎩
∑

χ=φ,ψ

[
1

2
(|∇χ+|2 + |∇χ−|2 − |χ+|4 − |χ−|4)

− γ |χ+χ−|2 + ((χ∗
+∂xχ− − iχ∗

+∂yχ−) + c.c.)

]

− κ ((φ∗
+ψ+ + φ∗

−ψ−) + c.c.)

⎫⎬
⎭dxdy, (32)

and the total angular momentum, NφLφ + NψLψ , cf. Eq. (26).

III. ANALYTICAL AND NUMERICAL RESULTS FOR
JOSEPHSON OSCILLATIONS

A. Exact solutions for Josephson oscillations in the linear system

Linearization of Eqs. (28)–(31) for excitations (φ±, ψ±) ∼
exp (iqxx + iqyy − iμt ) yields four branches of the dispersion
relation:

μ = 1
2

(
q2

x + q2
y

) + σ1

√
q2

x + q2
y − σ2κ, (33)

with two mutually independent sign parameters σ1,2 = ±1
(which are unrelated to subscripts of φ± and ψ±). Solitons
may exist in the semi-infinite gap, readily determined as an
interval of values of μ which is not covered by Eq. (33) with
−∞ < qx,y < +∞ and all choices of σ1,2:

μsol < −(1/2 + κ ) (34)

(remind we fix κ > 0, by definition). In particular, this gap
is obtained from the above-mentioned one, μsol < −1/2, for
the single-layer system, if one considers symmetric solutions
of Eqs. (28)–(31), with ψ± = φ±. On the other hand, for
antisymmetric solutions, with ψ± = −φ±, the single-layer
gap is replaced by an expanded one, μsol < −(1/2 − κ ). In
the additional interval which does not belong to gap (34), viz.,
−(1/2 + κ ) < μsol < −(1/2 − κ ), antisymmetric states may
exist as embedded solitons [68], but they are unstable.

Further, the linearized system gives rise to exact solutions
for Josephson-oscillation states,

(φ±(x, y, t ))two-layer = cos(κt ) · (φ±(x, y, t ))single-layer,

(ψ±(x, y, t ))two-layer = i sin(κt ) · (φ±(x, y, t ))single-layer,

(35)

where (φ±(x, y, t ))single-layer are the component of any solution
of the linearized version of Eqs. (1) and (2). In fact, explicit
single-layer solutions which may be substituted in Eq. (35) are
those given above by Eqs. (12)–(19). Note that the Josephson
oscillations do not change the chemical potential in Eq. (35),
which is borrowed from the respective single-layered solu-
tions, that contain the factor of exp (−iμt ).

B. Josephson oscillations in 2D solitons

1. Chirality and identity oscillations

In the framework of the full nonlinear system, we first
address the evolution initiated by an input composed of a
stable single-layer SV soliton, with vorticities (S+, S−) =

FIG. 2. Numerically simulated Josephson oscillations of chiral-
ity (with random-noise perturbation at the 1% amplitude level, added
for testing stability of the dynamical regime), initiated by the input
composed of a stable single-core SV in one layer, and its left-handed
counterpart in the other, see Eqs. (7) and (8). Panels (a), (b) and (c),
(d) display the evolution of the pseudo-spinor components in the first
and second cores, respectively. The norm of the input in each layer
is N = 4 (hence the total norm in the two-layer system is 8), and the
Josephson coupling constant is κ = 0.5. (e)–(h) and (i)–(l) exhibit
2D density distributions of the components at, respectively, t = 0
and t = 10. (m) The respective oscillations of angular momenta per
particle in both layers, Lφ and Lψ , see Eq. (26).

(0, 1), in one core, and its chiral (left-handed) isomer with
(S+, S−) = (−1, 0) in the other, which are created, at t = 0,
as per Ansätze presented in Eqs. (7) and ( 8). The respective
stationary single-layer solutions were produced by means of
the accelerated imaginary-time-evolution method [69], and
their stability was then tested by simulations of Eqs. (1) and
(2) in real time.

Simulations of Eqs. (28)–(31) with such an input pro-
duce a robust regime of periodic transmutations displayed in
Figs. 2(a)–2(d). Each quarter period, SVs in both cores switch
into their chiral counterparts, returning to the initial state, but
with the opposite sign, each half period. Thus chiralities of the
two SVs periodically flip, remaining opposite in the two cores,
while the corresponding density patterns oscillate. Distribu-
tions of densities of the four involved components, displayed
at t = 0 in panels (e)–(f), and at t = 10 in (i)–(l) (the latter
time is close to 0.8 periods of the Josephson oscillations)
help to understand the evolution of the density patterns in
the course of the oscillations. Further, Fig. 2(m) demonstrates
Josephson oscillations of the angular momentum in the same
dynamical state, with the momentum per particle in the cores
oscillating between Lφ,ψ = ±0.4 and ∓0.4.

Note that the chirality-switching Josephson-oscillation
mode is possible only in the nonlinear system, as the exact
linear Josephson-oscillation solution (35) admits solely oscil-
lations that do not mix different chiralities. Indeed, the chi-
rality flipping implies generation of new angular harmonics,
which is not possible without nonlinearity.
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FIG. 3. The same as in Fig. 2 but for the input in the form of
MMs with opposite chiralities in the two cores, and equal norms
in them, N = 4. The angular momentum per particle remains equal
to zero in each core, due to the symmetry between the components
of the pseudo-spinor wave function in the MM states. In addition
to the Josephson oscillations of the MM chirality, the figure also
demonstrates the spatiotemporal helicity in the oscillating soliton,
see the text. Panels (e)–(h) and (i)–(l) exhibit 2D density distributions
of the components at, respectively, t = 0 and t = 10.

Next, we consider Josephson oscillations between right-
and left-handed chiral isomers of the MM type, which are
created, at t = 0, in the two layers, as per Ansätze (22)
and (23). A typical numerical solution, displayed in Fig. 3,
features stable periodic switching between the MM isomers
in each layer. It also demonstrates spatiotemporal helicity,
i.e., clockwise rotation of the density distributions (unlike
nonrotating SV patterns in Fig. 2). The input with the opposite
relative sign between the MM isomers in two layers gives rise
to a similar stable dynamical state, but with rotation of the
density profiles in the opposite, counter-clockwise, direction.
Again, it is relevant to stress that flipping of the MM chirality
in the course of the Josephson oscillations is only possible in
the nonlinear system.

Recall that the single-core SOC system with the Manakov
nonlinearity maintains the family of 2D solitons which are
intermediate between the SV and MM states. Such states
correspond to

|M| �= 0,
1√
2
, 1 (36)

in Eq. (20), |Rφ| �= 0.2 or 0 in Fig. 1, and accordingly,
eigenvalues Lφ different from ±0.4 and 0, see Eq. (26). Sys-
tematic simulations of Josephson oscillations in pairs of chiral
isomers of the intermediate states also reveal robust periodic
chirality oscillations, in a combination with the rotation of
the density profiles (the spatiotemporal helicity), similar to
what is displayed above in Figs. 2 and 3 for the states of
the SV and MM types. The results for the intermediate states
are not displayed in a separate figure, as the overall pictures
seem quite close to ones in Figs. 2 and 3. Furthermore, at all
values of intercore coupling κ the frequency of the oscillations
and rotation is exactly equal to κ , cf. the exact solution of
the linear system given by Eqs. (28)–(31). Although, as said

FIG. 4. [(a)–(m)] the same as in Fig. 2, but for identity oscil-
lations, initiated by the input in the form of SV and MM solitons
with equal norms, N = 4, in the coupled cores. (n) The minimum
(threshold) value of the intercore coupling κ , which is necessary for
the stability of the identity oscillations, vs the norm of the 2D soliton
in each core, N .

above, the chirality oscillations represent a nonlinear effect,
the Josephson frequency is not affected by the nonlinearity,
due to its “isotopic” invariance with respect to the rotation
of the pseudo-spinor wave function in the plane of its two
components.

The next step is to consider Josephson oscillations between
inputs corresponding to SV in one core and MM, with the
same norm, in the other. In this case, the identity of the 2D
solitons periodically switches between the SV and MM types
in each core [see Figs. 4(a)–4(d) and 4(m)], therefore this
stable dynamical state may be naturally categorized as identity
oscillations, coupled to the clockwise helicity rotation, cf.
Figs. 2 and 3. This regime, which is again possible solely
in the nonlinear system, cf. exact solution (35) obtained in
the linear limit (which actually corresponds to the system
strongly dominated by the intercore coupling), takes place if
the strength of the Josephson interaction exceeds a certain
threshold value, κ > κthr. The dependence of the threshold
on the total norm in one layer, N , is shown in Fig. 4(n); recall
that the establishment of the robust chirality oscillations in the
dual-core SV and MM solitons, considered above, does not
require κ to be larger than any finite threshold value.

To explain the latter feature, we note that, as it follows
from Eqs. (28)–(32), the interplay of the kinetic energy, non-
linearity, SOC, and Josephson interaction between the cores
predicts scaling κthr ∼ N at small N . On the other hand, the
above-mentioned onset of the collapse in the single-core sys-
tem at N = Ncoll implies divergence of the system’s sensitivity
to perturbations at N → Ncoll, hence κthr also diverges in this
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FIG. 5. Simulations akin to those displayed for the SV soliton
in Fig. 2, but with γ = 1.05 in (a) and 0.95 in (b). The chirality
oscillations remain robust in the course of �40 and 20 oscillation
periods, respectively. (c) The chirality oscillations of the SV solitons,
with different initial norms in the two cores, Nψ = 0.95Nφ = 3.8.
The oscillations stay undisturbed in the course of �10 periods.

limit. These qualitative arguments are corroborated by the
numerically found dependence κthr (N ) in Fig. 4(n).

At κ < κthr, the intercore coupling is too weak to pre-
vent the occurrence of spontaneous symmetry breaking be-
tween the cores. Accordingly, additional numerical results
demonstrate, for values of N which are relatively small in
comparison with Ncoll (namely, in an interval of N < Ncrit <

Ncoll ) the existence of asymmetric composite solitons, with
different amplitudes in the two cores. In the adjacent interval
of N crit < N < Ncoll, the collapse takes place at κ < κthr. On
the other hand, if the Josephson coupling is strong enough,
with κ > κthr, it forestalls the onset of the collapse at all
values of N smaller than N coll, by keeping the total norm
equally distributed between the two cores (for instance, the
identity-oscillation dynamical regime, displayed in Fig. 4, is
stable at N = 4 < Ncoll ≈ 5.85).

2. Structural stability of the oscillation regimes

The fact that the Manakov’s form of the nonlinearity is
approximate in experimental settings makes it necessary to
test effects of deviation from it [γ �= 1 in Eqs. (1) and (2)], i.e.,
structural stability of the chirality- and identity-oscillation
dynamical regimes. The result, illustrated by Figs. 5(a) and
5(b) for γ = 1 ± 0.05, is that the chirality oscillations of
the SV soliton persist in the course of dozens of periods
(which is sufficient for the experimental observation), and
then gradually detune from the regular regime.

Additional simulations (not shown here in detail) suggest
similar conclusions concerning the effect of the deviation
from the Manakov’s case on chirality and identity oscillations
of MM solitons. As concerns the intermediate states, defined
above as per Eq. (36), the deviation from the Manakov’s case
for them is more disruptive, as, even in the single-core system,
taking γ �= 1 causes evolution of such inputs towards SVs or
MMs, for γ < 1 or γ > 1, respectively [53].

Stability of the Josephson oscillations against variations of
the initial conditions was tested too, by taking the input in the
form of a single-core SV soliton in one layer, and its chiral
isomer in the other, but with different norms. As shown in

Fig. 5(c), dephasing of the resulting chirality oscillations sets
in at times exceeding ∼10 periods.

IV. CONCLUSION

The objective of this work is to introduce and theoretically
elaborate a setting for the study of Josephson oscillations
of the chirality and species type (identity) of 2D solitons
in the double-layer trap, loaded with a spin-orbit-coupled
condensate, including self- and cross-attractive nonlinearity
(SPM and XPM) in its components. It is known that, in the
Manakov’s case of SPM = XPM, the single-layer system
supports a broad family of composite 2D solitons, which
includes dynamically and structurally stable ones of the SV
(semi-vortex) and MM (mixed-mode) types, each existing in
two chiral isomers, left- and right-handed ones. In addition
to that, the Manakov’s nonlinearity admits the existence of
the intermediate family of solitons, between the SV and MM
states, which are dynamically stable but structurally unstable
against deviation from the condition SPM = XPM. All these
states exist with the norm in each component taking values
smaller than the well-known threshold value necessary for the
onset of the critical collapse, N < Ncoll,

We consider Josephson oscillations initiated by inputs in
the form of SV, MM, or intermediate-type solitons with
equal norms and opposite chiralities, originally created in the
coupled cores (layers), or SV in one core and MM in the
other. In the former case, the system features robust chirality
oscillations at all values of the intercore coupling, κ . In the
latter case, persistent periodic switching between the SV and
MM species ( identity oscillations) occur at κ > κthr, where
κthr increases with the growth of the condensate’s norm, while
at κ < κthr the system develops states with unequal amplitudes
in the cores at relatively small values of N , or collapses at
larger N . In all cases, the oscillation frequency is equal to
κ . Deviation of the nonlinearity from the Manakov’s form,
as well as a difference in the norms of the inputs in the two
cores, leads to slowly developing dephasing of the Josephson
oscillations. These regimes are nonlinear ones, while the
exact solutions reported here for Josephson oscillations in
the linear system admit solely self-oscillations of SVs and
MMs modes with the Bessel spatial shape, without switching
between different chiralities or mode types. In fact, the exact
Bessel-shaped linear modes are new stationary solutions for
the single-layer system too.

With typical values of the relevant physical parameters
(see, e.g., Ref. [70]), such as the scattering length of the
attractive interatomic interactions ∼−0.1 nm, transverse trap-
ping frequency ∼300 Hz, and the gap of width ∼5 μm
separating two layers, the expected number of atoms in the
stable solitons, which are capable to feature the Josephson
oscillations, is in the range of Natom ∼ 103–104, and the os-
cillation frequency ∼20 Hz (while the experiment time may
extend up to 1 s, making the observation of many cycles of
the oscillations quite feasible). At essentially larger values of
Natom, the scaled norm will exceed value Ncoll, which will trig-
ger the onset of the collapse. On the other hand, it was recently
predicted [51,71], and demonstrated experimentally in various
setups [72–76], that 3D and quasi-2D self-trapped matter-
wave states may be stabilized, in the form of soliton-like
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quantum droplets, by beyond-mean-field (Lee-Huang-Yang)
effects of quantum fluctuations around the mean-field states.
In the present context, this possibility suggests to consider the
dual-core SOC system in the case of N > Ncoll, that may be
stabilized by the Lee-Huang-Yang effect. In this connection,
it is relevant to mention that the stabilization of 2D spin-orbit-
coupled solitons by this effect in the single-layer system was
analyzed in Ref. [77].

As another extension of the present work, it may be inter-
esting to consider Josephson oscillations in 2D spatiotemporal
optical solitons carried by dual-core planar waveguides and
stabilized by a SOC-emulating mechanism, viz., temporal

dispersion of the intercore coupling coefficient [78,79]. An-
other potentially interesting point is the study of intrinsic
vibrations of the composite solitons, initiated by a separation
of their components in the two layers.
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