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We present a diagrammatic Monte Carlo method for quantum impurity problems with general interactions
and general hybridization functions. Our method uses a recursive determinant scheme to sample diagrams for the
scattering amplitude. Unlike in other methods for general impurity problems, an approximation of the continuous
hybridization function by a finite number of bath states is not needed and accessing low temperatures does not
incur an exponential cost. We test the method for the example of molecular systems, where we systematically
vary temperature, interatomic distance, and basis set size. We further apply the method to an impurity problem
generated by a self-energy embedding calculation of correlated antiferromagnetic NiO. We find that the method
is ideal for quantum impurity problems with a large number of orbitals but only moderate correlations.
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I. INTRODUCTION

Quantum impurity models, originally introduced to de-
scribe magnetic impurities such as iron or copper atoms with
partially filled d shells in a nonmagnetic host material [1],
have since found applications in nanoscience as representa-
tions of quantum dots and molecular conductors [2] and in sur-
face science to understand the adsorption of atoms on surfaces
[3,4]. In addition, they form the central part of embedding the-
ories such as the dynamical mean-field theory (DMFT) [5,6]
and its variants [7–19], as well as the self-energy embedding
theory (SEET) [20–22], where they describe the behavior of
a few “strongly correlated” orbitals embedded into a weakly
correlated or noninteracting background of other orbitals.
These methods promise a systematic route for the simulation
of strongly correlated quantum many-body problems [23].

While the original formulation of a quantum impurity
model [1] only describes a single correlated orbital coupled to
a noninteracting environment, in general the impurities occur-
ring in the context of surface science and embedding theories
contain many orbitals with general four-fermion interactions
and few symmetries [24]. The time-dependent hybridization
function describing the hopping between the impurity and its
environment is typically such that it cannot be diagonalized
for all frequencies at once.

Solving quantum impurity problems, i.e., obtaining the
impurity Green’s function given an impurity Hamiltonian and
a hybridization function, requires the use of numerical meth-
ods. A wide range of such methods exist. Hamiltonian-based
methods, such as exact diagonalization (ED) [25–29] and
its variants [30], configuration-interactions [31], or coupled
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cluster theory [32,33], solve the impurity problem by mapping
the impurity problem onto a system with a local Hamiltonian
and a finite number of auxiliary “bath” states chosen to fit
the time-dependent hybridization function. The methods are
limited to a relatively small set of strongly interacting sites or
breakdown at moderate correlation strength. The bath fitting,
which typically approximates a continuous bath dispersion by
a nonlinear fit to a small number of delta-function peaks, in-
troduces additional approximations [27,29]. Numerical renor-
malization techniques [34,35] overcome this issue by provid-
ing an almost continuous bath density of states but are in turn
limited to a few orbitals in highly symmetrical situations.

A complementary approach is given by Monte Carlo tech-
niques such as the continuous-time quantum Monte Carlo
methods [36]. These methods are based on a stochastic sam-
pling of the terms in a diagrammatic expansion of the partition
function. For particle-hole symmetric systems with on-site
density-density interactions, interaction expansion methods
[37–39] can solve systems with hundreds of strongly corre-
lated orbitals [40]. Away from particle-hole symmetry and at
low temperature, they are typically limited to around eight
orbitals, and their naive adaptation to general four-fermion
operator terms suffers from a severe sign problem [41]. In
contrast, a partition function expansion in the hybridization
[42–44] is able to work with general local Hamiltonians of
up to five orbitals, but is similarly restricted to diagonal
hybridization functions. A reformulation [45] in terms of
inchworm diagrams [46] overcomes the restriction of diagonal
hybridizations, but so far remains limited to impurities with up
to three orbitals.

There is therefore a need for impurity solver methods
that can treat the problems of embedding theory and sur-
face science, where several orbitals with general interactions
and hybridizations occur. Diagrammatic Monte Carlo meth-
ods [47–51], which expand physical observables rather than
partition functions, along with efficient ways of evaluating
the resulting diagrammatic series via the connected determi-
nant (CDet) approach [52–57], are promising. While these
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methods suffer from other limitations, including divergences
of the series in the strong correlation regime, they do not
require to approximate the hybridization function by a fit, and
are not based on a diagonalization of the local Hamiltonian.

In this paper, we show a formulation of the diagrammatic
Monte Carlo method for impurity problems with general
interactions and hybridizations based on the CDet framework.
We test the method on the example of molecular systems,
for which a broad range of very mature Hamiltonian methods
exist. From the point of view of the algorithmic formulation,
the molecular systems exhibit the full complexity of general
impurity problems. The only difference between molecules
and quantum impurities is that the latter are formulated with
a time-dependent hybridization, rather than an instantaneous
hopping. This hybridization function modifies the bare prop-
agator but otherwise leaves the system and our algorithmic
approach invariant. Applications to molecular systems there-
fore form an ideal test bed for impurity solver methods of this
type. We complete our benchmark by applying the impurity
solver to an impurity generated by a self-energy embedding
calculation of antiferromagnetic solid NiO [58].

We carefully analyze the convergence behavior of the
diagrammatic expansion and the computational cost of the
method as a function of varying temperature, basis sets,
intermolecular distance, and system size. We emphasize that
we do not intend to present our method as a viable method
for quantum chemistry systems without retardation effects.
Rather, we exploit the rigorous and controlled framework of
molecular simulations to generate a series of test cases that
illustrate various parameter regimes in quantum impurities.

This paper will proceed as follows. In Sec. II, we introduce
the computational problem, the diagrammatic formulation,
and the algorithmic description. In Sec. III, we present ap-
plications to molecular systems and benchmark results for
quantum impurities. Finally, Sec. IV presents conclusions.
Appendices A through E present technical details useful for
implementing our algorithm and reproducing our results.

II. METHOD

A. Partition function expansion

We describe molecular electrons using the following
Hamiltonian:

Ĥ =
∑

ab

habĉ†
aĉb︸ ︷︷ ︸

Ĥ0

+ 1

4

∑
abcd

Uabcd ĉ†
aĉ†

c ĉd ĉb︸ ︷︷ ︸
ĤV

, (1)

where a, b, c, d denote spin orbitals, 1, . . . , N . We employ
second quantization: ĉa and ĉ†

a annihilates and create, respec-
tively, an electron in the spin-orbital a. The noninteracting
term Ĥ0 is parametrized by the one-electron integrals hab =
[a|h|b], whereas the interacting term ĤV is parametrized by
the antisymmetrized two-electron integrals Uabcd = [ab|cd] −
[ad|cb]. We note that explicit antisymmetrization, Uabcd =
−Uadcb = Ucdab, avoids ambiguities in the diagrammatic ex-
pansions below [59]. We orthonormalize the basis, {ĉ†

a, ĉb} =
δab, as we empirically found this to improve the error bars in
the subsequent Monte Carlo procedure. For completeness, we
compiled the explicit expressions for h and U in Appendix A.

As we are going to perform series expansions later, it is
convenient to introduce an expansion parameter ξ into the
Hamiltonian:

Ĥξ = Ĥ0 + ξ ĤV . (2)

The noninteracting case is given by Ĥξ=0, whereas Ĥξ=1

recovers the full Hamiltonian Eq. (1).
We are primarily interested in calculating finite-

temperature observables such as energies, densities, as well
as the spectral function and other electronic correlation
functions. We start with the grand-canonical partition
function,

Zξ = Tr exp[−β(Ĥξ − μN̂ )], (3)

where β = 1/T is the inverse temperature, μ denotes the
chemical potential, and N̂ = ∑

a ĉ†
aĉa is the density operator.

Expanding Eq. (3) about ξ = 0 within the interaction picture
[60] yields the Dyson series,

Zξ = Z0

∞∑
k=0

(−ξ )k

k!

∫ β

0
dkτ 〈ĤV (τ1) · · · ĤV (τk )〉0, (4)

where Z0 := Tr exp[−β(Ĥ0 − μN̂ )] is the noninteracting par-
tition function, τ denotes imaginary (Euclidean) time, 〈·〉0

denotes the noninteracting expectation value,

〈X̂1 . . . X̂k〉0 := 1

Z0
Tr[e−β(Ĥ0−μN̂ )T (X̂1 . . . X̂k )], (5)

and T indicates path ordering in imaginary time. We note that
for molecules, both Ĥ0 and ĤV are bounded and thus away
from zero temperature, the series expansion for the partition
function Eq. (4) is absolutely convergent for all ξ .

Inserting Eq. (1) into Eq. (4) yields

Zξ

Z0
=

∞∑
k=0

(−ξ )k

k!

∑
a1b1c1d1

· · ·
∑

akbkckdk

∫ β

0
dτ1 · · ·

∫ β

0
dτk

×
(

Ua1b1c1d1

4

)
· · ·
(

Uakbkckdk

4

)〈
ĉ†

a1
(τ1)ĉ†

c1
(τ1)

× ĉd1(τ1)ĉb1(τ1) · · · ĉ†
ak

(τk )ĉ†
ck

(τk )ĉdk(τk )ĉbk(τk )
〉
0. (6)

To simplify our notation we combine four spin orbitals
a, b, c, d and an imaginary time τ into a single “vertex”
v = (av, bv, cv, dv, τv ). We also introduce the following short-
hands: ∫

dkV := 1

k!

∏
v∈V

∑
avbvcvdv

∫ β

0
dτv, (7a)

D(V ) :=
∏
v∈V

(
− Uavbvcvdv

4

)

×
〈∏

v∈V
ĉ†

av
(τv )ĉ†

cv
(τv )ĉdv

(τv )ĉbv
(τv )

〉
0

. (7b)

Equation (7b) emphasizes the fact that the expectation value
in Eq. (6) corresponds to the sum over all disconnected and
connected Feynman diagrams with vertices V = (v1, . . . , vk ),
while Eq. (7a) just corresponds to the sum over all internal
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degrees of freedom of the diagrams. With these substitutions,
Eq. (6) simplifies to

Zξ

Z0
=

∞∑
k=0

ξ k
∫

dkV D(V ). (8)

To evaluate Eq. (8), we first introduce the noninteracting
Green’s function:

gba(τ ) = −〈ĉb(τ )ĉ†
a(0)〉0 = [(−∂τ + μ)1 − h]−1

ba . (9)

Given a diagram V = (v1, . . . , vk ) with vi = (ai, bi, ci, di, τi ),
we can use Wick’s theorem to write Eq. (7b) as

D(V ) =
k∏

i=1

(
− Uaibicidi

4

)
det G(V ), (10)

where G is a 2k × 2k matrix in which the rows (columns)
correspond to the 2k annihilation (creation) operators. Intro-
ducing the column and row indices α, β, . . . such that

{aα} := {a1, c1, a2, c2, . . . , ak, ck},
{bβ} := {b1, d1, b2, d2, . . . , bk, dk},
{τα} = {τβ} := {τ1, τ1, τ2, τ2, . . . , τk, τk},

(11)

we define the matrix elements

[G(V )]βα := −〈ĉbβ
(τβ )ĉ†

aα
(τα )

〉
0

= gbβ aα
(τβ − τα + 0−). (12)

The full matrix can be written in a block form as

G(V ) :=

⎡
⎢⎢⎣

g11 g12 · · · g1n
g21 g22 · · · g2n
...

...
. . .

...
gn1 gn2 · · · gnn

⎤
⎥⎥⎦, (13)

where each 2 × 2 block is given by

gi j :=
[

gbia j (τi − τ j + 0−) gdia j (τi − τ j + 0−)
gbic j (τi − τ j + 0−) gdic j (τi − τ j + 0−)

]
. (14)

Equations (8) and (10) serve as the basis of interaction
expansion continuous-time quantum Monte Carlo (CT-QMC):
One generates random configurations (v1 . . . vk) and evalu-
ates the corresponding weight by computing the determinant
[36,37,41].

B. Free-energy expansion

While the partition function expansion can be efficiently
computed as determinants [with scaling O(k3)] and the series
is guaranteed to converge, it is also plagued by the negative
sign problem, which is expected to worsen exponentially as
the system size is increased or the temperature reduced. The
sign problem is typically manageable in Hubbard model cal-
culations up to moderate correlations and system sizes, where
it only stems from negative determinant contributions. In
contrast, the sign problem is particularly severe in molecules
and surface science quantum impurity problems [41], where
both Coulomb interaction terms and determinants generate
negative coefficients.

To overcome these difficulties, we move to the grand
potential �, defined as

Zξ = exp(−β�ξ ). (15)

�ξ serves as a cumulant-generating function for correlations
functions [61] and its power series in ξ is given by

�ξ = �0 − 1

β

∞∑
k=1

ξ k
∫

dkV Dc(V ), (16)

where �0 is defined as Z0 = exp(−β�0).
The symbol Dc indicates that unlike in Eq. (8), the sum is to

be performed over connected Feynman diagrams only. Using
a recursion formula similar to the one introduced in Ref. [52],
Dc can be defined recursively:

Dc(V ) = D(V ) −
∑
S�V

|S|
|V|Dc(S )D(V\S ). (17)

A derivation is given in Appendix D. Equations (17) and (10)
allow the computation of connected diagrams as a hierarchy
of determinants at a cost of O(3k ).

We note that even in simple cases, the convergence radius
R of the series Eq. (16) is not infinite, with the value of R
depending on h, U , and β. Whenever R < 1, an order-by-order
summation of the series will fail. We will discuss strategies to
extend the convergence radius in Sec. II E.

For convergent series (R > 1), one can employ the di-
agrammatic Monte Carlo algorithm to sample the series
Eq. (16) by generating random vertices and computing the
weight using the recursion Eq. (17). One observes that the
relative statistical error diverges exponentially with diagram-
matic order k [62], which requires truncation of the series to a
finite order kmax.

C. Scattering amplitude expansion

Other than free energy, we are primarily interested in the
thermal correlation function of some operators (X̂1, . . . , X̂m),

〈X̂1 . . . X̂m〉 := 1

Z
Tr[e−β(Ĥ−μN̂ )T (X̂1 . . . X̂m)], (18)

in particular, the single-particle Green’s function:

Gba(τ ) = −〈ĉb(τ )ĉ†
a(0)〉. (19)

One can write down a diagrammatic expansion for the
Green’s function similar to Eq. (16) and a corresponding
recursion relation [52]. We instead choose to perform the
expansion for a vertexlike object.

In the case of the expansion of the free energy, the cor-
responding one-particle vertex is the scattering amplitude M
[37,38], defined as

G(τ ) = g(τ ) +
∫ β

0
dτ1dτ2 g(τ − τ1)M(τ1 − τ2)g(τ2), (20)

where multiplication is to be understood as matrix-matrix
multiplication in spin orbitals. Sampling a one-particle vertex
is advantageous because it is independent of the choice of “ex-
ternal legs” and thus allows measurements of both imaginary
time-dependent quantities (G and 	) and fixed-time quantities
(density, kinetic energy, etc.) in the same simulation.

M arises naturally as a functional derivative of the grand
potential:

Mab(τ ) = δ(� − �0)

δgba(−τ )
. (21)
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FIG. 1. Schematic example of diagrams up to order 2. Diagrams shown here should be understood as labeled diagrams as described in
Ref. [61]. Duplicate diagrams with the same topology are not shown. In the expansion of Zξ , the red diagram is an example of a disconnected
diagram, which is absent in the expansion of � due to linked cluster theorem.

We show this relation in Appendix B. Equation (21) expresses
the fact that by removing one line from a (closed) free-energy
diagram, we get an interaction correction to the Green’s func-
tion, which is exactly what the scattering amplitude encodes.
Figure 1 provides a schematic example of diagrammatic rep-
resentations of different quantities.

Combining Eq. (21) with Eq. (16) yields a series expansion
for M:

Mξ,ab(τ ) = − 1

β

∞∑
k=1

ξ k
∫

dkV δDc(V )

δgba(−τ )
. (22)

We thus need to evaluate the functional derivative of the
recursion relation Eq. (17).

We start with the derivative of the sum of all diagrams
D(V ), where we rely on the following identity:

δ det A

δAαβ

= (adj A)βα := (−1)α+β det Aᾱβ̄ , (23)

where A is an n × n matrix, adj(A) denotes the n × n adjugate
matrix of A, and Aᾱβ̄ is the (n − 1) × (n − 1) submatrix of
A with the αth row and βth column removed. The adjugate
matrix adj A can be computed in O(n3) time. The adjugate (or
cofactor) matrix arises naturally in determinantal methods as a
result of the Wick’s theorem [37,38,63], and is often absorbed
into the inverse matrix if the matrix A is not singular. In the
context of CDet, however, care must be taken because A may
be singular while adj A is still meaningful [64]. We elaborate
on the numerical calculation in Appendix E.

Combining Eq. (10) with Eq. (23), we have

δD(V )

δgba(−τ )
=

k∏
i=1

(
− Uaibicidi

4

)

×
2n∑
α,β

[adj G(V )]αβδaαaδbαb

× [δ(τα − τβ − τ ) − δ(τα − τβ + β − τ )]

= −
2n∑
α,β

[A(V )]αβδaαaδbαb

× [δ(τα − τβ − τ ) − δ(τα − τβ + β − τ )]
(24)

for 0 < τ � β, where aα , bβ , and τα(β ) takes the same mean-
ing as in Eq. (12), and we have defined the 2k × 2k matrix,

A(V ) := −
k∏

i=1

(
− Uaibicidi

4

)
adj G(V ), (25)

which includes all connected and disconnected amputated
diagrams in which internal legs corresponding to ĉ†

aα
(τα ) and

cbβ
(τβ ) are removed.
For the functional derivative of a connected free-energy

diagram Eq. (26), the sum over all diagrams in Eq. (24) with
amputated legs A(V ) needs to be replaced with the sum over
connected diagrams with amputated legs Ac(V ),

δDc(V )

δgba(−τ )
= −

2n∑
α,β

{[Ac(V )]αβδaαaδbαb

× [δ(τα − τβ − τ ) − δ(τα − τβ + β − τ )]},
(26)

for 0 < τ � β. The expansion of M Eq. (22) can now be
expressed in terms of Ac as

[Mξ (τ )]αβ = 1

β

∞∑
k=1

ξ k
∫

dkV
2n∑
α,β

{[Ac(V )]αβδaαaδbαb

× [δ(τα − τβ − τ ) − δ(τα − τβ + β − τ )]}.
(27)

The sum over connected amputated diagrams Ac(V ) can
be built up from a recursion technique similar to Eq. (17).
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FIG. 2. Schematic illustration of the recursive removal of discon-
nected amputated diagrams. Empty boxes stand for the contribution
of all diagrams (D or A), and filled ones for connected diagrams only
(Ac). Symbols inside boxes denote the set of vertices included in each
component. The top relation shows all partitions of [A(V )]αβ into
a subset fully connected to the amputated legs and a disconnected
complement set. It is reorganized as the bottom relation which
recursively defines Ac(V ) by removing all disconnected components.

Defining vα and vβ as vertices where the αth and βth operators
are located, respectively, diagrams in [A(V )]αβ can always be
partitioned to a connected part which contains vα and vβ , and
the disconnected vacuum diagrams, i.e.,

[A(V )]αβ =
∑
S ⊆ V

vα, vβ ∈ S

[Ac(S )]α′β ′D(V\S ), (28)

where α′, β ′ are row and column indices within S that corre-
spond to the row and column indices α, β in V . Extracting the
term with S = V , we have the recursion relation for Ac:

[Ac(V )]αβ = [A(V )]αβ −
∑

S � V
vα, vβ ∈ S

[Ac(S )]α′β ′D(V\S ). (29)

This partitioning process is illustrated in Fig. 2. Since M
captures the interaction correction to the Green’s function
which starts at the first order in interaction, the zeroth order
contribution Ac(∅) = 0. For each fixed V , we apply Eq. (29)
to recursively to compute Ac(V ), which in turn yields M
following Eq. (26). Algorithmically, Eq. (29) can be evaluated
by following Algorithm 1. Algorithm 1 runs in O(3kk2) time.

D. Observables from scattering amplitude

The electron self-energy 	 relates the Green’s function G
to the noninteracting propagator g via the Dyson’s equation:

G(τ ) = g(τ ) +
∫ β

0
dτ1dτ2g(τ − τ1)	(τ1 − τ2)G(τ2). (30)

The expansion of the self-energy 	 can be interpreted as one-
particle irreducible (1-PI) amputated diagrams, which stay
connected even when any single propagator line is removed
(cf. Fig. 1). The self-energy is thus not directly sampled, M

and 	 are related to each other by [38]∫ β

0
dτ ′	(τ − τ ′)G(τ ′) =

∫ β

0
dτ ′M(τ − τ ′)g(τ ′). (31)

Replacing G with Eq. (20), we have

	−1(iν) = M(iν)−1 + g(iν), (32)

where X (iν) denotes the Fourier transform of X (τ ) (X =
	, M, . . .) and iν is a fermionic Matsubara frequency.

The one- and two-body contributions to the electronic
energy follow from Eqs. (30) and (20):

E = E0 + EV , (33a)

E0 = 〈Ĥ0〉 = 1

β
Tr[hG] =

∑
ab

habρab, (33b)

EV = 〈ĤV 〉 = 1

2β
Tr[	G]

= 1

2

∫ β

0
dτ
∑

ab

Mab(τ )gba(−τ ). (33c)

Here ρi j ≡ 〈ĉ†
i ĉ j〉 is the electron density matrix. Note

that Ĥ0 does not include the Hartree and Fock terms of the
interaction. See also Appendix C.

E. Hartree-Fock-shifted Hamiltonian

In systems with significant electron-electron correlations
where EV has significant contribution to the full energy E ,
the perturbation expansions in Eqs. (16) and (22) may not
converge at ξ = 1.

To achieve better convergence by starting from a “better”
noninteracting solution such that Ĥ0 is closer to Ĥ , we change
the partition of the Hamiltonian Ĥ = Ĥ0 + ĤV by adding
physically motivated counterterms to Ĥ0 and subtracting the
same terms from ĤV . Such an approach is referred to as
the α-shift [37] or as the shifted-action [65] in the action
formalism.

Algorithm 1. Recursive evaluation of Ac(V ).

Require: Vertices V , G(V ) defined in Eq. (13).

1: function RECURSION(V , G)
2: if V = ∅ then
3: return Ac(∅) = 0.
4: else
5: Compute A(V ) from G following Eq. (25).
6: Initialize Ac(V ) ← A(V ).
7: for S � V do
8: Compute D(V\S ) following Eq. (10).
9: Ac(S ) ← RECURSION(S, G[S,S] ). �G[S,S]

is the submatrix of G whose rows and columns correspond to
the subset S. Same definition applies to [Ac(V )][S,S].

10: Subtract Ac(S )D(V\S ) from [Ac(V )][S,S].
11: end for
12: return Ac(V ).
13: end if
14: end function
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We start by adding the simplest counterterm in the
quadratic form

�Ĥα =
∑

ab

αabĉ†
aĉb (34)

to Ĥ0 and subtract it from ĤV , such that

Ĥ0,α =
∑

ab

(hab + αab)ĉ†
aĉb, (35)

ĤV,α = 1

4

∑
abcd

Uabcd ĉ†
aĉ†

c ĉd ĉb − αabĉ†
aĉb. (36)

The total Hamiltonian Ĥ = Ĥ0,α + ĤV,α is unchanged,
whereas the perturbation expansion of Ĥξ = Ĥ0,α + ξ ĤV,α can
be controlled by choosing different α. The counterterm need
not be quadratic in general. Though quadratic choices are
convenient in the determinantal setup, recursion schemes have
been developed for general counterterms [55].

The shifted noninteracting propagator

gα(τ ) = [(−∂τ + μ)1 − h − α]−1
aa′ (37)

can be seen as a Green’s function with an a priori self-
energy α.

In the molecular context, a significant contribution to
electron correlations can be obtained by the Hartree-Fock
approximation. We therefore choose α to be the Hartree-Fock
self-energy, i.e., 	HF. 	HF is given by the self-consistent
equations at finite temperature:

[	HF]ab =
∑
cd

Uabcdρcd , (38a)

ρ = f (h + 	HF − μ1). (38b)

Here f (A) = [1 + exp(βA)]−1 is the matrix-valued Fermi dis-
tribution function, and μ is the chemical potential which may
be adjusted so the total number of electrons in the system is
adjusted to charge neutrality.

Diagrammatically, the Hartree-Fock shift renormalizes the
propagators lines to gα and an additional effective two-point
vertex α has to be included in diagrams. The effective vertex α

cancels any diagram which has at least one vertex connecting
to itself with exactly one propagator line. This removes all
“tadpole” diagrams in expansions of G and M, as well as that
of � except for the first-order diagram whose vertex connects
to itself with two propagator lines. Figure 3 illustrates the
cancellation of such diagrams.

Given a specific set of vertices V , the removal of all tadpole
diagrams is achieved by replacing the G matrix Eq. (13)
defined on internal vertices V with

G(V ) :=

⎡
⎢⎢⎣

0 gα
12 · · · gα

1n
gα

21 0 · · · gα
2n

...
...

. . .
...

gα
n1 gα

n2 · · · 0

⎤
⎥⎥⎦,

gα
i j :=

[
gα

bia j
(τi − τ j + 0−) gα

dia j
(τi − τ j + 0−)

gα
bic j

(τi − τ j + 0−) gα
dic j

(τi − τ j + 0−)

]
. (39)

FIG. 3. Schematic example of diagram cancellations due to the
Hartree-Fock counterterm. Here we show all second-order Green’s
function diagrams generated by the counterterm, where the red circle
indicates the counterterm α, each introduces a factor of −1. Terms in
each dashed curve cancel each other, leaving only the last term.

i.e., by setting all 2 × 2 diagonal blocks (corresponding to
self-connections of vertices) to zero, and replacing bare propa-
gators with gα. Using the modified definition of G in Eqs. (10)
and (25), one can carry out the same recursive calculations in
Eq. (26) to obtain corresponding connected quantities.

Note that this introduces a bias in the free-energy evalu-
ation by setting the first-order contribution (the “dumbbell”
diagram) to zero, which needs to be corrected:

�(1)
α = 1

2

∑
abcd

Uabcd gα
ba(0−)gα

dc(0+) −
∑

ab

αabgα
ba(0−)

= −1

2

∑
ab

[	HF]ab[ρHF]ba. (40)

In the remainder of this paper, we will always use a
Hartree-Fock counterterm and omit the α subscripts.

F. Monte Carlo integration of diagrammatic series

Evaluations of diagrammatic series, such as Eqs. (16) and
(27), can be formally summarized as

X =
∞∑

k=0

∫
dkVC(V ), (41)

where X is the physical variable (G, M,...), V = (v1, . . . , vk )
denotes spacetime indices of internal vertices, and C the
contribution of each fixed configuration of V to X . Here we
take the “physical” value of the coupling constant ξ = 1. To
perform a Monte Carlo integral, we introduce a cutoff kmax of
the expansion order, and an a priori probability distribution of
vertex spacetime indices p(V ) such that

p(V ) � 0,

kmax∑
k=0

∫
dkV p(V ) ≡ 1. (42)

In addition, we require that p(V ) > 0 whenever C(V ) �= 0.
The order-kmax approximation to X can be estimated stochas-
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TABLE I. Measurements for physical observables. The imaginary time convolution is defined as [ f ∗ g](τ ) = ∫ β

0 dτ ′ f (τ − τ ′)g(τ ′). EHF
0

and EHF
V are kinetic and potential energies from the Hartree-Fock solution.

X C(V )

Mab(τ ) 1
β

∑2|V|
α,β=1[Ac(V )]αβδaαaδbβ b[δ(τα − τβ − τ ) − δ(τα − τβ + β − τ )]

Mab(iνn) = ∫ β

0 dτMab(τ )eiνnτ 1
β

∑2|V|
α,β=1[Ac(V )]αβδaαaδbβ beiνn (τα−τβ )

Gba(iνn) − gba(iνn) = [gMg]ba
1
β

∑2|V|
α,β=1[Ac(V )]αβgbaα

(iνn)gbβ a(iνn)eiνn (τα−τβ )

E0 − EHF
0

1
β

∑2|V|
α,β=1[Ac(V )]αβ

∑
ab hab[gbaα

∗ gbβ a](τβ − τα )

EV − EHF
V

1
2β

∑2|V|
α,β=1[Ac(V )]αβ

{
gbβ aα

(τβ − τα ) +∑
ab[	HF]ab[gbaα

∗ gbβ a](τβ − τα )
}

tically as

Xkmax =
kmax∑
k=0

∫
dkV C(V )

p(V )
p(V ) =

〈C
p

〉
p

≈ 1

N

N∑
i=1

C(Vi )

p(Vi )
, V1, . . . ,VN ∼ p, (43)

with a large number N of Monte Carlo samples {Vi} generated
following distribution p(V ).

Since the Green’s function G, self-energy 	, as well as
the total electronic energy E = E0 + EV can all be derived
from the scattering matrix M using Eqs. (20), (32), (33), it
is sufficient to only keep track of the amputated diagrams
Ac(V ) and obtain all other observables as derived quantities.
Table I summarizes some of these measurements. In our
implementation, we only measure the energy and M(iνn) with
fermionic Matsubara frequencies iνn on the fly, and construct
G(iνn) and 	(iνn) from M(iνn), following

G(iνn) = g(iνn) + g(iνn)M(iνn)g(iνn), (44)

	(iνn) − 	HF = [M(iνn)−1 + g(iνn)]−1, (45)

for each frequency, where symbols with hats represent quan-
tities in frequency representation as matrices in spin-orbital
indices. Resampling techniques such as the jackknife or the
bootstrap are applied to avoid biased error estimations.

For efficient Monte Carlo simulations, it is important to
choose the a priori distribution p(V ) to achieve importance
sampling, such that the simulation samples more frequently
when |C(V )| is large and less frequently otherwise. Since we
measure multiple observables in one simulation, we need to
define such a distribution that works for all measurements.
We find in practice that the following choices provide efficient
samplings for most measurements:

pA(V ) = ‖Ac(V )‖
WA

, WA =
kmax∑
k=0

∫
dkV‖Ac(V )‖, (46)

pE (V ) = |ε(V )|
WE

, WE =
kmax∑
k=0

∫
dkV|ε(V )|, (47)

where ‖ · ‖ denotes the Frobenius norm of a matrix, and ε(V )
is the energy measurement defined in Table I,

ε(V ) = 1

2β

2|V|∑
αβ=1

[Ac(V )]αβ

{
gbβ aα

(τβ − τα )+

+
∑

ab

[2h + 	HF]ab[gbaα
∗ gbβ a](τβ − τα )

}
, (48)

where [ f ∗ g](τ ) = ∫ β

0 dτ ′ f (τ − τ ′)g(τ ′) denotes a convolu-
tion in τ . pE performs well for the energy measurements,
whereas pA is more robust when measurement of M is needed.

At high expansion order kmax, the normalization factors
WA and WE are difficult to calculate analytically. Instead,
we measure an auxillary quantity whose exact value can be
calculated analytically, and normalize all other measurements
against it. For example, we can normalize against the second-
order contribution to the total energy:

E (2) =
〈
ε(V )δ|V|,2

pE (V )

〉
pE

= WE 〈sgn[ε(V )]δ|V|,2〉pE . (49)

Here we have chosen pE as the a priori distribution. Any other
measurements can now be estimated as

X =
〈 C(V )

pE (V )

〉
pE

= WE

〈C(V )

ε(V )

〉
pE

= E (2) 〈C(V )/ε(V )〉pE

〈sgn[ε(V )]δ|V|,2〉pE

. (50)

Similar relations apply when we use other choices of a priori
distributions or normalization measurements.

Once p(V ) is defined, we generate Monte Carlo samples as
a Markov chain via the Metropolis-Hastings algorithm. From
each configuration Vi, a new configuration V j is proposed fol-
lowing some proposal probability distribution wprop(V j |Vi ).
To ensure detailed balance, an acceptance ratio R is calculated
after each proposal as

R(V j |Vi ) = wprop(Vi|V j )p(V j )

wprop(V j |Vi )p(Vi )
. (51)

The proposal Vi → V j is accepted with probability

wacc(V j |Vi ) = min(1, R(V j |Vi )). (52)

This ensures the detailed balance of the Markov process, i.e.,

w(V j |Vi )p(Vi ) = w(Vi|V j )p(V j ), (53)
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where

w(V j |Vi ) = wacc(V j |Vi )w
prop(V j |Vi )p(Vi ). (54)

which guarantees samples obtain the equilibrium distribution
p(V ) after thermalization.

In molecular systems, due to the complexity in the mul-
tiorbital Coulomb interaction tensor, as well as the energy
differences in noninteracting energy levels, the configuration
space of the Monte Carlo can be uneven and may lead
to ergodicity problems in the random walk. We design the
following set of updates which lead to an ergodic random walk
in the configuration space for all systems we investigate in
Sec. III:

(1) Vertex splitting: Split a random vertex v =
(a, b, c, d; τ ) to two new vertices v1 = (a, b, c′, d ′; τ ) and
v2 = (a′, b′, c, d; τ ′). The new indices a′, b′, c′, d ′, and τ ′ can
be proposed by some a priori probability pins. The proposal
probability distribution for this update from order k to
k + 1 is

wprop(v1, v2; k + 1|v; k) = pins(a′, b′, c′, d ′, τ ′)
k

(55)

(2) Vertex merging: Pick two random vertices v1 =
(a, b, c′, d ′; τ ) and v2 = (a′, b′, c, d; τ ′) and merge them into
v = (a, b, c, d; τ ). The proposal probability distribution from
order k + 1 to k is

wprop(v; k|v1, v2; k + 1) = 1

k(k + 1)
. (56)

(3) Vertex shift in time: Update the time label τ of a vertex
v to a new value τ ′.

(4) Vertex shift in orbitals: Update one of the orbital labels
a, b, c, d of a vertex v to a random new value.

Vertex shift in time or orbitals are self-balancing moves,
hence the acceptance ratios shares the same form:

R(V2|V1) = p(V2)

p(V1)
. (57)

Vertex splitting and merging are mutually inverse updates.
The acceptance ratios are therefore

R(v1, v2; k + 1|v; k)

= R(v; k|v1, v2; k + 1)−1

= wprop(v; k|v1, v2; k + 1)p(v1, v2; k + 1)

wprop(v1, v2; k + 1|v; k)p(v; k)

= k + 1

pins(a′, b′, c′, d ′, τ ′)
p(v1, v2; k + 1)

p(v; k)
. (58)

There is considerable freedom in choosing pins. For all sys-
tems we study in this paper, we choose pins such that

pins(a′, b′, c′, d ′, τ ′) = porb(a′, b′, c′, d ′)ptime(τ ′), (59)

where porb(a′, b′, c′, d ′) is uniformly distributed if the inserted
indices can form nonzero propagator connections and zero
otherwise, and

ptime(τ ′) = ϕ(|τ ′ − τ̄V |), (60)

where τ̄V = 1
k

∑k
i=1 τk is the average time coordinate of the

existing vertices, and we choose ϕ(τ ) as a function in [0, β]

which has more weight near τ = 0 and β but still non-
negligible weight in between. Since the Hartree-Fock prop-
agators decay exponentially away from 0 and β, this makes
sure that the new vertex are more likely to stay close to
existing vertices so the resulting configuration has a sizable
contribution. In our implementation, we define

f (τ ) = λ

arctan(βλ)

{
1

1 + (τλ)2
+ 1

1 + [(β − τ )λ]2

}
, (61)

as a Lorentzian distribution where λ is an estimation of the
overall energy scale of the system proportional to, e.g., the
standard deviation of the Hartree-Fock energy levels.

III. RESULTS

A. Series convergence

We first present a test of our method on a minimal molec-
ular system: H2 in the STO-6g basis set [66]. Two hydrogen
atoms are placed at distance r and finite temperature T = 1/β.
The basis set only contains the 1s orbital in each atom. This
setup allows us to easily perform ED calculations of the full
molecular Hamiltonian at any temperature, such that exact
benchmark results for our CDet results are available.

In Fig. 4, we compare the total energy Etot from CDet
with order truncation kmax up to 6 to the ED energy at
T = 50−1 Eh, both as a function of r. Around equilibrium
distance r ≈ 1.4 a0, the CDet energy converges well to the
ED solution. The system moves to the strongly correlated
regime (i.e., a regime far from the Hartree-Fock solution), as
we “stretch” the molecule by increasing r. At r > 2.0 a0, we
start to observe significant systematic deviation at kmax = 6.
Since the kinetic energy of electrons moving between two
atoms is significantly reduced as we increase r but the long-
range Coulomb repulsion between electrons changes slowly,
the electron-electron interaction becomes more important at
larger r, and hence it is expected that the perturbation ex-
pansion becomes more difficult to converge. This setup is
standard in quantum chemistry [67] and is similar in spirit to
lattice model setups in which a metal-to-insulator transition is
induced by gradually increasing an on-site interaction.

Analytically, the convergence behavior is determined by
the properties of the expanded quantity (e.g., E [ξ ]) as a
function of the coupling constant ξ on the complex plane, sim-
ilar to the convergence analysis for many-body perturbation
theory calculations at T = 0 [68–72]. We evaluate the electron
energy E [ξ ] for complex values of ξ near ξ = 0 using ED at
r = 1.4, 2.0, 2.8, and 3.6 a0, following

Z[ξ ] = Tr{e−β[(Ĥ0+Ĥα )+ξ (ĤV −Ĥα )−μN̂]}, (62)

E [ξ ] = 1

Z[ξ ]
Tr{[(Ĥ0 + Ĥα/2) + ξ (ĤV − Ĥα/2)]

× e−β[(Ĥ0+Ĥα )+ξ (ĤV −Ĥα )−μN̂]}, (63)

where Ĥα is the Hartree-Fock counterterm introduced in
Sec. II E. One can show via a straightforward substitution that
E [1] gives the physical electron energy and E [0] recovers
the Hartree-Fock energy. Figure 5(a) shows the interaction
correction E [ξ ] − E [0] to the total energy, where the black dot
represents the physical value at ξ = 1. Since the convergence
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FIG. 4. Total energy Etot with Monte Carlo errors for H2, STO-
6g, T = 50−1 Eh. Top panel: Comparison of ED and CDet at different
kmax. Middle panel: Total energy with Hartree-Fock contribution
removed. Bottom panel: Difference between ED and CDet.

radius of the power series around ξ = 0 is determined by
the singularity (pole or branch cut) closest to the origin, the
series is convergent at the physical point ξ = 1 if and only if
there are no singularities in the unit circle (dashed circles in
Fig. 5). At r = 1.4 a0, all poles are far outside the unit circle,
indicating a rapidly convergent series. As we increase r, poles
move closer to the unit circle at r = 2.0 a0, implying a slower
convergence of the series, and finally enter the unit circle at
r = 2.8 a0 and 3.6 a0, resulting in divergent series at ξ = 1.

The analytic properties are reflected directly in the conver-
gence behavior of the CDet results. For a direct comparison,
we calculate the contribution of each order k to the total
energy E (k)

tot up to kmax = 8 for the same values of r, as shown

in Fig. 6. At r = 1.4 a0, E (k)
tot quickly converges to zero at k >

4. At r = 2.0 a0, we observe a tendency to converge at k = 8
but nonzero systematic deviations remain. For r = 2.8 a0 and
3.6 a0, no signs of convergence are observed up to k = 8.

The CDet approach can be applied to different temper-
atures without adding significant computational cost, as we
will show in Sec. III B. This is fundamentally different from
methods such as CT-QMC, where reaching lower T is only
possible at an exponential cost away from half filling [36].
In Fig. 7, we show the temperature dependence of the CDet
total energy for H2, STO-6g at kmax = 6, from T = 10.0−1 Eh

down to T = 500.0−1 Eh, in comparison to the ED solution
at T = 0. All calculations use the same algorithmic setup
and the same number of Monte Carlo steps. Convergence
to the zero-temperature solution is observed as T decreases,
while the stochastic error estimation does not change sig-
nificantly. Systematic deviations can be observed at similar
locations (r > 2.0 a0) for different temperatures, indicating
similar convergence behavior for the same system at dif-
ferent temperature. This can be shown by the temperature
dependence of the analytic structure of E [ξ ], as plotted in
Fig. 5(b). As temperature is reduced, the spacing of the poles
along the imaginary direction decreases proportionally, but
the real-axis locations of the vertical “walls” of poles stay
almost unchanged, which leads to similar convergence radii
at different temperatures.

The Hartree-Fock shifted action plays an important role in
achieving better series convergence in CDet. Figure 8 com-
pares the ED analytic structure of the total energy E [ξ ] with
and without the Hartree-Fock shift. Without the shift, even
for the equilibrium distance r = 1.4 a0 (usually considered
weakly correlated), there are poles deep inside the unit circle,
implying a highly divergent series at ξ = 1. In contrast, the
Hartree-Fock shift pushes the poles away from the origin,
which leads to a convergent series as seen in Figs. 4 and 6.

The CDet approach gives access to dynamic quantities,
such as the Green’s function G and the self-energy 	, through
the scattering amplitude M. The left column of Fig. 9 shows
the CDet measurement of M̂(iωn) in Matsubara frequency
space up to kmax = 6 for H2, STO-6g at r = 1.4 a0 and T =
50−1 Eh. As we increase the expansion order, CDet results
gradually converge to the ED solution (black lines), and at
order 6 we observe only a small systematic error due to order
truncation. The CDet self-energy 	 is calculated from M
following Eq. (45). Both quantities exhibit similar behavior,
as shown in the right column of Fig. 9. At order 3 and
higher, the real part of 	̂(iωn) takes nonzero value at the
high-frequency limit, corresponding to the correction to the
frequency-independent Hartree-Fock self-energy 	HF. The
CDet Green’s function, derived from M following Eq. (44),
is shown in Fig. 10. Good agreement with ED is observed at
kmax = 6 on the top panel, where both the Monte Carlo error
estimation and the systematic error due to order truncation is
much smaller than the symbol size. The bottom panel shows
convergence of CDet Green’s function to ED by increasing
kmax, with a small but visible systematic deviation at low
frequency when kmax = 6.

The generality of our CDet implementation allows a
straightforward extension to much larger basis sets. Going

033211-9



LI, WALLERBERGER, AND GULL PHYSICAL REVIEW RESEARCH 2, 033211 (2020)

FIG. 5. Analytic structure of electron total energy evaluated with ED as a function of the complex coupling constant ξ . H2, STO-6g. Colors
represent complex phases and brightness indicates the magnitude (see color bars). The black dot at ξ = 1 represents the “physical” result. The
dashed black circle indicates minimum convergence radius necessary for the perturbation series to converge at ξ = 1. (a) Effect of changing r
at fixed temperature T = 50−1 Eh. At r = 1.4 a0 and r = 2.0 a0, no singularity is visible in the unit circle and the series is convergent at ξ = 1.
At r = 2.8 a0 and 3.6 a0, poles appear in the unit circle, resulting in a divergent series at ξ = 1. (b) Effect of changing T at fixed r = 1.4 a0.
The real-axis locations of the vertical “walls” of poles does not change significantly as temperature decreases, while the imaginary-axis spacing
of the poles decreases proportionally with T .

beyond the minimal basis, we compute the CDet total energy
of H2 using cc-pVDZ and cc-pVTZ basis sets with 10 and 28
orbitals in total, respectively, and compare to the ED solution
as shown in Fig. 11. For r < 2.0 a0, CDet gives decent conver-
gence to ED at kmax = 4, with both stochastic and systematic
errors below 1 mEh. The 2s and 2p orbitals added by cc-pVDZ
basis and 3s, 3p, and 3d orbitals by cc-pVTZ basis are mostly
unoccupied, and the most electron excitations occur near the

FIG. 6. Contribution E (k)
tot of each order k to total energy. H2,

STO-6g, T = 50−1 Eh. Convergence is observed at bond lengths
r � 2.0 a0 but not at r � 2.8 a0.

lowest 1s orbitals. Consequently, the convergence behavior
and computational cost of CDet do not change significantly
from the minimal basis STO-6g.

Finally, we extend our method to bigger molecules by
adding more hydrogen atoms to the system. We consider a
chain of ten hydrogen atoms on a straight line with equal
spacing r, the same benchmark system used in Ref. [59]. At
minimal basis STO-6g, all ten 1s orbitals contribute equally
to the active space of ten electrons. Compared to H2 with cc-
pVDZ, which has the same number of orbitals, H10 with STO-
6g has more orbitals relevant to electron correlations, and the
cost of CDet is higher (for a detailed analysis see Sec. III B).
The left column of Fig. 12 plots the CDet total energy up to
kmax = 4 in comparison to ED solution at T = 50−1 Eh. Con-
vergence within 5 mEh is achieved at kmax = 4 for r < 2.4 a0,
and systematic deviations are evident for r > 2.4 a0. Similar
behavior can be found in the the zero-temperature coupled
cluster (CCSD) result (dotted lines), as both methods rely on
the perturbative expansions of electron-electron interactions
in different forms. The computational cost becomes much
higher as we go to a bigger basis for H10. With cc-pVDZ, there
are 50 atomic orbitals in total, with potential excitations to the
empty orbitals from all ten electrons. As shown in the right
column Fig. 12, CDet still agrees with the reference method
(MRCI+Q data from Ref. [59] at T = 0) for small values of r,
but the Monte Carlo errors are significantly larger. Although
our generic implementation has achieved decent extensibility
without fine-tuning for each specific system, more efficient
Monte Carlo estimators and sampling schemes as well as
analytical resummation techniques should advance the limit
of CDet to more complex systems.
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FIG. 7. Temperature dependence of CDet total energy Etot for
H2, STO-6g, kmax = 6. Top panel: Comparison of ED at T = 0 and
CDet at different T . Middle panel: Total energy with Hartree-Fock
contribution removed. Bottom panel: Difference between ED and
CDet.

B. Analysis of computational cost

The computational cost of a Markov chain Monte Carlo
simulation, measured as the computational time needed for
reaching a result for observable X within a desired accuracy
�X , is determined by three factors. First, the cost of each
individual update, which is O(k32k ) for a configuration at
expansion order k according to Algorithm 1. Second, the
number of configuration updates needed to reach an indepen-
dent sample by transversing a Markov chain of potentially
correlated configurations, described by the integrated autocor-
relation time τint. Finally, the variance Var(X ) of the estimator

FIG. 8. Analytic structure of electron total energy as a function
of a complex coupling constant ξ with and without Hartree-Fock
shift. Left (right) panel presents values of E [ξ ] − E [0] evaluated on
the complex plane for H2, STO-6g, T = 50−1 Eh and r = 1.4 a0 with
(without) Hartree-Fock shift.

of the quantity of interest (Table I), such that

�X =
√

Var(X )

N
(2τint + 1). (64)

To assess the computational cost of our CDet implementation
for reaching a certain uncertainty level, as well as how the
effort changes with respect to temperature, choice of basis
set, and system size, we perform a series of simulations of
convergent series for the hydrogen chain Hn with the same
Monte Carlo updates and measurements for a fixed number
of Markov chain iterations. In Fig. 13, we show estimates
of autocorrelation effects, actual computational costs, and
stochastic uncertainties in total energy, as functions of tem-
perature T , the number of orbitals Norb, or the number of

FIG. 9. CDet dynamic quantities for H2, STO-6g, T = 50−1 Eh,
r = 1.4 a0. Shadings indicate Monte Carlo error estimates. Left
column: Measured CDet ReM(iωn) (top panel) and ImM(iωn) (bot-
tom panel) compared to ED. Right column: CDet self-energy in
comparison to ED (excluding Hartree-Fock contribution 	HF), top
(bottom) panel showing real (imaginary) part of 	(iωn). Here we
show the diagonal matrix element at orbital 1 for both M and 	.
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FIG. 10. CDet Green’s function in comparison to ED. H2, STO-
6g, T = 50−1 Eh, r = 1.4 a0 Top panel: Values of Ĝ(iωn) at orbital
1. CDet results at kmax = 6 are plotted as symbols and ED values
as lines. Error bars are indicated but much smaller than symbol
size. Bottom panel: Deviations of CDet results from ED at different
kmax. Solid (dashed) lines represent real (imaginary) part of Ĝ11(iωn).
Shadings indicate stochastic uncertainties of CDet.

hydrogen atoms n in log-log plots. We rescale the y values
by an arbitrary factor to emphasize the respective scaling of
these quantities in the same plot.

Figure 13(a) shows the temperature dependence of CDet
simulations of a fixed system (H2, STO-6g, r = 1.4 a0) at
kmax = 6. We observe that the simulation time does not change
significantly as we decrease temperature, indicating similar
distributions of the expansion order (usually tilted to the
highest order). The error estimate in total energy follows
almost the same tendency as the factor of the autocorrelation
effect

√
2τint + 1, indicating the underlying energy estimator

does not have strong temperature dependence. The autocorre-
lation effect shows a slow power-law increase as temperature
is lowered, implying that our Monte Carlo updates remain
efficient at low temperature.

A similar analysis is shown in Fig. 13(b) for the basis-
set dependence of the same system (H2, r = 1.4 a0) at fixed
temperature. We perform CDet simulations with kmax = 4 for
basis sets STO-6g, cc-pVDZ, and cc-pVTZ, with 2, 10, and
28 atomic orbitals, respectively. As we add more “virtual”
orbitals to the system, the computational time increases slowly
and the autocorrelation time even decreases as the additional
orbitals improve the connectivity of Monte Carlo configura-
tions. However, the stochastic error shows a different trend
from the autocorrelation effect and increases (a fit with a
power law results in ∼N1.22

orb ), meaning that the additional

FIG. 11. Total energy Etot with Monte Carlo errors for H2 with
cc-pVDZ (left column) and cc-pVTZ(right column) basis sets, T =
50−1 Eh. Top panels: Comparison of ED and CDet at different kmax.
Middle panel: Total energy with Hartree-Fock contribution removed.
Bottom panels: Difference between ED and CDet.

orbitals introduce more diagrammatic configurations with al-
ternating signs that lead to stronger Monte Carlo fluctuations.

As we increase the systems size in Fig. 13(c) by adding
more hydrogen atoms, the stochastic error (normalized by the
system size n) at fixed computational time increases with a
much larger power law than Fig. 13(b) (fitted ∼n3.48), while
the autocorrelation time barely changes. This implies that
adding electrons that contribute to excitations near the Fermi
level rapidly increases the complexity of the diagrammatics.
The result is very different from the situation where additional
basis states for the same number of electrons are added
[Fig. 13(b)].

The behavior illustrated in Fig. 13(c) also differs from
diagrammatic Monte Carlo applications with short-range or
on-site interactions, which are formulated directly in the
thermodynamic limit [47–49] and usually do not show strong
scaling dependencies on system size. We suspect the differ-
ence is caused by the long-range nature of the bare Coulomb
interaction, which introduces significant nonlocal electronic
correlations as the system size increases. In this case, the use
of bold (or screened) interactions instead of the bare Coulomb
interactions, as performed in Ref. [59], may alleviate the
problem. However, bold methods must deal with intrinsic
issues of misconvergence to unphysical solutions [73]. More-
over, adapting such a method to the CDet framework requires
further algorithmic development. This topic is under active
development [55,65].

Thus, through the empirical analysis above, we have shown
that for convergent series, the computational cost of our CDet
implementation is not very sensitive to changes in temperature
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FIG. 12. Total energy Etot with Monte Carlo errors for H10 with
STO-6g (left column) and cc-pVDZ (right column) basis. ED results
are used as reference for STO-6g and MRCI+Q (T = 0) from Ref.
[59] for cc-pVDZ. Top panels: Comparison of reference data and
CDet at different kmax at finite temperature T = 50−1 Eh, along with
ED and CCSD results at T = 0 for STO-6g basis. Middle panel: Total
energy with Hartree-Fock contribution removed. Bottom panels:
Difference between CDet and reference data at finite temperature
(for STO-6g), in comparison to difference between CCSD and ED
at zero temperature.

or basis sets, but depends strongly on the size of the system or,
more specifically, on the number of valence electrons directly
participating in electron excitations.

C. Realistic impurity: SEET for NiO

Finally, we test our CDet implementation in a general
quantum impurity problem setup that includes the coupling to
a noninteracting bath. We employ the SEET framework [23]
for the antiferromagnetic compound NiO, which was studied
by Mott [74] as one of the original correlated insulators.
Following the computational setup in Ref. [58], we choose fcc
NiO with lattice constant a = 4.1705Å at temperature T ∼
451 K (β = 700 E−1

h ). The unit cell is doubled along the [111]
direction to capture the antiferromagnetic ordering, which
contains two nickel atoms and two oxygen atoms. We use
a 4 × 4 × 4 momentum discretization and the GTH-DZVP-
MOLOPT-SR basis set [75] with GTH-PBE pseudopotential
[76]. The Coulomb integral is decomposed using density
fitting with the DEF2-SVP-RI auxiliary basis [77]. For bench-
mark purposes, we select the eg orbitals of both Ni atoms in
the unit cell as the strongly correlated “impurities,” which is
the minimal choice of impurities to capture correlation effects.
This yields two independent impurities each with two orbitals.
Noninteracting impurity propagators are generated from a
converged GW simulation of the complete unit cell following
the SEET framework (for details of the computational setup,
see Ref. [58]).

As a benchmark, we compare our CDet impurity solver
to the ED [78] results used in Ref. [58]. ED requires the
discretization of the continuous bath spectrum and its approxi-
mation by a few states. To separate ED bath fitting errors from
the performance of the CDet method, we run our method for
the noninteracting impurity Green’s function g corresponding
to the discretized noninteracting problem solved by ED. A

FIG. 13. Empirical cost analysis of CDet simulations of hydrogen chain Hn at r = 1.4 a0. In each panel, all simulations are carried out
using the same setup of Monte Carlo updates and number of iterations. We estimate the contribution of integrated autocorrelation time τint to
the stochastic error (blue), the computational cost (orange), and the total stochastic uncertainty of energy �Etot (green) for each simulation,
and scale them to the same range on double-logarithmic plots. (a) Temperature dependence, H2, STO-6g, kmax = 6. (b) Basis set dependence,
H2, T = 50−1 Eh, kmax = 4. (c) System size dependence, Hn, cc-pVDZ, T = 50−1 Eh, kmax = 4.
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FIG. 14. Matsubara Green’s function for a NiO eg impurity.
Top (bottom) row shows the real (imaginary) part of the Green’s
functions, and left (right) column shows values for spin up (down).
Red solid lines: Impurity Green’s function from CDet with kmax = 8.
Monte Carlo error estimations are plotted as color shadings but
smaller than line width. Blue dashed lines: Impurity Green’s function
from ED, mostly overlapping with the CDet lines within line width.
Green dash-dotted lines: Noninteracting impurity propagator with
discretized hybridization from ED. Purple dotted lines: Impurity
Green’s function with Hartree-Fock counterterm as the starting point
of CDet.

precise listing of all parameters and input Green’s functions is
given in the Supplemental Material [79]. Figure 14 shows the
impurity Green’s functions for one of the two eg impurities.
At kmax = 8, the impurity Green’s function from CDet agrees
with the ED solution within line width, and the stochastic
uncertainty is almost invisible. The spin polarization due to
the antiferromagnetic ordering is greatly enhanced in both
the ED and the CDet solutions, indicating that dynamical
correlations plays an important role and are well captured by
the selected impurity.

In Fig. 15, we take a closer look at the convergence of
CDet series in comparison to ED by plotting the differences
of CDet impurity Green’s functions to ED at different order
truncations up to kmax = 8. We observe that for both spins, the
CDet result consistently converges to the ED result, giving
agreement to within a percent for kmax = 8. The convergence
of the spin-down component is slower than spin up, which is
consistent to what can be observed in Fig. 14, i.e., the Hartree-
Fock contribution already accounts for a greater part of the
overall interaction contribution for the spin-up component
than for spin down.

The comparison to ED illustrates that our CDet solver can
be reliably applied to general impurity problems as part of
a quantum embedding theory using the exact same frame-
work as developed for molecules. We emphasize that, at the
same complexity, systems with continuous bath states can
be solved. Our method is therefore a controlled method for
quantum impurities with general multiorbital interactions and

FIG. 15. Difference of CDet impurity Green’s functions to ED
at different truncation order kmax. Top (bottom) row shows the real
(imaginary) part, and left (right) column shows values for spin up
(down). Shadings indicate stochastic uncertainties of CDet.

hybridizations, not limited by the systematic error introduced
by the bath discretization procedure. The application of the
solver to more complex impurities, where ED calculations are
impractical, is a topic of subsequent publications.

IV. CONCLUSION

In conclusion, we have presented a diagrammatic Monte
Carlo method for quantum impurity models with general in-
teractions and hybridizations using the connected determinant
formalism [52]. We have tested the method at the example
of molecular systems, which presents a systematic way of
changing correlation strength, system size, basis size, and
temperature. We have also tested our method for impurity
problems occurring in realistic quantum impurity calcula-
tions.

Our method is formulated in the language of Green’s
functions and self-energies. As a grand-canonical finite-
temperature method, it is able to describe systems with
particle-number fluctuations and excited states. However, sim-
ilar to other perturbative methods, the diagrammatic series
breaks down in the strong correlation regime. This breakdown
is clearly evident in the order-by-order convergence of the
series and, as we have shown in detail, can be traced back
to the pole structure of the diagram series.

Our method fills a crucial need of impurity solvers able to
treat general four-fermion interaction and general off-diagonal
hybridizations in large multiorbital problems. It should there-
fore find applications in moderately correlated real-material
simulations such as those occurring in DMFT [5,6] and SEET
[20–23].

Further methodological progress, such as the use of higher
order counterterms [55], better integration methods [80], com-
plex conformal mapping techniques [81–83], and other types
of Monte Carlo updates will expand the accessible parameter
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regime of the method and may make simulations in the
strongly correlated regime possible.
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APPENDIX A: HAMILTONIAN

We describe the molecular electrons using the second
quantized Hamiltonian

Ĥ = Ĥ0 + ĤV , (A1a)

Ĥ0 =
∑

pq

∑
σ

hpqĉ†
pσ ĉ†

qσ , (A1b)

ĤV = 1

2

∑
pqrs

∑
σσ ′

Vpqrsĉ
†
pσ ĉ†

rσ ′csσ ′cqσ , (A1c)

where ĉ(†)
pσ is the electron annihilation (creation) operator

associated with orbital φp and spin σ . The one- and two-body
‘matrix elements’ are defined as

hpq =
∫

drφ∗
p(r)

(
− ∇2

2me
−

Nn∑
I

ZI

|r − RI |

)
φq(r), (A2)

Vpqrs =
∫

drdr′φ∗
p(r)φq(r)

1

|r − r′|φ
∗
r (r′)φs(r′), (A3)

where {RI} are the coordinates of the Nn nuclei, each with
charge ZI , and me is the electron mass. Equations (A1) define
a quantum many-body problem which can be studied with a
wide range of approximate or exact theoretical and numerical
methods.

To combine spin and orbital indices in Eqs. (A1), we
introduce the compound notation {a, b, . . .} such that

hab = h(pσ )(qσ ′ ) ≡ hpqδσσ ′ , (A4)

Vabcd = V(pσ )(qσ ′ )(rλ)(sλ′ ) ≡ Vpqrsδσσ ′δλλ′ . (A5)

The fermionic antisymmetry can be explicitly encoded in the
antisymmetrized interaction Uabcd = Vabcd − Vadcb, such that
Eq. (A1) becomes

Ĥ0 + ĤV =
∑

ab

habĉ†
aĉb + 1

4

∑
abcd

Uabcd ĉ†
aĉ†

c ĉd ĉb. (A6)

APPENDIX B: SCATTERING AMPLITUDE

The intuition in defining the M object is similar to the
relation between the self-energy 	 and the Luttinger-Ward
functional �[G],

	(x′, x) = δ�[G]

δG(x, x′)
, (B1)

which gives the 1PI amputated diagrams with the bold
propagator G [85]. Here we have employed the compound
spacetime indices x = (a, τ ). To get the connected amputated
diagrams with the bare propagator instead, we define a similar
relation:

M(x′, x) = β
δ(� − �0)

δg(x, x′)
= −δ log Z/Z0

δg(x, x′)
. (B2)

We show that by carrying out this functional derivative, we
will recover the definition of M as in Eq. (20).

Switching to the action formalism using coherent state
path-integrals of Grassmann variables [61], we rewrite the
partition function as

Z =
∫

D[c̄, c]e−S[c̄,c], (B3)

where the action is given as

S = S0 + SV ,

S0 = −
∫

dydy′c̄(y′)g−1(y′, y)c(y),

SV = 1

4

∫
dτ
∑
abcd

Uabcd c̄a(τ )c̄c(τ )cd (τ )cb(τ ). (B4)

Observe that

δ log Z

δg(x, x′)
= 1

Z

δ

δg(x, x′)

∫
D[c̄, c]

× exp

[∫
dydy′c̄(y′)g−1(y′, y)c(y) − SV

]

=
∫

dydy′ δg−1(y′, y)

δg(x, x′)
1

Z

∫
D[c̄, c]c̄(y′)c(y)e−S

=
∫

dydy′ δg−1(y′, y)

δg(x, x′)
G(y, y′). (B5)

Using the fact that for an invertible matrix A,

(A + δA)−1 − A−1 = −A−1δAA−1, (B6)

δ[A−1]i j

δAkl
= −[A−1]ik[A−1]l j, (B7)

we have

δ log Z

δg(x, x′)
= −

∫
dydy′g−1(x′, y)G(y, y′)g−1(y′, x). (B8)

Similarly, in the noninteracting case,

δ log Z0

δg(x, x′)
= −

∫
dydy′g−1(x′, y)g(y, y′)g−1(y′, x)

= −g−1(x′, x). (B9)

Putting it all together, we have

M(x′, x) = −δ log(Z/Z0)

δg(x, x′)

=
∫

dydy′g−1(x′, y)[G(y, y′) − g(y, y′)]g−1(y′, x).

(B10)
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Therefore,

G(y, y′) = g(y, y′) +
∫

dxdx′g(y, x′)M(x′, x)g(x, y′), (B11)

which is exactly the same as Eq. (20).
Expanding compound indices x, y, . . ., Eq. (B2) can be

rewritten as

Mab(τ1, τ2) = β
δ(� − �0)

δgba(τ2, τ1)
. (B12)

In practice, we usually work with the time-translational in-
variant functions M(τ ) and g(τ ) instead of their two-variable
form. To that effect, we consider for 0 < τ � β,

β
δ(� − �0)

δgba(−τ )
=
∑
a′b′

∫ β

0
dτ1dτ2

βδ(� − �0)

δgb′a′ (τ2, τ1)

δgb′a′ (τ2, τ1)

δgba(−τ )

=
∑
a′b′

∫ β

0
dτ1dτ2Ma′b′ (τ1 − τ2)

δgb′a′ (τ2, τ1)

δgba(−τ )
,

(B13)

in which

δgb′a′ (τ2, τ1)

δgba(−τ )
= δgb′a′ (τ2 − τ1)

δgba(−τ )

= δb′bδa′a[δ(τ2 − τ1 + τ )�(τ1 − τ2)

− δ(τ2 − τ1 + τ − β )�(τ2 − τ1)]. (B14)

Therefore,

β
δ(� − �0)

δgba(−τ )
=
∑
a′b′

∫ β

0
dτ1dτ2Ma′b′ (τ1 − τ2)

× δb′bδa′a[δ(τ2 − τ1 + τ )�(τ1 − τ2)

− δ(τ2 − τ1 + τ − β )�(τ2 − τ1)]

=
∫ β

0
dτ1dτ2[Mab(τ )δ(τ2 − τ1 + τ )�(τ1 − τ2)

− Mab(τ − β )δ(τ2 − τ1+τ − β )�(τ2 − τ1)]

= Mab(τ )
∫ β

0
dτ1dτ2[δ(τ2 − τ1+τ )�(τ1 − τ2)

+ δ(τ2 − τ1 + τ − β )�(τ2 − τ1)]

= Mab(τ )
∫ β

0
dτ1

∫ τ1+β

τ1

dτ2δ(τ2 − τ1 + τ − β )

= βMab(τ ), (B15)

which gives Eq. (21).

APPENDIX C: THERMAL EXPECTATION VALUE OF THE
ELECTRON ENERGY

The one-body energy is straightforward:

E0 = 〈Ĥ0〉 =
∑

ab

hab〈ĉ†
aĉb〉 =

∑
ab

habρab. (C1)

Expression for the two-body energy term can be derived in
multiple ways such as using the equation of motion or the
Schwinger-Dyson equation. Here we provide a simple deriva-
tion following Ref. [86]. We introduce a coupling constant ξ

to the action defined in Eq. (B4) such that Sξ = S0 + ξSV and
ξ → 1 recovers the physical results. Now we have

dZξ

dξ

∣∣∣∣
ξ=1

= −
∫

D[c̄, c]SV e−S0−ξSV

∣∣∣∣
ξ=1

= −Z

〈∫ β

0
dτ

Uabcd

4
c̄a(τ )c̄c(τ )cd (τ )cb(τ )

〉
= −Zβ〈ĤV 〉. (C2)

Introducing a change of variables such that c → c/ξ 1/4 and
c̄ → c̄/ξ 1/4, then

D[c̄, c] = lim
N→∞

N∏
α=1

dc̄αdcα

→ lim
N→∞

ξ+N /2
N∏

α=1

dc̄αdcα

= lim
N→∞

ξ+ Tr[I]/2
N∏

α=1

dc̄αdcα

= ξ+ Tr[I]/2D[c̄, c], (C3)

where the indices α denote states at each discretized time
point on the integration path, Tr[I] = ∫

dxδ(x, x) in which x
is the compound spacetime index, and the plus sign on the
exponent is due to the nature of Grassmann integrals. The
partition function is unaffected by the change of variables,
which now takes the form

Zξ = ξTr[I]/2
∫

D[c̄, c]e−ξ−1/2S0−SV . (C4)

Therefore,

dZξ

dξ

∣∣∣∣
ξ=1

= Tr[I]

2
Z +

∫
D[c̄, c]

ξ−3/2

2
S0e−ξ−1/2S0−SV

∣∣∣∣
ξ=1

= Tr[I]

2
Z − 1

2

∫
D[c̄, c]g−1(x′, x)c̄(x′)c(x)e−S

= Tr[I]

2
Z − Z

2
g−1(x′, x)G(x, x′)

= Z

2
Tr[I − g−1G]. (C5)

Comparing Eqs. (C2) and (C5), we have

〈ĤV 〉 = 1

2β
Tr[g−1G − I] = 1

2β
Tr[(g−1 − G−1)G]

= 1

2β
Tr[	G]. (C6)

APPENDIX D: RECURSION RELATIONS FOR THE
GRAND POTENTIAL

The expansion of the grand potential, Eq. (16), consists
of connected vacuum diagrams as shown in Fig. 1. As a
result of Wick’s theorem Eq. (10), all vacuum diagrams D(V )
for a fixed vertex configuration V can be partitioned into
a connected subdiagram and the remainder of the vacuum
components. Since no external legs exist to serve as reference
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points for defining connectivity, we start by picking a specific
vertex v ∈ V as the reference and consider connectivity with
respect to v, i.e.,

D(V ) =
∑
S ⊆ V
S � v

Dc(S )D(V\S ). (D1)

As the choice of v is arbitrary, it can be any of the k = |V|
vertices in V , therefore

D(V ) = 1

|V|
∑
v∈V

∑
S ⊆ V
S � v

Dc(S )D(V\S ). (D2)

This is equivalent to iterating all possible subsets S of V ,
where the reference v can be any vertex in S:

D(V ) = 1

|V|
∑
S⊆V

∑
v∈S

Dc(S )D(V\S )

=
∑
S⊆V

|S|
|V|Dc(S )D(V\S ). (D3)

We now extract the term where S = V from the right-hand
side and obtain the recursive formula for Dc(V ):

Dc(V ) = D(V ) −
∑
S�V

|S|
|V|Dc(S )D(V\S ). (D4)

The initial condition is the zeroth order contribution
Dc(∅) = 0.

A more general framework of deriving the recursion rela-
tions using idempotent polynomials is described in Ref. [53].
This framework does not resort to topological arguments.

APPENDIX E: NUMERICAL COMPUTATION OF THE
ADJUGATE MATRIX

We calculate the adjugate adj(A) of a matrix A ∈ Rn×n nu-
merically by first performing a rank-revealing factorization on
the matrix [87], such as the pivoted QR via the Householder

algorithm

A = QDRP (E1)

where Q is an orthogonal matrix of Householder reflections,
D is a diagonal matrix, R is an upper triangular matrix in
which all diagonal elements equal 1, and P is a permutation
matrix of the columns. The rank of the matrix r = rank(A) is
determined by the number of nonzero diagonal elements of D.

If A is not singular, i.e., r = n, then the adjugate is
given by

adj(A) = det(A)A−1

= det(P) det(D) det(Q)PT R−1D−1QT

=
[

(−1)nPnQ

n∏
i=1

di

]
PT R−1D−1QT , (E2)

where nP is the number of transpositions in the permutation P,
nQ is the number of Householder reflections in Q, and di are
diagonal elements of D. The scaling as a function of n for the
complexity of calculating the adjugate is the same as the one
for calculating A−1, and we obtain det(A) at the same time.

If A is singular, i.e., r < n, det(A) becomes zero, and
Eq. (E2) is replaced by

adj(A) =
[

(−1)nPnQ

n∏
i=1

di

]
PT R−1 adj(D)QT . (E3)

If r = n − 1, there is one zero in the diagonal of D. Assuming
dn = 0 and di �= 0 for i = 1, . . . , n − 1, the adjugate of D
follows directly from the definition Eq. (23):

adj(D) = diag

([
0, . . . , 0,

n−1∏
i=1

di

])
. (E4)

If r < n − 1, adj(D) = 0, therefore adj(A) = 0.
In the presence of off-diagonal propagators, it is possible

that the amputated diagram A(V ) is nonzero while the vacuum
diagrams D(V,∅) vanish. Therefore, it is crucial to implement
the adjugate of singular matrices as discussed above.
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