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Modification of quantum many-body relaxation by perturbations exhibiting
a banded matrix structure
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We investigate how the observable relaxation behavior of an isolated quantum many-body system is modified
in response to weak-to-moderate perturbations within a nonperturbative typicality framework. A key role is
played by the so-called perturbation profile, which characterizes the dependence of the perturbation matrix
elements in the eigenbasis of the unperturbed Hamiltonian on the difference of the corresponding energy
eigenvalues. In particular, a banded matrix structure is quantitatively captured by a perturbation profile,
which approaches zero for large energy differences. The temporal modification of the relaxation is linked to
the perturbation profile via a nonlinear integral equation, which admits approximate analytical solutions for
sufficiently weak and strong perturbations, and for which we work out a numerical solution scheme in the general
case. As an example, we consider a spin lattice model with a pronounced banded matrix structure, and we find
very good agreement of the numerics with our analytical predictions without any free fit parameter.
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I. INTRODUCTION

Despite their microscopic chaoticity [1,2], the macroscop-
ically observable behavior of isolated quantum many-body
systems is often surprisingly regular. For instance, it is by now
well established that these systems generically equilibrate
and usually even thermalize [2–4] and that the approach to
equilibrium quite often follows a rather simple and direct
route. Understanding how this dynamics emerges from a
microscopic description, however, is still a theoretical chal-
lenge that has recently attracted considerable attention. A
particularly interesting question in this context is how the
observable relaxation behavior of a given system is modified
under the influence of reasonably weak perturbations, link-
ing, for example, analytically tractable simple systems (e.g.,
noninteracting, integrable) to generic ones (e.g., interacting,
nonintegrable).

Characterizing the response of a given system to a per-
turbation is a recurrent problem in many areas of physics.
Arguably the standard approach is to expand the pertinent
equations of motion in terms of the perturbation strength
and to solve the resulting hierarchy of simplified equations
iteratively. Unfortunately, such a strategy is doomed to failure
in the case of quantum systems with many degrees of free-
dom. Because of their extremely dense energy spectra, the
concomitant small denominators of a perturbative expansion
limit its applicability to extremely short timescales much
shorter than the observed relaxation times. While there is
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strong evidence that related concepts like Fermi’s golden rule
and linear response theory can describe many-body dynamics
in certain scenarios [5–7], this somewhat surprisingly holds
despite the many-body character and not because of it.

Here we tackle the question of how a many-body sys-
tems responds to perturbations by “nonperturbative” methods,
namely a typicality approach that aims to extract and separate
the macroscopically relevant perturbation characteristics from
the huge number of microscopic degrees of freedom. Our
starting point is an isolated many-body quantum system de-
scribed by a time-independent reference Hamiltonian H , and
prepared in some initial state far from equilibrium. Provided
that we know the observable relaxation dynamics of this
unperturbed reference system, we ask how the behavior is
changed when adding a weak-to-moderate perturbation λV .
In other words, the system still starts from the same initial
state but now evolves in time according to the perturbed
Hamiltonian

Hλ := H + λV . (1)

One situation that could be modeled by such an approach is
an unperturbed system composed of two isolated subsystems
at equilibrium, which are then coupled sufficiently weakly via
the perturbation V and relax to a new, joint equilibrium state.
Another interesting scenario arises when the reference system
H is integrable, in which case one can often calculate the un-
perturbed behavior analytically. In particular, integrable sys-
tems usually still equilibrate (just like the nonintegrable ones),
meaning that expectation values of experimentally relevant
observables approach a constant value and stay there for
most of all later times. However, these integrable systems
(unlike the nonintegrable ones) may not thermalize; i.e., equi-
librium expectation values are not described by the pertinent
thermodynamic equilibrium ensemble and call for extensions
like generalized Gibbs ensembles instead [8–11]. Adding a
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small integrability-breaking perturbation commonly leads to
“prethermalization” [4,6,12–15], meaning that the system still
follows the unperturbed (nonthermalizing) behavior for quite
some time before eventually departing toward the associated
thermal state. As a third example, more generally, one may
think of the unperturbed system as some system for which
the relaxation dynamics happens to be known, and ask for the
behavior when changing some parameter of the Hamiltonian
(e.g., a “quantum quench” [3,11,16]).

Basing our analysis on previous results from Ref. [17],
we recap those findings in Secs. II and III. More precisely,
we introduce the considered classes of systems and formulate
the key assumptions of our theory in Sec. II, and establish the
announced theoretical prediction of the many-body response
in Sec. III. A crucial role is played by the resolvent (z − Hλ)−1

averaged over an ensemble of perturbed Hamiltonians Hλ,
whose computation we expound in Sec. IV. These results
are then used in Sec. V to make the prediction from Sec. III
explicit and to compare it to numerical examples for random-
matrix and spin models. Finally, we summarize and discuss
our results in Sec. VI.

II. SCOPE AND PREREQUISITES

Before presenting our main result, we introduce the setting
and collect several key assumptions about the physical situa-
tions we aim to describe (see also Supplemental Material of
Ref. [17] for further technical details).

The isolated many-body quantum system of reference
is described by a time-independent Hamiltonian H =∑

ν Eν |ν〉〈ν| and is prepared in some (pure or mixed, and gen-
erally far from equilibrium) initial state with density operator
ρ(0). According to textbook quantum mechanics, the state at
any later time is then given by ρ(t ) = e−iHtρ(0)eiHt (h̄ = 1).
Of primary interest to us are the time-dependent expectation
values 〈A〉ρ(t ) := Tr[ρ(t )A] of self-adjoint operators A which
model some experimentally or theoretically relevant observ-
able, such as (sums of) local and/or few-body operators [2–4].
Similarly, the time-evolved state of the perturbed system with
Hamiltonian Hλ from (1) is given by ρλ(t ) = e−iHλtρ(0)eiHλt .

Overall, the main objective of our present work is to
establish quantitative predictions for the perturbed dynamics
〈A〉ρλ(t ) based on the unperturbed behavior 〈A〉ρ(t ) and some
essential characteristics of the perturbation V .

Regarding the systems under study, the following four key
assumptions will be taken for granted hereafter:

(i) The system should exhibit a well-defined macroscopic
energy, implying that the initial state ρ(0) [and hence also ρ(t )
at any later t] only significantly populates levels Eν ∈ I within
a macroscopically small energy window I := [E, E + �]. In
particular, it is assumed that the density of states (DOS)

D(E ) :=
∑

ν:Eν∈I

δ(E − Eν ) (2)

is approximately constant throughout I , D(E ) ≈ ε−1 with the
mean level spacing ε. At the same time, the system’s many-
body character entails that the window I is still microscop-
ically large in the sense that the number of levels contained
in I is exponentially large in the system’s degrees of freedom
[18]. We emphasize that the initial state does not necessarily

define the window I . On the contrary, the window I can be
to some extent an arbitrary interval with the two prerequisites
that it exhibits an approximately constant DOS and contains
all Eν with non-negligible level populations 〈ν|ρ(0)|ν〉.

(ii) The perturbation should be sufficiently weak so as to
leave the thermodynamic properties of the system basically
unchanged. Notably, phase transitions induced by the pertur-
bation are thus ruled out. Recalling from textbook statistical
mechanics that the DOS in (2) is related to the Boltzmann
entropy S(E ) via D(E ) = eS(E )/kB S′(E ) with Boltzmann’s
constant kB, this assumption particularly implies that also the
DOS of the perturbed Hλ remains approximately constant with
mean level spacing ε [cf., assumption (i)]. Because of the
generic level repulsion of interacting many-body systems [1],
the spectrum of Hλ is typically indeed rather stiff, meaning
that the individual eigenvalues exhibit very fast fluctuations
upon variation of λ, while their density only changes very
slowly [19].

We remark that such negligible changes of the thermo-
dynamic properties do not rule out interesting and nontrivial
changes of the relaxation dynamics, notably if the unperturbed
Hamiltonian is in some sense special (e.g., integrable, com-
muting with A or ρ(0), etc.); see also the examples below
Eq. (1) and in Sec. V.

(iii) The perturbation should be sufficiently strong so that
it significantly mixes a large number of unperturbed levels.
Denoting by |m〉λ the eigenvectors of Hλ in (1), this is to say
that the overlaps

Umν := λ〈m|ν〉 (3)

between the unperturbed and perturbed eigenvectors should
extend across a scale � with � � ε; i.e., Umν should be
non-negligible (in a coarse-grained sense, see below) as long
as |Em − Eν | � � [see also Eq. (7)]. On the other hand, note
that assumptions (i) and (ii) practically require � � � [20],
where � is the width of the energy window I from (2). The
extreme density of levels of typical many-body systems [see
below Eq. (2)] still leaves room for a large range of parameters
λ such that ε � � � �. In particular, we can and will take for
granted that the number of levels Nv := �/ε that get mixed
by the perturbation is still exponentially large in the system’s
degrees of freedom f [17], i.e.,

Nv := �/ε = 10O( f ) . (4)

Without going into the details, we remark that perturbations
which do not satisfy the requirement ε � � turn out (as
one might have expected) to actually be so weak that they
do not notably modify the unperturbed relaxation on any
reasonable timescale. Incidentally, the same behavior will also
be correctly reproduced by our final results. In this sense, the
requirement ε � � is not really indispensable.

So far, these considerations have been very general and did
not exploit any more specific properties of the actual system at
hand. To make any progress, it is clear that some information
about the perturbation V and possibly also the observable
A and initial state ρ(0) must be taken into account. The
common lore of statistical physics furthermore suggests that,
despite its microscopic complexity, the observable behavior
of a many-body system can usually be described in terms
of a relatively small number of macroscopic (coarse-grained)

033210-2



MODIFICATION OF QUANTUM MANY-BODY RELAXATION … PHYSICAL REVIEW RESEARCH 2, 033210 (2020)

quantities, for instance some appropriately defined (local)
densities. This brings us to our main assumption about the
structure of admissible perturbations:

(iv) On a coarse-grained level, the magnitude of the per-
turbation matrix elements Vμν := 〈μ|V |ν〉 within the energy
window I should only depend on the energy difference |Eμ −
Eν | of the coupled levels [21], i.e.,

[|Vμν |2]loc 	 σ 2(|Eμ − Eν |), (5)

where [ · · · ]loc denotes a local average over matrix elements
corresponding to levels that are close to Eμ and Eν in energy
(see also Sec. V C for an explicit example). Put differently, the
left-hand side in (5) is understood (and formally defined) anal-
ogously as when going over, e.g., from classical point particles
to (local) particle densities, namely as the effective density
of the perturbation’s squared matrix elements (in modulus,
and “local” with respect to the spectrum of H0). Accordingly,
σ 2(E ) in (5) is denoted as the perturbation profile, and is, by
construction, a smooth [22] and slowly varying function of E
(compared to the mean level spacing ε).

Semiclassical arguments [23,24] as well as numerical
evidence [25–29] suggest that a rather common feature of
realistic perturbations is a so-called banded structure of the
perturbation matrix Vμν (see also Fig. 3 in Sec. V C below for a
particular example). By definition, this means that the (coarse-
grained) Vμν indeed depend only on Eμ − Eν and that the
perturbation profile σ 2(E ) in (5) approaches zero for E → ∞.
However, it should be emphasized that σ 2(E ) is also admitted
to remain finite for E → ∞; i.e., the matrix Vμν may but
need not exhibit a banded structure [30]. Yet another common
feature of many realistic perturbations is a so-called sparse
matrix structure (large fraction of vanishing matrix elements
Vμν), prominently arising, e.g., if the reference Hamiltonian
H is noninteracting and V describes few-body interactions
[24,28,31,32]. Again, our present approach is still compatible
with a possibly (but not necessarily) sparse structure of Vμν

[the local average in (5) then must extend over many nonvan-
ishing matrix elements].

Our next goal is to establish the key role of the perturbation
profile (5) for the deviations of the perturbed expectation
values 〈A〉ρλ(t ) from the unperturbed 〈A〉ρ(t ). The main idea is
to consider not one particular V , but rather an entire ensemble
of perturbations, all of which share the property (5) with the
“true” perturbation of interest, but are otherwise unbiased
and rather arbitrary. More precisely, apart from the trivial
constraint V ∗

μν = Vνμ, we choose the matrix elements Vμν

to be independent random variables following a probability
distribution

pμν (v) := [δ(Vμν − v)]V = f|Eμ−Eν |(v) , (6)

where [ · · · ]V denotes the average over the ensemble of pertur-
bations, and { fE (v)}E>0 is a family of probability densities on
R or C with mean zero and variance σ 2(E ). Likewise, f0(v)
is a probability density on R of vanishing mean and finite
variance [22]. Note that the ensemble thus satisfies (5) in an
ergodic sense, i.e., when replacing local averages [ · · · ]loc by
ensemble averages [ · · · ]V .

To arrive at a prediction for the perturbed dynamics 〈A〉ρλ(t ),
we first evaluate the average behavior [〈A〉ρλ(t )]V over all mem-
bers of the considered ensemble of perturbations. Second, we

consider the deviations ξV (t ) := 〈A〉ρλ(t ) − [〈A〉ρλ(t )]V for one
particular realization from the average. It turns out [17] that
the variance [ξV (t )2]V is inversely proportional to the number
Nv of unperturbed levels mixed by the perturbation from as-
sumption (iii). Exploiting (4), we can therefore conclude that,
for the overwhelming majority of individual perturbations
in the considered ensemble, the actual behavior 〈A〉ρλ(t ) is
practically indistinguishable from the average [〈A〉ρλ(t )]V , so
that the latter in fact correctly describes the dynamics under
nearly all perturbations of the ensemble for sufficiently large
system sizes. Results of this kind are also commonly known as
typicality, concentration of measure, or ergodicity properties
[2–4].

Taking for granted that the perturbation profile (5) is indeed
the essential quantity for deviations between the perturbed and
unperturbed systems, we may expect that also the behavior
of the true system of interest should follow the ensemble
average. Unfortunately, it is hard to prove this for any given,
concrete physical system. Nevertheless, a phenomenological
justification by means of examples is possible for a variety
of different models [17,33]; see also Sec. V below. For the
rest, we observe that the probability distribution (6) is still
rather arbitrary since we only fix the first two moments of
the densities fE (v). In principle and if available, additional
information about the distribution of the true Vμν could thus
be incorporated when choosing the fE (v), but similarly as in
the central limit theorem, these statistical properties turn out
to be practically irrelevant, reinforcing the pivotal role of the
second moment (5).

To conclude this section, we remark that the true per-
turbation will usually exhibit correlations (i.e., functional
interdependencies) between the matrix elements Vμν , which
may arise, for example, due to the locality and few-body
character of interactions [34,35]. Since such correlations are
not accounted for in the considered perturbation ensembles,
it is implicitly assumed that their effect on the dynamics
is negligible. In practice, this particularly means that the
reference Hamiltonian H should be sufficiently “clean” such
that the individual terms constituting the perturbation V are in
some sense “orthogonal” to those of H . Notably, this rules out
the possibility to reverse the roles by defining a new reference
Hamiltonian H ′ := Hλ and considering a perturbation λV ′ :=
H − H ′ = −λV to predict 〈A〉ρ(t ) from 〈A〉ρλ(t ).

III. TYPICAL PERTURBED RELAXATION

Given the prominent role of the Hamiltonian as the gener-
ator of time evolution, it will be no surprise that the transfor-
mation matrices Umν between the eigenbases of H and Hλ [see
Eq. (3)] are of particular importance to relate the unperturbed
and perturbed dynamics. Especially relevant turns out to be
the so-called overlap distribution u(E ), which describes the
squared magnitude of the Umν averaged over the considered
ensemble of perturbations,

[|Umν |2]V =: u(Em − Eν ). (7)

Because of the (approximate) constancy of the level density
[assumptions (i) and (ii)] and the fact that the statistics of the
Vμν in (6) only depend on Eμ − Eν , it follows that the statistics
of the Umν from (3) must be translationally invariant in energy,
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and hence the second moment in (7) must only depend on the
energy difference Em − Eν .

Referring to Ref. [17] for the details, the typicality ap-
proach outlined below Eq. (6) then eventually yields that, for
the overwhelming majority of perturbations in any admissible
ensemble (6), the perturbed time evolution is given by

〈A〉ρλ(t ) = 〈A〉ρ̃ + |g(t )|2{〈A〉ρ(t ) − 〈A〉ρ̃}. (8)

We recall that 〈A〉ρ(t ) is the reference dynamics observed
under the unperturbed Hamiltonian H . Furthermore, the den-
sity operator ρ̃ appearing on the right-hand side of (8) is
defined via its matrix elements 〈μ|ρ̃|ν〉 := δμν

∑
κ ũ(Eν −

Eκ )〈κ|ρ(0)|κ〉, where ũ(E ) := ∫
dE ′ D(E ′)u(E − E ′)u(E ′).

In other words, ρ̃ may thus be viewed as the unperturbed
diagonal ensemble associated with the initial state ρ(0) which
is in addition locally washed out via the function ũ(E ),
arising as the convolution of u(E ) with itself. According to
Refs. [3,36–38], this operator ρ̃ can usually be well approxi-
mated by the microcanonical ensemble ρmc corresponding to
the pertinent energy window I from (2). Finally, the so-called
response profile g(t ) on the right-hand side of (8) is the Fourier
transform of u(E ) from (7),

g(t ) :=
∫

dE D(E ) u(E ) eiEt . (9)

In particular, it can be readily verified that |g(0)|2 = 1 and
|g(t )|2 → 0 as t → ∞. According to (8), this function g(t )
thus describes how the unperturbed behavior is modified to
approach the perturbed equilibrium value 〈A〉ρ̃ ; i.e., it encodes
the system’s response to the perturbation.

The remaining task is to compute the function u(E ) from
(7). To this end, we introduce the resolvent G(z) := (z −
Hλ)−1 of Hλ, which encodes the overlaps on the left-hand
side of (7) as |Umν |2 	 limη→0+〈ν|[G(Em − iη) − G(Em +
iη)]|ν〉/2π iD(Em) [1,39]. Since the ensemble average of G(z)
can be written as [G(z)]V = G(z − H ) with the scalar function
G(z) defined in a minute, we can exploit D(Em) ≈ ε−1 [cf.,
assumptions (i) and (ii)] to arrive at

u(E ) = ε

π
lim

η→0+
Im G(E − iη) . (10)

Finally, the above introduced ensemble-averaged resolvent
G(z) itself can be obtained as the solution of the following
nonlinear integral equation [17,24],

G(z)

[
z − λ2

∫
dE D(E ) G(z − E ) σ 2(|E |)

]
= 1 . (11)

In summary, the strategy to obtain a prediction for the
perturbed relaxation thus is to follow the sequence of Eqs. (8)–
(11) in reverse order: First, for a given perturbation profile
σ 2(E ) and perturbation strength λ, we solve Eq. (11) for
G(z). Second, this gives us access to the overlap distribution
u(E ) via Eq. (10). Third, evaluating its Fourier transform
(9) we obtain the response profile g(t ), which then allows
us, fourth, to predict 〈A〉ρλ(t ) from the unperturbed 〈A〉ρ(t )

according to Eq. (8). Clearly, the first step, namely to solve
the nonlinear integral equation (11), is the most demanding
task. This problem is at the focus of the next section.

IV. EVALUATION OF THE ENSEMBLE-AVERAGED
RESOLVENT

In this section, we will discuss solutions G(z) of Eq. (11)
and the resulting overlap distributions u(E ) from (10). We first
consider in Sec. IV A two limiting cases for which analytical
approximations will be obtained. Thereafter, we elaborate on
how to solve Eq. (11) in the intermediate regime numer-
ically using pseudospectral Chebyshev expansions [40,41].
The evaluation of the predicted dynamics and its comparison
with explicit examples is deferred to the ensuing Sec. V.

A. Analytically tractable special cases

According to assumption (iv) from Sec. II, the perturbation
profile σ 2(E ) from (5) is a well-behaving (continuous) func-
tion, so that the quantity

σ̄ := lim
E→0+

√
σ 2(E ) (12)

exists [22]. Essentially, σ̄ thus characterizes the “intrinsic
strength” of the perturbations V .

As explained in Sec. II, the perturbation matrix Vμν in
the eigenbasis of the unperturbed Hamiltonian H is often
expected to exhibit a banded structure, meaning that its
perturbation profile σ 2(E ) approaches zero as E → ∞. The
corresponding so-called band width or perturbation range may
thus be quantified by

�v := 1

σ̄ 2

∫ ∞

0
dE σ 2(E ) . (13)

However, in full generality we will also admit cases where
σ 2(E ) does not approach zero for large E . In such a case, but
also when σ 2(E ) only decays very slowly with E , the band
width �v will be infinite.

Our first approximation starts from the observation that
if the perturbation is sufficiently weak [sufficiently small λ

in (1)] then also the mixing of eigenvectors between the
unperturbed and perturbed Hamiltonians should be weak in
the sense that the concomitant eigenvector overlaps (7) are
only non-negligible for small energy differences Em − Eν of
the corresponding eigenvalues. In view of (10), we therefore
inspect the case that the function G(z − E ) in the integrand
in (11) exhibits (as a function of E , and for any preset z of
later relevance) a very narrow peak compared to variations
of the perturbation profile σ 2(E ). Accordingly, the integral is
dominated by the region around the maximum of G(z − E ) at
E ≈ |z|, and we can approximate σ 2(|E |) by its central value
σ 2(|z|). Together with D(E ) ≈ ε−1 [cf., assumption (i)] we
thus obtain

G(z) = 1

z − λ2σ 2(|z|)C(z)/ε
(14)

with

C(z) :=
∫

dE G(z − E ) . (15)

Exploiting once again that G(z) exhibits a very narrow peak
compared to the variations of σ 2(|z|) implies with (12) that
σ 2(|z|) ≈ σ̄ 2 for all the relevant values of |z| for which G(z)
significantly deviates from zero. Furthermore, focusing in
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view of (10) on arguments z of the form z = x − iη with
x ∈ R, the quantity C(z) in (15) assumes the same constant
value C(−iη) for all z. In other words, G(z) in (14) can be
written as 1/(z − c) for some constant c ∈ C. Consequently,
when evaluated in the principal value sense, C(z) in (15) only
depends on the sign of the imaginary part of the denominator
in (14), yielding C(z) = ∓iπ for sgn(Im z) = ±1 as the only
consistent solution. Altogether, we thus arrive at the approxi-
mation

G(z) = 1

z + i sgn(Im z) �/2
, (16)

� := 2πλ2σ̄ 2

ε
, (17)

and with (10) we conclude that u(E ) approximately assumes
the Breit-Wigner form

u(E ) = ε

2π

�

E2 + �2/4
. (18)

Hence � quantifies the peak width of u(E ), and likewise
for G(z). Our initial assumption that G(z) is sharply peaked
thus means that σ 2(E ) must exhibit only small changes upon
variations of E on the order of �. Viewing the perturbation
strength λ as variable and all other system properties as
fixed, we may thus consider (16)–(18) as a weak perturbation
approximation. Importantly, this approximation is expected
to apply for practically any reasonable perturbation profile
σ 2(E ) provided the perturbation strengths λ are sufficiently
small. In many cases, one furthermore expects that the band
width (13) at the same time quantifies the scale on which
σ 2(E ) exhibits notable variations, yielding

� � �v (19)

as the pertinent condition for the validity of the above approx-
imations. On the other hand, in cases where the variations of
σ 2(E ) remain relatively small for arbitrary E , those approx-
imations will actually apply to arbitrary coupling strengths λ

(apart from the general restrictions in Sec. II).
Our second approximation is similar in spirit but com-

plementary to the first one. Namely, we follow the same
reasoning as before with the roles of G(z) and σ 2(E ) reversed;
i.e., we now consider the case that the perturbation profile
σ 2(E ) is sharply peaked compared to the variations of G(z)
for arguments of the form z = E − iη. In the integrand in
(11), we thus approximate G(z − E ) ≈ G(z) and (as before)
D(E ) ≈ ε−1, leading to

γ 2G(z)2/4 − zG(z) + 1 = 0 , (20)

γ :=
√

8�v/ε λσ̄ =
√

4�v�/π . (21)

Solving this algebraic equation for G(z) and observing that
sgn(Im G(z)) = − sgn(Im z) due to G(z) = [(z − λV )−1]V

[see above (10)], we obtain

G(z) = 2

γ 2
[z − i sgn(Im z)

√
γ 2 − z2]. (22)

Substituting into (10), we are left with the semicircular distri-
bution

u(E ) = 2ε

πγ 2

√
γ 2 − E2 �(γ 2 − E2) , (23)

where �(x) denotes the Heaviside step function. The con-
dition that σ 2(E ) is sharply peaked thus means that G(z =
E − iη) must exhibit only small changes upon variations
of E on the order of γ . Viewing the perturbation strength
λ as variable and all other system properties as fixed, we
may thus consider (21)–(23) as a strong perturbation ap-
proximation. More precisely, this approximation is expected
to apply for practically any reasonable perturbation profile
σ 2(E ) provided the perturbation strengths λ are sufficiently
large and provided that σ 2(E ) does approach zero for large
E in the first place. In particular, this is the case if the band
width �v from (13) is finite. Furthermore, if �v at the same
time quantifies the scale on which σ 2(E ) exhibits notable
variations, then the pertinent condition for the validity of the
above approximations assumes the form

γ � �v . (24)

Essentially, the overlap distribution u(E ) from (7) is thus
predicted to approximately assume the Breit-Wigner form
(18) under the weak perturbation condition (19), and the
semicircular form (23) under the strong perturbation condition
(24), largely independently of any further details of the per-
turbation profile σ 2(E ) from (5). In the intermediate regime,
characterized by � 	 γ , or equivalently

λ 	 λc :=
√

2ε�v

πσ̄
, (25)

one thus expects a smooth crossover between these limiting
cases (see also Fig. 1 below), which will depend on the
detailed shape of the perturbation profile σ 2(E ), and which
in general will only be tractable by numerical means.

B. Numerical treatment of the general case

Our goal is to determine the overlap distribution u(E ) ac-
cording to (10) by numerically solving the nonlinear integral
equation (11) for largely general perturbation profiles σ 2(E ).
As in the previous subsection, we thus can and will focus in
(11) on arguments z of the form z = x − iη with x ∈ R and
η > 0 very small. As noted below (21), the relation G(x −
iη) = [(x − iη − λV )−1]V implies Im G(x − iη) � 0 for η >

0 and vice versa; i.e., the sign of the imaginary part of G(z)
jumps when crossing the real line. For purely real z, in turn,
this implies that the solution of (11) becomes ambiguous,
depending on whether one chooses to continue from the upper
or lower half-plane. Bearing in mind that the latter option is
appropriate in (10), we introduce the abbreviation

G+(x) := lim
η→0+

G(x − iη) . (26)

Exploiting (as usual) that D(E ) ≈ ε−1 [cf., assumption (i)],
the integral equation (11) can thus be rewritten for real-valued
x as

G+(x)

[
x − λ2

ε

∫
dE G+(x − E ) σ 2(|E |)

]
= 1 (27)
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FIG. 1. Overlap distribution u(E ) from (7) for three different perturbation profiles σ 2(E ) as depicted in the insets of the left-most panel of
each row, namely a step profile (33) in panel (a), an exponential profile (34) in panel (b), and a double-Breit-Wigner profile (35) with b1 = 0.45,
b2 = 0.9, d = 3.5 in panel (c). In all three cases, we employed the same parameter values ε = 1/512, σ̄ 2 = 0.2, and �v = 750ε = 1.46. In
each row, the perturbation strength λ is increased from left to right as specified in the top right corner of each panel. Solid blue lines correspond
to the numerical solution of (10) via (26)–(31), while dashed lines show the limiting Breit-Wigner (red [dark]) and semicircular (green [light])
distributions according to Eqs. (18) and (23), expected for weak and strong perturbations, respectively. As predicted below (25), the crossover
between these two limits occurs around λ 	 λc ≈ 0.05. Note that the vertical axes are scaled as indicated in the top left corner of each panel.

with the additional constraint that

Im G+(x) � 0 . (28)

Our method of choice to solve Eq. (27) numerically is
an expansion in terms of Chebyshev rational functions Bn(x)
(n = 0, 1, . . .), which are derived from the Chebyshev poly-
nomials of the first kind Tn(x) by compacting the real line,

Bn(x) := Tn

(
x√

x2 + �2

)
. (29)

Here, � is an arbitrary, fixed parameter that sets the scale for
compactification and should roughly reflect the typical scale
of the function to be expanded for optimal convergence [41].
Hence, we express

G+(x) = GR(x) + iGI(x) , (30)

where the real-valued functions GR(x) and GI(x) are truncated
Chebyshev series, i.e.,

GR(x) :=
M∑

n=0

GR
n Bn(x) and GI(x) :=

M∑
n=0

GI
nBn(x) . (31)

The (real-valued) coefficients GR
n and GI

n are then to be
determined such that G+(x) from (30) satisfies (27) and (28)
as well as possible. For given expansion coefficients G :=
(GR

0 , GI
0, . . . , GR

M , GI
M ) and x, the residual [i.e., the violation

of Eq. (11)] is defined as

R(G, x) := G+(x)

[
x − λ2

ε

∫
dE G+(x − E )σ 2(|E |)

]
− 1

(32)

with G+(x) from (30) and (31). We minimize |R(G, x)|2
by means of pseudospectral methods [40,41], requiring
Re R(G, xm) = Im R(G, xm) = 0 for a discrete set of real-
valued collocation points xm (m = 0, 1, . . . , M). A common
choice for these xm is to use the roots of the (M + 1)th Cheby-
shev rational function BM+1(x), so that the pseudospectral
method coincides with a spectral expansion when an optimal
Gaussian quadrature rule is used to calculate inner products
numerically [40,41].

Altogether, forcing Re R(G, xm) = Im R(G, xm) = 0 re-
sults in a set of 2(M + 1) algebraic equations for the 2(M + 1)
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unknown expansion coefficients GR
n , GI

n ∈ R. This system of
equations is then solved iteratively by the Newton-Raphson
method using either of the limiting distributions (18) or (23)
for the first initial guess, and gradually varying λ across the in-
termediate regime thereafter. If the initial guess is sufficiently
close to the actual solution and satisfies Im G+(x) � 0, this
ensures that also the finally obtained approximation will fulfill
the constraint (28).

In Fig. 1, we display the so-obtained numerical solutions
u(E ) in (10) for different perturbation profiles σ 2(E ) and
various perturbations strengths λ along with the limiting
Breit-Wigner functions (18) expected for small λ and the
semicircular functions (23) expected for large λ. The selected
perturbation profiles consist of a step function,

σ 2(E ) = σ̄ 2 �(�v − E ) , (33)

an exponential function,

σ 2(E ) = σ̄ 2 e−E/�v , (34)

and a double-Breit-Wigner function,

σ 2(E ) = σ̄ 2 b2
1(b2

2 + d2)

(b2
1 + E2)[(b2

2 + (E − d )2]
. (35)

All three perturbation profiles are also shown in the insets
of the left panels in Fig. 1. Parameters are chosen such that
in all cases ε = 1/512 (mean level spacing), σ̄ 2 = 0.2 [cf.,
Eq. (12)], and �v = 750ε = 1.46 [bandwidth, cf., Eq. (13)],
yielding a value of λc ≈ 0.05 for the crossover coupling
strength in (25). Moreover, the order of the Chebyshev ex-
pansions is M = 80 throughout, with the parameter � varying
between 0.5 and 8 [roughly optimizing the global residual
(32)].

For each of the three profiles (33)–(35), the predicted
crossover from the Breit-Wigner to the semicircular shape of
u(E ) is clearly visible as λ is increased. The intermediate
regime, where neither the Breit-Wigner nor the semicircu-
lar distribution offers a satisfactory approximation, appears
to be somewhat smaller for the discontinuous step profile
than for the smooth exponential and double Breit-Wigner
profiles. In any case, in this intermediate regime there is a
(relatively mild) dependence of u(E ) on the detailed shape
of σ 2(E ). It therefore seems reasonable to expect that—at
least in principle—it may be possible to reconstruct from
a sufficiently precisely known function u(E ) the underlying
perturbation profile σ 2(E ).

V. EVALUATION OF THE RELAXATION DYNAMICS
AND EXAMPLES

With our above obtained results for the overlap distribution
u(E ) at hand, we now turn to their implications for the
response profile g(t ), which governs the deviations of the
perturbed from the unperturbed relaxation behavior according
to (8). Specifically, we will first address in Sec. V A some
more general issues, while in the subsequent Secs. V B and
V C, we will compare our theoretical prediction (8) with
two explicit examples of random-matrix and spin models,
respectively.

A. Response profile

Exploiting in (9) our usual approximation D(E ) ≈ ε−1

[cf., assumption (i)], the response profile g(t ) can be readily
obtained via Fourier transformation from our analytical and
numerical findings for u(E ) in the previous Sec. IV. For the
two analytically tractable special cases from Sec. IV A, the
Fourier transformation can again be performed analytically,
whereas for the numerical solutions from Sec. IV B, also the
Fourier transformation is only possible by numerical means.

In the limit of weak perturbations, when u(E ) assumes the
Breit-Wigner form (18), one readily finds along these lines
that g(t ) amounts to an exponential decay,

g(t ) = e−�|t |/2 , (36)

where the rate � is the full width at half maximum of u(E ) as
defined in (17).

Likewise, for (moderately) strong perturbations such that
u(E ) takes the semicircular shape (23), its Fourier transform
is

g(t ) = 2J1(γ t )

γ t
, (37)

where J1(x) is the Bessel function of the first kind of order 1,
and γ as specified in Eq. (21) is the radius of the semicircle.

In the intermediate regime, our findings for u(E ) imply
that g(t ) must exhibit a crossover between these two limiting
behaviors. Calculating the Fourier transforms of the numerical
solutions for u(E ) from Fig. 1, we obtain the solid curves
shown in Fig. 2 for |g(t )|2, which is the actually relevant
quantity in (8). This illustrates quantitatively the expected
crossover from (36) to (37) with increasing λ.

The first general conclusion is that the perturbed relaxation
becomes faster with increasing λ. Quite obviously, the under-
lying physical reason is a corresponding broadening of u(E )
with increasing λ, which in turn indicates (as expected) that
an increased number of unperturbed energy levels are coupled
by the perturbation according to (7).

The second general conclusion is that the functions g(t )
become independent of any further details of the perturbation
profile σ 2(E ) for asymptotically large or small λ, while some
(rather moderate) functional dependence on σ 2(E ) remains in
the intermediate regime. Again, the underlying reasons are our
analogous observations for the overlap distributions u(E ) in
the preceding section. Though the functional dependence of
g(t ), and thus of the perturbed relaxation in (8), is quantita-
tively rather weak, it still may be possible, at least in principle,
to infer the (coarse-grained) perturbation profile (5) of the
specific perturbation V for some given many-body system (1)
from the observable temporal relaxation via (8).

B. Random matrix example

To verify that the theoretical prediction (8) indeed de-
scribes the behavior of many-body quantum systems [pro-
vided that assumptions (i) through (iv) from Sec. II hold], we
finally compare it to explicit numerical examples.

The first example is a (in some sense artificial) random
matrix model that satisfies the requirements from Sec. II by
construction and thus serves as a test bed for the validity of
the approximations employed in the derivation of Eq. (8) (see
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FIG. 2. Theoretical prediction (solid) vs random-matrix simulation (dashed) of the function |g(t )|2 from (8) and (9) for the same examples
as in Fig. 1, namely a step perturbation profile (33) in panel (a), an exponential profile (34) in panel (b), and a double Breit-Wigner profile (35)
with b1 = 0.45, b2 = 0.9, d = 3.5 in panel (c), and ε = 1/512, σ̄ 2 = 0.2, �v = 750ε = 1.46. The values for λ are λ = 0.02, 0.04, 0.08, 0.16
in each panel (similar to Fig. 1), increasing from top to bottom.

also Ref. [17]). The reference Hamiltonian has equally spaced
energy levels Eν = νε with ε = 1/512. The perturbation V is
a complex Hermitian random matrix distributed according to
(6) with

fE (v) = (1 − p) δ(v) + p e−|v|2/σ̂ 2(E )

πσ̂ 2(E )
(E > 0) . (38)

On average, the matrices Vμν are thus sparse with a fraction
p of nonvanishing entries following a complex normal dis-
tribution of variance σ̂ 2(E ) for μ < ν, and Vνμ = V ∗

μν . For
simplicity, the diagonal matrix elements Vνν are sampled sim-
ilarly, but with a real normal distribution for the nonvanishing
entries. Consequently, the perturbation profile (5) is given by

σ 2(E ) = p σ̂ 2(E ) . (39)

Specifically, we implemented the three perturbation profiles
(33)–(35) with σ̄ 2 = p = 0.2 and �v = 1.46 (corresponding
to about 750 levels).

The initial state ρ(0) = |ν0〉〈ν0| is an eigenstate of the
reference Hamiltonian H from the middle of the spectrum,
and we observe its survival probability or fidelity [42,43], i.e.,
A = ρ(0). Hence 〈A〉ρ(t ) = 1 for all t while 〈A〉ρ̃ = 〈A〉mc ≈ 0
for a sufficiently large energy window I from (2), so that the
prediction (8) reduces to

〈A〉ρλ(t ) = |g(t )|2 . (40)

In other words, recording the dynamics in this setup for one
particular perturbation sampled from (38), we should exactly
recover the solid curves in Fig. 2. The dashed lines in the
figure represent one such example dynamics for a Hilbert
space of dimension 214 = 16 384 and an initial eigenstate |ν0〉
with ν0 = 213 = 8192.

The main conclusion is that the simulation results indeed
agree almost perfectly with the theoretically predicted solid
curves throughout the entire crossover regime.

C. Spin lattice example

Finally, we test the theoretical prediction (8) in a more
realistic two-dimensional spin- 1

2 model. We consider a square
lattice of L × L sites as sketched in Fig. 3(a), where the refer-
ence Hamiltonian couples nearest neighbors with an isotropic

spin-spin interaction,

H = J
L−1∑

i, j=1

σ i, j · (σ i+1, j + σ i, j+1). (41)

Here σ i, j := (σ x
i, j, σ

y
i, j, σ

z
i, j ) with σα

i, j denoting the Pauli matri-
ces acting on site (i, j). The perturbation adds spin-flip terms
between next nearest neighbors,

V =
L−1∑

i, j=1

∑
α=x,y

(
σα

i, jσ
α
i+1, j+1 + σα

i+1, jσ
α
i, j+1

)
. (42)

In all of the numerics presented here, we used L = 4 and
J = 1, and we focused on the sector with vanishing total
magnetization in the z direction.

To obtain the perturbation profile (5) of V , we first fix an
energy window I by choosing the central 60 % of energy lev-
els, which comprise a total of 7722 states ranging from E =
−8.8 to E = 5.8, implying a mean level spacing ε = 0.0019.
Next, we compute the matrix elements Vμν with Eμ, Eν ∈ I by
diagonalizing the reference Hamiltonian H . A coarse-grained
view of the resulting matrix is shown in Fig. 3(b), visualizing
the bandedness of the perturbation matrix. We proceed by
binning the Vμν according to the energy difference Eμ − Eν

of the associated levels and evaluate the average of |Vμν |2
within each bin. The obtained relation between the coarse-
grained |Vμν |2 and Eμ − Eν is displayed as a black curve
in Fig. 3(c), indicating an approximately exponential depen-
dency. The function σ 2(E ) is then determined by fitting the
exponential form (34) to the empirical distribution, yielding
the red line in Fig. 3(c) with σ̄ 2 = 0.00502 and �v = 7.32.
This implies a value of λc = 0.75 for the predicted location
of the crossover (25) between the exponential and Bessel-type
decay characteristics (36) and (37), respectively.

As a first observable, we investigate the magnetization cor-
relation mc in the z direction between next-nearest neighbors
from the center of the lattice,

mc := σ z
2,2σ

z
3,3 . (43)

One could consider these two spins at (2,2) and (3,3) as
the system and all other surrounding spins as a bath. In the
reference Hamiltonian H , the system spins can thus only
interact via the bath, whereas the perturbation V adds a direct
interaction between them.
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FIG. 3. (a) Illustration of the spin model (41) and (42). Solid links correspond to sites coupled via the reference Hamiltonian H , and
dashed links correspond to those coupled by the perturbation V . Highlighted in red are the sites (2,2) and (3,3), on which the two considered
observables [see Eqs. (43) and (46)] are supported. (b) Squared matrix elements |Vμν |2 of the perturbation (42) in the eigenbasis of the reference
Hamiltonian (41) in a central energy window I of 7722 states (60% of the total) in the zero-magnetization sector, averaged over blocks of
100 × 100 levels. (c) Coarse-grained perturbation profile (5) (black, bin width 0.01) and fit to the exponential form (34) with σ̄ 2 = 0.00502
and �v = 7.32 (red). The inset shows the same data with a logarithmically scaled y axis.

For the initial state ρ(0) = |ψ〉〈ψ |, we choose those two
system spins at (2,2) and (3,3) to be in the up state, while
the bath is supposed to be at equilibrium, which we emulate
by choosing a Haar-distributed random vector in the bath’s
subspace. However, to ensure assumption (i) of a well-defined
macroscopic energy, we finally apply a Gaussian projection
�E,�E of mean energy E = 0 and standard deviation �E = 2
to the so-obtained state, simulating a macroscopic measure-
ment of the system energy that yielded E = 0 [44–46]. If |φ〉
denotes a Haar-distributed random vector on the full (zero-
magnetization) Hilbert space, we thus have

|ψ〉 ∝ �E,�Eσ+
2,2σ

+
3,3|φ〉 (44)

with σ+
i, j := σ x

i, j + iσ y
i, j and

�E,�E ∝
∑

ν

e−(Eν−E )2/2�2
E |ν〉〈ν| . (45)

In Fig. 4(a), we compare the observed dynamics obtained
by exact diagonalization (dashed lines) with our theoretical
prediction (8) (solid lines) for several perturbation strengths λ.
For the theoretical prediction, we use the numerical reference
dynamics (i.e., the dash-dotted black curve with λ = 0) for
〈mc〉ρ(t ). The function g(t ) is the Fourier transform of u(E )
calculated as explained in Sec. IV B from the empirically
determined approximate perturbation profile σ 2(E ), i.e., the
red curve in Fig. 3(c). The so-obtained response profiles
g(t ) are also displayed in the inset of Fig. 4(a). Since the
long-time limiting values exhibit some finite-size variations,
we do not use the microcanonical value 〈mc〉mc = −0.0805
(within the 60% window I) for 〈mc〉ρ̃ , but instead compute
the predicted coarse-grained diagonal ensemble ρ̃ directly as
detailed below Eq. (8), making use of our solution for u(E )
and the known occupations 〈ν|ρ(0)|ν〉 of the initial state from
(44). The resulting quantitative values of 〈mc〉ρ̃ for the various
perturbations strengths λ are given in the figure caption.

The agreement between theory and numerics is very good
despite the rather small system size and several idealizations.
In particular, the assumptions of a homogeneous density of

states [assumption (i)], of an exponential perturbation profile
[assumption (iv) and Fig. 3(c)], and of uncorrelated matrix
elements Vμν [see above (6)] are all violated to some extent
and are thus potential origins of the visible small deviations
in Fig. 4 for short times. The fluctuations for longer times,
in contrast, are likely caused predominantly by finite-size
effects. We emphasize that there are no free parameters in
the theoretical prediction; all ingredients in (8) were extracted
directly from properties of the model (41) and (42).

As a second observable, we consider the spin-flip or hop-
ping correlation jc between the same sites (2,2) and (3,3) from
the center of the lattice in Fig. 3(a),

jc := σ x
2,2σ

y
3,3 − σ

y
2,2σ

x
3,3

= 1

2i
(σ−

2,2σ
+
3,3 − σ+

2,2σ
−
3,3),

(46)

where σ±
i, j := σ x

i, j ± iσ y
i, j . For the initial state, we employ a

dynamical typicality setup [47,48] to prepare the system far
from equilibrium, choosing

|ψ〉 ∝ �(1 + κ jc)�|φ〉 , (47)

where |φ〉 is a Haar-distributed random state as before, �

is a projector onto the central 2048 states in the zero-
magnetization sector [ensuring assumption (i)], and κ is a real
parameter (in the examples, we use κ = 2).

A similar comparison as for mc between numerical sim-
ulations and the theoretical prediction (8) is shown for the
hopping correlation jc from (46) in Fig. 4(b). In particular,
the functions g(t ) are the same in both panels of Fig. 4.
On the other hand, in this setup 〈 jc〉ρ̃ is well approximated by
the thermal expectation value 〈 jc〉mc = 0 (by symmetry), so
that we used this value throughout. Altogether, this amounts
again to an entirely parameter-free prediction of the perturbed
dynamics, which agrees well with the actually observed be-
havior.
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FIG. 4. Time-dependent expectation values of (a) the central magnetization correlation mc from (43) and (b) the central spin-flip correlation
jc from (46) for the spin system with Hλ = H + λV from (41) and (42) and various perturbation strengths λ as indicated, increasing from top
to bottom. The initial state ρ(0) = |ψ〉〈ψ | is chosen according to (44) in panel (a) and (47) in panel (b). Dashed lines represent the numerical
values obtained by exact diagonalization. Solid lines correspond to the theoretical prediction from (8) using the (black, dash-dotted) λ = 0
curve as input for the reference dynamics 〈A〉ρ(t ). The response profile g(t ) (see inset of left panel) is calculated according to Secs. III and IV
from the perturbation profile σ 2(E ) from Fig. 3(c). For the long-time average 〈A〉ρ̃ , the explicit prediction for the state ρ̃ [see below Eq. (8)] is
used in panel (a), yielding 〈A〉ρ̃ = −0.0896, −0.0820, −0.0830, −0.0738 for λ = 0.2, 0.4, 0.8, 1.6, respectively. In panel (b), ρ̃ is taken to be
thermal, 〈A〉ρ̃ = 〈A〉mc = 0.

VI. CONCLUSIONS

We investigated the response of quantum many-body sys-
tems to weak-to-moderate perturbations within a nonpertur-
bative typicality framework. In particular, we presented a
method to theoretically predict time-dependent expectation
values of observables for the perturbed system from the un-
perturbed relaxation behavior. This prediction (8) entails that
the perturbed relaxation resembles the unperturbed one but is
modified by a characteristic response profile function g(t ) that
pushes the system toward a coarse-grained diagonal ensemble
state, which can usually be identified with the pertinent ther-
mal state. The function g(t ), in turn, is essentially determined
by the perturbation profile, i.e., the locally averaged squared
absolute value (5) of the perturbation’s matrix elements Vμν in
the unperturbed basis.

For asymptotically weak perturbations, the response profile
g(t ) describes an exponential decay, where the decay rate
corresponds to the energy scale across which the perturbation
mixes unperturbed eigenstates, scaling quadratically with the
perturbation strength λ. Broadly speaking, this may be under-
stood as a nonperturbative justification of Fermi’s golden rule
in a many-body setting.

The nonperturbative character of our method becomes
manifest as the perturbation strength is increased. Our results
then predict a crossover of g(t ) toward the Bessel-type shape
(37), whose inverse relaxation timescale γ still quantifies
the mixing of energy levels, but now scales linearly with
λ and additionally depends on the energy range �v of the
perturbation.

We verified all those theoretical predictions in an explicit
example of a spin system on a 4 × 4 square lattice. Using
exact diagonalization to determine the perturbation profile
of the applied perturbation empirically [cf., Fig. 3(c)], the
function g(t ) derived from it indeed describes the actually ob-

served perturbed dynamics remarkably well as long as the key
assumptions (i) through (iv) collected in Sec. II are satisfied.
Notably, the theory does not involve any free parameters; i.e.,
all quantities were determined first hand from the underlying
spin model. Since the perturbation profile is the only variable
input for the theory, this establishes that said profile encodes
the dynamical response on a fundamental level.

Then again, the correspondence between the perturbation
profile and the dynamical response may in principle be ex-
ploited the other way round, too. The rapidly improving ex-
perimental capabilities to observe time-dependent expectation
values of mesoscopic quantum systems may thus offer a
way to probe the (coarse-grained) matrix elements of applied
perturbations. A similar proposal to extract matrix structures
from dynamics can also be found in the recent work [49] using
periodic driving and working in the regime of weak pertur-
bations governed by the exponential law (36). Our present
approach can be considered complementary in that it avoids
time-dependent manipulations and extends to significantly
stronger perturbations. Given the important role of matrix
elements in the energy eigenbasis for the dynamics in general
and for questions of equilibration and thermalization (e.g., the
eigenstate thermalization hypothesis) in particular, this sets
up new possibilities to explore the underlying mechanisms by
means of time series analysis.
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