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The probability of trajectories of weakly diffusive processes to remain in the tubular neighborhood of a smooth
path is given by the Freidlin-Wentzell-Graham theory of large deviations. The most probable path between two
states (the instanton) and the leading term in the logarithm of the process transition density (the quasipotential)
are obtained from the minimum of the Freidlin-Wentzell action functional. Here we present a Ritz method that
searches for the minimum in a space of paths constructed from a global basis of Chebyshev polynomials.
The action is reduced, thereby, to a multivariate function of the basis coefficients, whose minimum can be
found by nonlinear optimization. For minimization regardless of path duration, this procedure is most effective
when applied to a reparametrization-invariant “on-shell” action, which is obtained by exploiting a Noether
symmetry and is a generalization of the scalar work [Olender and Elber, J. Mol. Struct: THEOCHEM 398, 63
(1997)] for gradient dynamics and the geometric action [Heyman and Vanden-Eijnden (2008)] for nongradient
dynamics. Our approach provides an alternative to chain-of-states methods for minimum energy paths and
saddle points of complex energy landscapes and to Hamilton-Jacobi methods for the stationary quasipotential
of circulatory fields. We demonstrate spectral convergence for three benchmark problems involving the Müller-
Brown potential, the Maier-Stein force field, and the Egger weather model.
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I. INTRODUCTION

The theory of Freidlin and Wentzell [1] gives asymptotic
probability estimates of rare events in dynamical systems per-
turbed by small noise [2–5]. Specifically, Freidlin-Wentzell
theory yields estimates of the stationary distributions and
mean first-passage times. Both these quantities are deter-
mined, in turn, by the asymptotic estimate of the probability
of a stochastic trajectory to not deviate from a smooth path by
more than a given amount in a given interval of time. The key
result of Freidlin and Wentzell is that the limiting form of this
probability, for small noise and small deviations, is given by a
nonnegative functional of the smooth path. This functional is
the Freidlin-Wentzell action and its minimum, for fixed initial
and terminal states, determines both the stationary distribu-
tions and first-passage times. The smooth path minimizing
the action is often called the Freidlin-Wentzell instanton. The
theory is applicable to dynamical systems of both gradient
and nongradient character and can so be used to study a wide
variety of equilibrium and nonequilibrium systems modelled
by Itô diffusions [6–15].

Determining the minimum of the Freidlin-Wentzell action
is a problem in the calculus of variations. The Euler-Lagrange
equations provide the necessary conditions for extrema of
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variational problems and, unsurprisingly, have been the basis
of the large literature devoted to the numerical computation
of Freidlin-Wentzell instantons [6,16–18]. There exists, how-
ever, an alternative “direct” route for the solution of varia-
tional problems in which the functional is reduced, through
finite-dimensional parametrizations of paths, to a multivari-
ate function and then extremised by appropriate multivariate
optimization methods [19,20]. To the best of our knowledge,
the first use of the direct method for the Freidlin-Wentzell
action, discretized by finite differences, appears in the work
of Weinan, Ren, and Vanden-Eijnden [21].

Here we combine the direct method with a Ritz dis-
cretization [19,20,22] to minimize the Freidlin-Wentzell ac-
tion. We analyze paths in a spectral basis of Chebyshev
polynomials and use spectral quadrature to express the action
as a multivariate function of the basis coefficients. Non-
linear optimization is used to obtain coefficients that give
the least action from which the instanton is synthesized in
the spectral basis. For minimization over paths regardless
of their duration, this procedure is especially effective when
applied to a reparametrization-invariant on-shell form of the
action that follows from the time-translational invariance of
the Lagrangian. This generalizes the scalar work functional
of Olender and Elber (for gradient dynamics) and the ge-
ometric action of Heyman and Vanden-Eijnden [23] (for
nongradient dynamics). Our method is efficient enough to
robustly sample the logarithm of the asymptotic estimate of
the stationary distribution, i.e., the quasipotential, avoiding
the alternative, but numerically delicate, route of solving the
Hamilton-Jacobi equation [24–26]. Our method is simple
to use, converges rapidly, and is applicable to both equi-
librium and nonequilibrium problems. Its implementation is
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freely available on GitHub as the open-source Python library
PyRitz.1

The remainder of this paper is organized as follows. In
the next section, we recall key results of Freidlin-Wentzell
theory from dual perspectives of Itô stochastic differential
equations and the corresponding Fokker-Planck equations. In
Sec. III we present the derivation of the on-shell form of
the Freidlin-Wentzell action in a manner reminiscent of the
Routh reduction procedure in classical mechanics and explain
its relation to the scalar work and the geometric action. In
Sec. IV we describe the direct method for the minimization
of functionals, the Chebyshev spectral basis in which we
construct smooth paths, the spectral quadrature rule we use
to evaluate the action, and the multivariate nonlinear opti-
mization methods we employ to find the minimum. In Sec. V
we apply the direct method to three well-known diffusion
processes and demonstrate convergence in each case.

A particular achievement of our approach is its relatively
facile ability to calculate quasipotentials. This can be done
with a sufficiently high density of sample points to construct
effectively continuous maps of the quasipotential, which we
do here for the same set of benchmark problems. We conclude
with a discussion on extending the method to degenerate
diffusion processes, systems with inertia and to the stochastic
dynamics of fields.

II. LARGE-DEVIATION THEORY

We consider the autonomous dynamics of a d-dimensional
coordinate X = (X 1, . . . , X d ) in Rd perturbed by
configuration-dependent noise of intensity

√
ε described

by the Itô diffusion equation

dX μ = aμ(X )dt + √
εσμ

ν (X )dW ν, (1)

governing the stochastic trajectory X (t ), where aμ(X )
is the drift vector,

√
εσμ

ν (X ) is the volatility, W ν (t ) is
a d-dimensional Wiener process, and repeated indices
are summed over. The transition probability density of
the process, P1|1(x, t |x0) = P(X (t ) = x|X (0) = x0), obeys
the Fokker-Planck equation ∂t P(x|x0) = LP(x|x0), where the
Fokker-Planck operator is

L(x) = − ∂

∂xμ
aμ(x) + ε

2

∂2

∂xμ∂xν
bμν (x) (2)

and bμν (x) = σ
μ
λ (x)σ ν

σ (x)δλσ is the diffusion tensor. We as-
sume it to be nondegenerate, positive definite, and invertible.
The inverse, bμν (x), induces a Riemannian structure in Rd

with a norm |x|b = √
bμνxμxν that is distinct from the Eu-

clidean norm |x| =
√

(x1)2 + . . . (xd )2. We use the subscript
b to indicate this second “diffusion” norm. The stationary
density satisfies the time-independent Fokker-Planck equation
LP1(x) = 0 and, when it exists, is reached asymptotically in
time for arbitrary initial distributions, limt→∞ P1|1(x, t |x0) =
P1(x). The stationary distribution is unique for ergodic sys-
tems Pavliotis [27].

1https://github.com/lukastk/PyRitz.

Associated with the Itô process is the Freidlin-Wentzell
“action” functional [1,28,29],

S[x(t )] = 1

2

∫ T

0
|ẋ − a(x)|2bdt, (3)

which gives an asymptotic estimate for the logarithm of the
probability of trajectories X (t ) to remain in the tubular neigh-
borhood of a smooth path x(t ) over the duration 0 � t � T .
We write this as

Ptube[x(t )] � exp

{
−1

ε
S[x(t )]

}
, (4)

which, in terms of limits, means

S[x(t )] = lim
δ→0

lim
ε→0

−ε ln P

[
sup

0�t�T
|X (t ) − x(t )|b < δ

]
.

The limits must be taken in the order above as they do
not commute. Equation (4) is a large-deviation principle for
trajectories of Itô processes, due to Wentzell and Freidlin and
Graham [30].

For reasons described below, it is of interest to obtain the
mode of the tube probability over the set of continuous paths

γT = {x(t ) | x(0) = x1, x(T ) = x2, 0 � t � T )},
which have fixed termini x1 and x2 and are of duration T .

This is equivalent to the variational problem of minimizing the
Freidlin-Wentzell action. The minimum value of the action,

VT (x2|x1) = min
γT

S[x(t )], (5)

is called the quasipotential. The path attaining the minimum,

x∗
T (t ) = arg min

γT

S[x(t )], (6)

is called the instanton. We emphasize that this path describes
the smooth centerline of the tube of maximum probability and
not a nondifferentiable trajectory of the diffusion process. It
is the most probable dynamical path connecting two points in
configuration space.

The instanton and the quasipotential are central objects
in Freidlin-Wentzell-Graham theory and relate to the eikonal
approximation of the Fokker-Planck equation [31]. Assuming
the following form, known as the JWKB approximation [9],
of the transition density,

P1|1(x, t |x0) ∼ exp

[
1

ε

∞∑
n=0

εnφn(x, x0; t )

]
,

with prefactors suppressed, substituting in the Fokker-Planck
equation and matching terms gives a Hamilton-Jacobi equa-
tion for the lowest-order contribution,

∂tφ0 + 1
2 bμν∂μ∂νφ0 + aμ∂μφ0 = 0. (7)

This corresponds to the Hamiltonian system

H (x, p) = 1

2
bμν pμ pν + aμ pμ

ẋμ = + ∂H

∂ pμ

= bμν pν + aμ

ṗμ = − ∂H

∂xμ
= −∂bνλ

∂xμ
pν pλ − ∂aν

∂xμ
pν, (8)
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whose solutions define an equivalent variational problem of
extremizing an action with the Lagrangian

L(x, ẋ) = pμẋμ − H (x, p)

= 1
2 (ẋμ − aμ)bμν (ẋν − aν ).

= 1
2 |ẋ − a(x)|2b. (9)

Thus, the rays of the Hamilton-Jacobi equation that deter-
mine the lowest-order contribution to the eikonal are lo-
cal maxima of the tube probability, or in other words,
φ0(x, x0; T ) = VT (x|x0). The large-deviation principle of Frei-
dlin and Wentzell and the theory of the nonequilibrium poten-
tial of Graham [28,29] thus appear as elegant reformulations
of the JWKB approximation [31].

The correspondence with the JWKB approximation yields
the asymptotic form of the transition density,

P1|1(x, T |x0) � exp

[
−1

ε
VT (x|x0)

]
, (10)

and, in the T → ∞ limit of the above, the asymptotic form of
the stationary distribution,

P1(x) � lim
T →∞

exp

[
−1

ε
VT (x|x0)

]
, (11)

where x and x0 belong to the same basin of attraction of an
attractor A. As is indicated by Eq. (11), it can be shown that
this limit is independent of the initial coordinate,

lim
T →∞

VT (x|x0) = V A
∞ (x), (12)

where V A
∞ is equal, to within a constant, to the sta-

tionary quasipotential V∞(x) in the basin of attraction of
A. For a system with multiple attractors Ai, the global
quasipotential is

V∞(x) = min
i

[
V Ai∞ (x) + CAi

]
, (13)

where CAi is an additive constant. The constants are fixed by
requiring

V Ai∞
[
x(i, j)

s

] + CAi = V
A j
∞

[
x(i, j)

s

] + CA j (14)

for attractors Ai and A j with adjacent basins of attraction,
where x(i, j)

s is the saddle with the lowest value on the sep-
aratrix between the basins [29]. The stationary quasipotential
determines the mean persistence time of a trajectory in a basin
of attraction which generalizes the Arrhenius law to systems
out of equilibrium.

The T → ∞ limit involved in the definition of the station-
ary quasipotential presents considerable numerical difficulties
in the minimization of the Freidlin-Wentzell action. A more
numerically amenable route to determining the stationary
quasipotential is by the minimization of the action over paths
that start at an attractor and end at a point in its basin,
regardless of the duration. We show in the next section that the
solution of this second variational problem does, indeed, yield
the stationary quasipotential and derive an alternative form
of the Freidlin-Wentzell action that is adapted to computing
instantons regardless of their duration.

III. ON-SHELL ACTION

We consider the variational problem of minimizing the
Freidlin-Wentzell action over paths with fixed termini but of
arbitrary duration,

min
T

min
γT

S[x(t )] = min
T

min
γT

∫ T

0
L(x, ẋ)dt, (15)

where both the initial and final points are in the basin of the
attraction A and the Freidlin-Wentzell Lagrangian following
from Eq. (9) is

L(x, ẋ) = 1
2 bμν ẋμẋν − bμνaμẋν + 1

2 bμνaμaν . (16)

This variational problem can be solved by introducing a
parametrization u for both the coordinate and time,

x = x(u), x′ = dx/du; t = t (u), t ′ = dt/du,

that allows the shape of the path,

σ = {x(u) | x(u1) = x1, x(u2) = x2,u1 � u � u2},
to be varied independently of its duration,

T =
∫ u2

u1

t ′du.

Coordinates x and time t are dependent variables in the
reparametrized action,

S[x(u)] =
∫ u2

u1

L

(
x,

x′

t ′

)
t ′du, (17)

in which the time dependence appears only through the deriva-
tive t ′. Therefore, t is a cyclic (or ignorable) coordinate and
Noether’s theorem implies that the corresponding conjugate
momentum is conserved [32]:

−∂ (Lt ′)
∂t ′ = 1

2
bμν

x′μx′ν

(t ′)2
− 1

2
bμνaμaν = E . (18)

This defines submanifolds of the dynamics labeled by the
“energy” E which we shall call shells. The bound 2E +
|a|2b � 0 for the energy follows immediately from the positive-
definiteness of the diffusion tensor.

Solving the first integral for t ′ gives

t ′ = dt

du
= |x′|b√

2E + |a|2b
, (19)

from which the duration of the path is obtained to be

TE =
∫ u2

u1

|x′|b√
2E + |a|2b

du. (20)

This shows that paths γTE (of duration TE ) are equivalent to
shapes σE (of energy E ), where the latter is the restriction of
shapes in σ to the shell of constant energy. Then, minimization
over paths γT regardless of their duration is equivalent to
minimization over shapes σE regardless of their energy, or

min
T

min
γT

S[x(t )] = min
E

min
σE

S[x(u)].

The action for shapes restricted to σE is obtained by eliminat-
ing t ′ between Eqs. (17) and (19). This gives the “on-shell”

033208-3



KIKUCHI, SINGH, CATES, AND ADHIKARI PHYSICAL REVIEW RESEARCH 2, 033208 (2020)

form of the Freidlin-Wentzell action,

SE [x(u)] =
∫ u2

u1

⎡
⎣ E + |a|2b√

2E + |a|2b
|x′|b − bμνaμx′

ν

⎤
⎦du,

which is a functional of the shape x(u), a function of the
energy E , and allows for independent variations of both. It
is straightforward to see that the integrand and, therefore, the
action is minimized when E = 0. Therefore, most probable
paths, regardless of their duration, are obtained by minimizing

S0[x(u)] =
∫ u1

u0

(|a|b|x′|b − bμνaμx′
ν )du (21)

over shapes restricted to the zero-energy shell. The duration
on the zero-energy shell,

T0 =
∫ u2

u1

|x′|b
|a|b du, (22)

shows that paths that leave, cross, or terminate at points of
vanishing drift, aμ(x) = 0, are necessarily of infinite duration.
The corresponding shapes σA

0 can then be taken to start at a
fixed point and end at another point x in the basin of attraction.
The quasipotential is determined by a minimization over such
shapes σA

0 ,

V A
∞ (x) = min

σA
0

S0[x(u)], (23)

and the shape attaining the minimum,

x∗
∞(u) = arg min

σA
0

S0[x(u)], (24)

is the stationary instanton. The time on the instanton path can
be obtained by integrating t ′ = |x′|b/|a|b. The utility of the
on-shell form of the action is that it provides the shape of the
path independently of its duration. The latitude of obtaining
the shape from a parametrization over a finite interval, even
for paths of infinite duration, is extremely useful in numerical
work.

The on-shell action is related to, but distinct from, the
Jacobi action in mechanics [33,34], which, following a Routh
reduction [32], would in this case be

Ŝ[x(u)] =
∫ u2

u1

[√
2E + |a|2b |x′|b − aμx′

μ

]
du.

Though both the on-shell and Jacobi action agree on the
zero-energy shell, only the former supports the interpretation
as least action for nonzero energies. Furthermore, variations
of the on-shell action have to respect the on-shell condition
Eq. (19) (in other words, the solutions of its Euler-Lagrange
equations does not coincide with its extrema). On the other
hand, the Jacobi action can be varied using the standard Euler-
Lagrange approach.

For gradient dynamics, that is aμ = bμν∂U/∂xν , the on-
shell action generalizes the “scalar work” functional of Olen-
der and Elber [35] to nonzero energies and configuration-
dependent diffusion tensors. For nongradient dynamics, where
the drift cannot be so expressed, the on-shell action general-
izes the geometric action of Heyman and Vanden-Eijnden [17]
to nonzero energies. The nonzero energy shell |ẋ|2b = |a|2b + E
admits the most general path consistent with time-translation

invariance, in contrast to the zero-energy shell where the mag-
nitude of the velocity is always equal to that of the drift, |ẋ|2b =
|a|2b. Such general paths determine the quasipotential and the
asymptotic form of the transition density for finite times and
will be examined in detail in future work. Accordingly, we
set E = 0 below. The derivation of the on-shell action only
requires time-translation invariance of the Lagrangian and
not, as in Refs. [17,35], their positive definiteness. Thus, it
can be applied to stochastic actions whose Lagrangians are
not necessarily positive definite, as for example the Onsager-
Machlup action [36,37]. We now describe the Ritz method by
which we minimize actions.

IV. RITZ METHOD

The direct method in the calculus of variations consists
of constructing a sequence of extremization problems for a
function of a finite number of variables that, in the passage to
the limit of an infinite number of variables, yields the solution
to the variational problem. The two main families of direct
methods are finite differences and Ritz methods [19,20,22,38].
In the latter, the solution of the variational problem is sought
in a sequence of functions

ϕ1(t ), ϕ2(t ) , . . . ϕn(t ), . . . ,

each of which satisfies end point conditions. The path is
expressed as a linear combination of these functions

xn(t ) = α1ϕ1(t ) + · · · + αnϕn(t ), (25)

which transforms the action from a functional of the path into
a function of the expansion coefficients,

S(α1, . . . , αn) =
∫ T

0
L(xn, ẋn)dt

=
∫ T

0
L

(
n∑

i=1

αiϕi,

n∑
i=1

αiϕ̇i

)
dt . (26)

Action minimization now becomes a search for a set of
coefficients, α∗

i such that S(α∗
1 , . . . , α

∗
n ) < S(α1, . . . , αn). The

necessary condition for this is the vanishing of the gradient,

∂S

∂αi
= 0 (i = 1, 2, . . . n), (27)

which is the Ritz system of nonlinear equations. Coefficients
satisfying these conditions can be obtained by nonlinear opti-
mization. The nth approximation to the minimum action path,
x∗

T (t ), and the minimum value of the action, S[x∗
T (t )], are

obtained from these values of the coefficients. It is generally
the case that this sequence of approximations converges to the
minimum of the variational problem as n → ∞ [19,20].

The method, then, has three parts: first, the choice of basis
functions ϕi(t ); second, the quadrature rule that integrates the
Lagrangian to obtain the action as a function of the expan-
sion coefficients; and, third, the optimization that yields the
coefficients at the minimum. Since each part is only loosely
dependent on the others, Ritz methods come in many varieties
[39]. Our choices are centered around Chebyshev polynomials
as described below. Approximation by Chebyshev polyno-
mials and their optimality for the purpose are described in
Refs. [40–42].
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A. Basis functions

We consider a path x(u) that is a Lipschitz continuous
function of the parameter u in the interval [−1, 1]. Then,
it is has an absolutely and uniformly convergent Chebyshev
expansion,

x(u) =
∞∑

k=0

akTk (u), ak = 2

π

∫ 1

−1

x(u)Tk (u)√
1 − u2

du,

where Tk (u) are Chebyshev polynomials of the first kind and
the integral must be halved for k = 0. A suitable sequence of
paths can be constructed from the first n terms of this infinite
series. However, it is computationally more convenient, for
reasons that will be clear below, to construct the sequence
from nth degree polynomials that interpolate the path at the
n + 1 Chebyshev points,

u j = − cos( jπ/n), ( j = 0, 1, . . . , n). (28)

The nth degree interpolant can be expressed in standard form
as a sum of Lagrange cardinal polynomials  j (u) or as a linear
combination of Chebyshev polynomials,

xn(u) =
n∑

j=0

α j j (u) =
n∑

k=0

ckTk (u). (29)

The coefficients ck are aliased versions of the coefficients ak .
Since the cardinal polynomials have the property

 j (uk ) =
{

1, j = k,

0, otherwise, ( j, k = 0, . . . , n),

xn(uk ) = αk , that is, the expansion coefficients αk are path
coordinates at the Chebyshev points. Expressing the entire
path in terms its discrete coordinates has the advantage that
end point conditions can be imposed by setting

α0 = x(u0) = x0, αn = x(un) = x1. (30)

Admissible paths of degree n are, then, parametrized by the
n − 1 independent coefficients α1, . . . , αn−1. In contrast, im-
posing end point conditions in series form leads to a numeri-
cally inconvenient linear dependence between the coefficients
ck . The derivative of the path is a polynomial of degree n − 1
that can be expressed in terms of the interpolant as

x′
n(u) =

n∑
j=0

α j
′
j (u) =

n∑
j=0

β j j (u) (31)

with the two sets of expansion coefficients related by the
Chebyshev spectral differentiation matrix

β j = Djkαk, Djk = ′
k (u j ). (32)

We use the barycentric form of the Lagrange polynomials [43]

 j (u) = w j

u − u j

/ n∑
k=0

wk

u − uk
. (33)

with weights [44]

w j =

⎧⎪⎨
⎪⎩

1
2 , j = 0

(−1) j, j = 1, . . . , n − 1
1
2 · (−1)n, j = n.

This form is both numerically stable and, costing no more than
O(n) operations, efficient to evaluate [45].

Chebyshev interpolants converge exponentially for ana-
lytic functions and algebraically for functions with a finite
number of derivatives. More precisely, for an analytic path,
||x − xn|| = O(ρ−n) for some ρ > 1 as n → ∞. For a path
with ν derivatives and νth derivative of bounded variation K ,
||x − xn|| = O(Kn−ν ) as n → ∞. These estimates are in the
supremum norm ||a||, that is, the maximum of the absolute
value of a in the interval [−1, 1]. In contrast, finite-difference
methods can only achieve polynomial, but never exponential,
rates of convergence, even for analytic paths [40,41].

B. Quadrature

To reduce the action to a multivariate function of the
coefficients it is necessary to evaluate the integral

S(α1, . . . , αn) =
∫ 1

−1
L(xn(u), x′

n(u))du (34)

using a quadrature rule. For instance, quadrature at the Cheby-
shev points u j gives

S(α1, . . . , αn) =
n∑

j=0

ω jL(xn(u j ), x′
n(u j ))

=
n∑

j=0

ω jL(α j, β j )

=
n∑

j=0

ω jL(α j, Djkαk ),

where ω j are the quadrature weights. However, standard
quadrature rules at this set of n Chebyshev points, which
integrate a polynomial of degree less than or equal to n
exactly, will generally be inaccurate. The reason is that the
Lagrangian has polynomial degree different from, and usually
greater than, the polynomial degree of the path. For instance,
when bi j is a constant, the term quadratic in the velocities
has twice the polynomial degree of the path. Therefore, if the
Lagrangian is to be integrated accurately, then the order of the
quadrature must be different from, and in general greater than,
the polynomial degree of the path.

Therefore, we define a second set of nq > n Chebyshev
points

v j = − cos( jπ/nq), ( j = 0, 1, . . . nq), (35)

and interpolate the path at these points. This is done efficiently
by matrix multiplication with a (nq + 1) × (n + 1) matrix

xn(v j ) =
nq∑

k=0

Bjkαk, (36)

x′
n(v j ) =

nq∑
k=0

Bjkβk, (37)

whose elements are derived from the barycentric interpolant

Bjk = wk

v j − uk

/ nq∑
l=0

wl

vl − ul
. (38)

The Lagrangian is evaluated at these second set of points after
which Clenshaw-Curtis quadrature [40,41] is used to evalute
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the action,

S(α1, . . . , αn) =
nq∑

j=0

ω jL(xn(v j ), x′
n(v j ))

=
nq∑

j=0

ω jL(Bjkαk, Bjkβk )

=
nq∑

j=0

ω jL(Bjkαk, BjkDklαl )

≡
nq∑

j=0

ω jL(Bjkαk,Cjkαk ). (39)

As with interpolation, Clenshaw-Curtis quadrature converges
exponentially for Lagrangians that are analytic in u and alge-
braically for Lagrangians with a finite number uderivatives.
Precise estimates are given in Ref. [42]. For fixed values of
n and nq, the matrices Bi j and Ci j in the above expression
are constant and can be precomputed and stored. The mul-
tiplications require O(nnq) operations, and so there is a linear
cost, for fixed n, to increase the order of the quadrature. For
Lagrangians of polynomial order nL, the number of quadra-
ture points must be nq > (n + 1)nL. For nonpolynomial La-
grangians, nq has to be chosen to ensure that the nqth Cheby-
shev coefficient is suitably small. Well-defined procedures
exist for the adaptive truncation of Chebyshev series [46] but
here we use a simple rule of thumb and set nq = 10n leaving
the implementation of more efficient truncations to future
work. We note that in the direct finite-difference method,
introduced in Ref. [21], the path is interpolated at uniformly
spaced points by a quadratic polynomial and the Lagrangian
is integrated using the trapezoidal rule. This combination can
exactly evaluate the action for Lagrangians that are at most
quadratic polynomials.

C. Optimization

To minimize the action over the expansion coefficients
α1, . . . , αn−1 we use both gradient-free and gradient-based
algorithms. For gradient-free algorithms we provide Eq. (39)
directly. For algorithms that require the gradient, the chain
rule gives

∇αi S = ∂

∂αi

⎡
⎣ nq∑

j=1

ω jL(Bjkαk,Cjkαk )

⎤
⎦

=
nq∑

j=1

[
∂L

∂xn(v j )
B�

ji + ∂L

∂x′
n(v j )

C�
ji

]
, (40)

where B�
i j = ωiBi j and C�

i j = ωiCi j . These matrices, too, can
be precomputed and stored and only the partial derivatives
of the Lagrangian need to be computed for given values
of the coefficients. For the examples presented below, we
use NEWUOA [47] for gradient-free optimization and the
SLSQP algorithm [48] for gradient-based optimization, both
of which are implemented in the NLOPT numerical optimiza-
tion package [49]. For nonequilibrium systems, instantons
lose smoothness when passing through fixed points. For such
paths, convergence is still achieved but at less than spectral

rates. Spectral convergence can be recovered if paths are eval-
uated piecewise, taking care to isolate the points of derivative
discontinuities. This is feasible because fixed points are the
only locations where Freidlin-Wentzell instantons can lose
smoothness [29].

V. NUMERICAL RESULTS

In this section, we apply the Ritz method to three dif-
fusion processes that are widely used to benchmark rare
event algorithms. The first is overdamped Brownian motion
in a complex energy landscape, the second is overdamped
Brownian motion under the influence of a circulatory force,
and the third is a model of the weather. All three models have
configuration-independent diffusion tensors for which it is not
necessary to distinguish between covariant and contravariant
indices. Python codes for each of these examples are freely
available on GitHub.

A. Brownian dynamics in a complex potential

Our first example considers the overdamped Brownian
motion in a two-dimensional potential with a constant friction.
The usual equations of Brownian dynamics can be recast into
Itô form,

dX1 = −μ∂1Udt +
√

2με dW1

dX2 = −μ∂2Udt +
√

2με dW2,

where μ is the mobility and ε = kBT is the temperature.
The Freidlin-Wentzell action for a smooth path with two-
dimensional coordinate x = (x1, x2) is

S[x] = 1

2

∫ T

0

1

2μ
|ẋ + μ∇U |2dt,

where ∇U = (∂1U, ∂2U ). The minimum of the zero-energy
action,

S0[x] =
∫ 1

−1
|∇U (x)||x′|du + [U (x)]1

−1,

provides the most probable shape and the stationary quasipo-
tential. The second term does not affect the minimization and
can be discarded. The resulting reduced action

S̃[x] =
∫ 1

−1
|∇U ||x′|du (41)

is of the same form as Fermat’s principle for optical rays,
where |∇U (x)| plays the role of the refractive index and
|x′|du = ds is the arc length of the ray. In geometric optics,
Fermat’s principle is equivalent to Huygen’s principle and its
“wavelet equation,”

∂iU = |∇U |dxi

ds
. (42)

This can be easily verified by differentiatiating it with respect
to arc length, to obtain the eikonal equation,

∂i|∇U | = d

ds

[
|∇U |dxi

ds

]
,
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FIG. 1. Ritz method for overdamped motion in the Müller-Brown potential, which has three minima (crosses) and two saddle points (dots).
The initial path is the straight line connecting two minima and the instanton is the solid line, with broken segments showing motion along the
force. The instanton automatically locates and passes through both saddles. A typical path before convergence to the minimum is shown as a
dotted line. (b) The value of the Lagrangian as a function of Euclidean arc length of the instanton. The action vanishes to machine precision
on segments of the path where motion is along the force. (c) The cosine of the angle θ between the tangent and the force is always ±1, i.e., the
instanton is a minimum energy path. The instanton is represented by a polynomial of degree n = 10.

which is identical to the Euler-Lagrange equation of the
zero-energy action. The wavelet equation implies that the
tangent t = dx/ds to the path is parallel to the gradient of
the potential, or equivalently, that rays are normal to con-
tours of the potential. This is the well-known condition for
a minimum energy path and was first derived variationally
from the scalar work functional by Olender and Elber [35]. It
provides a stringent test of the fidelity of the paths obtained by
minimization.

Following Ref. [35], we choose the Müller-Brown poten-
tial in Ref. [50] as an example of a complex energy landscape.
The potential and its stationary points are shown in Fig. 1. The
three minima are marked by crosses and two saddle points
by dots. The instanton is computed by requiring the path to
start at the minimum on the top left and terminate at the
minimum on the bottom right. The initial straight-line shape,
an intermediate shape and the converged instanton are shown
in Fig. 1(a). The minimization automatically locates the two
saddle points and makes the the instanton pass through them.
The action cost along the path is shown in Fig. 1(b), where
the vanishing of the action on segments of the path along
the force is clearly seen. The cosine of the angle between
the tangent and force is shown in Fig. 1(c) and the condition
for a minimum energy path is clearly fulfilled. We emphasize
that the condition is not imposed separately but is satisfied
automatically at the minimum. The Ritz method provides an
alternative to chain-of-states methods for finding minimum
energy paths. It does not need the Hessian of the potential,
which makes it suitable for problems where such evaluations
are expensive. Unlike Ref. [17], our parametrization has no
unit-speed constraint and the minimization, accordingly, is un-
constrained. The method applies without change to dynamics
with configuration-dependent friction.

B. Brownian dynamics in a circulatory field

Our second example consider, in contrast to the first,
Brownian motion in a force field that cannot be derived from
a potential and, as such, necessarily has a nonvanishing curl.
Choosing the force field of Maier and Stein [9] gives

dX1 = (
X1 − X 3

1 − βX1X 2
2

)
dt + √

εdW1

dX2 = −(
1 + X 2

1

)
X2dt + √

εdW2

for the overdamped motion of the two-dimensional coordi-
nate X = (X1, X2), where β is a parameter. The force field
f (x1, x2) = [x1 − x3

1 − βx1x2
2,−(1 + x2

1 )x2] is smooth, and f1

is odd in x1 and even in x2, while for f2 the converse
holds. There are two stable fixed points at xa = (−1, 0) and
xb = (1, 0), and a saddle point at xs = (0, 0). The force field
admits a potential only for β = 1, when it can be written
as f = −∇U , with U (x1, x2) = − 1

2 x2
1 + 1

4 x4
1 + 1

2 (1 + x2
1 )x2

2.
The force field is shown in the first panel of Fig. 2 for β = 10
together with the instanton moving from xa to xb. As before,
solid (dashed) segments represent motion against (along) the
vector field. The instanton moving from xb to xa is obtained
by reflection about the x1 axis showing that that fluctuational
and relaxational paths are not identical in a nongradient field.

The middle panels shows the stationary quasipotential
V Ai∞ (x) with respect to the attractors at (−1, 0) and (1,0),
respectively. The quasipotential is sampled on a 128 × 128
grid by computing instantons between a point on the grid and
the relevant attractor. The contours of the quasipotential and
its heatmap are obtained from these discrete samples. To the
best of our knowledge, all prior estimations of the quasipo-
tential for this problem (and more generally, for circulatory
forces) have required numerical solutions of the Hamilton-
Jacobi equation. Our method of direct sampling provides
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FIG. 2. Ritz method for overdamped motion in a circulatory (i.e., nongradient) force field. The instanton is in red with solid (dashed)
segments showing motion against (along) the force field. The instanton is reflected about the horizontal axis for motion starting on the right,
showing the inequivalence of fluctuational and relaxational paths for nongradient dynamics. (b) The quasipotential, computed using Eq. (13),
with a caustic at the unstable fixed point. (c) The value of the Lagrangian as a function of the Euclidean arc length of the instanton. As in the
potential case, the action vanishes to machine precision on segments where motion is along the force. (d) The cosine of the angle θ between
the tangent and the force is, unlike in the potential case, not always ±1. The instanton is represented by a polynomial of degree n = 8.

an alternative to this route of computing the quasipotential.
The right panel shows the Lagrangian as a function of arc
length along the instanton. As in the previous example, the
Lagrangian vanishes along segments of the path where motion
is along the force. For motion against the force, the tangent to
the path is no longer parallel to the force, as shown by the
variation of the cosine of the angle θ between the tangent and
the force. We note that our method is agnostic to the existence,
or not, of a potential for the drift and treats both these cases
on equal footing.

C. Egger model of weather

Our final example is a reduced model of the weather for
a a three-dimensional coordinate X = (X1, X2, X3) that has a

circulatory drift,

dX1 =
[

kX2

(
X3 − β

k2

)
− γ X1

]
dt + √

εdW1

dX2 =
[

kX1

(
β

k2
− X3

)
− γ X2 + HX3

k

]
dt + √

εdW2

dX3 =
[
−1

2
HkX2 − γ (X3 − U0)

]
dt + √

εdW3, (43)

where k, β, γ , U0, and H are constants. This model is due
to Egger [51]. It is not particularly illuminating to visualize
the three-dimensional vector field describing this dynamics
but we note that it has two stable fixed points, marked by
crosses in Fig. 3, and a saddle fixed point marked by a dot.

FIG. 3. Instantons and quasipotentials of the Egger model. The instantons are shown in red with solid (dashed) lines representing motion
against (along) the vector field. The left and right panels are forward and reverse instantons. Isosurfaces of the quasipotential with respect to
each attractor is shown in the respective panels. Isovalues increase from light red to blue in the range {1, 7, 11, 16, 21, 26, 31, 36}. Parameter
values are k = 2, β = 1.25, γ = 2, U0 = 10.5, and H = 12. The instanton is represented by a polynomial of degree n = 10.
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TABLE I. Convergence of the action Sn for a path of polynomial order n. The abbreviations M-B and M-S refer to Brownian dynamics in
the Müller-Brown potential and the Maier-Stein force field respectively. The first five columns show the difference Sn − Sn+1 while the next
five show the difference Sn − S50. A 10th-order polynomial typically gives at least six digits of accuracy.

Model S1 − S2 S3 − S4 S7 − S8 S15 − S16 S31 − S32 S2 − S50 S4 − S50 S8 − S50 S16 − S50 S32 − S50

M-B 2 3 × 10−4 1 × 10−7 5 × 10−14 1 × 10−13 4 × 10−2 4 × 10−5 8 × 10−8 1 × 10−12 3 × 10−13

M-S 2 × 10−3 3 × 10−7 2 × 10−12 1 × 10−16 5 × 10−16 2 × 10−4 7 × 10−11 2 × 10−13 1 × 10−16 2 × 10−16

Egger 8 × 10−3 1 × 10−3 6 × 10−7 4 × 10−9 8 × 10−13 5 × 10−3 1 × 10−4 1 × 10−6 1 × 10−8 2 × 10−10

The instanton moving between these points is shown as before
in the left and right panels of the figure. Also shown are
isosurfaces of the quasipotential with respect to the stable
fixed points, with isovalues increasing from red to blue. To
the best of our knowledge, this is the first computation of
the quasipotential for this model. We provide this example
primarily to demonstrate the feasibility of sampling quasipo-
tentials in dimensions greater than two with our method.

VI. NUMERICAL CONVERGENCE

We briefly recall the convergence properties of the Ritz
method, comprising that of the basis functions, the quadrature,
and the optimization. The Chebyshev interpolant converges to
the most probable path, assuming that it is Lipschitz continu-
ous, at a rate that increases with the number of derivatives the
path admits and is exponential for a smooth path. Likewise,
the Clenshaw-Curtis quadrature is guaranteed to converge to
the minimum of the action, assuming that the Lagrangian
is Lipschitz continuous. The optimal number of quadrature
points for accuracy to machine precision can be obtained
by following the decay of the Chebyshev coefficients of the
Lagrangian and truncating at that value beyond which the
coefficients vanish to machine precision. The optimization
has lesser theoretical guarantees than the interpolation and
quadrature, as is generally the case with search in high-
dimensional spaces. However, the residual of the Ritz system
provides an empirical measure for how closely the mini-
mum has been located. In all three examples (and in others
not presented here) we have found both gradient-free and
gradient-based optimization to robustly locate the minima,
and gradient-based methods to yield faster convergence. We
note that for equilibrium problems, the gradient-free method
does not require the Hessian of the energy function, which
can be of significant computational advantage. In Table I we
show the spectral convergence of the action with increasing
polynomial order of the path for each of our examples.

VII. DISCUSSION

We have presented an efficient and accurate numerical
method for computing most probable transitions paths and
quasipotentials of rare diffusive events. The method directly
minimizes the Freidlin-Wentzell action and thus provides
a unified approach for transition paths in both equilibrium
and nonequilibrium systems. Our reparametrization-invariant
form of the action, derived using a Noether symmetry, is

well-suited for numerical work and is a generalization of the
geometric action. This frees us from the constraints of the
commonly used arc-length path parametrization and offers the
maximum flexibility in choosing the space of polynomials in
which action is minimized. Thus our method is not limited to
the Chebyshev polynomials in [−1, 1] used here but easily
admits trigonometric polynomials and, more generally, any
global basis. Numerical quadrature reduces the action to
a multivariate function of coefficients of the path polyno-
mial whose minimum is obtained by both gradient-free and
gradient-based optimization. This gives, simultaneously, both
the minimum value of the action and the most probable path.
This efficiency of the method allows us to repeatedly compute
minimum action paths between an attractor and a point in its
basin of attraction and, thereby, map out the quasipotential.
The quasipotential in a nonequilibrium steady state has the
same significance as the Gibbs distribution in equilibrium and
our method provides a robust way of obtaining it without
the need to numerically solve the Hamilton-Jacobi partial
differential equation.

The direct method used here consists of a discretization
of the action followed by a search for the minimum in the
resulting finite-dimensional space, expressed schematically in
Fig. 4. In contrast, the majority of methods impose the van-
ishing variation of the action and then search for the solution
of the Euler-Lagrange equation in a finite-dimensional space.

S[x]

δS[x] = 0 S(α)

δ P

Discrete E-L Ritz system

P ∇

FIG. 4. Inequivalence of the direct and Euler-Lagrange routes to
numerical action minimization. Here, δ → functional variation, P →
finite-dimensional projection, and ∇ → function minimization. On
the left branch, the action is first varied to obtain the Euler-Lagrange
equation and then projected onto a finite-dimensional basis for
numerical solution. On the right branch, the action is first projected
onto a finite-dimensional basis and then minimized to obtain the
Ritz system. The finite-dimensional projection of the Euler-Lagrange
equations is, in general, not identical to the Ritz system.
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The resulting discretized Euler-Lagrange equations is, in gen-
eral, not identical to the Ritz system; in other words, these
two methods of reducing an infinite-dimensional problem to
a finite-dimensional one are not equivalent. In contrast to me-
chanics, where Newton’s equations of motion are considered
primary and the action derived, here it is the tube probability
and hence the Freidlin-Wentzell action that is primary and
the Euler-Lagrange equation for the most probable path that
is derived. It appears more natural to us to discretize the
primary, rather than the derived, object directly. Our approach
is algorithmically simple and the only adjustable parameters
are the polynomial order n and the quadrature order nq. This
simplicity does not compromise accuracy or efficiency, as
confirmed by our examples.

The rapid convergence of the method holds promise for
its application to problems involving the stochastic dynamics
of fields, with both scalar and Lie group-valued order pa-
rameters. We also expect the method to apply to stochastic
dynamics with degenerate diffusion tensors and to stochastic
systems with inertia. These will be addressed in forthcoming
work.
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