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Superfluid flow in disordered superconductors with Dynes pair-breaking scattering:
Depairing current, kinetic inductance, and superheating field

Takayuki Kubo *

High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
and The Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa 240-0193, Japan

(Received 6 April 2020; revised 11 May 2020; accepted 15 July 2020; published 5 August 2020)

We investigate the effects of Dynes pair-breaking scattering rate � on the superfluid flow in a narrow
thin-film superconductor and a semi-infinite superconductor by self-consistently solving the coupled Maxwell
and Usadel equations for the BCS theory in the diffusive limit for all temperature T , all �, and all superfluid
momentums. We obtain the depairing current density jd (�, T ) and the current-dependent nonlinear kinetic
inductance Lk ( js, �, T ) in a narrow thin film and the superheating field Hsh(�, T ) and the current distribution in
a semi-infinite superconductor, taking the nonlinear Meissner effect into account. The analytical expressions
for jd (�, T )|T =0, Lk ( js, �, T )|T =0, and Hsh(�, T )|T =0 are also derived. The theory suggests jd and Hsh can
be ameliorated by reducing �, and Lk can be tuned by a combination of the bias current and �. Tunneling
spectroscopy can test the theory and also give insight into how to engineer � via materials processing.
Implications of the theory would be useful to improve performances of various superconducting quantum
devices.
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I. INTRODUCTION

The physics of the superfluid flow in s-wave supercon-
ductors is closely tied with the operating principles and
performances of various superconducting quantum devices
such as superconducting nanowire single-photon detectors
(SNSPDs) [1,2], resonators for microwave kinetic inductance
detectors (MKIDs) [3,4] and quantum computers [5–7], and
superconducting radio-frequency (SRF) resonant cavities for
particle accelerators [8–11]. The supercurrent density js is
proportional to the superfluid momentum h̄q and the super-
fluid density ns. When |q| is such a small value that ns is not
significantly suppressed, js linearly increases with |q|. How-
ever, as |q| increases, the reduction of ns becomes significant
and js ceases to increase [12–14]. The maximum value of
js is called the depairing current density jd and determines
the stability limit of the superfluid flow, above which finite
electrical resistance necessarily appears. In SNSPDs, a super-
conducting nanowire is biased with a dc current close to jd .
An incident photon absorbed by the strip heats electrons and
reduces the critical current below the bias current, resulting
in measurable finite electrical resistance. The reset time after
a detection event is often limited by the kinetic inductance
[15]. In MKIDs, the kinetic inductance plays an essential
role in its operating mechanism. Incoming photons with a
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frequency higher than the superconducting gap break Cooper
pairs and lead to an increase of the kinetic inductivity Lk ∝
1/ns. A resultant shift of resonant frequency δ f ∝ −δLk can
be detected. Besides, the bias current also reduces ns and
increases Lk and can be utilized to tune a resonator frequency
[16] and to observe the nonlinear Meissner effect [17]. In
SRF resonant cavities, charged particles are accelerated by the
electric component of the microwave, which is proportional
to the rf magnetic field at the surface. Vortex-free cavities
[18–21] exhibit a huge quality factor Q ∼ 1010–1012 at T <

2 K [22–24] even under strong rf magnetic field [25–28] such
that the nonlinear Meissner effect manifests itself. Here the
achievable rf field is limited by the induced screening current
at the surface, which cannot exceed jd . The surface magnetic
field that induces jd is coincident with the superheating field
Hsh, which is the stability limit of the Meissner state. Hsh

is thought to define the upper limit of the accelerating field
[9–11] and is one of the main interests in fundamental SRF
studies [29,30].

Microscopic calculations of physical quantities relevant to
these devices would provide us with a deeper understand-
ing of experimental results and clues to improving device
performance. Those for disordered materials are especially
important because these devices are often made from high-
resistance films or impurity-doped bulk materials [31–35].
Some 60 years ago, Maki calculated jd at the temperature
T → 0 [13,14]. Kupriyanov and Lukichev obtained jd for an
arbitrary T [36]. By using Maki’s results, Lk for the current-
carrying state was calculated afterward [37]. Then those for
all T and js up to jd were investigated [38]. Calculations
of Hsh also have a long history, starting from those for a
clean-limit superconductor [39,40]. Effects of homogeneous
[41] and inhomogeneous [42] impurities on Hsh were recently
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FIG. 1. Quasiparticle DOS calculated for T/Tc0 = 0.2 and
�/�0 = 0, 0.05, 0.1, 0.2, 0.3, 0.4. Here �0 is the BCS pair potential
at T = 0 and Tc0 is the BCS critical temperature for � = 0.

investigated. However, theories including realistic materials
features which can limit device performances have been stud-
ied to a lesser extent. Such theories would be useful to pin
down causes of performance limitations, e.g., critical current
below the ideal jd in nanowires and quenches below the ideal
Hsh in SRF cavities, etc.

One of the common features among various supercon-
ducting materials is the broadening of the density of states
(DOS), which has been observed in a numerous number of
tunneling experiments [43] (see, e.g., Refs. [32,44,45] for
SRF materials). Such a broadened DOS has been described
by the Dynes formula [46,47], which is given by N (ε)/N0 =
Re[(ε + i�)/

√
(ε + i�)2 − �2] (see Fig. 1). Here � is the

pair potential, N0 is the normal-state DOS at the Fermi energy,
and � is the Dynes pair-breaking scattering rate. The �

parameter results in a finite density of subgap states in the
vicinity of the Fermi level �/� and a constant quasiparticle
lifetime h̄/�. A microscopic derivation of the Dynes formula
has been investigated [48–51]. In addition, irrespective of
microscopic models of Dynes formula, we can formulate the
quasiclassical theory of the BCS model which incorporates
� [52–56]. Interestingly, it has been shown that the pair-
breaking � parameter and other pair breakers (e.g., current
[57–59], magnetic impurities [60,61] and proximity-coupled
normal layer [62,63]) can reduce the rf dissipation in the
weak- and the strong-rf regimes via a modification of the
quasiparticle spectrum [52–54,64].

In this paper, we focus on effects of � on the superfluid
flow in disordered superconductors. We consider the geome-
tries shown in Fig. 2: a thin and narrow superconducting film
(relevant to, e.g., SNSPD, MKID) and a semi-infinite super-
conductor (relevant to, e.g., SRF cavities made from bulk ma-
terials or thick film). We evaluate the depairing current density
jd (�, T ), the current-dependent nonlinear kinetic inductance
Lk ( js, �, T ), and the superheating field Hsh(�, T ) for all T , all
�, and all currents. The results of this paper could provide one
with clues to finding out causes of performance limitations
and those used to improve performances of superconducting
quantum devices.

FIG. 2. (a) Thin and narrow superconducting film carrying a
uniform current js. We assume a thickness d � λ and a width
W � λ2/d . (b) Semi-infinite superconductor carrying the Meissner
current js(x). We assume λ is much larger than the coherence length.

The paper is organized as follows. In Sec. II, we briefly
review the Eilenberger-Usadel formalism [65–68] of the BCS
theory and express physical quantities with the Matsubara
Green’s functions. In Sec. III, we solve the Usadel equation
for all T , all �, and all q. Some useful formulas of �, ns,
penetration depth λ, and js at T = 0 and �Tc are also ob-
tained. In Sec. IV, we consider a thin and narrow supercon-
ducting film [Fig. 2(a)]. We evaluate the depairing current
density jd (�, T ) and the current-dependent nonlinear kinetic
inductance Lk ( js, �, T ). In addition to numerical results, we
present the analytical formulas for jd (�, T ) and Lk ( js, �, T )
at T = 0 and �Tc. In Sec. V, we consider a semi-infinite
superconductor [Fig. 2(b)]. We calculate the current distri-
bution taking the nonlinear Meissner effect into account and
evaluate the superheating field Hsh(�, T ). Analytical formulas
for T → 0 and T � Tc are also derived. In Sec. VI, we discuss
the implications of our results.

II. THEORY

We apply the well-established Eilenberger-Usadel formal-
ism [65–68] of the BCS theory in the diffusive limit to
the geometries shown in Fig. 2. The normal and anomalous
quasiclassical Matsubara Green’s functions Gωn = cos θ and
Fωn = sin θ obey the Usadel equation:

h̄D

2
θ ′′ = s sin θ cos θ + (h̄ωn + �) sin θ − � cos θ. (1)

Here D is the electron diffusivity, the prime denotes differ-
entiation with respect to x, s = (q/qξ )2�0 is the superfluid
flow parameter, �0 = �(s, �, T )|s=�=T =0 is the BCS pair
potential at T = 0, h̄q = 2mvs is the superfluid momentum,
vs is the superfluid velocity, m is the electron mass, qξ =√

2�0/h̄D is the inverse of the coherence length, and h̄ωn =
2πkBT (n + 1/2) is the Matsubara frequency. The � parame-
ter introduced on the right-hand side of Eq. (1) implies that we
have incorporated phenomenological pair breakers consistent
with observed spectra (see, e.g., Refs. [52–56]). Note one
can confirm that the Green’s functions obtained from Eq. (1)
reproduce the Dynes quasiparticle spectrum.

The current distributes uniformly in Fig. 2(a) and varies
slowly over the coherence length in Fig. 2(b). In either case,
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the θ ′′ term is negligible and Eq. (1) reduces to(
� − s√

1 + cot2 θ

)
cot θ = h̄ωn + �. (2)

Note that in Fig. 2(b), θ and � depend on x via s = s(x).
The pair potential �(s, �, T ) satisfies the self-consistency
equation

ln
Tc0

T
= 2πkBT

∑
ωn>0

(
1

h̄ωn
− sin θ

�

)
, (3)

where kBTc0 = �0 exp(γE )/π � �0/1.76 is the BCS critical
temperature and γE = 0.577 is the Euler constant.

Physical quantities can be calculated using the Green’s
functions as follows. The thermodynamic critical field Hc is
given by [51,54]

Hc(�, T ) =
√

− 2

μ0
�(0, �, T ), (4)

�(0, �, T ) = −2πT N0�

×
∑
ωn>0

[
2(h̄ωn + �)

�
(cos θ − 1) + sin θ

]
, (5)

where θ and � in Eq. (5) are evaluated for s = 0. Note that
Hc is not the central theme of this paper but often appears as
a normalization constant for js, H , and Hsh in the following
sections. The superfluid density ns, penetration depth λ, and
supercurrent density js are given by

ns(s, �, T )

ns0
= λ2

0

λ2(s, �, T )
= 4kBT

�0

∑
ωn>0

sin2 θ, (6)

js(s, �, T )

js0
=

√
πs

�0

ns(s, �, T )

ns0
. (7)

Here ns0 = ns(0, 0, 0) = 2πmN0D�0/h̄ is the BCS superfluid
density at T = 0, λ0 = λ(0, 0, 0) = √

h̄/πμ0�0σn is the BCS
penetration depth at T = 0, js0 = Hc0/λ0 = √

π |e|N0D�0qξ ,
and Hc0 = Hc(0, 0) = √

N0/μ0�0 is the BCS thermodynamic
critical field at T = 0.

In the geometry shown in Fig. 2(b), ns, λ, and js depend
on x through s(x) = [q(x)/qξ ]2�0. Here js(x), H (x), and
q(x) obey the Maxwell equation, js = −∂xH and μ0H =
(h̄/2|e|)∂xq, namely,

∂2q

∂x2
= q

λ2(s, �, T )
, (8)

H

Hc0
= √

π
∂ (q/qξ )

∂ (x/λ0)
. (9)

By using the magnetic field at the surface H0, the boundary
conditions can be written as

H (0) = H0, lim
x→∞ q(x) → 0. (10)

Self-consistent calculations of Eqs. (2), (3), and (6)–(10) yield
the distributions of θ (x), �(x), λ(x), js(x), q(x), and H (x)
for a given set of H0 and T .

In the Ginzburg-Landau (GL) regime, T � Tc, we can
expand the Matsubara Green’s functions in powers of δ =
�/2πkBT � 1 [54]:

sin θ = aδ − 1

2

(
a3 − s

2πkBT
a4

)
δ3, (11)

cos θ = 1 − a2

2
δ2 − 1

8

(
2s

πkBT
a5 − 3a4

)
δ4. (12)

Here a = (n + 1/2 + s/2πkBT + �/2πkBT )−1. Substituting
Eqs. (11) and (12) into Eq. (3), we obtain the GL equation
[54],

1 − T

Tc
= πs

4kBTc
+ 7ζ (3)

8π2k2
BT 2

c

�2, (13)

for �, s, � � 2πkBT , and T � Tc. Note that here Tc depends
on �.

In the following, we use �0 as a unit of energy and
use dimensionless quantities s̃ = s/�0, ω̃n = h̄ωn/�0, �̃ =
�/�0, �̃ = �/�0, T̃ = kBT/�0, etc. For brevity, we omit
all the tildes.

III. SOLUTIONS

A. Zero-current state (s = 0)

First, consider the zero-current state (s = 0) at the low-
temperature limit (T = 0). The pair potential � can be cal-
culated from Eqs. (2) and (3). The solution of Eq. (2) is given
by cot θ = (h̄ωn + �)/�. Substituting θ into Eq. (3), we find
(see Appendix A)

�(0, �, 0) = exp

[
− sinh−1 �

�(0, �, 0)

]
, (14)

which reduces to � � 1 − � for � � 1. The equation for Tc

is obtained by solving Eqs. (2) and (3) for (θ,�) � 1 and
T � Tc. Then, we have [52,54]

ln
Tc

Tc0
= ψ

(
1

2

)
− ψ

(
1

2
+ �

2πTc

)
, (15)

which reduces to Tc � Tc0 − π�/4 for � � 1. Note that here
Eq. (15) has the same form as the well-known equation for the
critical temperature of a superconductor with pair-breaking
perturbations [12,69,70]. The thermodynamic critical field Hc

can be calculated from Eqs. (4) and (5). At T = 0, we find
(see Appendix A)

Hc(�, 0)

Hc0
= �

√
1 + 2�2

�2
− 2�

�

√
1 + �2

�2
, (16)

which reduces to Hc/Hc0 � 1 − 2� for � � 1. The superfluid
density ns and the penetration depth λ can be calculated from
Eq. (6). At T = 0, we have [52,54]

ns(0, �, 0)

ns0
= λ2

0

λ2(0, �, 0)

= �(0, �, 0)

[
1 − 2

π
tan−1 �

�(0, �, 0)

]
, (17)

which reduces to ns/ns0 � 1 − (1 + 2/π )� for � � 1.
Shown in Fig. 3 are �(0, �, T )|T =0, Tc(�), Hc(�, T )|T =0,
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FIG. 3. (a) �(0, �, T )|T →0, Tc(�), Hc(�, T )|T →0, (b) ns

(0, �, T )|T →0, and λ(0, �, T )|T →0 as functions of �.

and ns(0, �, T )|T =0 as functions of �, which monotonically
decrease as � increases and vanish at � = 1/2.

For T � Tc, the GL regime, we can calculate � from
Eq. (13). Then, we have [54]

�(0, �, T ) =
√

8π2T 2
c

7ζ (3)

(
1 − T

Tc

)
, (18)

Hc(�, T ) =
√

8π2T 2
c N0

7ζ (3)μ0

(
1 − T

Tc

)
, (19)

ns(0, �, T )

ns0
= λ2

0

λ2(0, �, T )
= 4π2Tc

7ζ (3)

(
1 − T

Tc

)
, (20)

for T � Tc(�). Here Eqs. (4)–(6) are used. Equations (18)–
(20) are coincident with the usual GL results for the zero-
current state. The only difference is that Tc depends on �

through Eq. (15).
For 0 < T < Tc, we numerically solve Eqs. (2)–(6).

Shown in Fig. 4 are �(0, �, T ), Hc(�, T ), ns(0, �, T ), and
λ(0, �, T ) as functions of T . Then, �, Hc, and ns ∝ λ−2 are
monotonically decreasing functions of T and � [51,52,54].

FIG. 4. (a) �(0, �, T ), (b) Hc(�, T ), (c) ns(0, �, T ), and
(d) λ(0, �, T ) as functions of T calculated for different �.

B. Current-carrying state (s > 0)

Now consider the current-carrying state (s > 0). In addi-
tion to the Dynes pair-breaking scattering rate �, the super-
fluid momentum q gives rise to pair-breaking effects, sup-
pressing � and ns and resulting in nonlinearity of js respect
with q.

For T = 0, the self-consistency equation results in (see
Appendix B)

�(s, �, 0) = exp

[
− sinh−1 u0

− s

2�(s, �, 0)

(
π

2
− tan−1 u0 − u0

1 + u2
0

)]
,

(21)

where u0(s, �) is defined by [�(s, �, 0) − s/
√

1 + u2
0]u0 =

�. The superfluid density ns(s, �, 0) can be calculated from
Eq. (6). Hence (see Appendix B)
ns(s, �, 0)

ns0

= λ2
0

λ2(s, �, 0)

= �(s, �, 0)

[
1 − 2

π
tan−1u0

]
− 4s

3π

{
1 − u0

(
3 + 2u2

0

)
2
(
1 + u2

0

) 3
2

}
.

(22)

Note that Eqs. (21) and (22) reproduce Eqs. (14) and (17) at
the zero-current limit (s → 0). The supercurrent density js is
calculated from Eq. (7):

js(s, �, 0) = √
πs

ns(s, �, 0)

ns0

Hc0

λ0
. (23)

The set of Eqs. (21)–(23) are the general formulas
for �(s, �, T )|T =0, ns(s, �, T )|T =0, λ(s, �, T )|T =0, and
js(s, �, T )|T =0 valid for all current and all �. When � = 0,
the well-known Maki’s formulas [13,14,38] are reproduced.

For � � 1 such that u0 = �/(� − s) � 1, Eqs. (21)–(23)
reduce to the approximate formulas:

�(s, �, 0) = exp

[
− πs

4�(s, �, 0)
− �

�(s, �, 0)

]
, (24)

ns(s, �, 0)

ns0
= λ2

0

λ2(s, �, 0)
= �(s, �, 0) − 4s

3π
− 2�

π
, (25)

js(s, �, 0) = √
πs

[
�(s, �, 0) − 4s

3π
− 2�

π

]
Hc0

λ0
. (26)

For (s, �) � 1, Eqs. (24)–(26) reduce to even simpler formu-
las:

�(s, �, 0) = 1 − πs

4
− �, (27)

ns(s, �, 0)

ns0
= λ2

0

λ2(s, �, 0)
= 1 −

(
π

4
+ 4

3π

)
s −

(
1 + 2

π

)
�,

(28)

js(s, �, 0) = √
πs

[
1 −

(
π

4
+ 4

3π

)
s −

(
1 + 2

π

)
�

]
Hc0

λ0
.

(29)
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FIG. 5. �(s, �, T )|T =0, ns(s, �, T )|T =0, and js(s, �, T )|T =0 cal-
culated from the formulas given by Eqs. (21)–(23). (a) �, (b) js

(solid curves), and ns (dashed curves) as functions of |q/qξ |(=√
s)

for different �. Each colored blob represents the maximum current
density, namely, the depairing current density.

Equations (24)–(26) are valid under an arbitrary current den-
sity as long as � satisfies �/(� − s) � 1. Equations (27)–
(29) are useful when we consider the small-current regime.

Shown in Fig. 5 are �, ns, js at T = 0 as functions of the
superfluid momentum |q/qξ | = √

s calculated from the exact
formulas given by Eqs. (21)–(23). While � and ns(∝ λ−2)
are monotonically decreasing functions, js exhibits nonmono-
tonic behaviors. At smaller |q| regions, js is proportional
to |q|. As |q| increases, js becomes dominated by a rapid
reduction of ns and ceases to increase. At a threshold value
qd or sd = (qd/qξ )2, js reaches the maximum value (colored
blob), which is the depairing current density jd .

For T � Tc, the GL regime, � in the current-carrying state
is calculated from Eq. (13). Then we obtain [54]

�(s, �, T ) =
√

8π2T 2
c

7ζ (3)

(
1 − T

Tc

)(
1 − s

sm

)
, (30)

ns(s, �, T )

ns0
= λ2

0

λ2(s, �, T )
= �2(s, �, T )

2Tc
, (31)

js(s, �, T ) =
√

π

2(Tc − T )

√
s

(
1 − s

sm

)
Hc(�, T )

λ(0, �, T )
(32)

for T � Tc(�). Here sm(�, T ) = (4Tc/π )(1 − T/Tc).
For 0 < T < Tc, we need to numerically solve Eqs. (2)–

(7) for a finite s. Shown in Figs. 6(a) and 6(b) are
�(s, �, T ), ns(s, �, T ), and js(s, �, T ) as functions of
|q/qξ | = √

s at T/Tc0 = 0.5 for different �. The similar

FIG. 6. �(s, �, T ), ns(s, �, T ), and js(s, �, T ) at a finite tem-
perature obtained by numerically solving Eqs. (2)–(7). (a) �, (b) js

(solid curves), and ns (dashed curves). Note that a superconductor
with � = 0.4 (red) has Tc = 0.36 Tc0 < T , being normal for all q.

FIG. 7. (a) Depairing current density jd at T = 0 as a function
of �. (b) Depairing momentums qd and sd = (qd/qξ )2 at T = 0 as
functions of �. The solid curves represent the exact results calculated
from Eqs. (21)–(23). The dashed curves are calculated from the
approximate formulas given by Eqs. (33)–(39).

calculations for other T are straightforward (see also
Ref. [54]). The q dependencies of �, ns, and js resemble
those for T = 0 (see Fig. 5). As T increases, all these values
monotonically decrease, and the depairing current densities
(colored blobs) also shift to lower values.

IV. THIN AND NARROW FILM

In this section, we consider the geometry shown in
Fig. 2(a): a narrow thin film. We calculate the depairing
current density and the kinetic inductance using the results
obtained in Sec. III.

A. Depairing current density

For T = 0, the depairing current density jd is already
obtained for some � values (colored blobs in Fig. 5). That
for an arbitrary � can also be calculated from the formulas,
Eqs. (21)–(23), by finding the maximum values of js. Shown
as the solid curves in Fig. 7 are jd , qd , and sd = (qd/qξ )2 as
functions of �. An increase of � leads to decreases of ns and
js, resulting in a monotonic decrease of jd .

For � � 1, we can derive an analytical formula for jd .
Using Eqs. (24)–(26) and the condition ∂s js = 0, we find (see
Appendix C)

jd (�, 0) = √
πsd

[
�d − 4sd

3π
− 2�

π

]
Hc0

λ0
, (33)

�d = �d0 exp

[(
πα

4
− 1

)
�

�d0

]
, (34)

sd = (sd0 − α�) exp

[(
πα

4
− 1

)
�

�d0

]
, (35)

ζd0 = 2

π
+ 3π

8
−

√(
2

π
+ 3π

8

)2

− 1 = 0.300, (36)

�d0 = e− π
4 ζd0 = 0.790, (37)

sd0 = �d0ζd0 = 0.237, (38)

α = 1 + π/2 − 2(1 + 8/π )ζd0

2 + 3π2/8 − πζd0
= 0.365. (39)
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FIG. 8. (a) Depairing current density jd (�, T )/ js0 and
jd (�, T )/Js0(�, T ) as functions of T/Tc for different �. Here
Js0(�, T ) = Hc(�, T )/λ(0, �, T ) and js0 = Js0(0, 0) = Hc0/λ0.
(b) Depairing current density ( jd/ jGL

d0 )2/3 as functions of T/Tc. Here
jGL
d0 is defined by Eq. (42). The dashed gray line is the GL result

[Eq. (41)] extrapolated to lower T regions.

The dashed curves in Fig. 7 are calculated from Eqs. (33)–
(39), which agree well with the exact results (solid curves)
at � � 1. For � = 0, we have �d = �d0 = 0.790 and sd =
sd0 = 0.237, reproducing the well-known result, jd (0, 0) =
0.595Hc0/λ0 [13,14,38].

For T � Tc, we can use Eqs. (30)–(32). The condition
∂s js = 0 yields sd = sm/3 = (4Tc/3π )(1 − T/Tc), and we
have [54]

jd (�, T ) =
(

2

3

) 3
2 Hc(�, T )

λ(0, �, T )
= 0.544

Hc(�, T )

λ(0, �, T )
. (40)

Equation (40) can be written as

jd (�, T ) = jGL
d0

(
1 − T

Tc

) 3
2

, (41)

where

jGL
d0 = 16 js0

21ζ (3)

√
π

3

(
eγE Tc

Tc0

) 3
2

= 8π2
√

2π

21ζ (3)e

√
(kBTc)3

h̄vF ρ(ρ/τ )
.

(42)

Eqs. (40)–(42) have the same form as the well-known GL
depairing current density except Tc depends on � through
Eq. (15).

For 0 < T < Tc, we can obtain jd (�, T ) by numeri-
cally solving Eqs. (2)–(7) for different � and T and find-
ing the maximum value of js. Shown as solid curves in
Fig. 8(a) are jd (�, T ) as functions of T for different �.
The Kupriyanov-Lukichev-Maki (KLM) result [13,14,36] is
reproduced for the ideal BCS superconductor with � = 0
(blue curve) while a finite � reduces jd for all T . The dashed
curves represent jd (�, T )/Js0(�, T ), where Js0(�, T ) =
Hc(�, T )/λ(0, �, T ). The curves merge at T → Tc and take
0.544, consistent with Eq. (40). It is sometimes useful to plot
( jd/ jGL

d0 )2/3 as functions of T/Tc (see, e.g., Refs. [71–73]).
Shown as solid curves in Fig. 8(b) are ( jd/ jGL

d0 )2/3, obtained
by numerically solving Eqs. (2)–(7). The dashed line repre-
sents the GL result given by Eq. (41), which is valid only at
T � Tc.

B. Kinetic inductance

The kinetic inductance of a narrow thin film is given by
Lfilm = (�/W d )Lk for the length �, width W , and thickness d .
The kinetic inductivity Lk is defined by Lk j̇s = −Ȧ [38,74],
the dot denotes differentiation with respect to the time t , and
A = h̄q/2|e| is the vector potential. Hence,

Lk (s, �, T ) = h̄(−q̇/ j̇s)

2|e| = μ0λ
2
0

q̇

q̇ ns
ns0

+ q ṅs
ns0

. (43)

Here h̄qξ /2
√

π |e| js0 = μ0λ
2
0 is used. In the following, we in-

vestigate Lk for the zero-current limit and the current-carrying
state in the fast- and slow-measurement regimes [38,74] for
all T , all �, and all js up to jd (�).

1. Zero-current limit (s → 0)

We start from the zero-current limit. Taking q → 0,
Eq. (43) reduces to Lk (0, �, T ) = μ0λ

2
0ns0/ns(0, �, T ) =

μ0λ
2(0, �, T ). Using the analytical expression for ns(0, �, T )

[52,54], we find the general formula for the zero-current
kinetic inductance,

Lk (0, �, T ) = μ0λ
2
0

2�(0,�,T )
π

Imψ
[

1
2 + �+i�(0,�,T )

2πT

] , (44)

where �(0, �, T ) can be calculated from Eq. (3) (see also
Fig. 4). For the ideal BCS superconductor (� = 0), Eq. (44)
reproduces the well-known result [37,38,75]

Lk (0, 0, T ) = μ0λ
2
0

1

tanh �(0,0,T )
2T

. (45)

For T = 0 and � � 0, Eq. (44) reduces to

Lk (0, �, 0) = μ0λ
2
0

�(0, �, 0)
[
1 − 2

π
tan−1 �

�(0,�,0)

] , (46)

where �(0, �, 0) can be calculated from Eq. (14). At T =
� = 0, Eqs. (45) and (46) yield

Lk0 = Lk (0, 0, 0) = μ0λ
2
0. (47)

In the GL regime, we can use Eq. (20),

Lk (0, �, T ) = 7ζ (3)μ0λ
2
0

4π2Tc

(
1 − T

Tc

)−1

, (48)

for T � Tc.
Shown in Fig. 9(a) are Lk in the zero-current state as

functions of T for different � calculated from Eq. (44). As
T or � increase, the superfluid density ns decreases and
Lk increases and diverges at T = Tc or � = 1/2. Shown in
Fig. 9(b) are Lk (0, �, T ) normalized with Lk (0, �, T )|T =0 as
functions of T/Tc(�). The blue curve, which represents the
ideal BCS superconductor with � = 0, obeys Eq. (45). The
red curve (� = 0.4) represents a superconductor with large
densities of subgap states (see also Fig. 1), which grows up
with T/Tc faster than the ideal one.

2. Current carrying state (s > 0): Fast measurement

Now consider a current-carrying superconductor in the fast
measurement regime [38,74], in which the time-dependent
current changes rapidly about its time average on a timescale
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FIG. 9. Zero-current kinetic inductance Lk (0, �, T ) calculated
from the formula given by Eq. (44). (a) Lk (0, �, T ) as functions
of T . Here, Lk0 = Lk (0, 0, 0) = μ0λ

2
0. (b) Lk (0, �, T )/Lk (0, �, 0) as

functions of the normalized temperature T/Tc.

much shorter than the relaxation time of ns. We assume ns

cannot follow the time dependence of the current and take
ṅs → 0. Then, Eq. (43) reduces to

Lk (s, �, T ) = μ0λ
2
0

ns0

ns(〈s〉, �, T )〉 = μ0λ
2(〈s〉, �, T ), (49)

where 〈s〉 is the time average of s(t ). Experiments in this
regime is found in, e.g., Ref. [75].

We consider a superconductor under a dc biased rf cur-
rent: q(t ) = qbias + qrf (t ), s(t ) = [q(t )/qξ ]2 = sbias + srf (t ),
and js = js(sbias + srf (t )) = jbias + jrf (t ). In this case, we
have 〈s〉 = sbias = (qbias/qξ )2 and jbias = js(sbias). Note that,
when sbias = 0, Eq. (49) reduces to the zero-current kinetic
inductance, Eq. (44).

For T = 0, we can use Eqs. (21)–(23) to evaluate Eq. (49).
Shown in Fig. 10(a) are Lk ( jbias, �, T )|T =0 as functions of
the dc bias current jbias for different �. As jbias increases,
Lk monotonically increases and reaches the maximum at
the depairing current density jd (colored blob). Shown in
Fig. 10(b) are Lk ( jbias, �, 0) as functions of the normalized
current jbias/ jd . The effects of � are significant rather than
those of jbias. Shown in Fig. 10(c) are Lk ( jbias, �, 0) as
functions of � for jbias = 0 (dashed curve) and jbias = jd
(solid curve). While both the curves quickly increase with
� and diverge at � = 1/2, the difference between the solid
and dashed curves is always smaller than factor 1.5. Shown
in Fig. 10(d) are Lk ( jbias, �, 0)/Lk (0, �, 0) as functions of
( jbias/ jd )2 for different �. The blue (� = 0) and red (� = 0.4)
curves almost overlap, and the effects of jbias is less than 1.5
independent of �. It should be noted that the blue curves in
Figs. 10(a), 10(b), and 10(d), which represent the ideal BCS
superconductor with � = 0, are coincident with the results in
the previous study [38].

To understand the nonlinear Lk for small current regions,
we use the approximate formulas, Eqs. (27)–(29). After some
calculations, we find (see Appendix D):

Lk ( jbias, �, 0) = Lk (0, �, 0)

[
1 + Cfm

(
jbias

jd

)2]
, (50)

Cfm = (3π2 + 16)sd0

12π

(
�d0 − 4sd0

3π

)2

= 0.136, (51)

for T = 0 and ( jbias/ jd )2 � 1. Here �d0 and sd0 are given
by Eqs. (37) and (38). The dashed gray line in Fig. 10(d) is

FIG. 10. Fast-measurement kinetic inductance
Lk ( jbias, �, T )|T =0 calculated from the formulas given by
Eqs. (21)–(23) and (49). (a) Lk ( jbias, �, T )|T =0 as functions
of jbias. (b) Lk ( jbias, �, T )|T =0 as functions of jbias/ jd (�).
(c) Lk ( jbias, �, T )|T =0 as functions of � for jbias = 0 (dashed
curve) and jbias = jd (solid curve). (d) Lk ( jbias, �, 0)/Lk (0, �, 0) as
functions of ( jbias/ jd )2. The dashed gray line is calculated from the
approximate formulas given by Eq. (50).

calculated from Eq. (50), which agrees well with the exact
results (solid curves) at ( jbias/ jd )2 � 1.

For T � Tc, Eq. (49) can be calculated from Eqs. (30)–
(32). Hence

Lk (sbias, �, T ) = 7ζ (3)μ0λ
2
0

4π2Tc

(
1 − T

Tc

)−1(
1 − sbias

3sd

)−1

= Lk (0, �, T )

(
1 − sbias

3sd

)−1

(52)

for T � Tc. Here sd = sm/3 = (4Tc/3π )(1 − T/Tc)
and Eq. (48) are used. When sbias = sd , we have
Lk (sd , �, T )/Lk (0, �, T )|T �Tc = 1.5. The bias momentum
parameter sbias can be converted to jbias/ jd by using
Eqs. (32) and (40). For small current regions, we have
sbias/3sd = (4/27)( jbias/ jd )2 and obtain

Lk ( jbias, �, T ) = Lk (0, �, T )

[
1 + CGL

fm

(
jbias

jd

)2]
, (53)

CGL
fm = 4

27
= 0.148, (54)

for T � Tc and ( jbias/ jd )2 � 1. Equation (53) has the same
form as that obtained in the previous study [74] except Tc and
jd depend on �. Note the value of CGL

fm differs from that of Cfm

at T = 0.
For 0 < T < Tc, we use the numerical solutions of

Eqs. (2)–(7). Shown in Fig. 11(a) are Lk ( jbias, �, T ) as
functions of jbias for different � and T . The blobs rep-
resent the depairing points. Shown in Fig. 11(b) are
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FIG. 11. Fast measurement kinetic inductance Lk ( jbias, �, T ) for
a finite T . (a) Lk ( jbias, �, T ) as functions of jbias up to jd calculated
for � = 0, 0.1, 0.2, 0.3 and T/Tc = 0.2, 0.3, 0.4, 0.5. The colored
blobs are the depairing points. (b) Lk ( jbias, �, T )/Lk (0, �, T ) as
functions of ( jbias/ jd )2 for T/Tc = 0.1, 0.95 and � = 0, 0.4.

Lk ( jbias, �, T )/Lk (0, �, T ) for different � and T , which are
not sensitive neither to � nor T/Tc [see also Fig. 10(d) for
T = 0]. The similar curves for � = 0 are found in Ref. [38].

3. Current carrying state (s > 0): Slow measurement

Consider the other limit, the slow measurement regime
[38,74], in which the time-dependent current changes on a
timescale much longer than the relaxation time of ns. In this
case, we can assume ns instantly follows the time dependence
of the current: ns = ns(q(t )). Substituting ṅs = q̇∂qns into
Eq. (43), we find

Lk (s, �, T ) = μ0λ
2
0

[
(1 + q∂q )

ns(s, �, T )

ns0

]−1

(55)

= μ0λ
2
0

√
π

∣∣∣∣∂ ( js/ js0)

∂ (q/qξ )

∣∣∣∣
−1

, (56)

where Eq. (56) corresponds with the expression given in
Ref. [38].

For T = 0, we can evaluate Eq. (56) using the solutions
of Eqs. (21)–(23). Shown in Fig. 12(a) are Lk ( js, �, T )|T =0

as functions of js, which diverge at js = jd (�). These diver-
gences come from ∂q js = 0 at js = jd (see also Fig. 5). Shown
in Fig. 12(b) are Lk ( js, �, 0)/Lk (0, �, 0) as functions of the
normalized current ( js/ jd )2, which are not sensitive to �.

FIG. 12. Slow-measurement kinetic inductance Lk ( js, �, T )|T =0

calculated from the formulas given by Eqs. (21)–(23) and (56). (a) Lk

as functions of js. (b) Lk normalized with Lk ( js = 0) as functions of
( js/ jd )2. The dashed gray line is calculated from the approximate
formulas given by Eq. (57).

FIG. 13. (a) Slow-measurement kinetic inductance
Lk ( js, �, T ) at finite temperatures as functions of js up to jd

calculated for � = 0, 0.1, 0.2, 0.3 and T/Tc = 0.2, 0.3, 0.4, 0.5.
(b) Lk ( js, �, T )/Lk (0, �, T ) as functions of ( js/ jd )2 for � = 0, 0.4
and T/Tc = 0.1, 0.95.

For small-current regions, we have a useful formula to
calculate Lk (see Appendix D),

Lk ( js, �, 0) = Lk (0, �, 0)

[
1 + Csm

(
js
jd

)2]
, (57)

Csm = (3π2 + 16)sd0

4π

(
�d0 − 4sd0

3π

)2

= 0.544, (58)

for T = 0 and ( js/ jd )2 � 1. Hence, we have a relation Csm =
4Cfm [see Eqs. (50) and (51)]. Shown as the dashed gray line
in Fig. 12(b) is the normalized Lk calculated from Eq. (57),
which agrees well with the exact results (solid curves) at
( js/ jd )2 � 1.

For T � Tc, we use the GL results. Substituting Eq. (32)
into Eq. (56), we obtain

Lk (s, �, T ) = Lk (0, �, T )

(
1 − s

sd

)−1

. (59)

When s � sd , we have s/sd = (4/9)( js/ jd )2 and obtain

Lk (s, �, T ) = Lk (0, �, T )

[
1 + CGL

sm

(
js
jd

)2]
, (60)

CGL
sm = 4

9
= 0.444, (61)

for T � Tc and ( js/ jd )2 � 1. We find Csm for T � Tc is
smaller than that at T = 0. Equation (60) has the same form
as the well-known result [74] except T and jd depend on �.

For 0 < T < Tc, we use the numerical solutions of
Eqs. (2)–(7). Shown in Fig. 13(a) are Lk ( js, �, T ) as func-
tions of js for different � and T , which increase with js
and diverge at js = jd (�), � = 1/2, and T = Tc(�). Shown
in Fig. 13(b) are Lk ( js, �, T )/Lk (0, �, T ) as functions of
( js/ jd )2 for different � and T , sensitive neither to � nor T .
This insensitivity resembles that for the fast measurement case
[see also Fig. 11(b)]. See also Ref. [38] for � = 0.

V. SEMI-INFINITE SUPERCONDUCTOR

In this section, we consider the geometry shown in
Fig. 2(b): a semi-infinite superconductor occupying x � 0. We
calculate the current distribution and the superheating field.
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FIG. 14. Distributions of (a) H, js, (b) �, and λ in the semi-
infinite superconductor for the surface magnetic field H0/Hc0 =
0.1, 0.3, 0.5, 0.7.

A. Current distribution

In the Meissner state, the current distributes within the
depth ∼λ from the surface. When the superfluid flow is
small (|q| � qd ), the pair-breaking effect due to a finite q
is negligible and the distributions of the current js(x) and
the magnetic field H (x) obey the London equation. As |q|
increases, the London equation ceases to be valid due to
the current-induced pair-breaking effect (nonlinear Meissner
effect [17,76]). To obtain the current and field distributions,
we need the self-consistent solutions of the coupled Maxwell
and Usadel equations, Eqs. (2)–(10).

Let us consider the simplest case: T = 0 and � = 0.
For H0 → 0, we can use the London equation, which gives
H (x)/Hc0 = js(x)/ js0 = H0/Hc0 exp(−x/λ0): the curves for
H (x)/Hc0 and js(x)/ js0 completely overlap. Shown in Fig. 14
(a) are H (x) and js(x) as functions of x for different H0

calculated from the self-consistent solutions of Eqs. (2)–(10).
For small H0 regions, in fact, H (x)/Hc0 (solid curves) and
js(x)/ js0 (dashed curves) almost overlap, expected from the
London equation. However, as H0 increases, the dashed curves
deviate from the solid curves in the vicinity of the surface: the
nonlinear Meissner effect manifests itself. Shown in Fig. 14(b)
are �(x) and λ(x), which differ from the zero-current values
(�0 and λ0) at x � λ but approach �0 and λ0 as x increases.

B. Superheating field

The superheating field Hsh is given by the value of H0

which induces js(x0) = jd . Here x0 is the depth at which
the distribution js(x) takes the maximum. Note here it is not
necessarily the case that we have x0 = 0. For instance, in
the multilayer structure [11,53,77–79] or a superconductor
including inhomogeneous impurities in the vicinity of the
surface [11,42,53], the surface current can be suppressed, and
js(x) takes the maximum at the inside (x0 > 0).

In our semi-infinite superconductor, the current is a mono-
tonically decreasing function of x as shown in Fig. 14(a).
Hence, x0 = 0. In this case, we can derive a simple formula
of Hsh. Integrating both the sides of Eq. (8) from x = 0 to ∞,
we obtain q′(0)2 = −2

∫ ∞
0 qq′λ−2(s, �, T )dx. Then, using

Eqs. (9) and (10), we find the relation between the applied
magnetic field H0 and the superfluid flow at the surface s(0):

H2
0

H2
c0

=
∫ s(0)

0

πλ2
0ds

λ2(s, �, T )
= π

∫ s(0)

0
ds

ns(s, �, T )

ns0
. (62)

FIG. 15. Superheating field Hsh(�, T ) at T = 0. (a) Hsh as a
function of �. The dashed curve is calculated from the approximate
formula given by Eqs. (64)–(66). (b) Hsh as a function of � in the
zero-current state.

Hsh can be calculated by substituting s(0) = sd :

Hsh(�, T ) = Hc0

√
π

∫ sd (�,T )

0
ds

ns(s, �, T )

ns0
, (63)

which is the general formula of the superheating field for
a homogeneous dirty superconductor, valid for arbitrary �

and T .
For T = 0, we can evaluate Eq. (63) by using Eqs. (21)

and (22) [see also Figs. 5(b) and 7(b)]. Shown as the solid red
curve in Fig. 15(a) is Hsh(�, T )|T =0 as a function of �. As �

increases, Hsh decreases and vanishes at � = 1/2. Shown in
Fig. 15(b) is Hsh(�, 0) as a function of �(0, �, 0)/�(0, 0, 0).

For T = 0 and � � 1 (such that � � � − s), Eq. (63)
reduces to a formula (see Appendix E),

Hsh(�, 0) = Hc0

√
I (�) − 2

3
s2

d (�) − 2�sd (�), (64)

where

I (�) = 1 −
(

1 − πzd

2

)
e− πzd

2 − 4�(1 − e− πzd
4 ), (65)

zd (�) = ζd
1 − π

4 ζd

1 − π
4 ζd + �

�d

, (66)

ζd = sd/�d and sd are given by Eqs. (34) and (35). For the
ideal dirty BCS superconductor (� = 0), we have zd = ζd0

and

Hsh(0, 0) = Hc0

√
1 −

(
1 − πζd0

2

)
e− πζd0

2 − 2

3
s2

d0

= 0.795Hc0. (67)

This is slightly smaller than the clean-limit value,
H clean

sh (0, 0) = 0.84Hc0 [39,40], and is consistent with the
previous study [41], in which Hsh takes the maximum at the
mean free path (mfp) = 5.32ξ0 and decreases with mfp.

For T � Tc, we use the GL results. Substituting Eqs. (30)
and (31) into Eq. (63) and using the depairing value
of the s parameter in the GL regime, sd (�, T ) = sm/3 =
(4Tc/3π )(1 − T/Tc), we obtain

Hsh(�, T )|T �Tc =
√

5

3
Hc(�, T ) = 0.745Hc(�, T ). (68)
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FIG. 16. Superheating field Hsh(�, T ) at finite temperatures.
(a) Hsh(�, T )/Hc0 (solid curves) and Hsh(�, T )/Hc(�, T ) (dashed
curves) as functions of T/Tc for different �. (b) Hsh as functions of
(T/Tc )2.

The coefficient is independent of � and coincident with the
well-known GL result obtained for � = 0 [80,81].

For 0 < T < Tc, we use the numerical solutions of
ns(s, �, T ) and sd (�, T ) [see Fig. 6(b)]. Shown as the solid
curves in Fig. 16(a) is Hsh(�, T ) as functions of T/Tc. We find
Hsh is a monotonically decreasing function of � and T . Shown
as the dashed curves in Fig. 16(a) is Hsh(�, T ) normalized by
Hc(�, T ). The curves merge at T → Tc and reproduce the GL
coefficient

√
5/3. It is often useful to plot Hsh as functions

of (T/Tc)2 (see, e.g., Ref. [29]). Shown in Fig. 16(b) is Hsh

as functions of (T/Tc)2. The slope of Hsh is steeper than
[1 − (T/Tc)2] and decreases as � increases.

VI. DISCUSSIONS

In Sec. III, we have investigated a disordered
superconductor with a finite Dynes � parameter by
solving the Usadel equation. We have calculated
�(s, �, T ), ns(s, �, T ), λ(s, �, T ), and js(s, �, T ) for all T ,
all �, and all superfulid flow parameters s ∝ q2. Besides, we
have derived the formulas of �, ns, λ, and js at T = 0, taking
the effects of � into account [Eqs. (21)–(29)]. The formulas
for T � Tc have also been obtained, which have similar
forms as the usual GL results except that Tc depends on �.
Using these results, we have investigated a narrow thin-film
in Sec. IV and a semi-infinite superconductor in Sec. V. In
the following, we summarize the results and discuss their
implications.

A. Depairing current density

In Sec. IV A, we have calculated the depairing current
density jd (�, T ) for all T and all � (see Fig. 8). Also, we
have derived the analytical formulas for jd valid for T = 0 and
� � 1 [see Eqs. (33)–(39)]. The formulas for T � Tc have a
similar form as the well-known GL depairing current except
that Tc depends on � [see Eqs. (40)–(42)].

Our results show that jd is given by the KLM theory for
� = 0 and decreases as � increases. Hence, we can expect
that real materials, which usually have � > 0, exhibit smaller
jd than the ideal KLM value. The previous measurements do
not contradict this expectation, but the correlation between jd
and � is still unclear. Simultaneous measurements of jd and �

can provide with a deeper insight into observed values of jd .

While materials mechanisms behind � are not well under-
stood, it would be possible to engineer � by combining tunnel
measurements and various materials processing. Finding a
better materials processing method which can reduce �, we
can ameliorate jd .

In SNSPD, the detection efficiency (DE) depends on the
bias current jbias/ jd . Then, an increase or decrease of jd via
a � engineering (see Fig. 7) would result in a shift of the
necessary dc bias. For instance, when � = 0.1, we have more
than 10% degradation of Tc and 30% degradation of jd com-
pared with the ideal BCS superconductor, which would reduce
the necessary dc bias by 30%. Simultaneous measurements of
�, jd , and DE before and after materials treatments (e.g., ion
irradiation [82]) can test the theory.

B. Kinetic inductance

In Sec. IV B 1, we have derived the zero-current kinetic
inductance formula, Eq. (44). By using this formula, we have
calculated Lk (0, �, T ) for all T and all �. Our results show
that � affects the T dependence of Lk (0, �, T )/Lk (0, �, 0), as
shown in Fig. 9(b). Simultaneous measurements of � and the
zero-current kinetic inductance for different T can confirm the
theoretical prediction.

In Secs. IV B 2 and IV B 3, we have numerically cal-
culated the current-dependent nonlinear kinetic inductance
in the fast- and slow-measurement regimes for all T , all
�, and all currents up to jd (see Figs. 11 and 13). In the
fast measurement regime, the current-induced increase of
Lk ( jbias, �, T )/Lk (0, �, T ) is at most ∼1.5 even at jd . The
coefficient of the quadratic expansion at T = 0 is Cfm = 0.136
[see Eq. (50)]. On the other hand, in the slow measure-
ment regime, Lk diverges at jd , and the coefficient of the
quadratic expansion at T = 0 is given by Csm = 4Cfm = 0.544
[see Eq. (57)]. The difference between the fast- and slow-
measurement results would be detectable in experiments. The
effects of � on Cfm and Csm are not significant. To test
the theory, measurements of the current-dependent nonlinear
kinetic inductance should be combined with a measurement
of jd and tunneling spectroscopy to extract �.

Also, our theory suggests that it would be possible to tune
Lk by engineering � as well as by the dc or ac current and
controlling T . While Lk always increases with the bias current
and �, the dissipative conductivity σ1 can be smaller than
that of the ideal BCS superconductor by tuning the dc bias
and � (see Fig. 7 in Ref. [54]). Then, we can simultaneously
increase Lk and reduce σ1 (e.g., � = 0.05 and js � jd lead to
10% increase of Lk and 20% reduction of σ1 [9,52,54]). These
results might be useful for developing superconducting circuit
elements (e.g., superinductor [83]).

C. Superheating field

In Sec. V, we derived the general formula of the super-
heating field for a disordered superconductor Hsh, taking the
effects of � into account [see Eq. (63)]. Using this formula,
we have calculated Hsh(�, T ) for all T and all �. A simple
analytical formula for T = 0 and � � 1 is also derived, which
is given by Eq. (64). For the ideal dirty BCS superconductor
with � = 0, we have obtained Hsh(0, 0) = 0.795Hc0 at T = 0,
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which is slightly smaller than H clean
sh = 0.84Hc0 for a clean

limit superconductor with a large λ/ξ [39,40] and consistent
with the previous study [41] in which Hsh decreases with mfp
when mfp < 5.32ξ0.

According to our results, we can expect that the maximum
operating field of an SRF cavity made from a homogeneous
dirty BCS superconductor with � = 0 is given by Hsh(0, 0) =
0.795Hc0. Taking dirty Nb materials, for example, μ0Hc0 =
200 mT yields μ0Hsh(0, 0) = 160 mT, which translates into
the accelerating field Eacc = 37 MV/m for the Tesla-shaped
SRF cavity. This can be tested by measuring quench fields of
impurity-doped dirty Nb cavities with mfp � ξ . It should be
noted that Hsh can increase as impurities decreases [41], then
materials with mfp ∼ ξ [31–35] can have slightly higher Hsh

than 0.795Hc0.
Strong local heating (and resultant quenches) of SRF cav-

ities are often attributed to geometrical defects on the surface
[84–92]. Our theory suggest there can be another source of
local heating. Since real materials have a finite � [44,45] and
Hsh(�, 0) < Hsh(0, 0), an area with a large � on the inner
surface can be a hot spot even when H0 � Hsh(0, 0). For
instance, Hsh at an area with � = 0.3 on the surface of Nb3Sn
can be estimated as μ0Hsh = 160 mT at T = 0 from Fig. 15,
which is much smaller than the ideal value μ0Hsh(0, 0) =
430 mT. Here μ0Hc0 = 540 mT is used. Taking another exam-
ple, Hsh at an area with � = 0.15 on the surface of disordered
Nb materials can be estimated as μ0Hsh = 110 mT at T = 0,
which is smaller than the ideal dirty Nb by 30%. Such an
area with � > 0 can be a source of local heating and may
cause quenches. Simultaneous measurements of an onset field
of local heating and � at the hot spot can test the theory.
Materials processing that can reduce � would improve the
accelerating field of SRF cavities.

The multilayer structure [11,53,77–79] or a superconduc-
tor including inhomogeneous impurities in the vicinity of
the surface [11,42,53] can suppress the surface current and
enhance Hsh. The formula of Hsh given by Eq. (63) is not ap-
plicable to these structures because js(x) takes the maximum
at the inside (x0 > 0). Study on effects of � on Hsh in these
structures would be useful for comparison of the theory and
experiments [93–107].

The lower critical field Hc1 is also one of the important
quantities in SRF. Above Hc1, the Meisnner state is metastable
up to Hsh and superconductors can transition to the vortex
state. To investigate effects of � and other pair breakers on
Hc1 can be future work.
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APPENDIX A: DERIVATIONS OF EQS. (14), (16), and (17)

The θ parameter of the Matsubara Green’s function for the
zero-current state is given by

u = cot θ = ωn + �

�
. (A1)

Then the self-consistency equation at T = 0 can be written as

0 = lim
M→∞

[∫ (M+�)/�

�/�

du√
1 + u2

−
∫ M

0

dω√
ω2 + 1

]

= lim
M→∞

(
sinh−1 M + �

�
− sinh−1 M − sinh−1 �

�

)

= − ln � − sinh−1 �

�
, (A2)

resulting in Eq. (14). Here, the Matsubara sum 2πT
∑

ωn

is replaced with integration limM→∞
∫ M

0 dω, and dω = �du
and sinh−1 M = ln M (M → ∞) are used.

The thermodynamic critical field can be calculated from
Eqs. (4) and (5). At T = 0, we find

�(0, �, 0) = −N0�
2 lim

M→∞

∫ (M+�)/�

�/�

du

[
1√

1 + u2

+ 2u2

√
1 + u2

− 2u

]

= −N0�
2 lim

M→∞

[
−u2 + u

√
1 + u2

](M+�)/�

�/�

= −1

2
N0�

2

(
1 + 2�2

�2
− 2�

�

√
1 + �2

�2

)
, (A3)

resulting in Eq. (16).
The superfluid density can calculated from Eq. (6). At T =

0, we have

ns(0, �, 0)

ns0
= λ2

0

λ2(0, �, 0)
= 2

π

∫ ∞

0

dω

1 + u2

= 2�

π

∫ ∞

�/�

du

1 + u2
= �

(
1 − 2

π
tan−1 �

�

)
,

(A4)

namely, Eq. (17).

APPENDIX B: DERIVATIONS OF EQS. (21) and (22)

Generalizing the procedures in Appendix A, we can derive
Eqs. (21) and (22). The Mastubara Green’s function u = cot θ
for the current carrying state satisfies(

1 − ζ√
1 + u2

)
u = ωn + �

�
, (B1)

where ζ = s/�. The self-consistency equation at T = 0 is
given by

0 =
∫ ∞

0
dω

(
1

�
√

1 + u2
− 1√

ω2 + 1

)

=
∫ ∞

u0

du

(
1 − ζ

(1 + u2)3/2

)(
1√

1 + u2

− 1√
�−2 + [(1 − ζ/

√
1 + u2)u − �/�]2

)

= − ln � − sinh−1 u0 − ζ

2

(
π

2
− tan−1 u0 − u0

1 + u2
0

)
(B2)
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resulting in Eq. (21). Here u0(s, �) is defined by (1 −
ζ/

√
1 + u2

0)u0 = �/�.
The superfluid density can calculated from Eq. (6). At T =

0, we find

ns(s, �, 0)

ns0
= λ2

0

λ2(s, �, 0)
= 2

π

∫ ∞

0

dω

1 + u2

= 2�

π

∫ ∞

u0

du

(
1

1 + u2
− ζ

(1 + u2)
3
2

+ ζu2

(1 + u2)
5
2

)

= �

[
1 − 2

π
tan−1 u0 − 4ζ

3π

{
1 − u0(3 + 2u2

0)

2
(
1 + u2

0

) 3
2

}]
.

(B3)

This is Eq. (22).

APPENDIX C: DERIVATIONS OF EQS. (33)-(39)

For � � �(s, �, 0) − s, we can calculate js from
Eqs. (24)–(26), which takes the maximum when ∂ js/∂s = 0:(

π

4
− ζd − �

2�d

)(
1 − π

4
ζd − �

�d

)
= π2

8
ζd , (C1)

�d = exp

[
−πζd

4
− �

�d

]
, (C2)

ζd = sd/�d . (C3)

Here ∂�/∂s = −(π/4)[1 − (π/4)(s/�) − �/�]−1 is used.
Then the maximum value of js is given by

jd (�, T )|T →0 = √
πsd

[
�d − 4sd

3π
− 2�

π

]
Hc0

λ0
, (C4)

which is the depairing current density.
For � = 0, Eq. (C1) is a simple quadratic equation for ζd .

Then the solution is given by

ζd0 = 2

π
+ 3π

8
−

√(
2

π
+ 3π

8

)2

− 1 = 0.300, (C5)

�d0 = exp

[
−π

4
ζd0

]
= 0.790, (C6)

sd0 = �d0ζd0 = 0.237, (C7)

resulting in jd (0, 0) = 0.595Hc0/λ0, the well-known result
obtained by Maki [13,14] and Kupriyanov and Lukichev [36].

For 0 � � � 1, we can solve Eq. (C1) by expanding ζd

about ζd0. Substituting

ζd = ζd0 − α
�

�d0
(C8)

into Eq. (C1), we find

α = 1 + π/2 − 2(1 + 8/π )ζd0

2 + 3π2/8 − πζd0
= 0.365. (C9)

Then Eqs. (C2) and (C3) result in

�d = e− π
4 ζd − �

�d = �d0 exp

[(
πα

4
− 1

)
�

�d0

]
, (C10)

sd = �dζd = (sd0 − α�) exp

[(
πα

4
− 1

)
�

�d0

]
. (C11)

APPENDIX D: DERIVATIONS OF EQS. (50) and (57)

1. Fast measurement

For s � 1 and � � 1, the superfluid density is given by
Eq. (28). Then, Eq. (49) yields

Lk (sbias, �, 0)

Lk0
= 1 +

(
1 + 2

π

)
� +

(
π

4
+ 4

3π

)
sbias, (D1)

then

Lk (sbias, �, 0)

Lk (0, �, 0)
= 1 +

(
π

4
+ 4

3π

)
sbias. (D2)

Here the current-momentum relation, Eq. (29), can be written
as

sbias = 1

π

(
jbias

js0

)2

= 1

π

(
jd
js0

)2( jbias

jd

)2

= sd

[
�d (�) − 4sd (�)

3π
− 2�

π

]2( jbias

jd

)2

� sd0

(
�d0 − 4sd0

3π

)2( jbias

jd

)2

. (D3)

Substituting Eq. (D3) into Eq. (D2), we find

Lk (sbias, �, 0)

Lk (0, �, 0)
= 1 + Cfm

(
jbias

jd

)2

, (D4)

Cfm = 3π2 + 16

12π
sd0

(
�d0 − 4sd0

3π

)2

= 0.136. (D5)

2. Slow measurement

Substituting the superfluid density, Eq. (28), for s � 1 and
� � 1 into Eq. (55), we obtain

Lk (sbias, �, 0)

Lk0
= 1 +

(
1 + 2

π

)
� + 3

(
π

4
+ 4

3π

)
s, (D6)

then

Lk (sbias, �, 0)

Lk (0, �, 0)
= 1 + 3

(
π

4
+ 4

3π

)
s. (D7)

Using Eq. (D3), we find

Lk (s, �, 0)

Lk (0, �, 0)
= 1 + Csm

(
js
jd

)2

, (D8)

Csm = 3π2 + 16

4π
sd0

(
�d0 − 4sd0

3π

)2

= 0.544. (D9)

APPENDIX E: DERIVATIONS OF EQ. (64)

To evaluate Eq. (63) for small � regions, we rewrite
Eqs. (24) and (25) in more convenient forms. Let us expand
�(s, �, 0) around �(s, 0, 0) and write

�(s, �, 0) = �(s, 0, 0) − β�. (E1)
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Substituting Eq. (E1) into Eq. (24), we find

β =
(

1 − πs

4�(s, 0, 0)

)−1

. (E2)

Then Eq. (25) yields

ns(s, �, 0)

ns0
= �(s, 0, 0) − �

1 − πs
4�(s,0,0)

− 4s

3π
− 2�

π
. (E3)

Now Eq. (63) reduces to

(
Hsh(�, 0)

Hc0

)2

= π

∫ sd

0

[
�(s, 0, 0) − �

1 − πs
4�(s,0,0)

]
ds

−2

3
s2

d − 2�sd . (E4)

Here sd is given by Eq. (C11). To perform the integra-
tion, we change the variable from s to z = s/�(s, 0, 0).
Using d�(s, 0, 0)/ds = −(π/4)[1 − πs/4�(s, 0, 0)]−1 and
�(s, 0, 0) = e−πz/4, we find ds = dz/(dz/ds) = e−πz/4(1 −

πz/4)dz. Then the integration becomes∫ sd

0

[
�(s, 0, 0) − �

1 − πs
4�(s,0,0)

]
ds

=
∫ zd

0

[
e− πz

2

(
1 − πz

4

)
− �e− πz

4

]
dz

= 1

π

[
1 −

(
1 − πzd

2

)
e− πzd

2 − 4�(1 − e− πzd
4 )

]
, (E5)

where zd = sd/�(sd , 0, 0). To obtain zd , we expand
�(sd , 0, 0) around �d = �(sd , �, 0):

�(sd , 0, 0) = �d + η�. (E6)

Here �d is given by Eq. (C10). Substituting Eq. (E6)
into �(sd , 0, 0) = exp[−πsd/�(sd , 0, 0)] and using �d =
exp[−πsd/�d − �/�d ], we find

η =
(

1 − πζd

4

)−1

, (E7)

where ζd = sd/�d is given by Eq. (C8). Then we find

zd = sd

�d + η�
= ζd

1 − π
4 ζd

1 − π
4 ζd + �

�d

. (E8)
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