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Atomic responses to general dark matter-electron interactions
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In the leading paradigm of modern cosmology, about 80% of our Universe’s matter content is in the form of
hypothetical, as yet undetected particles. These do not emit or absorb radiation at any observable wavelengths,
and therefore constitute the so-called dark matter (DM) component of the Universe. Detecting the particles
forming the Milky Way DM component is one of the main challenges for astroparticle physics and basic
science in general. One promising way to achieve this goal is to search for rare DM-electron interactions
in low-background deep underground detectors. Key to the interpretation of this search is the response of
detectors’ materials to elementary DM-electron interactions defined in terms of electron wave functions’ overlap
integrals. In this work, we compute the response of atomic argon and xenon targets used in operating DM search
experiments to general, so far unexplored DM-electron interactions. We find that the rate at which atoms can be
ionized via DM-electron scattering can in general be expressed in terms of four independent atomic responses,
three of which we identify here for the first time. We find our new atomic responses to be numerically important
in a variety of cases, which we identify and investigate thoroughly using effective theory methods. We then use
our atomic responses to set 90% confidence level (C.L.) exclusion limits on the strength of a wide range of
DM-electron interactions from the null result of DM search experiments using argon and xenon targets.
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I. INTRODUCTION

One of the major unsolved mysteries in modern physics
is the elusive nature of dark matter (DM) [1]. Revealed via
the gravitational pull it exerts on stars, galaxies, light and
the Universe at large, DM is widely believed to be made of
hypothetical particles which have so far escaped detection [2].
Detecting the particles forming the Milky Way DM compo-
nent and understanding their properties in terms of particle
physics models is a top priority in astroparticle physics [3].
The experimental technique known as direct detection will
play a major role in elucidating the nature of DM in the
coming years [4]. It searches for signals of DM interactions
in low background deep underground detectors [5,6]. Such
interactions could produce observable nuclear recoils via DM-
nucleus scattering or induce electronic transitions via DM-
electron scattering in the detector material [7,8]. DM particles
that are gravitationally bound to our galaxy do not have
enough kinetic energy to produce an observable nuclear recoil
if their mass is approximately below 1 GeV/c2. On the other
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end, they have enough kinetic energy to ionize an atom in a
target material or induce the transition from the valence to the
conduction band in a semiconductor crystal if their mass is
above about 1 MeV/c2 [9]. Motivated by recent experimental
efforts in the field of astroparticle physics [10], here we focus
on DM particles of mass in the 1–1000 MeV/c2 range and
on their interactions with the electrons in materials used in
direct detection experiments. In the literature, this framework
is referred to as the “sub-GeV” or “light DM” scenario [11].

Materials used in direct detection experiments which have
set limits on the strength of DM-electron interactions include
dual-phase argon [12] and xenon [13–15] targets, as well
as germanium and silicon semiconductors [9,16–22], and
sodium iodide crystals [23]. Furthermore, graphene [24,25],
3D Dirac materials [26,27], polar crystals [28], scintillators
[29,30], as well as superconductors [31–33] have also been
proposed recently as target materials to probe DM-electron
interactions.

In order to interpret the results of direct detection exper-
iments searching for signals of DM-electron interactions, it
is crucial to understand quantitatively how detector materials
respond to general DM-electron interactions. Materials’ re-
sponses to DM-electron interactions can be quantified in terms
of the overlap between initial (before scattering) and final
(after scattering) electron wave functions. The stronger the
material response, the larger the expected rate of DM-electron
interactions in the target.

In the pioneering works [8,9,18], detector materials’ re-
sponses to DM-electron interactions have been computed
under the assumption that the amplitude for DM scattering
by free electrons only depends on the initial and final state
particle momenta through the momentum transferred in the
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scattering.1 While this restriction significantly simplifies the
calculation of the predicted DM-electron interaction rate in
a given detector, it prevents computations of physical ob-
servables whenever the scattering amplitude exhibits a more
general momentum dependence. A more general dependence
on the particle momenta occurs in a variety of models for DM
[36], including those where DM interacts with electrons via
an anapole or magnetic dipole coupling [37].

In this paper, we calculate the response of materials used
in operating direct detection experiments to a general class of
nonrelativistic DM-electron interactions. We build this class
of nonrelativistic interactions by using effective theory meth-
ods developed in the context of DM-nucleus scattering, e.g.,
Refs. [36,38–40]. In terms of dependence on the incoming and
outgoing particle momenta, this class of interactions generates
the most general amplitude for the nonrelativistic scattering
of DM particles by free electrons. The predicted amplitude is
compatible with momentum and energy conservation, and is
invariant under Galilean transformations (i.e., constant shifts
of particle velocities) and three-dimensional rotations. At the
same time, it depends on the incoming and outgoing particle
momenta through more than only the momentum transferred.
It can explicitly depend on a second, independent combination
of particle momenta, as well as on the DM particle and
electron spin operators. We present our results focusing on
DM scattering from electrons bound in isolated argon and
xenon atoms, since these are the targets used in leading
experiments such as XENON1T [15] and DarkSide-50 [12].
However, most of the expressions derived in this work also
apply to other target materials, such as semiconductors. They
do not apply to scenarios where incoming DM particles induce
collective excitations, such as magnons or plasmons [41,42].

Within this general theoretical framework, we find that the
rate of DM-induced electronic transitions in a given target
material can be expressed in terms of four, independent ma-
terial response functions. They depend on scalar and vectorial
combinations of electron momenta and wave functions. We
numerically evaluate these response functions for argon and
xenon targets, and use them to set 90% C.L. exclusion limits
on the strength of DM-electron interactions from the current
null result of the XENON10 [43], XENON1T [15], and
DarkSide-50 [12] experiments. We also find that the contri-
bution of each material response function to the rate of DM-
induced electronic transitions is weighted by a corresponding
combination of particle momenta which is independent of the
initial and final electron wave functions. We refer to these
weights as “DM response functions,” in analogy to previous
studies in the context of DM-nucleus scattering [39].

Previous works could only identify one of the four material
response functions found here because they assumed that the
amplitude for DM scattering by free electrons solely depends
on the momentum transfer, e.g., Ref. [18]. This previously
found response function is not only generated by DM-electron
scattering. It also arises when materials are probed with
known particles, such as photons or electrons which interact

1For more recent works on the theoretical framework of so-called
spin-independent DM-electron interactions and a comparison of
targets, we also refer to Refs. [34,35], respectively.

via the electromagnetic force. In contrast, the three novel
response functions found in this work can only arise from
a general treatment of DM-electron interactions. We will
show this using an effective theory approach to DM-electron
interactions. Specific examples of scenarios where the new
response functions appear include models where DM interacts
via an anapole or magnetic dipole coupling to photons.

These general considerations lead us to the intriguing con-
clusion that DM particles may represent a new type of probe
for the electronic structure of a sample material. At the mo-
ment, the information we can get about the actual electronic
structure of a material is limited by the probes we can use. If
alongside standard probes (electrons, photons, alpha particles,
etc.) we could use a particle that interacts in a totally different
way with electrons, we might be able to get as yet “hidden”
features of the electronic structures that would be missed with
standard probes. While this would not change how a material
responds to standard particles, which ultimately is what is
currently relevant for applications in the real world, it would
help us to know more about the material, and the more we
know, the easier is to design and produce new materials with
desired properties of technological relevance. Consequently,
the detection of DM particles at direct detection experiments
might not only solve one of the most pressing problems in
astroparticle physics, but also open up a new window on the
exploration of materials’ responses to external probes. From
this perspective, the results of this work constitute the first step
within a far-reaching program which has the potential to open
an entirely new field of research.

While the notion of DM as a probe for the electronic
structure of a sample material would require good knowledge
about the local properties of the galactic DM halo, the novel
material responses identified here only depend on the materi-
als’ electronic structure and are not degenerate (i.e., cannot be
confused) with variations in the assumed local DM velocity
distribution.

This work is organized as follows. In Sec. II, we derive a
general expression for the rate of DM-induced electronic tran-
sitions in target materials which we then specialize to the case
of general, nonrelativistic DM-electron interactions, focusing
on argon and xenon as target materials. In Sec. III, we express
the rate of DM-induced electronic transitions in terms of DM
and atomic response functions, while in Sec. IV, we apply
our results to compute physical observables for argon and
xenon targets and set limits on the strength of DM-electron
interactions from the current null results of the XENON10,
XENON1T and DarkSide-50 experiments. We present our
conclusions in Sec. V and provide the details of our calcula-
tions in the appendices. In addition, we provide the numerical
code used to evaluate the atomic response functions [44].

Throughout this paper, we employ natural units, i.e., c =
h̄ = 1.

II. DARK MATTER-INDUCED ELECTRONIC
TRANSITIONS

In this section, we derive a general expression for the rate
of electronic transitions induced by the scattering of Milky
Way DM particles in target materials (Sec. II A). This result
applies to arbitrary DM-electron interactions (including rela-
tivistic interactions) and target materials. We then specialize
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FIG. 1. Illustration of elastic (left) and inelastic (middle, right) DM-electron scatterings. In the inelastic case, the electron gets excited by
DM, transitioning from an atomic bound state with negative energy E1 to a final state with higher energy E2, which is either still negative for
excitation (middle) or positive for ionization (right).

our general expression to the case of nonrelativistic DM-
electron interactions (Sec. II B) and to argon and xenon as
target materials (Sec. II C). We use these results to model
the response of atoms to general DM-electron interactions in
Sec. III and set limits on the strength of such interactions from
the null results of operating direct detection experiments in
Sec. IV.

A. Electron transition rate

We start by calculating the rate of transitions from an initial
state |i〉 ≡ |e1, p〉 = |e1〉 ⊗ |p〉 to a final state | f 〉 ≡ |e2, p′〉 =
|e2〉 ⊗ |p′〉, where initial and final DM particle states are la-
beled by the corresponding tridimensional momenta, p and p′,
respectively, while |e1〉 (|e2〉) denotes the initial (final) elec-
tron state. Here, |e1〉 and |e2〉 are eigenstates of the electron’s
energy with eigenvalue E1 and E2, but not of momentum. This
is illustrated in the middle and right panel of Fig. 1. Following
[18], single-particle states are normalized as

〈p|p〉 = (2π )3δ(3)(0) =
∫

d3x ≡ V , (1)

and, similarly, e.g., 〈e1|e1〉 = V . The divergent volume factor,
V , will not appear in the expressions for physical observables.

The first nontrivial term in the Dyson expansion of the S-
matrix element corresponding to the |i〉 → | f 〉 transition is

S f i = −i〈 f |
∫

d4x HI (x)|i〉

= −i
∫

d4x 〈p′, e2|eiH0tHS (x)e−iH0t |e1, p〉

= −i
∫

d3x 〈p′, e2|HS (x)|e1, p〉
∫

dt ei(E f −Ei )t

= −i(2π )δ(E f − Ei )
∫

d3x 〈p′, e2|HS (x)|e1, p〉

= −i(2π )δ(E f − Ei )
∫

d3x
∫

d3k

(2π )3

×
∫

d3k′

(2π )3
〈e2|k′〉〈k′, p′|HS (x)|p, k〉〈k|e1〉, (2)

where HI (x) (HS (x)) is the interaction Hamiltonian density
in the interaction (Schrödinger) picture at the spacetime point
x, and H0 is the Hamiltonian of the DM-electron system with

HI (x) set to zero which obeys H0|i〉 = Ei|i〉 and H0| f 〉 =
E f | f 〉. We also used the identity∫

d3k

(2π )3
|k〉〈k| = 1, (3)

where |k〉 are eigenstates of the free-electron Hamiltonian.
The asymptotic states |i〉 and | f 〉 are eigenstates of H0 because
HI is assumed to be different from zero within a finite
time window only (the so-called adiabatic hypothesis). In the
nonrelativistic limit, the corresponding eigenvalues, denoted
here by Ei and E f , respectively, are given by

Ei = mχ + me + mχ

2
v2 + E1, (4)

E f = mχ + me + |mχv − q|2
2mχ

+ E2, (5)

where q = p − p′ is the momentum transferred in the scatter-
ing, v (v) is the initial DM particle velocity (speed), mχ and
me are the DM and electron mass, respectively, and E1 (E2) is
the energy of the initial (final) electron bound state. Defining
�E1→2 ≡ E2 − E1, the energy difference E f − Ei reads

E f − Ei = �E1→2 + q2

2mχ

− qv cos θqv, (6)

where θqv is the angle between the vectors q and v, while q =
|q|. Notice that S f i has dimension [energy]−6, because of our
choice of single-particle state normalization, Eq. (1).

Let us now consider the process |k, p〉 → |k′, p′〉, where
a DM particle of initial (final) momentum p (p′) scatters
elastically off a free electron of initial (final) momentum k (k′)
as shown in the left panel of Fig. 1. The first nontrivial term in
the Dyson expansion of the S-matrix element corresponding
to this process is

Sfree
f i = −i(2π )δ(Ẽ f − Ẽi )

∫
d3x 〈p′, k′|HS (x)|k, p〉, (7)

where we defined Ẽ f ≡ Ek′ + Ep′ and Ẽi ≡ Ek + Ep. The
above S-matrix element can equivalently be expressed as
follows:

Sfree
f i = i(2π )4δ(Ẽ f − Ẽi )δ

(3)(p′ + k′ − p − k)

× 1√
2Ep′2Ek′2Ek2Ep

M(k, p, k′, p′), (8)
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where M is the amplitude for DM scattering by a free
electron. Compared to Eq. (4.73) of [45], Eq. (8) differs
by a factor of 1/

√
2Ep′2Ek′2Ek2Ep because of our different

normalization of single-particle states (see Eq. (1)). By com-
paring Eq. (7) with Eq. (8), we obtain the following identity:∫

d3x 〈p′, k′|HS (x)|k, p〉

= −(2π )3δ(3)(p′ + k′ − p − k)
M(k, p, k′, p′)√
2Ep′2Ek′2Ek2Ep

, (9)

where in the nonrelativistic limit 2Ep′2Ek′2Ek2Ep = 16m2
χ m2

e .
By substituting the free scattering result of Eq. (9) back into
the general S-matrix element in Eq. (2), we obtain

S f i = (2π )δ(E f − Ei )
1

4mχme

∫
d3k

(2π )3
〈e2|k + q〉〈k|e1〉

×iM(k, p, k + q, p − q), (10)

where we used the nonrelativistic expression for√
2Ep′2Ek′2Ek2Ep. We now introduce the electron

wave functions ψ1(k) = 〈k|e1〉/
√

V and ψ∗
2 (k + q) =

〈e2|k + q〉/√V . Using Eqs. (1) and (3), a simple calculation
shows that the wave functions ψ1 and ψ2 are normalized to
one. In terms of ψ1 and ψ2, Eq. (10) can be written as follows:

S f i = (2π )δ(E f − Ei )
V

4mχme

∫
d3k

(2π )3
ψ∗

2 (k + q)ψ1(k)

×iM(k, p, k + q, p − q). (11)

The probability for the transition |e1, p〉 → |e2, p′〉 is then
given by |S f i|2/V 4, where we divide by V 4 in order to obtain
unit-normalized single-particle states from Eq. (1) (remember
that S f i has dimension [energy]−6). Consistently, the probabil-
ity, P (p), that a DM particle with initial momentum p and a
bound electron in the |e1〉 state scatter to a group of final states
with DM momenta in the infinitesimal interval (p′, p′ + dp′)
and the electron in the |e2〉 state is given by |S f i|2/V 4 times
the number of states in the (p′ + dp′) interval, namely,

P (p) = |S f i|2
V 4

V d3 p′

(2π )3

= |S f i|2
V 4

V d3q

(2π )3

= (2π )δ(E f − Ei )
T d3q

(2π )3V

1

16m2
χ m2

e

×
∣∣∣∣
∫

d3k

(2π )3
ψ∗

2 (k + q)M(k, p, q)ψ1(k)

∣∣∣∣
2

, (12)

where the divergent factor T = ∫ dt arises when squaring the
one-dimensional Dirac delta in Eq. (11). While T enters in
Eq. (12) explicitly, physical observables will not depend on
T . In order to simplify the notation, in Eq. (12) we replaced
M(k, p, k + q, p − q) with M(k, p, q). The rate per unit
DM number density for the transition |e1, p〉 → |e2, p′〉 with
p′ within (p′, p′ + dp′) is therefore given by P (p)V/T .
Indeed, there is just one DM particle with initial momentum
p within (p′, p′ + dp′) in a phase-space element of three-
dimensional volume V [46].

Finally, integrating P (p)V/T over the initial DM particle
velocity distribution fχ and the transferred momentum q, and
multiplying by the local DM number density, nχ , 2 for the total
rate of DM-induced |e1〉 → |e2〉 transitions, we find

R1→2 = nχ

16m2
χm2

e

×
∫

d3q

(2π )3

∫
d3v fχ (v)(2π )δ(E f − Ei )|M1→2|2.

(13)

Here, we defined the squared electron transition amplitude,

|M1→2|2, in terms of ψ1, ψ2 and the free scattering amplitude,

|M1→2|2 ≡
∣∣∣∣
∫

d3k

(2π )3
ψ∗

2 (k + q)M(k, p, q)ψ1(k)

∣∣∣∣
2

, (14)

where a bar denotes an average (sum) over initial (final) spin
states.

In the following two sections, we motivate and explore
the implications of our assumptions for M, ψ1, and ψ2.
Here, we model M within a nonrelativistic effective theory of
DM-electron interactions (Sec. II B) and use initial and final
electron wave functions derived for isolated atoms in argon
and xenon targets [47] for ψ1 and ψ2 (Sec. II C).

B. Nonrelativistic dark matter-electron interactions

In this subsection, we investigate the nonrelativistic limit
of DM-electron interactions. Our goal is to show that the
standard assumption in the context of DM direct detection,
M = M(q), is highly restrictive. Rather than basing our
argument on a specific model, we build a general nonrelativis-
tic effective theory where the active degrees of freedom are
electrons and DM particles. The basic symmetries governing
the DM-electron scattering, together with the assumption that
both the DM particle and the electron are nonrelativistic, will
determine the allowed interactions between the active degrees
of freedom in our effective theory, and allow us to show
that M = M(q) is in general a too restrictive assumption.
The symmetries that govern the nonrelativistic DM-electron
scattering are the invariance under time and space transla-
tions (leading to energy and momentum conservation), the
invariance under Galilean transformations (namely, constant
shifts of particle velocities) and the invariance under three-
dimensional rotations. Galilean invariance replaces the in-
variance under Lorentz boosts of relativistic theories. Let us
now explore the constraints set by these symmetries on the
amplitude for nonrelativistic DM-electron scattering.

While the nonrelativistic scattering of Milky Way DM
particles by free electrons is characterized by the three-
dimensional momenta k (k′) and p (p′) of the incoming
(outgoing) electron and DM particle, respectively, momen-
tum conservation and Galilean invariance imply that only
two out of the four three-dimensional vectors are actually
independent. A convenient choice of independent momenta is

2The details of the DM density and velocity distributions are
summarized in Appendix E.
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q = p − p′, the momentum transferred in the scattering, and

v⊥
el = (p + p′)

2mχ

− (k + k′)
2me

(15)

= v − q
2μe

− k
me

, (16)

where μe denotes the reduced mass of the DM particle and
the electron, and v ≡ p/mχ is the incoming DM velocity. In
the case of elastic DM-electron scattering, v⊥

el · q = 0 because
of energy conservation. In contrast, when DM scatters from
electrons inelastically (and initial and final electrons populate
different energy levels), v⊥

el · q �= 0. In this case, one could
define

v⊥
inel ≡ v − q

2mχ

− �E1→2

q2
q, (17)

such that v⊥
inel · q = 0 by construction. While M can equiva-

lently be expressed in terms of v⊥
inel or v⊥

el [36], we find that it is
more convenient to use v⊥

el as a basic variable when matching
explicit models to the nonrelativistic effective theory built in
this section [compare for example Eqs. (18) and (21) below].

To summarize, within our effective theory the free ampli-
tude for nonrelativistic DM-electron scattering reads

M(k, k′, p, p′) = M(q, v⊥
el ), (18)

where we emphasized the dependence of the amplitude M on
the vectors q and v⊥

el . In addition to q and v⊥
el , M can also de-

pend on matrix elements of the electron and DM particle spin
operators, denoted here by Sχ and Se, respectively. Within the
nonrelativistic effective theory of DM-electron interactions
developed here, the amplitude M does not explicitly depend
on the properties that characterize the particle mediating the
interactions between DM and electrons, such as the mediator
mass, mmed. There are two scenarios in which our effective
theory approach can be applied. In the first one, mmed is much
larger than the momentum transfer in DM-electron scattering
(contact interaction). In the second one, the mediator is effec-
tively mass-less (long-range interaction). These are the two
limiting cases that we investigate here. For mmed ∼ |q|, M is
model dependent, and some of the considerations made here
do not apply.

In Eq. (18), we are assuming that both DM particle and
electron are nonrelativistic. Indeed, Milky Way DM particles
have a typical speed of the order of 10−3 in natural units,
and the typical speed of electrons bound in atoms is αZeff ,
where α = 1/137 and Zeff is 1 for electrons in outer shells
(the most interesting ones from a detection point of view) and
larger for inner shells. Notice also that for mχ � 1 MeV/c2

the electron is the fastest and lightest particle in the nonrela-
tivistic DM-electron scattering, which implies that the typical
momentum transferred in the scattering is of the order of
Zeffαme [18]. Equation (18) can then be expanded in powers
of |q|/me and |v⊥

el |. Each term in this expansion of M must
be both Galilean invariant and scalar under three-dimensional
rotations. At linear order in v⊥

el and at second order in q,
there are fourteen combinations of q, v⊥

el , Sχ , and Se fulfilling
the above requirements when DM has spin 1/2 [38,39,48].
Specifically, these three-dimensional scalar combinations are
operators in the DM/electron spin space. They correspond to

TABLE I. At second order in q and at linear order in v⊥
el , Sχ ,

and Se, the first fourteen operators in this table are the only three-
dimensional scalars that one can build while preserving Galilean
invariance and momentum conservation when DM has spin 1/2.
Here, 1χ and 1e are 2 × 2 identity matrices in the DM particle and
electron spin space, respectively. The operators O17, O18, O19, and
O20 were found to arise from the nonrelativistic reduction of models
for spin 1 DM with a vector mediator. We follow the numbering
used for nonrelativistic DM-nucleon interactions [40], and neglect
O2, which is quadratic in v⊥

el , and O16, which can be expressed as
a linear combination of O12 and O15. For further details, see, for
example, Ref. [36].

O1 = 1χ1e O11 = iSχ · q
me
1e

O3 = iSe · ( q
me

× v⊥
el )1χ O12 = Sχ · (Se × v⊥

el )

O4 = Sχ · Se O13 = i(Sχ · v⊥
el )(Se · q

me
)

O5 = iSχ · ( q
me

× v⊥
el )1e O14 = i(Sχ · q

me
)(Se · v⊥

el )

O6 = (Sχ · q
me

)(Se · q
me

) O15 = iO11[(Se × v⊥
el ) · q

me
]

O7 = Se · v⊥
el1χ O17 = i q

me
· S · v⊥

el1e

O8 = Sχ · v⊥
el1e O18 = i q

me
· S · Se

O9 = iSχ · (Se × q
me

) O19 = q
me

· S · q
me

O10 = iSe · q
me
1χ O20 = (Se × q

me
) · S · q

me

the first fourteen entries in Table I. The remaining entries were
found to arise from the nonrelativistic reduction of models
for spin 1 DM coupling to nucleons via a vector mediator
[40]. We include them in Table I after replacing nucleon
with electron operators. Based on the above considerations,
the amplitude M can in general be expressed as the linear
combination3

M(q, v⊥
el ) =

∑
i

(
cs

i + c	
i

q2
ref

|q|2
)

〈Oi〉, (19)

where the reference momentum, qref , is given by qref ≡ αme,
the interaction operators Oi are defined in Table I (with i
running on subsets of Table I, depending on the DM particle
spin), and the coefficients cs

i (c	
i ) refer to contact (long-range)

interactions. The case m2
med  |q|2 corresponds to the limit

of contact interaction, c	
i = 0. In contrast, for m2

med � |q|2
the interaction between DM and electrons is long-range, i.e.,
cs

i = 0. Angle brackets in Eq. (19) denote matrix elements
between the two-dimensional spinors ξλ and ξ s (ξλ′

and
ξ s′

) associated with the initial (final) state electron and DM
particle, respectively. For example, 〈O1〉 = ξ s′

ξ sξλ′
ξλ. An

analogous expansion for M was found previously in studies
of nonrelativistic DM-nucleon interactions (see e.g. [36] for a
review).

It is important to mention that the distinction between
contact and long-range interactions in Eq. (19) is not
this straight-forward in general. While t-channel scattering
processes mediated by a scalar or vector boson are associated
with either long- or short-range interactions depending on the

3The standard treatment of DM-electron interactions corresponds
to M(q) = c1FDM(q2) 〈O1〉, where the so-called DM form factor
FDM can be either 1 (contact interaction) or 1/q2 (long-range interac-
tion).
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mediator mass, mixed cases are also frequent. For example, as
we shall see in Sec. IV B, magnetic dipole interactions, medi-
ated by the massless photon, correspond to a combination of
two “contact” couplings cs

i and two “long-range” couplings
c	

i .
As an illustrative example, let us compute M for DM-

electron interactions arising from the DM anapole moment
and match the result of this calculation to the nonrelativistic
expansion in Eq. (19). The DM anapole moment is poten-
tially important being the leading coupling between DM and
photons if DM is made of Majorana fermions. It generates
DM-electron interactions via the electromagnetic current. The
Lagrangian of the model reads

L = 1

2

g

�2
χγ μγ 5χ ∂νFμν, (20)

where χ is a Majorana fermion describing the DM particle, g
is a dimensionless coupling constant, � a mass scale and Fμν

the electromagnetic field strength tensor. The corresponding
nonrelativistic scattering amplitude is given by

M = 4eg

�2
mχme

{
2(v⊥

el · ξ †s′
Sχξ s)δλ′λ

+ ge(ξ †s′
Sχξ s) ·

(
i

q
me

× ξ †λ′
Seξ

λ

)}
, (21)

where ge is the electron g-factor, while ξλ and ξ s are two-
component spinors for the electron and DM particle, re-
spectively. The first line in Eq. (21) depends on v⊥

el and is
proportional to 〈O8〉, whereas the second line is linear in
q and proportional to 〈O9〉. This example shows that the
assumption commonly made in the interpretation of direct
detection experiments searching for DM-electron interactions,
M(q, v⊥

el ) = M(q), is likely restrictive, and contributions to
M depending on v⊥

el are in general expected.
Let us now calculate the squared transition amplitude

assuming that the expansion in Eq. (19) applies. This will lead
us to introduce two atomic form factors depending on ψ1, ψ2

and M. We start by noticing that the free electron scattering
amplitude in Eq. (19) can also be written as

M(q, v⊥
el ) = M(q, v⊥

el )k=0

+
(

k
me

)
· me∇kM(q, v⊥

el )k=0, (22)

where we used v⊥
el = v − k/me − q/(2μχe). This is not an

approximation because Eq. (19) is at most linear in v⊥
el .

Substituting Eq. (22) into the squared transition amplitude in
Eq. (14), we find

|M1→2|2

=
{
|M(q, v⊥

el )|2| f1→2(q)|2

+ 2me�[M(q, v⊥
el ) f1→2(q)∇kM∗(q, v⊥

el ) · f ∗
1→2(q)]

+ m2
e |∇kM(q, v⊥

el ) · f1→2(q)|2
}

k=0

. (23)

While the first term in Eq. (23) has already been considered in
previous studies, the second and third terms are new, and arise

from our general modeling of the free electron scattering am-
plitude. Indeed, in the analysis of direct detection experiments
searching for DM-electron interaction signals, it is standard
to assume that the DM-electron free scattering amplitude M
depends solely on the momentum transfer q and not on the
velocity v⊥

el and, therefore, on the electron’s initial momentum
k. In this case, the scattering amplitude M(q) can be taken out
of the integral in Eq. (13), and only the first term in Eq. (23)

contributes to the squared transition amplitude |M1→2|2. The
advantage of this standard assumption is that M = M(q)
implies a convenient factorization of atomic physics and DM
physics. Following the notation of Ref. [18], for M = M(q)
one can define a scalar atomic form factor,

f1→2(q) =
∫

d3k

(2π )3
ψ∗

2 (k + q)ψ1(k), (24)

and obtain the transition amplitude, M1→2(q), by multiplying
the free scattering amplitude by the form factor f1→2(q),

M1→2(q) = M(q) × f1→2(q). (25)

Since the momentum space wave functions ψ1 and ψ2 have
dimension [energy]−3/2, f1→2(q) is a dimensionless quantity.

Besides the well-known scalar atomic form factor of
Eq. (24), a new, vectorial atomic form factor appears in
Eq. (23),

f1→2(q) =
∫

d3k

(2π )3
ψ∗

2 (k + q)

(
k

me

)
ψ1(k). (26)

The details of the evaluation of the scalar, f1→2, and vectorial,
f1→2, atomic form factors are presented in Appendix B 3.

C. Ionization of isolated atoms in argon and xenon targets

Our treatment of DM-electron scattering in target materials
has so far been general in terms of initial and final state
electron wave functions, ψ1 and ψ2, respectively. From now
onward, however, we specialize our results to the case of
DM-induced ionization of isolated atoms. In this case, the
initial state (formerly simply denoted by “1”) is a bound state
characterized by the principal, angular and magnetic quantum
numbers (n, 	, m). The final state (“2”) is a free electron
state at large distance from the atom, but still affected by
the remaining ion’s presence at low distance. It is defined by
the quantum numbers (k′, 	′, m′), where k′ is the asymptotic
momentum of the electron and 	′, m′ are its angular and
magnetic quantum numbers. We obtain the total ionization
rate Rn	

ion of a full atomic orbital (n, 	) by summing the
transition rate R1→2 over all occupied initial electron states
and integrating over the allowed final electron states.

For the initial bound electrons, the rate has to be summed
over all values of the magnetic quantum number m and
multiplied by 2 to account for the spin degeneracy. In order
to account for all the allowed electron final states, we have to
act on R1→2 with the integral operator [18]

V

2

∞∑
	′=0

	′∑
m′=−	′

∫
k′3d ln Ee

(2π )3
. (27)

Here, Ee = k′2/(2me) is the ionized electron’s final energy,
and the number of final states with asymptotic momentum
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FIG. 2. The ionization form factor | f n	
ion(k′, q)|2 defined in Eq. (35) for the outer electron orbital of argon (left) and xenon (right).

between k′ and k′ + dk′ is V d3k′/(2π )3. Summarizing, the
total ionization rate for the (n, 	) orbital is given by

Rn	
ion =

	∑
m=−	

∞∑
	′=0

	′∑
m′=−	′

∫
d ln Ee

V k′3

(2π )3
R1→2, (28)

and the corresponding final state electron ionization energy
spectrum by

dRn	
ion

d ln Ee
=

	∑
m=−	

∞∑
	′=0

	′∑
m′=−	′

V k′3

(2π )3
R1→2. (29)

The divergent factor V in Eq. (29) cancels with the 1/V factor
arising from the normalization of ψk′m′	′ (see Appendix B 4).
Substituting Eq. (13), we can rewrite the spectrum as

dRn	
ion

d ln Ee
= nχ

128π m2
χm2

e

×
∫

dq q
∫

d3v

v
fχ (v)�(v − vmin)

∣∣Mn	
ion

∣∣2,
(30)

where, following Ref. [18], we integrated over cos θqv while
assuming that fχ (v) = fχ (v), and then replaced fχ (v) with
fχ (v) in the final expression.4

In order to emphasise the connection to previous work
[9,13,14], we can extract a differential ionization cross section
from Eq. (30), i.e., the number of events per unity of flux,5

dσ n	
ion

d ln Ee
= 1

128πm2
χ m2

ev
2

∫
dq q

∣∣Mn	
ion

∣∣2, (31)

4This approach significantly simplifies the evaluation of Eq. (13)
and is justified by the fact that we are not interested in a directional
analysis of the predicted signal. If Eq. (13) is to be used in directional
analyses of energy spectra, this simplified treatment of the velocity
integral should be refined along the lines discussed in Ref. [27].

5In the derivation of Eq. (13) we refrained from introducing a
scattering cross section. Properly defining a scattering cross section
between an incoming DM particle and a bound electron, not being
in a momentum eigenstate, is hampered by the fact that the relative
velocity is not well defined. Instead one would have to treat the whole
atom as a multi-particle target, whose center of mass is indeed in a
total momentum eigenstate.

such that

dRn	
ion

d ln Ee
= nχ

∫
d3v v fχ (v)�(v − vmin)

dσ n	
ion

d ln Ee
. (32)

The squared ionization amplitude, |Mn	
ion|2, appearing in

Eq. (30) is defined as follows:

∣∣Mn	
ion

∣∣2 ≡ V
4k′3

(2π )3

	∑
m=−	

∞∑
	′=0

	′∑
m′=−	′

|M1→2|2, (33)

and can explicitly be expressed in terms of the amplitude
M(q, v⊥

el ),

∣∣Mn	
ion

∣∣2 =
{

|M(q, v⊥
el )|2

∣∣ f n	
ion(k′, q)

∣∣2

+ V
4k′3

(2π )3

	∑
m=−	

∞∑
	′=0

	′∑
m′=−	′

×[2me�[M(q, v⊥
el ) f1→2(q)∇kM∗(q, v⊥

el ) · f∗
1→2(q)]

+m2
e |∇kM(q, v⊥

el ) · f1→2(q)|2]

}
k=0; v·q/(qv)=ξ

. (34)

Here, we defined ξ = �E1→2/(qv) + q/(2mχv). To further
clarify the connection to the results and notation of previous
works, in Eq. (34) we introduced the dimensionless ionization
form factor,

∣∣ f n	
ion(k′, q)

∣∣2 = V
4k′3

(2π )3

∞∑
	′=0

	∑
m=−	

	′∑
m′=−	′

| f1→2(q)|2. (35)

This ionization form factor is depicted in Fig. 2 for the outer
atomic orbitals of argon and xenon.

In Eq. (30), the minimum DM speed, vmin, required to
deposit an energy of �E1→2 given a momentum transfer q
is

vmin = �E1→2

q
+ q

2mχ

. (36)

Finally, the wave functions of the initial and final state elec-
trons can be expanded in spherical harmonics,

ψn	m(x) = Rn	(r)Y m
	 (θ, φ), (37)

ψk′	′m′ (x) = Rk′	′ (r)Y m′
	′ (θ, φ). (38)
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Their radial parts, Rn	(r) and Rk′	′ (r), are given in
Appendix B 4 for the case of isolated argon and xenon atoms
[47]. While these wave functions have also been used in
previous works on DM direct detection [12], we note that
they are not fully applicable to dense liquid argon and xenon
systems [49]. Our neglect of the difference in electronic struc-
ture between the isolated atoms and the liquid state makes
our results conservative since the electron binding energies
in liquid nobles are smaller than those of the isolated atoms.
Furthermore, this treatment of the wave functions can be im-
proved by including relativistic corrections [23,50] and many-
body effects [51]. However, both improvements, in particular
the relativistic corrections, are expected to have limited impact
on theoretical predictions for sub-GeV DM.

III. GENERAL DARK MATTER AND ATOMIC
RESPONSE FUNCTIONS

In this section, we reformulate the expressions found in
Sec. II C in order to obtain compact equations which are

suitable for numerical applications. By doing so, we also in-
vestigate and characterize the atomic response to DM-electron
interactions of the general form considered here. We start by
observing that the squared ionization amplitude, |Mn	

ion|2, can
in general be rewritten as follows:

∣∣Mn	
ion

∣∣2 =
4∑

i=1

Rn	
i

(
v⊥

el ,
q

me

)
W n	

i (k′, q). (39)

Here, we define a set of DM response functions Rn	
i (v⊥

el ,
q

me
),

which are functions of the couplings in Eq. (19), and atomic
response functions W n	

i (k′, q), which encapsulate the infor-
mation on the electron’s initial and final state wave functions.6

By means of Eq. (39), we are again able to disentangle
the particle physics input from that of the atomic physics.
However, our general treatment of DM-electron interactions
predicts not one but four atomic response functions. At this
point, we summarize the final expressions for the DM and
atomic response functions. Their detailed derivations can be
found in Appendixes A and B.

The four DM response functions, Rn	
i (v⊥

el ,
q

me
), are given by

Rn	
1

(
v⊥

el ,
q

me

)
≡ c2

1 + c2
3

4

(
q

me

)2

(v⊥
el )

2 − c2
3

4

(
q

me
· v⊥

el

)2

+ c2
7

4
(v⊥

el )
2 + c2

10

4

(
q

me

)2

+ jχ ( jχ + 1)

12

{
3c2

4 + c2
6

(
q

me

)4

+ (4c2
8 + 2c2

12

)
(v⊥

el )
2 + (2c2

9 + 4c2
11 + 2c4c6

)( q
me

)2

+ (4c2
5 + c2

13 + c2
14 − 2c12c15

)( q
me

)2

(v⊥
el )

2

+ c2
15

(
q

me

)4(
v⊥

el

)2 − c2
15

(
q

me

)2(
v⊥

el · q
me

)2

+ (−4c2
5 + 2c13c14 + 2c12c15

)(
v⊥

el · q
me

)2}
, (40a)

Rn	
2

(
v⊥

el ,
q

me

)
≡
(

q
me

· v⊥
el

)[
−c2

7

2

(
q

me

)−2

− jχ ( jχ + 1)

6

{(
4c2

8 + 2c2
12

)( q
me

)−2

+ (c13 + c14)2

}]
, (40b)

Rn	
3

(
v⊥

el ,
q

me

)
≡ c2

3

4

(
q

me

)2

+ c2
7

4
+ jχ ( jχ + 1)

12

{
4c2

8 + 2c2
12 + (4c2

5 + c2
13 + c2

14 − 2c12c15
)( q

me

)2

+ c2
15

(
q

me

)4
}

, (40c)

Rn	
4

(
v⊥

el ,
q

me

)
≡ −c2

3

4
+ jχ ( jχ + 1)

12

{
−4c2

5 − c2
15

(
q

me

)2

+ 2c12c15 + 2c13c14

}
, (40d)

where ci ≡ cs
i + (q2

ref/|q|2)c	
i . They indirectly depend on

the (n, 	) quantum numbers through the variable ξ =
�E1→2/(qv) + q/(2mχv), see also Appendix C. In the above
expressions, v⊥

el is evaluated at k = 0 due to the nonrela-
tivistic expansion of M. The four atomic response functions
W n	

i (k′, q), which we define next in Eq. (41), are one of the
main results of this work:

W n	
1 (k′, q) ≡ V

4k′3

(2π )3

	∑
m=−	

∞∑
	′=0

	′∑
m′=−	′

| f1→2(q)|2, (41a)

W n	
2 (k′, q) ≡ V

4k′3

(2π )3

	∑
m=−	

∞∑
	′=0

	′∑
m′=−	′

q
me

· f1→2(q)f ∗
1→2(q),

(41b)

6This factorization is analogous to that introduced previously, e.g.,
in Ref. [39], in the treatment of nonrelativistic DM-nucleus scattering
[39].

W n	
3 (k′, q) ≡ V

4k′3

(2π )3

	∑
m=−	

∞∑
	′=0

	′∑
m′=−	′

|f1→2(q)|2, (41c)

W n	
4 (k′, q) ≡ V

4k′3

(2π )3

	∑
m=−	

∞∑
	′=0

	′∑
m′=−	′

∣∣∣∣ q
me

· f1→2(q)

∣∣∣∣
2

.

(41d)

The first atomic response function W n	
1 (k′, q) can be iden-

tified with the ionization form factor | f n	
ion(k′, q)|2 commonly

used in the sub-GeV DM detection literature [18]. The atomic
response functions W n	

j (k′, q), j = 2, 3, 4 were not consid-
ered in previous studies and can only arise from a gen-
eral treatment of DM-electron interactions. While W n	

4 /W n	
1

roughly scales as particle momenta to the power of 4, and
W n	

2,3/W n	
1 as particle momenta to the power of 2, numerically

we find that the products Rn	
j W n	

j are often of comparable
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FIG. 3. The four atomic responses for the outer atomic orbital of argon. Above the white dotted/dashed/solid line on the left plots, the
minimum speed vmin in Eq. (36) exceeds the maximum speed vmax = v⊕ + vesc for a DM mass of 10 MeV/100 MeV/ → ∞, respectively (see
Appendix C and E). The top left panel shows the same function as the left panel of Fig. 2, but now with the final state electron asymptotic
momentum k′ on the y-axis. Note the different color bar scales in the four panels.

magnitude for several DM-interaction types (see below for
further details).

In order to clarify the physical meaning of the new atomic
responses, let us evaluate them in the plane-wave limit, where

ψ1(x) = exp(ik · x)/
√

V and ψ2(x) = exp(ik′ · x)/
√

V are
eigenstates of the electron momentum operator with eigen-
values k and k′, respectively. In this limit, initial and final
state electron are not bound to an atom and propagate as free

FIG. 4. The four atomic responses for the outer atomic orbital of xenon. The white lines have the same meaning as in Fig. 3. Again, the
function in the top left panel was shown before in the right panel of Fig. 2. However, here the final state electron asymptotic momentum k′ is
on the y axis.
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FIG. 5. Selected ionization spectra for argon for contact and long-range interactions with coupling c6 (top), and for xenon for contact and
long-range interactions with coupling c13 (bottom), for three different DM masses. The faint vertical lines indicate the kinematic cutoff of the
spectra.

particles. Substituting ψ1(x) and ψ2(x) in Eqs. (41a)–(41d),
we find

| f1→2(q)|2 = (2π )3

V
δ(3)(q + k − k′),

q
me

· f1→2(q)f1→2(q) = −
(

k
me

· q
me

)
(2π )3

V
δ(3)(q+k − k′),

|f1→2(q)|2 =
∣∣∣∣ k
me

∣∣∣∣
2 (2π )3

V
δ(3)(q + k − k′),

∣∣∣∣ q
me

· f1→2(q)

∣∣∣∣
2

=
∣∣∣∣ k
me

· q
me

∣∣∣∣
2 (2π )3

V
δ(3)(q + k − k′).

(42)

In the plane-wave limit, we can define a laboratory frame in
which the initial electron is at rest and, therefore, k = 0. In
this frame, W n	

j (k′, q) = 0, j = 2, 3, 4 and Eq. (39) reduces
to the expression for the modulus squared of the amplitude for
DM scattering by a pointlike proton found in Ref. [52] (with
the proton mass replaced by the electron mass).

Consequently, the new atomic responses describe distor-
tions in the ionization spectrum induced by the fact that the
initial state electron obeys a momentum distribution with a
finite dispersion, being the electron bound to an atom.

Figures 3 and 4 show the four atomic response functions,
W n	

j , j = 1, . . . , 4, for the 3p and 5p atomic orbitals of argon
and xenon, respectively.

IV. FIRST APPLICATION TO DIRECT DETECTION

The nonrelativistic effective theory of DM-electron inter-
actions presented in the previous sections culminated in a gen-
eral expression for the electron ionization energy spectrum of
isolated atoms due to generic DM-electron interactions given
by the Eqs. (30) and (39). This main result allows us to make
predictions for direct searches of sub-GeV DM particles by
using an almost model-independent framework and a generic
expression for the scattering amplitude in Eq. (19) in terms of
effective operators Oi.

In the following sections, we apply this effective theory
to evaluate ionization spectra. There are a number of large-
scale dual-phase time-projection-chamber (TPC) detectors
with xenon and argon targets, which is why we focus on these
two elements. By re-interpreting the observational data by
XENON10 [13,43], XENON1T [15], and DarkSide-50 [12],
we can set exclusion limits on either the effective coupling
constants cs

i and c	
i of Eq. (19) in front of individual opera-

tors, or on the parameters of specific DM models generating
combinations of interaction operators, as in the case of DM
with anapole and magnetic dipole couplings. In the latter case,
one has to compute the elastic scattering amplitude between
a DM particle and an electron, take the nonrelativistic limit,
and identify the different contributions with one or several
of the effective operators in Table I. We have already shown
the example of anapole interactions, which corresponded to a
combination of O8 and O9, in Sec. II B.

It is also worth pointing out how the most-used interaction
model in the sub-GeV DM literature, i.e., the “dark photon”
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FIG. 6. Integrated ionization spectra for individual DM-electron interaction operators divided by the corresponding coupling constant
squared. We present results for argon (purple) and xenon (blue), as well as for contact interactions (top) and long-range interactions (bottom).
A comparison of the different histograms shows the operators’ relative strength when coupling constants are set to the same value. As indicated
for the case of the O1 operator, we assume a DM mass of 10/100/1000 MeV for the left/middle/right histograms.

model, emerges in this framework. The dark photon model ex-
tends the Standard Model of particle physics by an additional
U(1) gauge group under which the DM particle is charged.
Interactions between the DM particle and electrically charged
particles in the Standard model arise from a “kinetic mixing”
term in the interaction Lagrangian between the photon and
the gauge boson A′ associated with the new U(1) gauge group
[9,53], i.e., εFμνF ′μν . Here, ε is a coupling constant and F ′

μν

the A′ field strength tensor. This model can arguably be con-
sidered as the “standard model” of sub-GeV DM detection.
The new massive gauge boson A′ is called the dark photon
and acts as the interaction’s mediator. Its mass is usually
assumed to be either much larger than the typical momentum
transfer qref in the scattering process (contact interaction), or
much lower (long-range interaction). By considering the non-
relativistic DM-electron scattering amplitude, this interaction
can be identified with O1, and the connection between the
effective couplings in Eq. (19) and fundamental parameters
is given by

cs
1 = 4mχmegDeε

m2
A′

, c	
1 = 0, (43)

or

c	
1 = 4mχmegDeε

q2
ref

, cs
1 = 0, (44)

for contact and long-range interactions, respectively. Here, gD

is the gauge coupling of the additional “dark” U(1) gauge
group, while e denotes the charge of the electron.

As anticipated, the scattering amplitude arising from a
given DM model can correspond to either one or several of
the effective operators in Table I. This is why we start by
focusing on single operators, compute and study the corre-
sponding ionization spectra, and set exclusion limits on the
constants cs

i and c	
i for individual Oi. To illustrate the case of

amplitudes being linear combinations of two or more of the
effective operators, we study three relevant exemplary cases
of DM-electron interactions, the anapole, magnetic dipole,
and electric dipole interaction. These arise as leading and
next-to-leading terms in an effective theory expansion of the
DM coupling to the ordinary photon [37]. We briefly review
these models in Appendix D.

A. Individual effective operators

Let us consider the case where the free electron scattering
amplitude, M, consists of only one of the Oi operators, or,
in other words, only one of the couplings cs,	

i in Eq. (19) is
different from zero. On the one hand, this is instructive and
allows us to study the impact of single operators in isolation.
On the other hand, this situation might also arise from specific
models for DM interactions, with the dark-photon model
being the most obvious example.

From Table I, we can identify the operators that generate
the three new atomic responses, i.e., W n	

j (k′, q), j = 2, 3, 4,
by their dependence on v⊥

el . They are O3, O5, O7, O8, O12,
O13, O14, and O15. Figure 5 shows the total ionization spec-
trum, dRion/d ln Ee, for two example operators, O6 (top pan-
els) and O13 (bottom panels). In the case of the O6 operator,
we compute the ionization spectrum for argon. For the O13

operator, we focus on xenon. Furthermore, the left panels in
Fig. 5 refer to contact interactions, whereas the right panels
refer to long-range interactions. Finally, in all panels solid,
long-dashed and short-dashed lines refer to different DM
particle masses. We compute the total ionization spectrum
by summing the ionization spectrum for each atomic orbital
(n, 	), Eq. (30), over the five outermost occupied orbitals for
xenon (4s, 4p, 4d , 5s, and 5p), and all occupied orbitals for
argon (1s, 2s, 2p, 3s, and 3p). From the overall scale of
the spectra, we can draw two conclusions. Firstly, we find
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FIG. 7. The four Rn	
j W n	

j , j = 1, . . . , 4 contributions to the ionization energy spectrum (here generically denoted as “responses”) for the

two example couplings cs,	
7 (left) and cs,	

15 (right). We present our results for argon (above) and xenon (below), as well as for contact interactions
with mχ = 10 MeV (left) and long-range interactions with mχ = 100 MeV (right). A dagger † indicates negative contributions.

that ionization spectra are smaller in the case of long-range
interactions than for contact interactions due to the additional
q2

ref/q2 factor in the scattering amplitude. This suppression
is more severe for large DM masses than for mχ around 1
MeV/c2. Secondly, we find that the magnitude of the ioniza-
tion spectrum associated with O6 (and scattering on argon) is
comparable with that of O13 (and scattering on xenon). This is
expected, because O6 is quadratic in q while O13 is linear in
q and v⊥

el , and at the same time scattering on argon and xenon
occurs with comparable probabilities.

To make the last observation more precise and complete,
we now extend the above comparison to the 14 operators in
Table I describing spin 1/2 DM. For each of these operators,
we compute the associated ionization spectrum considering
scattering on both argon and xenon targets. Figure 6 shows
the integrated ionization spectra in argon and xenon that we
find by integrating dRion/d ln Ee from zero up to the max-
imum kinematically allowed energy. We present our results
for three different DM particle masses, namely 10, 100, and
1000 MeV/c2. By comparing the magnitude of the ionization
spectra for a given operator, we find that the integrated ioniza-
tion spectra in argon and xenon are always comparable, while
the xenon ionization rate slightly exceeds the rate in argon in
most but not all cases.

By comparing the ionization spectra of different operators
for a given target material, we identify O1 and O4 as the
“leading-order” (LO) operators. This is expected, since the

corresponding terms in Eq. (40) are not suppressed by powers
of q or v⊥

el , and, in addition, they generate the first atomic
response function W n	

1 , which is numerically found to be the
one of largest magnitude. The operators O7 to O12 can be
regarded as “next-to-leading-order” (NLO) operators, in that
they are linear in either q or v⊥

el . Similarly, the “next-to-next-
to-leading-order” (NNLO) operators (O5, O6, O13, and O14)
are quadratic in q or in a combination of q and v⊥

el . Compared
to the LO and NLO cases, the total ionization spectrum of
NNLO operators is further suppressed. Lastly, the only N3LO
operator we include in our analysis is O15, which is quadratic
in q and linear in v⊥

el . The ionization spectrum due to this
operator is the lowest and suppressed by up to ten orders of
magnitude compared to O1 for identical couplings.

This hierarchy of operators is essentially identical to that
found when classifying DM-nucleus interactions within the
effective theory of DM-nucleon interactions [38,39]. In that
context, the equivalent of the O1 and O4 operators defined
here correspond to the “familiar” spin-independent (SI) and
spin-dependent (SD) interactions – a standard benchmark
in the analysis of DM-nucleus scattering data. Similarly to
the SI/SD paradigm dominating the literature on direct DM
searches via nuclear recoils for a long time, the dark photon
model underlies most studies of sub-GeV DM searches nowa-
days.

Another interesting question in the context of isolated
operators regards the relative contribution of the four different
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FIG. 8. Exclusion limits (90% C.L.) from XENON10 [13,43] (blue), XENON1T [15] (dark blue), and DarkSide-50 [12] (purple) on a
selection of individual effective couplings for both contact and long-range interactions. The dashed gray lines indicate constant reference cross
sections σ e, see Eq. (45). Note that the constraints on long-range interactions depend on a choice of the reference momentum transfer qref .

terms in Eq. (39). Each of these terms is the product of a DM
response function given in Eq. (40) and an atomic response
function given in Eq. (41). In order to answer the above
question, in Fig. 7, we show the ionization energy spectrum
for two example operators, each of which generates multiple
atomic responses. Specifically, we show the total argon and
xenon ionization spectra for O7, contact interaction and mχ =
10 MeV/c2 (left panels), and for O15, long-range interaction
and mχ = 100 MeV/c2 (right panels). As one can see from
Fig. 7, we find that in the case of contact interactions of
type O7 the four terms in Eq. (40) give comparable contri-
butions to the total ionization spectrum. This is the result of
a compensation between DM and atomic response functions.
Indeed, while the first atomic response function W n	

1 generally
dominates over the second and third, which are in turn larger
than W n	

4 , in the case of contact interactions of type O7

we find an inverse hierarchy for the DM response functions
Rn	

j , j = 1, 2, 3, which scale as (v⊥
el )

2, (v⊥
el · q)me/q2 and q0,

respectively. In this respect, the operator O7 is not unique
(see for example O8, just to name one). From this example,
we conclude that the four terms in Eq. (41) can in general
contribute in a comparable manner and must therefore be
taken into account in the interpretation of experimental data.

The contribution of an individual response may also be
negative, an example of which is shown in the right panels
of Fig. 7 for the long-range ionization spectrum of O15.7 The
effective operator O15 generates the DM responses 1, 3, and
4. In this example, the contribution to the total ionization
spectrum from the first atomic response function, W n	

1 , is sup-
pressed by the first DM response function, Rn	

1 , which renders
the Rn	

1 W n	
1 contribution to Eq. (41) completely negligible. In

addition, the contribution of Rn	
4 W n	

4 is as anticipated negative,

7Negative contributions are marked with a dagger (†).

which originates from the sign of the c15 term in Rn	
4 in

Eq. (40d).
We conclude this subsection with an analysis of present

exclusion limits on the cs,	
i coupling constants from direct

detection data. Despite tremendous experimental efforts by a
multitude of direct detection experiments (see Ref. [4] for a
review), no conclusive DM signal has been established, and
DM continues to evade direct searches to this day. The largest
of these experiments are dual-phase time-projection chambers
(TPC) with xenon and argon targets, which is why we are
focusing on these elements in this paper. Here, we re-interpret
the null results by the xenon target experiments XENON10
[43] and XENON1T [15], as well as the argon experiment
DarkSide-50 [12] and set 90% C.L. exclusion limits on the
individual effective coupling constants. The details underlying
the computation of the limits for these three experiments are
summarized in Appendix E.

Figure 8 shows our 90% C.L. exclusion limits for three
selected interaction operators, one LO (O1), one NLO (O8),
and one NNLO operator (O13), both for contact (left) and
long-range interactions (right).8 The dashed gray lines indi-
cate constant values of a reference DM-electron scattering
cross section that we define as follows:

σ e ≡ μ2
χec2

i

16πm2
χm2

e

. (45)

With this definition the constraints on c1 can be directly
compared with previous works which described the DM-
electron interaction using the dark photon model, see, e.g.,
Ref. [12–14].

8Due to the chosen parametrization of the scattering amplitude
in Eq. (19), it is important to remember that the limits on the
dimensionless long-range interaction coupling constants c	

i depend
on the choice for the reference momentum transfer qref = αme.
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FIG. 9. Ionization spectra for anapole, magnetic dipole, and electric dipole interactions shown in black. We set the DM mass to 100 MeV
and focus on xenon. The different blue lines show the contributions of the individual effective operator. Note that in the case of magnetic
dipole interactions, the sum of the four individual contributions exceeds the total spectrum due to a negative interference between O4 and O6

in Eq. (40a).

B. Anapole, magnetic dipole, and electric dipole interactions

As an illustration of how different combinations of ef-
fective operators, Oi, can arise from specific models for
DM-electron interactions, we consider three examples: the
anapole, magnetic dipole, and electric dipole interaction.
Electric and magnetic dipole interactions have previously
been studied in the context of direct DM searches via electron
scatterings [13,16,54]. These studies used different approxi-
mations and did not exploit our new atomic response func-
tions.

In Appendix D, we provide explicit Lagrangians for these
types of interactions. Therein we also present the associated
nonrelativistic DM-electron scattering amplitudes, which we
then match on to the effective theory expansion in Eq. (19).
In this way we can read off the connection between the
Lagrangian parameters and our effective couplings.

Let us start with the anapole interaction. From the ampli-
tude in Eq. (21), we find that this model generates a linear
combination of the O8 and O9 operators in the nonrelativistic
limit. Only contact interactions are generated and the corre-
sponding effective coupling constants are given by

cs
8 = 8ememχ

g

�2
, (46a)

cs
9 = −8ememχ

g

�2
, (46b)

where g is a dimensionless coupling constant, and � is the en-
ergy scale at which the anapole interaction term is generated.

For magnetic dipole interactions, we find that the scattering
amplitude in Eq. (D5) can be expressed as a linear combina-
tion of four interaction operators, namely O1, O4, O5, and O6.
Here, the effective coupling constants are given by

cs
1 = 4eme

g

�
, (47a)

cs
4 = 16emχ

g

�
, (47b)

c	
5 = 16em2

emχ

q2
ref

g

�
, (47c)

c	
6 = −16em2

e mχ

q2
ref

g

�
. (47d)

The situation is particularly simple for electric dipole in-
teractions, with the scattering amplitude given in Eq. (D6). It
is linear in O11 with the single effective coupling,

c	
11 = 16emχ m2

e

q2
ref

g

�
. (48)

Figure 9 shows the xenon ionization spectra for anapole,
magnetic dipole, and electric dipole interactions. In the three
cases we assume a DM particle mass of 100 MeVc2. Different
blue lines correspond to contributions from the individual
interaction operators to the total ionization spectrum (shown
as a black solid line). Most interesting is the spectrum of
the magnetic dipole interaction. While one might expect the
interaction operator O1 to dominate the spectrum (since it
is one of the two LO operators), its contribution is in fact
negligible due to the small relative size of the four effective
coupling constants. This can be seen e.g. by the ratio cs

1/cs
4 ≈

10−3 for mχ = 100 MeV/c2.
Another interesting aspect of the magnetic dipole interac-

tion spectrum is the fact that the contribution of the single
operator O4 exceeds the total result. This is explained by the
interference term between O4 and O6 in the first DM response
function in Eq. (40a), whose overall contribution is negative
due to the sign of c	

6 in Eq. (47).
We conclude this chapter by presenting our 90% C.L.

exclusion limits on the ratio between dimensionless coupling
constant g and energy scale � (or �2) for the anapole,
magnetic dipole, and electric dipole interaction. Our exclusion
limits are shown in Fig. 10 and based on a re-interpretation of
the null results reported by the XENON10, XENON1T, and
DarkSide-50 experiments.9 For these specific DM-electron in-
teraction models, we find that exclusion limits from DarkSide-
50 are generically less stringent, as compared to those arising
from XENON10 and XENON1T data. While XENON10
always sets the most stringent limits for DM masses below
about 20–50 GeV/c2 (depending on the assumed interaction),
the minimum coupling constant value that XENON10 can
exclude is comparable to the minimum coupling probed by
XENON1T only for electric dipole interactions.

9The details of these experiments can be found in Appendix E.
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FIG. 10. Constraints (90% C.L.) on anapole, magnetic dipole, and electric dipole interactions (see Appendix D) from the null result
reported by XENON10 [13,43] (light blue), XENON1T [15] (dark blue), and DarkSide-50 [12] (purple).

V. SUMMARY

We computed the response of isolated xenon and argon
atoms to general, nonrelativistic DM-electron interactions.
This is a key input to the interpretation of DM-electron
scattering data. For example, dual-phase argon and xenon
targets are used in direct detection experiments searching for
signals of nonrelativistic interactions between Milky Way DM
particles and electrons in the target materials. We modelled
the DM-electron scattering by formulating a nonrelativistic
effective theory of DM-electron interactions which signifi-
cantly extends the currently favoured framework, namely, the
dark photon model. Within our effective theory description of
DM-electron interactions, the free amplitude for DM-electron
scattering not only depends on the momentum transferred in
the scattering (as in the dark photon model), it can also depend
on a second, independent combination of particle momenta
as well as on the DM particle and electron spin operators.
Quantitatively, we defined the atomic response to an external
probe in terms of the overlap between the initial and final state
electron wave functions.

As a first application of the atomic responses found in this
work, we computed the rate at which Milky Way DM particles
can ionize isolated argon and xenon atoms in target materials
used in operating direct detection experiments. We found that
the final state electron ionization energy spectrum can in
general be expressed as the sum of four independent terms.
Each of these terms is given by the product between an atomic
response function, which depends on the initial and final state
electron wave functions, and a DM response function, which
only depends on kinematic variables, coupling constants, and
the energy gap between initial and final electron states. We in-
vestigated the structure and relative strength of the four terms
contributing to the total ionization spectrum, describing under
what circumstances they can be generated in nonrelativistic
DM-electron scattering processes in argon and xenon targets.
The effective theory approach developed in this work has
proven very useful in the classification and characterization of
the individual atomic responses and contributions to the total
ionization energy spectrum. At the same time, the generality
of the formalism developed here allows for straightforward
applications to most specific DM interaction models.

We then used the argon and xenon atomic responses found
here to compute 90% C.L. exclusion limits on the strength
of DM-electron interactions from the null result reported by
the XENON10, XENON1T, and DarkSide-50 direct detec-

tion experiments. DarkSide-50 is the only direct detection
experiment considered here that uses an argon target. For
contact DM-electron interactions, we found that XENON10
generically sets the most stringent constraints for DM particle
masses below O(10) MeV and that XENON1T is the leading
experiment at larger masses. The DM particle mass above
which XENON1T dominates depends on the specific DM-
electron interaction model. For long-range interactions, we
found cases in which XENON10 sets the strongest exclusion
limits on the entire mass window explored here. Both for con-
tact and long-range interactions, the DarkSide-50 experiment
currently sets 90% C.L. exclusion limits which are generically
less stringent than those from XENON10 and XENON1T.

Considering the plethora of proposed DM-electron scat-
tering targets, the results presented in this work should be
thought of as a first step within a far-reaching program which
aims at exploring the response to general DM-electron in-
teractions of condensed matter systems used in (or proposed
for) DM direct detection experiments. Indeed, the expressions
derived in Secs. II A and II B apply not just to isolated atoms,
but also more generally to other target materials, such as
semiconductor crystals and quantum materials.

Finally, we would like to stress that only one of the four
atomic response functions computed here can arise from
standard electromagnetic interactions between external elec-
trons or photons and electrons bound to target materials. The
remaining three atomic responses can only be generated when
DM is the external probe used to investigate the properties of
condensed matter systems. From this perspective, our findings
show that the detection of Milky Way DM particles has the
potential to open up a new window on the exploration of
materials’ responses to external probes, revealing as of yet
hidden properties of matter.
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APPENDIX A: DERIVATION OF THE ATOMIC AND DM
RESPONSE FUNCTIONS

This Appendix serves as a bridge between Eqs. (34) and
(39). In particular, we identify and derive the atomic and DM
response functions given in Eqs. (40) and (41). This involves
the computation of the three terms in Eq. (34), given more
explicitly by

|M(q, v⊥
el )|2 = 1

2 jχ + 1

1

2 je + 1

∑
spins

|M(q, v⊥
el )|2, (A1)

2me�[M∇kM∗ · f1→2(q)f∗
1→2(q)] = 1

2 jχ + 1

1

2 je + 1

∑
spins

2me�[M∇kM∗ · f1→2(q)f∗
1→2(q)], (A2)

m2
e |∇kM(q, v⊥

el ) · f1→2(q)|2 = 1

2 jχ + 1

1

2 je + 1

∑
spins

m2
e |∇kM(q, v⊥

el ) · f1→2(q)|2, (A3)

where we average (sum) over initial (final) spins of the DM particle and the electron. For the amplitude, we substitute the general
expression of Eq. (19), where we consider the first 14 operators listed in Table I.

When averaging (summing) the terms in Eqs. (A1) to (A3) over the initial (final) spin of the DM particle and the electron, the
nonvanishing terms are of the form [52]

1

2 ji + 1

∑
s,s′

〈 jis|

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Si| jis′〉 · 〈 jis′|Si

A · Si| jis′〉 〈 jis′|B · Si

A × Si| jis′〉 · 〈 jis′|B × Si

A × Si| jis′〉 · 〈 jis′|Si

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

| jis〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

A · B/3

2A · B/3

0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

ji( ji + 1). (A4)

Here, s(s′) is the initial (final) spin’s index of either the electron or DM particle, and A and B are two general vectors. All cross
terms which are linear in Si vanish. It is important to keep in mind that the scalar product q · v⊥

el , which occurs frequently, does
not vanish since we are not considering an elastic scattering process.

1. Response 1

We evaluate the spin sums in Eq. (A1) for the scattering amplitude including the first 14 effective operators. For the evaluation
of the electron and DM spin sums, we make use of the identities of Eq. (A4). We find

|M(q, v⊥
el )|2 = |c1|2 + |c3|2

4

(
q

me
× v⊥

el

)2

+ |c7|2
4

(v⊥
el )

2 + |c10|2
4

(
q

me

)2

+ �(c7c∗
10)

2

(
q

me
· v⊥

el

)

+ jχ ( jχ + 1)

12

{
3|c4|2 + (4|c5|2 − 2�(c12c∗

15))

(
q

me
× v⊥

el

)2

+ |c6|2
(

q
me

)4

+ (4|c8|2 + 2|c12|2)(v⊥
el )

2

+ (2|c9|2 + 4|c11|2 + 2�(c∗
4c6))

(
q

me

)2

+ (|c13|2 + |c14|2)

(
q

me

)2

(v⊥
el )

2 + |c15|2
(

q
me

)2( q
me

× v⊥
el

)2

+ 2

[
�(c4c∗

13) + �(c4c∗
14) + 4�(c8c∗

11) + 2�(c∗
9c12) + (�(c6c∗

13) + �(c6c∗
14))

(
q

me

)2

+ �(c∗
13c14)

(
q

me
· v⊥

el

)](
q

me
· v⊥

el

)}
. (A5)

For real couplings (ci = c∗
i for all i), the squared amplitude simplifies to

|M(q, v⊥
el )|2 = c2

1 + c2
3

4

(
q

me

)2

(v⊥
el )

2 − c2
3

4

(
q

me
· v⊥

el

)2

+ c2
7

4
(v⊥

el )
2 + c2

10

4

(
q

me

)2

+ jχ ( jχ + 1)

12

{
3c2

4 + c2
6

(
q

me

)4

+ (4c2
8 + 2c2

12

)
(v⊥

el )
2 + (2c2

9 + 4c2
11 + 2c4c6

)( q
me

)2

+ (4c2
5 + c2

13 + c2
14 − 2c12c15

)( q
me

)2

(v⊥
el )

2 + c2
15

(
q

me

)4

(v⊥
el )

2

− c2
15

(
q

me

)2(
v⊥

el · q
me

)2

+ (−4c2
5 + 2c13c14 + 2c12c15

)(
v⊥

el · q
me

)2}
. (A6)
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The square of the amplitude can be identified as the first DM response function,

Rn	
1

(
v⊥

el ,
q

me

)
= |M(q, v⊥

el )|2, (A7)

which was given in Eq. (40a) since the first atomic response function is of the form

W n	
1 (k′, q) ∝ | f1→2(q)|2, (A8)

as we saw in Eq. (41a).

2. Response 2

By using the spin-sum identities of Eqs. (A4), the second term given by Eq. (A2) results in

2me�[M∇kM∗ · A] =
[ |c3|2

2

((
q

me
· v⊥

el

)
q

me
−
(

q
me

)2

v⊥
el

)
− |c7|

2
v⊥

el

]
· �(A) + 1

2

(
q

me
× v⊥

el

)
· �((c3c∗

7 + c∗
3c7)A)

+ 1

2

q
me

· �(c∗
7c10A) + jχ ( jχ + 1)

6

{[(
4|c5|2 + |c15|2

(
q

me

)2)(( q
me

· v⊥
el

)
q

me
−
(

q
me

)2

v⊥
el

)

−
(

4|c8|2 + 2|c12|2 + (|c13|2 + |c14|2)

(
q

me

)2)
v⊥

el

]
· �(A) − q

me
· �(c4c∗

13A) − q
me

· �(c4c∗
14A)

+ 4

(
q

me
× v⊥

el

)
· �((c5c∗

8 + c∗
5c8)A) −

(
q

me

)2 q
me

· �(c6c∗
13A) −

(
q

me

)2 q
me
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14A)

+ 2
q

me
· �(c9c∗

12A) + 4
q

me
· �(c11c∗

8A) −
(

q
me

× v⊥
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)
· �((c12c∗

13 + c∗
12c13)A)

+
(

q
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× v⊥
el
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· �((c12c∗

14 + c∗
12c14)A) −

((
q

me
· v⊥

el

)
q

me
−
(

q
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)2

v⊥
el

)
· �((c12c∗
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12c15)A)

−
(

q
me
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)
q

me
· �((c13c∗

14 + c∗
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me

)2( q
me
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· �((c14c∗

15 + c∗
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}
. (A9)

To keep the expressions more manageable, we introduced the vector A ≡ f1→2(q)f∗
1→2(q). For real couplings and a real vector

A, this simplifies to

2me�[M∇kM∗ · A] = q
me

· A

[
c2

3

2

(
q

me
· v⊥

el

)
+ jχ ( jχ + 1)

6

(
q

me
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5 − 2(c12c15 + c13c14) + c2
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(
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q
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7
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− 4c2
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(
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me
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(
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me
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− 4c2
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13 + c2

14

)( q
me

)2

+ 2c12c15

(
q

me

)2}]
. (A10)

The first line corresponds to the second response in Eq. (39), since we recognize the second atomic response function,

W n	
2 (k′, q) ∝

	∑
m=−	

∞∑
	′=0

	′∑
m′=−	′

q
me

· A. (A11)

Indeed, the vector A′ ≡∑mm′ A is real which justifies our assumption above.
Furthermore, it is not obvious that the second term in Eq. (A10), which is proportional to (v⊥

el · A), becomes part of the second
DM response function as well. The reason for this is the fact that the vector A′ is (anti)parallel to q, which allows us to write

v⊥
el · A′ = q

me
· A′
(

q
me

)−2 q
me

· v⊥
el . (A12)

Hence, we obtain the final expression for the second DM response function,

Rn	
2

(
v⊥

el ,
q

me

)
=
(

q
me

· v⊥
el

)[
−c2

7

2

(
q

me

)−2

− jχ ( jχ + 1)

6

{(
4c2

8 + 2c2
12

)( q
me

)−2

+ (c13 + c14)2

}]
. (A13)

This is the expression we presented in Eq. (40b) of this paper. Note that the c3, c5, and c15 terms as well as the c12c15 interference
term cancel due to the use of Eq. (A12).

033195-17



CATENA, EMKEN, SPALDIN, AND TARANTINO PHYSICAL REVIEW RESEARCH 2, 033195 (2020)

3. Responses 3 and 4

Lastly, we evaluate the third term in a similar fashion. Substituting the 14 first operators into Eq. (A3), we find

m2
e |∇kM(q, v⊥

el ) · f1→2(q)|2

=
( |c3|2

4

(
q

me

)2

+ |c7|2
4

)
|f1→2(q)|2 − |c3|2

4

∣∣∣∣ q
me

· f1→2(q)

∣∣∣∣
2

+ jχ ( jχ + 1)

12

{
|f1→2(q)|2

[
(4|c5|2 + |c13|2 + |c14|2 − 2�(c∗

12c15))

(
q

me

)2

+ 4|c8|2 + 2|c12|2 + |c15|2
(

q
me

)4]

+
∣∣∣∣ q
me

· f1→2(q)

∣∣∣∣
2[

− 4|c5|2 − |c15|2
(

q
me

)2

+ 2�(c∗
12c15) + 2�(c∗

13c14)

]

+ q
me

· i

(
f1→2(q) × f∗

1→2(q)

)[
8�(c3c∗

7 ) + 8�(c5c∗
8 ) − 2�(c12c∗

13) + 2�(c∗
12c14) − 8�(c∗

14c15)

(
q

me

)2]}
. (A14)

For real couplings, this becomes

= |f1→2(q)|2
[

c2
3

4

(
q

me

)2

+ c2
7

4
+ jχ ( jχ + 1)

12

{
4c2

8 + 2c2
12 + (4c2

5 + c2
13 + c2

14 − 2c12c15
)( q

me

)2

+ c2
15

(
q

me

)4
}]

+
∣∣∣∣ q
me

· f1→2(q)

∣∣∣∣
2
[
−c2

3

4
+ jχ ( jχ + 1)

12

{
−4c2

5 − c2
15

(
q

me

)2

+ 2c12c15 + 2c13c14

}]

+ q
me

· i
(
f1→2(q) × f∗

1→2(q)
)[ jχ ( jχ + 1)

12

{
8c3c7 + 8c5c8 − 2c12c13 + 2c12c14 − 8c14c15

(
q

me

)2
}]

. (A15)

From the definition of the third and fourth atomic response functions in Eqs. (41c) and (41d),

W n	
3 (k′, q) ∝

	∑
m=−	

∞∑
	′=0

	′∑
m′=−	′

|f1→2(q)|2, (A16)

W n	
4 (k′, q) ∝

	∑
m=−	

∞∑
	′=0

	′∑
m′=−	′

∣∣∣∣ q
me

· f1→2(q)

∣∣∣∣
2

, (A17)

we can directly assign the first and second line of Eq. (A15) to the third and fourth DM response functions,

Rn	
3

(
v⊥

el ,
q

me

)
≡ c2

3

4

(
q

me

)2

+ c2
7

4
+ jχ ( jχ + 1)

12

{
4c2

8 + 2c2
12 + (4c2

5 + c2
13 + c2

14 − 2c12c15
)( q

me

)2

+ c2
15

(
q

me

)4}
, (A18)

Rn	
4

(
v⊥

el ,
q

me

)
≡ −c2

3

4
+ jχ ( jχ + 1)

12

{
− 4c2

5 − c2
15

(
q

me

)2

+ 2c12c15 + 2c13c14

}
. (A19)

These two response functions were presented in the paper as Eqs. (40c) and (40d).
The third line of Eq. (A15) does not contribute to ionization rates, since the vector

∑
mm′ (f1→2(q) × f∗

1→2(q)) vanishes.
This completes the derivation of the atomic and DM response functions.

APPENDIX B: EVALUATION OF THE ATOMIC RESPONSE
FUNCTIONS

1. Useful identities

This chapter contains a number of mathematical identities
necessary for the evaluation of the atomic response functions.

a. Spherical harmonic addition theorem

The spherical harmonics, Y m
	 (θ, φ) are given by

Y m
	 (θ, φ) = Nm

	 eimφPm
	 (cos θ ), (B1)

where Pm
	 (cos θ ) are the associated Legendre polynomi-

als, and Nm
	 is a normalization constant ensuring that

∫
d� (Y m′

	′ )∗Y m
	 = δ		′δmm′ . The normalization constant is

given by

Nm
	 ≡

√
2	 + 1

4π

(	 − m)!

(	 + m)!
. (B2)

The spherical harmonic addition theorem states that for two
given unit vectors defined by the spherical angle coordinates
(θ1, φ1) and (θ2, φ2), the sum over all values of m yields [61]

	∑
m=−	

Y m
	 (θ1, φ1)Y m∗

	 (θ2, φ2) = 2	 + 1

4π
P	(cos ω). (B3a)
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Here, P	(x) is a Legendre polynomial and ω is the angle
between the two vectors given by

cos ω = cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ1 − φ2). (B3b)

b. Plane-wave expansion

A plane-wave eik·x can be expressed as a linear combina-
tion of spherical waves [62],

eik·x =
∞∑

	=0

i	(2	 + 1) j	(kr)P	(cos ω), (B4a)

where ω is the angle between k and x. Using the spherical
harmonic addition theorem in Eq. (B3), we can rewrite this
equation as

= 4π

∞∑
	=0

i	 j	(kr)
+	∑

m=−	

Y m∗
	 (θk, φk )Y m

	 (θx, φx ). (B4b)

c. Identities with the Wigner 3j-symbol

The angular integral of the product of three spherical
harmonics can be expressed in terms of the Wigner 3j-symbol
[61], ∫

d� Y m1
	1

(θ, φ)Y m2
	2

(θ, φ)Y m3
	3

(θ, φ)

=
√

(2	1 + 1)(2	2 + 1)(2	3 + 1)

4π

×
(

	1 	2 	3

0 0 0

)(
	1 	2 	3

m1 m2 m3

)
. (B5)

The 3j-symbols satisfy the following orthogonality relation
[62],

(2 j + 1)
∑

m1,m2

(
j1 j2 j

m1 m2 m

)(
j1 j2 j′

m1 m2 m′

)

= δ j j′δmm′�( j1, j2, j), (B6)
where �( j1, j2, j) is equal to 1 if ( j1, j2, j) satisfy the
triangular condition, i.e., | j1 − j2| � j3 � j1 + j2, and zero
otherwise.

2. Gradient of a wave function

In order to compute the vectorial atomic form factor in
Eq. (B18), we need to evaluate the gradient of a wave func-
tion ψnlm(x) as defined in spherical coordinates (r, θ, φ) by
Eq. (37) which is given by

∇ψnlm(x) = dRn	

dr
Y m

	 (θ, φ) r̂

+ Rn	(r)

r

(
dY m

	

dθ
θ̂ + 1

sin θ

dY m
	

dφ
φ̂

)
, (B7)

with the unit vectors

r̂ =
⎛
⎝sin θ cos φ

sin θ sin φ

cos θ

⎞
⎠, θ̂ =

⎛
⎝cos θ cos φ

cos θ sin φ

− sin θ

⎞
⎠,

φ̂ =
⎛
⎝− sin φ

cos φ

0

⎞
⎠. (B8)

This gradient can be expressed in terms of vector spherical
harmonics (VSH),

∇ψnlm(x) = dRn	

dr
Ym

	 (θ, φ) + Rn	(r)

r
�m

	 (θ, φ), (B9)

where the VSH are defined following the conventions of
Barrera et al. [63]:

Ym
	 (θ, φ) ≡ r̂ Y m

	 (θ, φ), (B10a)

�m
	 (θ, φ) ≡ r ∇Y m

	 (θ, φ). (B10b)

The Cartesian components of the VSHs can themselves
be expanded in spherical harmonics with coefficients closely
related to Clebsch-Gordan coefficients [62],

(
Ym

	 (θ, φ)
)

i
=

	+1∑
	̂=	−1

m+1∑
m̂=m−1

c(i)
	̂m̂

Y m̂
	̂

(θ, φ), (B11)

with the nonvanishing coefficients

c(1)
	−1 m−1 = −ic(2)

	−1 m−1 = − A−
−1

2
√

(2	 − 1)(2	 + 1)
,

c(1)
	+1 m−1 = −ic(2)

	+1 m−1 = A+
−1

2
√

(2	 + 3)(2	 + 1)
,

c(1)
	−1 m+1 = ic(2)

	−1 m+1 = A−
1

2
√

(2	 − 1)(2	 + 1)
,

c(1)
	+1 m+1 = ic(2)

	+1 m+1 = − A+
1

2
√

(2	 + 3)(2	 + 1)
,

c(3)
	−1 m = A−

0√
2(2	 − 1)(2	 + 1)

,

c(3)
	+1 m = − A+

0√
2(2	 + 3)(2	 + 1)

.

Here, we used the notation of Ref. [62]:

A+
1 =

√
(	 + m + 1)(	 + m + 2), (B12a)

A+
0 = −

√
2(	 + m + 1)(	 − m + 1), (B12b)

A+
−1 =

√
(	 − m + 1)(	 − m + 2), (B12c)

A−
1 =

√
(	 − m − 1)(	 − m), (B12d)

A−
0 =

√
2(	 + m)(	 − m), (B12e)

A−
−1 =

√
(	 + m − 1)(	 + m). (B12f)

Similarly, the second VSH can be expanded as

(
�m

	 (θ, φ)
)

i =
	+1∑

	̂=	−1

m+1∑
m̂=m−1

d (i)
	̂m̂

Y m̂
	̂

(θ, φ), (B13)

with coefficients

d (1)
	−1 m−1 = −id (2)

	−1 m−1 = − (	 + 1)A−
−1

2
√

(2	 + 1)(2	 − 1)
,

d (1)
	+1 m−1 = −id (2)

	+1 m−1 = − 	 A+
−1

2
√

(2	 + 1)(2	 + 3)
,

d (1)
	−1 m+1 = id (2)

	−1 m+1 = (	 + 1)A−
1

2
√

(2	 + 1)(2	 − 1)
,
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d (1)
	+1 m+1 = id (2)

	+1 m+1 = 	 A+
1

2
√

(2	 + 1)(2	 + 3)
,

d (3)
	−1 m = (	 + 1)A−

0√
2(2	 + 1)(2	 − 1)

,

d (3)
	+1 m = 	 A+

0√
2(2	 + 1)(2	 + 3)

.

Equations (B11) and (B13) allow us to the express the
gradient of the wave function ψlmn in a compact expansion
in spherical harmonics,

∇ψnlm(x) =
3∑

i=1

ei

	+1∑
	̂=	−1

m+1∑
m̂=m−1

(
c(i)
	̂m̂

dRn	

dr
+ d (i)

	̂m̂

Rn	(r)

r

)

× Y m̂
	̂

(θ, φ), (B14)

where ei, (i = 1, 2, 3) are the three Cartesian unit vectors.

3. The atomic form factors

In Eqs. (24) and (26), we introduced the scalar and vecto-
rial atomic form factors. In this section, we describe the details
of evaluting these form factors.

First, we denote the initial (“1”) and final (“2”) state
electron wave functions by their respective quantum numbers

(n, 	, m) and (k′, 	′, m′). Consequently, the atomic form fac-
tors take the form

f1→2(q) =
∫

d3k

(2π )3
ψ∗

k′	′m′ (k + q)ψnlm(k), (B15)

f1→2(q) =
∫

d3k

(2π )3
ψ∗

k′	′m′ (k + q)
k

me
ψnlm(k). (B16)

Moving to position space via a Fourier transformation, we find

f1→2(q) =
∫

d3x ψ∗
k′	′m′ (x)eix·qψn	m(x), (B17)

f1→2(q) =
∫

d3x ψ∗
k′	′m′ (x)eix·q i∇

me
ψn	m(x). (B18)

In Eqs. (37) and (38), we expressed the initial and final state
electron wave functions in terms of spherical coordinates
x(r, θ, φ), where the angular dependence is given by the
spherical harmonics,

ψn	m(x) = Rn	(r)Y m
	 (θ, φ). (B19)

We postpone the discussion of the radial components of the
wave functions to Appendix B 4. and start with the evaluation
of the scalar atomic form factor f1→2. Afterwards, we discuss
the vectorial atomic form factor f1→2.

a. Scalar atomic form factor

Focussing on the scalar atomic form factor for now, we
replace the exponential eix·q with the plane-wave expansion
of Eq. (B4).

f1→2(q) =
∫

d3x R∗
k′	′ (r)Y m′∗

	′ (θ, φ)Rn	(r)Y m
	 (θ, φ)4π

∞∑
L=0

iL jL(qr)
+L∑

M=−L

Y M∗
L (θq, φq)Y M

L (θ, φ)

= 4π

∞∑
L=0

iL
L∑

M=−L

I1(q)Y M∗
L (θq, φq)

∫
d� Y m′∗

	′ (θ, φ)Y m
	 (θ, φ)Y M

L (θ, φ), (B20)

where we absorbed the radial integral into

I1(q) ≡
∫

dr r2R∗
k′	′ (r)Rn	(r) jL(qr). (B21)

This integral is the spherical Bessel transform of R∗
k′	′ (r)Rn	(r), i.e., the product of the radial components of the final and initial

wave functions. For its evaluation, we refer to Appendix B 5.
The integral over three spherical harmonics in the last expression can be rewritten in terms of the Wigner 3j-symbols via

Eq. (B5),

f1→2(q) =
√

4π

	+	′∑
L=|	−	′|

iLI1(q)
+L∑

M=−L

Y M∗
L (θq, φq)(−1)m′√

(2	 + 1)(2	′ + 1)(2L + 1)

(
	 	′ L
0 0 0

)(
	 	′ L
m −m′ M

)
. (B22)

At this point, we can already evaluate the first atomic response W n	
1 given by Eq. (41a), which essentially given by the squared

modulus of the scalar atomic form factor summed over m, m′,

	∑
m=−	

	′∑
m′=−	′

| f1→2(q)|2 =
∑
mm′

4π
∑
LL′

iL(−i)L′ |I1(q)|2
∑
M,M ′

Y M∗
L (θq, φq)Y M ′

L′ (θq, φq)(2	 + 1)(2	′ + 1)
√

(2L + 1)(2L′ + 1)

×
(

	 	′ L
0 0 0

)(
	 	′ L′
0 0 0

)(
	 	′ L
m −m′ M

)(
	 	′ L′
m −m′ M ′

)
. (B23)
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The orthogonality of the Wigner 3j-symbols, Eq. (B6), allows us to sum over the L′ and M ′ indexes,

	∑
m=−	

	′∑
m′=−	′

| f1→2(q)|2 = 4π
∑

L

I1(q)2
∑

M

Y M∗
L (θq, φq)Y M

L (θq, φq)(2	 + 1)(2	′ + 1)

(
	 	′ L
0 0 0

)2

. (B24)

Lastly we apply the spherical harmonic addition theorem given in Eq. (B3),

	∑
m=−	

	′∑
m′=−	′

| f1→2(q)|2 =
	+	′∑

L=|	−	′|
(2	 + 1)(2	′ + 1)(2L + 1)|I1(q)|2

(
	 	′ L
0 0 0

)2

. (B25)

Note that the dependence on the momentum transfer’s direction has disappeared. The explicit form of the first atomic response
W n	

1 (q, k′) for an atomic orbital (n, 	) given by Eq. (41a) [or equivalently the ‘ionization form factor | f n,	
ion |2 defined in Eq. (35)]

is obtained by adding the remainder of the final state phase space,10 see Eq. (27),

W n	
1 (q, k′) = V

4k′3

(2π )3

∞∑
	′=0

	+	′∑
L=|	−	′|

(2	 + 1)(2	′ + 1)(2L + 1)|I1(q)|2
(

	 	′ L
0 0 0

)2

. (B26)

In order to evaluate the three new atomic responses we need to follow similar steps for the vectorial atomic form factor as for
the scalar one.

b. Vectorial atomic form factor

We start from Eq. (B18) and substitute the gradient of the initial wave function using Eq. (B14),

f1→2(q) = i

me

3∑
i=1

ei

	+1∑
	̂=	−1

m+1∑
m̂=m−1

∫
d3xR∗

k′	′ (r)Y m′∗
	′ (θ, φ)eix·q

(
c(i)
	̂m̂

dRn	

dr
+ d (i)

	̂m̂

Rn	(r)

r

)
Y m̂

	̂
(θ, φ). (B27)

As for the scalar atomic form factor, the exponential in the above equation can be expressed in terms of spherical harmonics via
Eq. (B4),

f1→2(q) = 4π i

me

3∑
i=1

êi

	+1∑
	̂=	−1

m+1∑
m̂=m−1

∞∑
L=0

L∑
M=−L

Y M∗
L (θq, φq)iL

∫
d� Y m′∗

	′ (θ, φ)Y M
L (θ, φ)Y m̂

	̂
(θ, φ)

[
c(i)
	̂m̂

I2(q) + d (i)
	̂m̂

I3(q)
]
, (B28)

where we defined two new radial integrals,

I2(q) ≡
∫

dr r2 jL(qr)R∗
k′	′ (r)

dRn	

dr
, (B29)

I3(q) ≡
∫

dr r jL(qr)R∗
k′	′ (r)Rn	(r), (B30)

which will require extra attention in Appendix B 5.
We again apply Eq. (B5) to explicitly perform the angular integral,

f1→2(q) = i
√

4π

me

3∑
i=1

êi

	+1∑
	̂=	−1

m+1∑
m̂=m−1

∞∑
L=0

L∑
M=−L

Y M∗
L (θq, φq )iL(−1)m′

√
(2	̂ + 1)(2	′ + 1)(2L + 1)

×
(

	̂ 	′ L
0 0 0

)(
	̂ 	′ L
m̂ −m′ M

)[
c(i)
	̂m̂

I2(q) + d (i)
	̂m̂

I3(q)
]
. (B31)

It can be useful to evaluate the above expression in a particular coordinate frame, namely, the one in which the z-axis points
towards q, such that θq = 0. Then we can use Y M

L (θq = 0, φq) = √
(2L + 1)/(4π )δM0 and sum over M,

f1→2(q) = i

me

3∑
i=1

êi

	+1∑
	̂=	−1

m+1∑
m̂=m−1

	̂+	′∑
L=|	̂−	′|

iL(−1)m′
(2L + 1)

√
(2	′ + 1)(2	̂ + 1)

×
(

	̂ 	′ L
0 0 0

)(
	̂ 	′ L
m̂ −m′ 0

)[
c(i)
	̂m̂

I2(q) + d (i)
	̂m̂

I3(q)
]
. (B32)

10Regarding the numerical evaluation of the sum over 	′, we sum up contributions up to 	′
max = 7.

033195-21



CATENA, EMKEN, SPALDIN, AND TARANTINO PHYSICAL REVIEW RESEARCH 2, 033195 (2020)

We explicitly checked that this choice of coordinate frame has
no impact on the final values of the atomic response functions.

With the scalar and vectorial atomic form factors given in
the forms of Eqs. (B22) and (B32), it is possible to evaluate the
three new atomic response functions given by the Eqs. (41b)
to (41d). However, before doing so, we have to specify the
radial components of the initial and final state electron wave
functions without which we cannot evaluate the radial inte-
grals defined in Eqs. (B21), (B29), and (B30).

4. Initial and final state wave functions

For the radial part of the initial state wave function
ψn	m(x), we assume Roothaan-Hartree-Fock (RHF) ground
state wave functions expressed as linear combinations of
Slater-type orbitals,

Rn	(r) = a−3/2
0

∑
j

Cj	n

(
2Zj	

)n′
j	+1/2√(

2n′
j	

)
!

(
r

a0

)n′
j	−1

× exp

(
−Zj	

r

a0

)
. (B33)

The coefficients Cj	n, Zj	, and n′
j	 are tabulated for the atomic

orbitals of argon and xenon in Ref. [47] together with their
respective binding energies En	

B . Furthermore, a0 denotes the
Bohr radius.

The final electron state is described by a positive energy
continuum solution of the Schrödinger equation with a hydro-
genic potential −Zeff/r [12,64].

Rk′	′ (r) = (2π )3/2

√
V

(2k′r)	
′

√
2
π

∣∣�(	′ + 1 − iZeff
k′a0

)∣∣e πZeff
2k′a0

(2	′ + 1)!
e−ik′r

× 1F1

(
	′ + 1 + iZeff

k′a0
, 2	′ + 2, 2ik′r

)
. (B34)

Here, 1F1(a, b, z) is the so-called Kummer’s function, or con-
fluent hypergeometric function of the first kind. Note that both
radial wave functions are purely real. It should also be noted
that the factor of 1/

√
V involving the volume always cancels

due to the application of the integral operator in Eq. (27), or
equivalently with the factor of V in Eqs. (41a) to (41d).

The factor Zeff is determined by matching the binding
energy En	

B of the ionized orbital [13,14,20],

En	
B

!= 13.6 eV

(
Zn	

eff

)2
n2

,

⇒ Zn	
eff =

√
En	

B

13.6 eV
× n. (B35)

With the definition of the radial parts of the wave functions
in place, we can continue with the evaluation of the radial
integrals.

5. Numerical evaluation of the radial integrals

It is fair to say that the largest obstacle to the evaluation of
the scalar and vectorial atomic form factors is the computation
of the radial integrals11

I1(q) =
∫ ∞

0
dr r2 jL(qr)R∗

k′	′ (r)Rn	(r), (B36)

I2(q) =
∫ ∞

0
dr r2 jL(qr)R∗

k′	′ (r)
dRn	

dr
, (B37)

I3(q) =
∫ ∞

0
dr r jL(qr)R∗

k′	′ (r)Rn	(r). (B38)

The highly oscillatory behavior of the spherical Bessel func-
tion can hinder the success of standard numerical integration
methods, especially for large values of q.

Below, we outline two of the methods we used to solve
this integral. The first one is exact, but requires the numer-
ical integration of an oscillating function, the second one is
approximate, but fully analytical.

The python code we used for the evaluation of the radial
integrals, the atomic form factors, and the atomic response
functions is publicly available [44].

a. Numerical solution. One of the most straight-forward
ways to evaluate the radial integrals is the use of specific
numerical integration methods of numerical libraries like, e.g.,
NUMPY [57], or computer algebra systems such as Wolfram
MATHEMATICA [60]. The numerical integration method “Dou-
bleExponential” of the Wolfram language yielded reliable
results. However, for large values of the momentum transfer,
the method becomes critically slow.

It is usually beneficial for the performance of the numerical
integration to split up the integration domain,∫ ∞

0
dr f (r) =

∞∑
i=0

∫ (i+1)�r

i�r
dr f (r) (B39)

with �r = a0 and truncate the sum at a finite i after the result
has converged to a desired tolerance. Since the integrand in
our case is highly oscillatory and this method does not ensure
that we integrate from one root to the next, it is possible that an
accidental cancellation of positive and negative contributions
over one subinterval of the domain can be misinterpreted as
convergence. To avoid this subtle problem, we always verify
the series’ convergence on two consecutive terms.

b. Analytic solution.. The second method effectively re-
places the integral with an infinite sum, which, if it converges
sufficiently fast, yields accurate and prompt results. This
method worked best when applied to large values of q, i.e.,
exactly where the numerical integration is problematic.

The Kummer function (or confluent hypergeometric func-
tion of the first kind), which appears in Eq. (B34), can be
written as a power series,

1F1(a, b, z) =
∞∑

s=0

a(s)

b(s)

zs

s!
=

∞∑
s=0

�(s + a)�(b)

�(a)�(s + b)

zs

s!
, (B40)

11These types of integrals are known in the mathematical literature
as spherical Bessel and Hankel transforms.
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with x(s) ≡ x(x + 1) . . . (x + s − 1) being the rising factorial. In combination with the analytic form of the initial wave function
in Eq. (B33), we find that the above radial integrals are infinite sums of simpler integrals of the form

IL(q, α, β ) =
∫

dr rα exp(−βr) jL(qr), (B41)

where the values of the parameters α and β depend on whether we evaluate I1(q), I2(q) or I3(q). Importantly, this integral can be
solved analytically (provided that �(L + α) > −1),

IL(q, α, β ) =
√

πqL

2L+1βα+L+1

�(L + α + 1)

�
(
L + 3

2

) 2F1

(
(L + α + 1)

2
,

(L + α + 2)

2
, L + 3

2
,− q2

β2

)
, (B42)

where the hypergeometric function 2F1(a, b, c, z) appears which is defined via

2F1(a, b, c, z) ≡
∞∑

s=0

a(s)b(s)

c(s)

zs

s!
. (B43)

Provided that the sum in Eq. (B40) converges after a finite number of terms, we can compute the radial integrals analytically.
For large q the convergence occurs quickly. For lower values, we run into numerical precision problems, since we have to include
very large numbers of terms of (B40). In this case, the numerical approach described in the previous section performs better.

As an example, by using the analytical method described here, the first radial integral, I1(q), can now be written as follows:

I1(q) =
∞∑

s=0

∑
j

4π (2k′)	
′

(2	′ + 1)!

∣∣∣∣�
(

l + 1 − iZeff

ka0

)∣∣∣∣e πZeff
2ka0

Cjln(2Zjl )
(n′

jl +1/2)

a
(n′

jl +1/2)

0

√
(2n′

jl )!

�(s + a)�(b)

�(s + b)�(a)

(2ik′)s

s!

×
√

πqL

2L+1βα+L+1

γ (L + α + 1)

�(L + 3/2)
2F1

(
L + α + 1

2
,

L + α + 2

2
, L + 3/2,− q2

β2

)
, (B44)

where we defined

α = 1 + 	′ + n′
jl + s, β = Zjl

a0
+ ik′, (B45)

a = l ′ + 1 + iZeff

k′a0
, b = 2	′ + 1. (B46)

The sum can be truncated when the series converges to a given
tolerance, provided that it converges sufficiently quickly.

APPENDIX C: SCATTERING KINEMATICS

In this Appendix, we summarize a few basic kinematic
relations for DM-electron scatterings.

The initial and final energies of the inelastic scattering
process are given in Eqs. (4) and (5). By the conservation of
energy one can show that

v · q = �E1→2 + q2

2mχ

. (C1)

From this expression, it is clear that for a given momentum
transfer q, the minimum DM speed necessary for an electron
ionization with �E1→2 = EB + k′2/(2me) can be obtained by
setting cos θqv = 1,

vmin(k′, q) = EB + k′2/(2me)

q
+ q

2mχ

. (C2)

Since the local DM velocity distribution of the galactic
halo is assumed to have a maximum speed vesc, DM particles
are only able to ionize a bound electron with binding energy
EB if vmin < vmax = vesc + v⊕. Thereby, we find the range of

momentum transfers which can contribute to the ionization,

qmin = mχvmax −
√

m2
χv2

max − 2mχEB, (C3)

= EB

vmax
, for mχ → ∞, (C4)

qmax = mχvmax +
√

m2
χv2

max − 2mχEB. (C5)

From the requirement that vmin < vmax = vesc + v⊕, we
can also derive the maximum final momentum of the electron
for a given momentum transfer q,

k′ <

√
2me

(
vmaxq − q2

2mχ

+ EB

)
, (C6)

which were shown as white lines in Figs. 3 and 4.
Finally, there are a few identities involving v⊥

el , which are
necessary for the evaluation of the DM response functions in
the Eqs. (40). We can write v⊥

el as

v⊥
el = v − q

2μe
− k

me
. (C7)

Hence the square of the v⊥
el (with k = 0) is given by

(v⊥
el )

2|k=0 = v2 + q2

4μ2
e

mχ − me

me + mχ

− �E1→2

μe
. (C8)

We will also need the scalar product with the momentum
transfer q,

(v⊥
el · q)|k=0 = �E1→2 + q2

2mχ

− q2

2μe

= �E1→2 − q2

2me
. (C9)
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For the last two relations, we used energy conservation via
Eq. (C1). The dependence on the binding energies via �E1→2

also explains why the DM response functions Rn	
i carry the

atomic quantum numbers (n	) as indices.

APPENDIX D: ANAPOLE, MAGNETIC, AND ELECTRIC
DIPOLE DARK MATTER

The anapole, magnetic dipole and electric dipole DM mod-
els are described by the following interaction Lagrangians:

Lanapole = g

2�2
χγ μγ 5χ ∂νFμν, (D1)

Lmagnetic = g

�
ψσμνψ Fμν, (D2)

Lelectric = g

�
iψσμνγ 5ψ Fμν, (D3)

where χ (ψ) is a Majorana (Dirac) spinor describing the
DM particle, g a dimensionless coupling constant and � a
mass scale. For simplicity, we use the same notation for the
coupling constants of the three interactions, but they can in
principle be different. The Lagrangians in Eq. (D3) induce
a DM-electron coupling via the electromagnetic current, Jν ,
and Maxwell equations, ∂μFμν = eJν , where ψe is the four
component electron spinor, Fμν = ∂μAν − ∂νAμ is the photon
field strength tensor, and Aν the photon field.

Taking the nonrelativistic limit of the free field solution of
the equations of motion for ψ (or χ ), and using Gordon’s iden-
tity to express the matrix element of the current Jν between
single particle electron states in terms of electromagnetic form
factors, at leading order we find the following amplitudes for
DM scattering by free electrons:

Manapole = 4eg

�2
mχme

{
2(v⊥

el · ξ †s′
Sχξ s)δλ′λ + ge(ξ †s′

Sχξ s)

·
(

i
q

me
× ξ †λ′

Seξ
λ

)}
, (D4)

Mmagnetic = eg

�

{
4meδ

s′sδλ′λ+16mχ me

q2
iq · (v⊥

elξ
†s′

Sχξ s)δλ′λ

− 8gemχ

q2

[
(q · ξ †s′

Sχξ s)(q · ξ †λ′
Seξ

λ)

− q2(ξ †s′
Sχξ s) · (ξ †λ′

Seξ
λ)

]}
, (D5)

Melectric = eg

�

16mχme

q2
iq · (ξ †s′

Sχξ s)δλ′λ. (D6)

Here, the notation is the same one used in the main body
of the paper. Matching these expressions on to the effective
theory expansion in Eq. (19), one can express the effective
coupling constants given in Sec. IV B in terms of g and �. In
the numerical calculations, we set ge = 2.

APPENDIX E: DETAILS OF DIRECT DETECTION
AND EXCLUSION LIMITS

The exclusion limits presented in this paper are based on a
re-interpretation of published data and results by DarkSide-50
[12], XENON10 [43], and XENON1T [15]. In this section,

TABLE II. Events at XENON10 (left) and XENON1T (right)
observed in the given S2 bins.

XENON10 XENON1T

bin [S2] obs. events bin [S2] obs. events

[14,41) 126 [150,200) 8

[41,68) 60 [200,250) 7

[68,95) 12 [250,300) 2

[95,122) 3 [300,350) 1

[122,149) 2 – –

[149,176) 0 – –

[176,203) 2 – –

we briefly summarize the necessary details to compute the
exclusion limits.

An essential input for the prediction of ionization rates is
the local density and velocity distribution of the DM particles
of the galactic halo, which first enters Eq. (13). The local DM
number density is simply given by

nχ = ρχ

mχ

, (E1)

where we set ρχ = 0.4GeV/cm3 [65]. For the velocity distri-
bution, we use the standard halo model (SHM) which approx-
imates the distribution by a truncated Maxwell-Boltzmann
distribution that has been boosted into the Earth’s rest frame,

fχ (v) = 1

Nescπ3/2v3
0

exp

[
− (v + v⊕)2

v2
0

]

× �(vesc − |v + v⊕|). (E2)

Here, Nesc ≡ erf (vesc/v0) − 2(vesc/v0) exp(−v2
esc/v

2
0 )/

√
π is

a normalization constant, and the standard choices for the
other parameters are v0 = 220 km sec−1 for the Sun’s circular
velocity [66], and vesc = 544 km sec−1 for the galactic escape
velocity [67]. For the speed of the Earth/the observer in the
galactic rest frame, we choose v⊕ ≈ 244 km sec−1.

In all cases, we have to translate the energy spectrum given
in Eq. (30) into the spectrum as a function of the number of
final electrons ne,

dRn	
ion

dne
=
∫

dEe P(ne|Ee)
dRn	

ion

dEe
. (E3)

In modeling the probability P(ne|Ee) for ne electrons to reach
the gas phase of the TPC given an initial electron energy of
Ee, we follow [13,14].

For the three experiments, we obtain the 90% C.L. exclu-
sion limits by applying Poisson statistics to each event bin
independently.

1. XENON10 and XENON1T

For XENON10 and XENON1T, the number of observed
signals given in bins of the ionization signal (S2) are available
and listed in Table II. It is necessary to have the spectrum in
terms of S2, i.e., the number of photoelectrons (PEs) in the
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photomultiplier tubes,

dRn	
ion

dS2
= ε(S2)

∞∑
ne=1

P(S2|ne)
dRn	

ion

dne
. (E4)

For a given number of electrons ne, we assume that the
resulting number of PEs follows a Gaussian distribution with
mean neg2 and width

√
neσS2 [14,68,69],

P(S2|ne) = Gauss(S2|neg2,
√

neσS2). (E5)

The used parameters for the distribution’s mean and width
are the secondary-scintillation gain factor g2 = 27(33) and
the associated width factor σS2 = 6.7(7) for XENON10
(XENON1T) [14,15,70,71].

For XENON10, the binned observed numbers of events are
given on the left hand side of Table II, which correspond to an
exposure of 15 kg days. The efficiency ε(S2) is given by the
product of a flat cut efficiency of 92% [43] multiplied by the
trigger efficiency given in Fig. 1 of Ref. [13].

In the case of XENON1T, we extracted the number of
observed events passing all the cuts from Fig. 3 of Ref. [15].
They are listed on the right side of Table II. The efficiency
ε(S2) is the product of a flat efficiency of 93% and the
different efficiencies given in Fig. 2 of [15].12 The exposure

12Note that the “radius” efficiency needs to be squared.

E is given by

E = R2π × �z × ρXe × �t, (E6)

where the target’s radius is R = 47.9 cm, the height of
the search’s volume is �z = 20 cm (corresponding to z ∈
[−30 cm,−10 cm]), the density of liquid xenon is taken to be
ρXe = 3.1 g cm−3, and the time of the search data �t = 180.7
days [15]. This yields an exposure of ∼80 755 kg days.

Compared to the official XENON1T limits on the standard
DM-electron scattering cross section (corresponding to our
effective coupling c1), our constraints are weaker by a factor
of a few and therefore conservative, which can potentially
be explained by the additional background subtraction the
XENON collaboration performs.

2. DarkSide-50

Just like XENON10 and XENON1T, DarkSide is a dual-
phase TPC. However, instead of xenon, it uses argon as
target [20]. The DarkSide-50 experiment had an exposure
of 6786 kg days, and a threshold of ne = 3 electrons. The
number of observed events we base our limits on have been
extracted from Fig. 3 of [20]. The official constraints on
the standard DM-electron interaction (corresponding to the
effective coupling c1) turn out to be stronger than our own
limits by a factor of a few.
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