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Momentum-dependent mass and AC Hall conductivity of quantum anomalous
Hall insulators and their relation to the parity anomaly
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The Dirac mass of a two-dimensional QAH insulator is directly related to the parity anomaly of planar
quantum electrodynamics, as shown initially by Niemi and Semenoff [Phys. Rev. Lett. 51, 2077 (1983)]. In
this work, we connect the additional momentum-dependent Newtonian mass term of a QAH insulator to the
parity anomaly. We reveal that in the calculation of the effective action, before renormalization, the Newtonian
mass acts similar to a parity-breaking element of a high-energy regularization scheme. This calculation allows
us to derive the finite frequency correction to the DC Hall conductivity of a QAH insulator. We predict that the
leading order AC correction contains a term proportional to the Chern number. This term originates from the
Newtonian mass and can be measured via electrical or magneto-optical experiments. Moreover, we prove that
the Newtonian mass significantly changes the resonance structure of the AC Hall conductivity in comparison to
pure Dirac systems like graphene.
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I. INTRODUCTION

The discovery of Dirac materials, such as topological
insulators [1–10] and Weyl or Dirac [11–16] semimetals
yields the possibility to measure quantum anomalies in con-
densed matter systems. In particular, it was shown that two-
dimensional quantum anomalous Hall (QAH) insulators, such
as (Hg,Mn)Te quantum wells [17,18] or magnetically doped
(Bi,Sb)Te thin films [19,20], are directly related to the parity
anomaly of planar quantum electrodynamics (QED2+1) [21].
In a nutshell, this anomaly implies that in odd space-time
dimensions it is not possible to quantize an odd number of
Dirac fermions at the same time in a gauge- and parity-
symmetric manner [22–24].

A two-dimensional QAH insulator consists of two Chern
insulators, a topologically trivial, as well as topologically non-
trivial one. Similar to the Haldane model, each of those Chern
insulators realizes the parity anomaly if its mass gap is closed
at the topological phase transition [24]. In general, each Chern
insulator is characterized by Dirac-like physics in 2 + 1 di-
mensions and, in our system, has two different parity-breaking
mass terms: A momentum-independent (Dirac) mass, as well
as a momentum-dependent (Newtonian) mass [25]. As their
contribution to the Chern number does not vanish in the parity
symmetric (zero mass) limit, both of these mass terms are
directly related to the parity anomaly [18,26].
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While the contribution of the Dirac mass to the effective ac-
tion of a QED2+1 systems was initially shown in Refs. [22,23],
the effective action of Chern insulator in the presence of a
Newtonian mass has not yet been analyzed. To bridge this gap,
we explicitly derive in this work the polarization operator of a
Chern insulator. In the corresponding calculation for a pure,
massless QED2+1 system, the parity anomaly arises from
the particular regularization of the infinite Dirac sea. Even
for a massive Dirac system, each gauge-invariant regulariza-
tion scheme necessarily needs to break the parity-symmetry
due to the underlying parity anomaly. Consequently, such
a regularization provides another 1/2 to the otherwise half-
quantized Chern number of a single Dirac fermion. For the
Chern insulators introduced above, this requirement is already
fulfilled due to the presence of the Newtonian mass term.
From this perspective the Newtonian mass term, provided
by the material, acts similar to a parity-breaking element
of a mathematical regularization scheme [27]. Inspired by
this property, we compare the role of the Newtonian mass
term for the calculation of the effective action of a Chern
insulator to common parity-breaking regularization schemes
of QED2+1. In particular, we show that for the calculation
of the Hall conductivity the Newtonian mass can be seen as
a continuum version of a Wilson mass term [28], whereas
it acts significantly different than a Pauli-Villars (PV) mass
[29], or the integration contour in a ζ -function regularization
[30]. With continuum we mean that the Newtonian mass
does not vanish during renormalization when the artificial
lattice spacing in the Wilson mass term vanishes. Even though
the Newtonian mass implies an integer quantized DC Hall
conductivity, it does not remove the UV divergence in the
effective action, as it is done by common higher derivative
regularization schemes [31,32]. Consequently, the effective
action of a Chern insulator still requires regularization. Due to
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the fact that a QAH insulator consists of two Chern insulators,
a topologically trivial as well as a topologically nontrivial
one, it is possible to regularize the entire system in a gauge
and parity symmetric manner. We choose two Pauli-Villars
fields, one for each Chern insulator, which are related by
time-reversal symmetry. Together, these fields compensate the
parity anomaly associated to each single Chern insulator.

Moreover, we derive the nonquantized finite frequency
corrections to the DC Hall conductivity during our calculation
of the effective action. We show that the leading order AC
correction contains a term which is proportional to the Chern
number. This term originates from the Newtonian mass and
can be measured by the leading order AC corrections to
the DC Kerr and Faraday angles. In addition, we show that
the Newtonian mass fundamentally changes the resonance
structure of the AC Hall conductivity in comparison to pure
Dirac systems, as it can alter the mass gap in QAH insulators.

This work is organized as follows: In Sec. II, we introduce
two-dimensional QAH insulators. In Sec. III, we review how
to quantize a classical field theory and how the parity anomaly
arises in a gapless QED2+1 system. In Sec. IV, we derive
the effective action of a two-dimensional QAH insulator.
We separately calculate the polarization operators of each of
the two Chern insulators, together defining the entire QAH
system. In particular, we show the integer quantized DC Hall
conductivity of a QAH insulator and derive its nonquantized
AC correction. In Sec. V, we compare the role of the New-
tonian mass term for the calculation of the effective action to
common QED2+1 regularization schemes, which also ensure
an integer quantized Chern number. In Sec. VI, we summarize
our results and give an outlook.

II. MODEL

Two-dimensional QAH insulators like (Hg,Mn)Te quan-
tum wells or magnetically doped (Bi,Sb)Te thin films can be
described by the Bernevig-Hughes-Zhang (BHZ) Hamiltonian
consisting of the two (pseudo-)spin blocks H±(k) [2,33,34]:

HBHZ(k) =
(
H+(k) 0

0 H�
−(−k)

)
. (1)

On its own, each (pseudo-)spin block corresponds to a single
Chern insulator in 2 + 1 space-time dimensions with

H±(k) = ±(m± − B|k|2)σ3 − D|k|2σ0 + A(k1σ1 − k2σ2).
(2)

As such, a single (pseudo-)spin block of the BHZ model is
directly related to the parity anomaly of QED2+1. In Eq. (2),
|k|2 = k2

1 +k2
2 , σ1,2,3 represent the Pauli matrices, A is pro-

portional to the Fermi velocity, and D encodes a particle-hole
asymmetry. The parity-breaking mass terms are m± and B|k|2.
In the QAH phase, only one of the two (pseudo-)spin blocks is
topologically nontrivial with the finite Chern number [18,26],

C i
QAH = i[sgn(mi ) + sgn(B)]/2, i ∈ {+,−}. (3)

The trivial (pseudo-)spin block has zero Chern number. There-
fore, the entire topological response in the QAH phase is
captured by a single Chern insulator in 2 + 1 space-time
dimensions. If not stated otherwise, then we focus on such
a system in the remaining part of this work. In particular, we
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FIG. 1. Band structure corresponding to a single (pseudo-)spin
block of the BHZ model for k2 = D = 0 and for (a) a topologically
nontrivial phase with m = A = 1 and B = 0.1. The minimal gap
2|m| is located at the � point. (b) For a topologically nontrivial
phase with m = A = 1 and B = 3. The minimal gap |�| is located
at |k| = ±|kmin|.

neglect the (pseudo-)spin subindex ±. Moreover, we consider
particle-hole symmetric Chern insulators since the D|k|2 term
in Eq. (2) is parity-even and thus does not contribute to the
parity anomaly [35].

The spectrum associated to Eq. (2) for D = 0 is given by

ε± = ±
√

A2|k|2 + (m − B|k|2)2. (4)

Here, ± encodes the conduction and the valence band, respec-
tively. In Fig. 1, we show the influence of the mass parameters
on the band structure. While the Dirac mass m defines the
mass gap at the � point, the momentum-dependent B|k|2 term
acts like an effective mass of a nonrelativistic fermion system.
Depending on the values for m, B, and A, the band structure
significantly changes. For m/B > 0, the system is topolog-
ically nontrivial with CQAH = ±1. However, depending on
the absolute values of the input parameters, the minimal gap
can either be located at the � point [Fig. 1(a)], driven by
the Dirac mass alone, or apart from |k| = 0 [Fig. 1(b)] at
kmin =±√

2mB − A2/(
√

2B). The minimal gap is therefore
either defined by 2|m|, or by the absolute value of

� = A
√

4mB − A2/B. (5)

In contrast, for m/B < 0, the system is topologically trivial,
characterized by CQAH = 0. In this case the minimal gap is
always located at the � point. At m = 0, the topological phase
transition occurs, which comes along with a gap closing at
k=0. While in our plots we mostly consider positive mass
terms, the inverted Dirac mass of an experimental QAH
insulator is negative. Changing the overall sign of m and B
alters the sign of the Chern number, but not the underlying
physics. Notice, that according to Eq. (4) the Newtonian mass
term does not make the spectrum bounded. It is from this
perspective expected that the B|k|2 term does not render the
effective action of a Chern insulator UV finite.

Having discussed the particular influence of the mass terms
on the band structure, let us emphasize one more time that
both of them explicitly break the parity symmetry in 2 + 1
space-time dimensions, defined as invariance of the theory
under P : (x0, x1, x2) → (x0,−x1, x2). Hence, the Dirac and
the Newtonian mass term are directly related to the parity
anomaly of massless QED2+1. To concretize this statement,
let us briefly review the concept of quantum anomalies.
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III. PARITY ANOMALY

In what follows, we consider Chern insulators in 2 + 1
space-time dimensions coupled to an external fluctuating
abelian U(1) gauge field Aμ [cf. Eq. (2)]. Such models can
be quantized by calculating the partition function Z[A] via
integrating out the fermionic degrees of freedom,

Z[A] = 1

Z[0]

∫
dψ̄ dψ eiS[ψ̄,ψ,A] = 1

Z[0]
eiSeff [A]. (6)

Here, ψ and ψ̄ are the two-component Dirac spinor and
its adjoint. The bare and the effective action are defined by
S[ψ̄, ψ,A] and Seff [A]. If Seff [A] has less symmetries than
S[ψ̄, ψ,A], then a quantum anomaly is present. For instance,
massless QED2+1 is described by the parity-symmetric bare
action,

S[ψ̄, ψ,A] =
∫

d3x iψ̄ (/∂ + ie /A)ψ. (7)

Here, we use the Feynman slash notation /∂ = γμ∂μ with the
2 + 1-dimensional Dirac matrices γμ = (σ3, iσ2, iσ1), and
consider the metric tensor gμν = diag(+,−,−). The associ-
ated effective action is given by

Seff [A] = −i Ln det[(/∂ + ie /A)//∂]. (8)

As it was shown initially in Ref. [23], the fermion determinant
in Eq. (8) changes sign under large gauge transformations [36]
of odd winding ω = 2n+1 with n∈Z,

det[(/∂ + ie /A)//∂] → (−1)|ω| det[(/∂ + ie /A)//∂]

⇒ Seff → Seff ± π |ω|. (9)

Hence, as it stands Seff [A] is not a well-defined object. This
can also be seen by calculating the fermion determinant ex-
plicitly, which leads to a divergent expression. Consequently,
the theory requires a regularization scheme which needs to
be chosen such that it ensures infinitesimal—as well as large
gauge invariance of Z[A]. In particular, it was shown that
each regularization scheme needs to break parity symmetry
to ensure gauge invariance. This is known as the parity
anomaly [22,23]. The parity anomaly therefore results from
the particular regularization of QED2+1. Even though a mas-
sive QED2+1 system breaks parity on the classical level, the
fermion determinant still diverges and lacks gauge invariance.
Again, this requires a parity-breaking regularization scheme,
which ensures an integer quantized DC Hall conductivity
associated to a gauge-invariant Chern-Simons term in the
effective action. This property extends the peculiarities of
the parity anomaly to the massive case [22,23,30,37]. In this
work, we show that adding the Newtonian mass term to a mas-
sive QED2+1 Lagrangian also leads to an integer quantized
DC Hall conductivity associated to a gauge-invariant Chern-
Simons term. From this perspective the Newtonian mass term,
provided by the material, acts similar to a parity-breaking
element of a mathematical regularization scheme [27]. Its
contribution to the Chern number does not vanish in the
parity-symmetric limit m, B → 0. Consequently, beside the
Dirac mass also the Newtonian mass term is directly related
to the parity anomaly. Inspired by this property, we compare
in the following the role of the Newtonian mass term for

the calculation of the effective action of a Chern insulator to
common parity-breaking regularization schemes of QED2+1.

IV. EFFECTIVE ACTION

In what follows, we perturbatively evaluate the effective
action corresponding to a single Chern insulator. Therefore,
we Taylor expand the fermion determinant in Eq. (9) to
second order in the external background field Aμ. The free
Lagrangian associated to Eq. (2) can be obtained by a Legen-
dre transformation. For A = h̄ = 1 and D=0, this Lagragian
is equivalent to a pure QED2+1 Lagrangian except for an
additional correction, which is quadratic in spatial derivatives

L0 = ψ̄ (i/∂ − m)ψ − Bγ 0(∂iψ )†(∂ iψ ). (10)

Here and in the following, we use the properties of the Dirac
matrices given in Appendix A. Coupling L0 covariantly to the
U(1) gauge field Aμ, leads to the Lagrangian

L = ψ̄ (i /D − m)ψ − Bγ 0(Diψ )†(Diψ )

= L0 − eψ̄ ( /A+eBAiAi )ψ

+ ieBAi[ψ̄ (∂iψ )−(∂iψ̄ )ψ], (11)

where Dμ = ∂μ + ieAμ is the covariant derivative. From the
interaction terms in L, we can read off the vertex contribu-
tions. For an incoming electron of momentum k, incoming
photons of momentum p, and an outgoing electron of momen-
tum k+p, we find the vertices

V μ
(1)(2k+p) = −ie

[
γ μ − B δ

μ
i (2k+p)i

]
, (12)

V μν
(2) (k) = −2ie2B δ

μ
i δiν . (13)

Here, the subscript defines the number of involved pho-
tons. In comparison to pure QED2+1, the extra B|k|2 term
in the Lagrangian renormalizes the gauge-matter coupling.
The original QED vertex in Eq. (12) obtains a momentum-
dependent correction. Additionally, Eq. (13) defines a new
vertex structure, which is of second order in gauge fields.
This vertex encodes the diamagnetic response of the Chern
insulator in Eq. (2) [38]. The fermion propagator associated
to the Lagrangian L is given by

S(k) = i
/k − (m−B|k|2) + iε

= i
/k + M(k)

k2 − M(k)2 + iε
. (14)

Here, we defined the momentum-dependent mass term
M(k) = m − B|k|2 and used the Feynman prescription with
ε→0+. To perturbatively obtain the second order effective
action in external fields, we need to calculate the vacuum
polarization operator �μν (p) [39],

Seff = 1

2

∫
d3 p

(2π )3
Aμ(−p)�μν (p)Aν (p). (15)

Due to the vertex structure in Eqs. (12) and (13), the vacuum
polarization operator is obtained by the sum of two one-loop
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Feynman integrals,

i�μν (p) = i�μν
2a (p) + i�μν

2b (p)

= −
∫

d3k

(2π )3
Tr

[
S(k)V μ

(1)(2k+p)S(k+p)V ν
(1)(2k+p) + S(k)V μν

(2) (k)
]
, (16)

which are diagrammatically illustrated in Fig. 2. We start with the calculation of the first term in Eq. (16), i�μν
2a (p), which is

the usual QED2+1 vacuum polarization operator with renormalized vertex and propagator structure. As shown in Fig. 2(a), this
tensor is given by

i�μν
2a (p) = e2

(2π )3

∫
d3k

Tr
{[

γ μ − B δ
μ
i (2k+p)i σ0

]
i[/k + M(k)]

[
γ ν − B δν

j (2k+p) j σ0
]
i[(/k + /p) + M(k+p)]

}
[k2 − M(k)2 + iε][(k+p)2 − M(k+p)2 + iε]

. (17)

There are four different contributions to the Dirac trace Tr =
Trγ γ + Trγ 0 + Tr0γ + Tr00, where the subscript defines the
Dirac and identity part of the vertex structure in Eq. (12).
Since all physical response functions are given as functional
derivatives of the effective action at zero external spatial
momentum, from now on we focus on the calculation of
i�μν (p0, p=0). With this assumption, p2 = p2

0, εμνλ pλ =
εμν0 p0, and M(k) = M(k+p). Next, we introduce the Feyn-
man parameter x ∈ [0, 1] and shift the loop momentum ac-
cording to k = l−px. This gives the denominator in Eq. (17)
a quadratic form, allowing us to drop all linear terms in l
in the numerator, due to an antisymmetric integration over
symmetric boundaries [40]. With α = |l|2, this leads to [cf.
Appendix A]

Tr = 2gμν l2 − 4lμlν − 2x(1−x)p2
0

− 2gμν
[
M(α)2+x(1−x)p2

0

]−2i[M(α) + 2Bα]εμν0 p0

+ 4Bαδν
mδμ

m

{
2M(α)−B

[
l2
0 −α−x(1−x)p2

0+M(α)2
]}

.

(18)

In the QED2+1 limit B→0, the Dirac trace in Eq. (18) reduces
to the well-known result [40–42]

Tr = 2gμν l2 − 4lμlν + 4x(1−x)p2
0

− 2gμν
[
m2 + x(1−x)p2

0

] − 2imεμν0 p0. (19)

p p

k+p

k

V(1) V(1)
μ ν

k

p pV(2)
μν

(a)

(b)

<

<

<

FIG. 2. Feynman diagrams for the vacuum polarization operator
of a Chern insulator with vertices V μ,ν

(1) and V μν

(2) . External momenta
are denoted by p, loop momenta by k.

Notice, that the off-diagonal Chern-Simons contribution in
Eq. (19) gets shifted by the renormalized vertex structure in
Eq. (18). As argued above, this will lead to an integer quan-
tized DC Hall conductivity associated to a gauge-invariant
Chern-Simons term.

A. Off-diagonal response

To prove this statement, we evaluate the integral

i�μν
CS(p0, p = 0)

= e2

(2π )3

∫ 1

0
dx

∫
d3l

−2iεμν0(M(α)+2Bα)p0[
l2
0 −α−M(α)2+x(1−x)p2

0 + iε
]2

= e2

8π
εμν0 p0

∫ 1

0
dx

∫ ∞

0
dα

m + Bα[
α+M(α)2−x(1−x)p2

0 − iε
]3/2 .

(20)

Here, we used the Feynman parametrization and solved the
complex time-integration via the residue theorem. For Chern
insulators, time and spatial momenta need to be integrated
separately since the B|k|2 term breaks the Lorentz symmetry.
Hence, it is not possible to Wick-rotate and integrate over an
Euclidean three-sphere. Integrating the Feynman parameter x
implies∫ 1

0
dx

1[
α + M(α)2 − x(1−x)p2

0 − iε
]3/2

= 4√
α + M(α)2 − iε

[
4α + 4M(α)2 − p2

0 − 4iε
] , (21)

where we kept the iε-prescription to circumvent the poles for
α>0, appearing if p0 exceeds the gap. Finally, we perform
the remaining α-integration for an arbitrary driving frequency
p0 and subsequently set ε → 0+. Due to its lengthy form,
we present the general Chern-Simons contribution and its AC
Hall conductivity σxy(p0) in Appendix C,

i�μν
CS(p0, p = 0) = σxy(p0)εμν0 p0. (22)

Instead, let us first analyze the Taylor expansion of the AC
Hall conductivity in terms of the frequency p0,

σxy(p0) = σxy(0) + σ ′′
xy(p0)|p0=0

2!
p2

0 + O
(
p4

0

)
, (23)

033193-4



MOMENTUM-DEPENDENT MASS AND AC HALL … PHYSICAL REVIEW RESEARCH 2, 033193 (2020)

with the coefficients (reintroducing A and h̄)

σxy(0) = e2

2h
[sgn(m) + sgn(B)] = e2

h
CQAH, (24)

σ ′′
xy(p0)|p0=0 = e2

h

[
2 CQAH

3�2
− A4

�2B2

sgn(m)

24m2

]
. (25)

Equation (24) defines the DC Hall conductivity of the
single Chern insulator given in Eq. (2). In the QAH phase,
this value matches the DC Hall conductivity of the entire
system, as only one Chern insulator contributes to the topo-
logical response [18,26]. In comparison to a pure QED2+1
system with a half-quantized σxy(0), the Newtonian mass term
ensures integer quantization. Hence, the associated Chern-
Simons term is gauge invariant [43].

In contrast, Eq. (25) defines the leading order AC correc-
tion to σxy(0), which contains two terms of different origin.
One the one hand, there is a term proportional to the Chern
number CQAH. In the trivial phase m/B<0, this term vanishes
and the first-order AC correction is solely given by the second
term in Eq. (25). On the other hand, for m/B > 0, this term
contributes to the first-order AC correction. In experimental
systems like (Hg,Mn)Te quantum wells with m+ = −10 meV,
B = −1075 meVnm2, and A = 365 meVnm, the term propor-
tional to CQAH defines ≈10% of the entire signal in Eq. (25).
From a theoretical point of view, this term is induced by a
finite Newtonian mass, which breaks the Lorentz symmetry in
Eq. (11). Consequently, it vanishes in the QED limit B→0,
since

lim
B→0

1

�2
= 0 ∧ lim

B→0

A4

�2B2
= −1. (26)

In this limit, Eq. (25) reduces to the QED result

lim
B→0

σ ′′
xy(p0)|p0=0 = e2

h

sgn(m)

24m2
. (27)

Due to its unique relation to the Newtonian mass, the term
proportional to the Chern number in Eq. (25) is quadratically
suppressed by the ratio of p0 over the gap |�|. In contrast,
the second term in Eq. (25), which is the first-order QED
correction to the DC Hall conductivity, is quadratically sup-
pressed by p0 over the Dirac mass. According to the quadratic
suppression of both terms, the AC signal in Eq. (25) stays
close to quantized values and matches the AC Hall response
of the entire QAH system for small driving frequencies p0.

Let us briefly comment on how to experimentally disen-
tangle the QED from the Newtonian part in the first-order AC
Hall correction. In QAH insulators like (Hg,Mn)Te quantum
wells the topological phase transition originates from a sign
change of the Dirac mass of one of the two Chern insulators.
In what follows, let us assume it is m+, meaning that the
topological phase transition takes place in the (pseudo-)spin
up block of the BHZ model [cf. Eq. (1)]. Due to the parameters
above, this transition is associated to an overall sign change of
σ ′′

xy(p0)|p0=0, which is mainly driven by the QED correction in
Eq. (25). Consequently, measuring the AC Hall signal at ±m+
[44], allows to substract the QED correction and, therefore, to
isolate the contribution to Eq. (25) which is induced by the

Newtonian mass. Moreover, σxy(p0) is related to the Fara-
day and the Kerr angle of two-dimensional QAH insulators
[45,46]. The first term in Eq. (25) can be therefore resolved
by magneto-optical experiments, as well. Let us consider a
linearly polarized electric field, which incidents normally on
the QAH system. For frequencies much smaller than the gap,
which justify Eq. (23), one finds [46]

�F(p0) = Arctan

[
πσxy(p0)

ε0c

]
, (28)

�K(p0) = −Arctan

[
ε0c

πσxy(p0)

]
. (29)

Here, c is the vacuum speed of light and ε0 the vacuum per-
mittivity. While these identities imply quantized values of the
Faraday and Kerr angles in the DC limit, they carry the infor-
mation of how these angles change due to the contribution of
the first term in Eq. (25). To resolve this effect in one of these
experiments, |p0|
Min(2|m|, |�|). For instance, in inverted
(Hg,Mn)Te/CdTe quantum wells, the gap is of the order of
several meV [47], depending on the particular manganese
concentration. This corresponds to frequencies in the THz
regime. For such frequencies, the first-order correction to the
DC Faraday and Kerr angles is on the order of millirad, which
can be resolved by recent Faraday polarimeters [48].

Before we discuss the general solution of the AC Hall
conductivity, note that the nonquantized value for σxy(p0 �=0)
makes the associated Chern-Simons term (large) gauge non-
invariant. Since analogously to thermal effects, an AC driving
field excites nontopological degrees of freedom, this effect
corresponds to the nongauge invariance of finite temperature
Chern-Simons terms. For these theories, it was shown that the
full effective action contains nonperturbative corrections in
Aμ, absorbing this noninvariance [49,50]. These terms cannot
be found by the Taylor expansion of the fermion determinant
Eq. (9). However, due to the fact that they are higher order in
gauge fields, they do not contribute to the conductivity.

Let us now analyze the general solution of the AC Hall con-
ductivity corresponding to a single Chern insulator. Figure 3
shows the real and the imaginary part of σxy(p0) according
to its general form in Appendix C. To study the influence of
the Newtonian mass term, Fig. 3(a) shows σxy(p0) for a pure
QED2+1 system. At p0 =0, one observes the characteristic
half-quantization. Moreover, the real part of σxy(p0) shows a
resonance at p0 = ±2|m| and tends to zero for larger frequen-
cies. For |p0| � 2|m|, the AC field excites particle-hole pairs
which can propagate unhindered for p0 =±2|m|. This is the
origin of the resonance [51–53]. For large frequencies, the AC
field dominates the gap which protects the topological phase.
This leads to a vanishing AC Hall conductivity. The imaginary
part of σxy(p0) satisfies the Kramers-Kronig relation

Re σxy(p0) = 1

π
P

∫
d p′

0
Im σxy(p′

0)

p′
0 − p0

. (30)

It is zero in the mass gap, becomes finite for |p0| � 2|m|
and decreases afterwards. Since Im σxy(p0) results from in-
terband absorptions [45,51], it is only nonzero if the external
frequency is able to excite a finite density of states.

Figures 3(b) and 3(c) show the corresponding plots for
a nontrivial and a trivial Chern insulator with minimal gap
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FIG. 3. Hall conductivity σxy(p0) for (a) a QED2+1 system with
m = A = 1 and B = 0, (b) a nontrivial Chern insulator with m = A =
1 and B = 0.1, (c) a trivial Chern insulator with m = A = 1 and B =
−0.1 and (d) a nontrivial Chern insulator with m = A = 1 and B = 3.
While the spectrum associated to (a–c) has the minimal gap 2|m|
at the � point, the spectrum related to (d) has the minimal gap |�|
at kmin [cf. Sec. II]. Notice that all discontinuities/singularities arise
from the assumption of zero temperature and disorder. Taking into
account these ingredients makes all curves continuous.

size 2|m|, respectively. The AC Hall conductivity shows the
same features as a pure Dirac system, except for the integer
quantization of its DC Hall conductivity. However, for a
minimal gap apart from the �-point, the situation differs, as
shown in Fig. 3(d). Here, the first resonance of the real part
occurs at p0 = ±|�|. The p0 = ±2|m| resonance persists, but
peaks in opposite direction since the density of states now
decreases at p0 = ±2|m|. This property can also be seen in
Im σxy(p0), which resolves the Van Hove singularity at p0 =
±|�| and drops at p0 = ±2|m|. Consequently, measuring the
AC conductivity provides the information if the minimal gap
is defined by the Dirac mass at the �-point, or rather by an
interplay between the Dirac and the Newtonian mass apart
from k = 0.

Above, we have discussed the AC Hall response of a
single Chern insulator which is either in the topologically
trivial phase with m ≡ m−, or in the topologically nontrivial
phase with m ≡ m+. The entire QAH response of the two
(pseudo-)spin blocks H±(k) in the BHZ model [cf. Eq. (1)]
corresponds to the superposition of both of these signals. In
contrast to the DC Hall conductivity, the AC Hall conduc-
tivity contains corrections of nontopological origin. As such,
also the topologically trivial (pseudo-)spin block of the BHZ
model significantly contributes to the entire QAH response
if the frequency |p0| is not much smaller than the trivial gap
2|m−|.

B. Diagonal response

Having discussed the off-diagonal response, we are still left
with the calculation of the diagonal parts in Eq. (18). Since
our system is a bulk insulator, we physically expect that these
terms vanish for p = 0. The diagonal contributions can be
calculated via the same techniques as used above. This leads

to [cf. Appendix A]

i�μν
D,2a(p = 0) = ie2δ

μ
i δiν

4π |B|
{

1−2mB−2|m||B|

− Ln

[
4B2�

1 − 2Bm + 2|m||B|
]}

, (31)

where � is a hard momentum cutoff in α = |l|2. So far, we
focused on the contributions of the first Feynman diagram
in Fig. 2. Using analog techniques and the quadratic vertex
in external fields, Eq. (13), the second Feynman diagram in
Fig. 2 yields [cf. Appendix A]

i�μν
D,2b(p = 0) = − ie2|B|�δ

μ
i δiν

2π
− i�μν

D,2a(p = 0). (32)

This expression exactly cancels the finite and logarithmic
divergent terms in Eq. (31). Nevertheless, the full effec-
tive action still contains a term proportional to the UV
cutoff � which diverges during renormalization � → ∞.
However, as stated above, the diagonal contribution should
be regularized/renormalized such that it vanishes for p=0.
Physically, such a renormalization corresponds to a proper
definition of the particle density. The second term in Eq. (16),
which corresponds to the quadratic vertex in gauge fields
Eq. (13), encodes the diamagnetic response of our system.
This response is proportional to the particle density and as
such needs to vanish in the gap. Due to the fact that we did
not renormalize the Dirac sea contribution to the particle den-
sity, e.g., by antisymmetrization, the divergence in Eq. (32)
persists.

As a consequence of the underlying parity anomaly each
regularization scheme for a single Chern insulator does either
break parity or gauge symmetry. The naive introduction of the
hard momentum cutoff � in Eq. (31) breaks the gauge sym-
metry. To preserve this symmetry, we should rather choose a
parity-breaking regulator, such as a PV field with mass terms
M and B [54]. While this field by construction ensures

i�μν
D,2a(p = 0) + i�μν

D,2b(p = 0) = 0, (33)

it contributes to the AC Hall response, as it breaks parity. For
the entire system, this can be resolved by introducing a second
PV field for the regularization of the second (pseudo-)spin
block of the BHZ model. If this field is constructed such
that both PV fields are Kramers (time-reversal) partners, then
their combined contribution to the AC Hall conductivity of the
entire QAH system vanishes.

V. NEWTONIAN MASS IN THE CONTEXT OF QED2+1

REGULARIZATION SCHEMES

Albeit the Newtonian mass term in the Hamilton of a single
Chern insulator [cf. Eq. (2)] is a physical parameter provided
by the material, before renormalization it acts similar to a
parity-breaking regulator of a pure QED2+1 system in the
calculation of the effective action [55]. In what follows, let
us concretize this statement.

In the context of quantum field theories there are plenty
of different regularization schemes, each breaking differ-
ent symmetries. As discussed in Sec. III, the regularization
scheme associated to an odd number of 2 + 1-dimensional
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Dirac fermions needs to break parity symmetry to ensure
gauge invariance of the effective action. Manifestly par-
ity breaking regularization schemes are for example PV
regularization, lattice regularization with Wilson fermions,
and ζ -function regularization, which we briefly review in
Appendix B [30,37,56,57]. All these schemes induce a parity
odd Chern-Simons term in the effective action of a QED2+1
system, directly proportional to the sign of the regularization
parameter which breaks parity. For the schemes mentioned,
this is the PV mass, the Wilson parameter, as well as the
integration contour in the ζ -function regularization. Together
with the Chern-Simons contribution induced by the finite
Dirac mass m, this leads to an integer quantized DC Hall
conductivity [28,30].

Adding the Newtonian mass term to a pure QED2+1 system
also ensures this property [cf. Eq. (24)]. Even if one would
remove the physical parameter B→0 in the end of the cal-
culation, its contribution to the DC Hall conductivity persists
and the Chern number stays integer quantized. From this per-
spective the Bk2 term acts similar to a parity breaking element
of a certain regularization scheme. To concretize what we
mean with “similar”, let us compare the role of the Newtonian
mass term in the calculation of the effective action to common
parity-breaking regulators before renormalization [55]. Since
the B|k|2 term provides a momentum-dependent Dirac mass
correction, it is natural to compare its role in the calculation
of the effective action to regularization schemes which add
terms of higher order derivatives to the bare Lagrangian.
Such approaches are for example lattice regularization with
Wilson fermions [28] (Appendix B 1) and higher derivative
regularization [31] (Appendix B 2). However, except for the
property that these schemes yield also an integer quantized
Chern number, there are several key differences to the B|k|2
term. By construction, each regularization needs to render
the effective action finite [40]. As shown in Eq. (32), adding
the Newtonian mass to a massive Dirac Lagrangian does
not exhibit this property. To reduce the superficial degree
of divergence, the higher derivative regularization multiplies
the entire noninteracting Dirac Lagrangian by (1 + ∂2/M2).
This has two implications. In contrast to the B|k|2 term, it
circumvents the vertex renormalizations in Eqs. (12) and (13),
but as a price manifestly breaks local gauge invariance [58].
Moreover, by construction this approach also regularizes the
kinetic part of the Lagrangian.

In a lattice approach, the inverse lattice spacing a−1 makes
the theory finite. To avoid fermion doubling and to break the
parity, the lattice QED2+1 Lagrangian comes along with an
additional Wilson mass term ∝sak2. Here, s = ±1 is the Wil-
son parameter and k is the lattice three-momentum [28,59,60].
Clearly, the Wilson mass is directly related to the B|k|2
term. However, by construction the Wilson mass is Lorentz
invariant, while the Newtonian mass breaks this symmetry.
Further, the Wilson mass vanishes during renormalization,
a → 0, which is not the case for the B|k|2 term since it is a
material parameter.

VI. SUMMARY AND OUTLOOK

In this work, we connected the Newtonian mass term of a
QAH insulator to the parity anomaly of QED2+1. In particular,

we showed that before renormalization the Newtonian mass
term acts similar to a parity-breaking regulator in the calcula-
tion of the effective action. Hence, this mass is directly related
to the regularization of QED2+1 and, as such, to the parity
anomaly. More precisely, we showed that the Newtonian mass
alone does not render the effective action UV finite, but
ensures an integer quantized DC Hall conductivity. Before
renormalization, it acts similar to a Wilson mass term, which
avoids the fermion doubling in a lattice approach.

Moreover, we derived the AC Hall conductivity of a QAH
insulator during the calculation of the effective action. We
showed that the leading order AC correction to the DC Hall
conductivity contains a term proportional to the Chern num-
ber. This term originates from the Newtonian mass and can be
measured by purely electrical means, or by determining the
leading order frequency correction to the DC Faraday or Kerr
angles of our system. Further, we revealed that the Newtonian
mass significantly changes the resonance structure of the AC
Hall conductivity in comparison to pure QED2+1 systems.

The classification of three-dimensional topological insula-
tors is also given by the interplay between their Dirac and
Newtonian mass term. The effective action of those systems
can be calculated by the parity-anomaly induced Chern-
Simons term in 4 + 1 space-time dimensions [18]. Conse-
quently, a natural extension of our work would be to derive the
effective action of a 4 + 1-dimensional QED system including
both, a Dirac as well as a momentum-dependent term.
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APPENDIX A: CALCULATION OF THE
EFFECTIVE ACTION

For the calculation of the trace in Eq. (17), we used the
properties of the 2 + 1-dimensional Dirac matrices [61]:

Tr[γμ] = 0, {γμ, γν} = 2gμν,

Tr[γμγν] = 2gμν,

Tr[γμγνγλ] = 2iεμνλ with ε012 = −1,

Tr[γμγνγλγρ] = 2(gμνgλρ − gμλgνρ + gμρgνλ). (A1)

With Cμ = −B δ
μ
i (2k+p)i, this in particular leads to

− 1
2 Trγ γ = 2kμkν + kμ pν + kν pμ

+ gμν[M(k)M(k+p) − k2 − kp]

− iεμνλ{[M(k+p) − M(k)]kλ − M(k)pλ},
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− 1
2 Trγ 0 = Cνgμλ{[M(k) + M(k+p)]kλ + M(k)pλ}

+ iCνεμλσ kλ(k+p)σ ,

− 1
2 Tr0γ = Cμgνλ{[M(k) + M(k+p)]kλ + M(k)pλ}

− iCμενλσ kλ(k+p)σ ,

− 1
2 Tr00 = CμCν[gλσ kλ(k+p)σ + M(k)M(k+p)]. (A2)

Moreover, for the calculation of i�μν

Diag,2a and i�μν

Diag,2b, we
used the following identities for the integration of the spatial
loop momentum [62]:∫

dx
1

(ax2 + bx + c)3/2

= − 2(b + 2ax)

(b2 − 4ac)
√

c + x(b + ax)∫
dx

x

(ax2 + bx + c)3/2

= 4c + 2bx

(b2 − 4ac)
√

c + x(b + ax)∫
dx

x√
ax2 + bx + c

= 1

a

√
ax2 + bx + c

− b

2a

∫
dx

1√
ax2 + bx + c

,

∫
dx

1√
ax2 + bx + c

=
{

1√
a

Ln|2
√

a(ax2 + bx + c) + 2ax + b| for a > 0

− 1√−a
Arcsin 2ax+b√

b2−4ac
for a < 0

.

(A3)

APPENDIX B: REGULARIZATION SCHEMES

In what follows, we briefly review the high-energy regular-
ization schemes which we discuss in the main text.

1. Lattice regularization

A common way to regularize a quantum field theory is the
introduction of a space-time lattice. In this method, the finite
lattice spacing a introduces a momentum cut-off �lattice ∝a−1.
Lattice regularization explicitly breaks the parity symmetry of
classical QED2+1. This is not a property of the lattice itself,
but happens due the mandatory introduction of additional
terms in the Lagrangian which prevent artificial gap closings
at the high symmetry points of the lattice Brillouin zone. In
particular, the Euclidean lattice action Slatt (ψ̄, ψ, A) is given
by [28,63,64]

Slatt (ψ̄, ψ, A) = −a3
∑

x

ψ̄ (x)(D − m)ψ (x), (B1)

where x = (an1, an2, an3) with nμ ∈ Z. Moreover,

D = 1
2γ E

μ (∇�
μ + ∇μ) + 1

2 sa∇�
μ∇μ (B2)

is the massless three-dimensional lattice Dirac operator, ∇μ

is the lattice covariant derivative, and γ E
μ =σμ are the Eu-

clidean Dirac matrices. In comparison to continuum QED2+1,
Slatt (ψ̄, ψ, A) includes the so-called Wilson term, propor-
tional to the Wilson parameter s = ±1. This term acts like a
momentum-dependent fermion mass and therefore explicitly
breaks the parity symmetry of the system. As a consequence,
it induces a Chern-Simons term in the effective action, pro-
portional to sgn(s). Hence, this term acts very similar to the
Newtonian B|k|2 term in Eq. (2). However, there are two
significant differences. On the one hand, the Wilson mass
is Lorentz covariant, while the Newtonian mass breaks this
symmetry. On the other hand, the Wilson mass vanishes as
a → 0, which is not the case for the Newtonian mass term as
it is a real parameter of the system.

2. Higher derivative regularization

The Lagrangian associated to the higher derivative regular-
ization of QED2+1 is given by [32,65]

LHD = ψ̄ (iγ μ∂μ − m)

(
1 + ∂2

M2

)
ψ + e ψ̄γ μAμψ, (B3)

where M is a parameter, allowing to remove the higher deriva-
tive correction during the renormalization process, M → ∞.
Notice, that by construction, the higher derivative term breaks
local gauge invariance. However, this property is fixed during
renormalization [31]. If the higher derivative correction would
come with covariant derivatives, then it would not reduce the
superficial degree of divergence. Hence, the higher derivative
regulator differs significantly form the Newtonian mass in
Eq. (2). While the Newtonian mass term is parity-odd, breaks
Lorentz symmetry and renormalizes the Dirac mass in a
gauge-invariant fashion, the higher derivative term is Lorenz
invariant, breaks local gauge symmetry and multiplicates the
full noninteracting QED2+1 part. As such, it contains a parity
even as well as a parity odd contribution. Moreover, it van-
ishes during renormalization as M → ∞.

3. Pauli-Villars regularization

In contrast to the two schemes above, the Pauli-Villars reg-
ularization adds additional bosonic particles χ to the classic
QED2+1 Lagrangian:

LPV = ψ̄ (iγ μDμ − m)ψ + χ̄ (iγ μDμ − M )χ. (B4)

Their mass term M breaks parity and therefore induces a
Chern-Simons term in the effective action, proportional to
sgn(M). During renormalization the Pauli-Villars field decou-
ples from the theory, M → ∞. However, it still leaves its trace
in the Chern number [23,29]. Since this regularization scheme
includes an additional particle to ensure an integer quantized
DC conductivity, it significantly differs from the Newtonian
mass term in Eq. (2).

4. ζ-function regularization

The ζ -function regularization completely differs from the
schemes introduced above [30]. It regularizes the generating
functional via a certain calculation scheme for the fermion
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determinant:

Z[A]reg = detD[A]
∣∣∣
reg

= e− d
ds ζ (D[A],s)

∣∣∣
s=0

. (B5)

Here, the Euclidean Dirac operator with γ E
μ = σμ and the ζ

function are defined via

D[A] = γ E
μ (i∂μ + eAμ) + im,

ζ (D[A], s) = Tr(D−s[A]). (B6)

By construction, this scheme is gauge invariant but breaks
parity symmetry, related to peculiarities during the associated
contour integration (explicit path). It therefore also leads to
an integer quantized DC conductivity where one part comes
from sgn(m) and an additional contribution (±1) stems from
the choice of the integration contour [30].

APPENDIX C: AC HALL CONDUCTIVITY

The general solution of i�μν
CS(p0, p = 0) in Eq. (20), is

given by the AC Hall conductivity

σxy(p0) = − e2

2h

∑
s=±1

[
(1 − 4mB − �p0 )(Ln1 + Ln2)

4B�p0 |p0|

+ (1 − 4mB + �p0 )(Ln3 + Ln4)

4B�p0 |p0|
]
, (C1)

where we defined �p0 = s
√

1 − 4mB + B2 p2
0 and abbreviate

the four logarithms

Ln1 = Ln[−2sB2],

Ln2 = Ln
[
s(1 − 4mB − 2B2|m||p0|)�p0 − s(1 − 2mB)�2

p0

]
,

Ln3 = Ln[s(1 − 2mB + �p0 )],

Ln4 = Ln
[
2sB2

(
�2

p0
− �p0 |B||p0|

)]
. (C2)

Notice, that exactly at p0 = �, �p0 evaluates to zero. Hence,
this quantity encodes the physics stemming from the mass gap
apart from the � point.
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