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Interferometric sensing of the tilt angle of a Gaussian beam
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We investigate interferometric techniques to estimate the deflection angle of an optical beam and compare
them to the direct detection of the beam deflection. We show that quantum metrology methods lead to a unifying
treatment for both single photons and classical fields. Using the Fisher information to assess the precision limits
of the interferometric schemes, we show that the precision can be increased by exploiting the initial transverse
displacement of the beam. This gain, which is present for both Sagnac and Mach-Zehnder-like configurations,
can be considerable when compared to noninterferometric methods. In addition to the fundamental increase
in precision, the interferometric schemes have the technical advantage that (i) the precision limits can be
saturated by a sole polarization measurement on the field, and that (ii) the detection system can be placed at
any longitudinal position along the beam. We also consider position-dependent polarization measurements, and
show that in this case the precision increases with the propagation distance, as well as the initial transverse
displacement.

DOI: 10.1103/PhysRevResearch.2.033191

I. INTRODUCTION

There are many situations in science and technology that
require the sensing of the mechanical motion of an object
[1–4]. Several interesting and relevant techniques employ a
light source to probe the object. Consider a reflecting object
that suffers a tilt of angle θ . In this case, a beam reflected
from the object suffers a deviation in the reflection angle of
2θ , as illustrated in Fig. 1(a). By measuring the displacement
of the mean position of the light beam in the far field, one can
discover θ .

Several interferometric methods have been proposed to
measure the deviation angle θ of an optical beam. Some
of these are based on the idea of weak-value amplifica-
tion [5–12], and fall within a more general framework of
postselection-based metrology [13–15]. Within this frame-
work, an interferometer is used to create patterns of construc-
tive and destructive interference of the deviated beam. By
selecting only light that appears in the appropriate destructive
interference region, chosen by the physical parameters of the
interferometer, an amplification of the beam displacement can
be observed. In some cases this amplification can be of several
orders of magnitude [7]. However, the destructive interference
contains very little light intensity. Thus, there can be a loss in
precision due to decreased measurement statistics. Still weak

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

measurements can be useful when the source intensity is much
larger than the saturation threshold of the detectors, and also
provides some advantages in the presence of some types of
noise [16,17] and detector saturation [18].

Recently, it was shown that nearly optimal interferometric
schemes can be achieved by considering the information
gained from the postselection statistics as well as the beam
deviation [10]. In some cases, precision bounds can be satu-
rated by observing the postselection statistics alone [11,19].
That is, by simply measuring the difference in light intensity
between the bright (constructive) and dark (destructive) ports
of the interferometer, an optimal amount of information can
be obtained about θ . This method is thus quite simple in that
it calls for the measurement of a single Stokes parameter of
the light beam, and does not require a detection system with
any spatial resolution.

Furthermore, it was shown in Ref. [19] that polariza-
tion measurements on hyperentangled states can lead to the
Heisenberg precision limit, with no need for postselection,
and that one can exploit the initial transverse displacement of
the beam to extract additional information about θ . More pre-
cisely, one can achieve a precision that scales with the second
moment of the relevant transverse spatial variable 〈x2〉−1/2 as
opposed to the transverse spatial variance 〈�2

x〉−1/2, which can
be a considerable improvement.

The fields of optical metrology and imaging have benefited
in recent years due to the development of quantum estimation
theory [20–22]. For example, application of this quantum
formalism to the classical optical problem of resolving two
incoherent point sources has led to schemes for optical super-
resolution that go beyond the Rayleigh criterion [23–25].
More recently, similar analyses have been applied to coherent
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FIG. 1. (a) Basic spatial displacement scheme, in which the
transverse spatial displacement of an optical field is measured to
determine the angle θ . (b) Sagnac interferometric method, in which
the object is placed inside a Sagnac interferometer, here constructed
with a polarizing beam splitter (PBS). The counterpropagating hori-
zontal and vertical polarization components are displaced in opposite
transverse directions. Information about θ can be obtained via spatial
measurements, polarization measurements, or both. (c) Interferomet-
ric method in which the object is placed inside a Mach-Zehnder
interferometer that is also constructed with a PBS.

or partially coherent radiation, leading to a debate concerning
the attainable precision at the limit of small source separation
[26–29]. In addition, quantum estimation theory provides a
context that is suitable for the application of quantum correla-
tions to many optical metrological tasks [19,30,31].

Here we employ a quantum metrological approach to in-
vestigate interferometric-based techniques that measure the
deflection angle of a coherent optical beam. The scenario we
consider is an optical field used to probe a reflective object.
A small tilt of the angle of the object deflects the beam. We
note that in some instances this problem can be similar to that
of resolving two coherent point sources [29]. However, the
role of the field as a controllable probe provides the freedom
to consider the initial parameters of the beam, as well as
the configuration of the interferometer, toward estimating the
tilt angle. In Sec. II we briefly review the relevant precision
limits of optical metrology that will be employed throughout.
We employ well-known results and concepts from quantum
metrology to calculate the ultimate precision limits for dif-
ferent experimental setups. Section III analyzes the precision
achievable for the usual noninterferometric techniques based
on direct measurement of the beam deflection angle using a

position-sensitive detector, such as a camera, or a quadrant de-
tector. In Sec. IV we introduce a simple formalism to describe
interferometric techniques, where it is useful to describe the
two interfering paths as an auxiliary qubit. We present both the
ideal precision limits for interferometric techniques, as well as
the real precision limits achievable for simple measurements
on the qubit alone, which are shown to saturate the precision
limits for small values of θ . In addition, we consider position-
dependent measurements on the qubit, and derive the available
information when postselection occurs on the spatial profile of
the beam.

II. PRECISION LIMITS

The tilt of the mirror, displayed in Fig. 1, leads to changes
in the propagation of the electromagnetic field, which can
be described using the tools of classical optics, if the initial
field is classical. The same description would also apply to
the derivation of intensity-dependent precision limits in the
estimation of the tilting angle. This is not the case, necessarily,
if the initial state of the field is nonclassical. A unifying treat-
ment, encompassing both situations, is provided by quantum
metrology. It can be used even for intense laser fields, for
which the ultimate precision of estimation of θ can be ob-
tained from the quantum limits for single photons, considering
that the measurement of intensity I of the output light is
equivalent to the result of N = I/h̄ω repeated measurements
on single photons, where ω is the angular frequency of the
light.

Within the framework of quantum metrology, bounds on
the uncertainty δθ in the estimation of a parameter θ can be
assessed by the Cramér-Rao inequality [32]:

δθ � 1√
νF (θ )

, (1)

where

F (θ ) =
∑

j

1

p j (θ )

[
d p j (θ )

dθ

]2

(2)

is the Fisher information on θ , for a given measurement on the
probe used to estimate the parameter. In the present situation,
the probe is a single photon. Here p j (θ ) is the probability of
obtaining experimental result j, given that the value of the
parameter is θ , and ν is the number of repetitions of the mea-
surement. Maximization of F (θ ) over all possible quantum
measurements yields the quantum Fisher information (QFI)
F (θ ), which leads to the ultimate precision bound. Since
inequality (1) can be saturated in the limit of large ν, the
Fisher information can be considered as a figure of merit for
the precision of a given measurement strategy.

For pure initial states under unitary evolution U =
exp(iθH), the QFI can be calculated by [33]

F (θ ) = 4〈�H2〉, (3)

where 〈�H2〉 is variance of the generator of the evolution on
the initial state of the probe. From the discussion above, it
is clear that the precision limit stems from the statistics of
photon detections.
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III. DIRECT MEASUREMENT OF BEAM DEFLECTION

We refer to the “beam deflection” technique as the direct
measurement of the deflection angle of an optical beam,
reflected from object M, as a means to infer the tilt angle
θ , exemplified in Fig. 1(a). We consider a Gaussian beam
G(x, y, z) propagating in the z direction, and moreover that the
beam can be separated into x and y components: G(x, y, z) =
E (x, z)E (y, z), where

E (r, z) =
(

2

πw(z)2

) 1
4

e−(r−r0 )2/w(z)2
e−ikr2/2R(z)+iη(z) (4)

for r = x, y. Here the beam is centered at r0 = (ξ, ζ ), k is
the wave number, w(z) = w0

√
1 + z2/z2

R is the beamwidth
at z, with w0 being the beam waist, R(z) = z(1 + z2

R/z2) is
the radius of curvature of the beam wave front at z, with
zR = kw2

0/2 being the Rayleigh range—for which the width
of the beam becomes ω0

√
2—and η(z) is the Gouy phase, an

extra phase acquired by a propagating Gaussian beam, given
by arctan (z/zR) [34]. We consider that the beam is incident
on the reflecting object M that is located at z = 0. When the
object tilts an angle θ , the beam suffers an angular deflection
2θ . Without loss of generality, we assume that the deflection
is in the x direction. This allows us to ignore the y component
of the optical field.

In order to describe the beam deflection at the
single-photon level, we define the unitary operator U =
exp (−2ikθx), where x is the transverse position operator at
the object. To quantify the ultimate precision, we use the
quantum Fisher information (3). In this case, for a single
photon we have

Fbd = 16k2
〈
�2

x

〉
, (5)

where 〈�2
x〉 is the transverse spatial variance of the beam at

the object and k is the wave number.
For a laser field, the corresponding uncertainty is obtained

via (1) by setting ν = I/h̄ω, where I is the total light intensity
used in the measurement.

A. Position measurement

Consider a detection system, capable of imaging the trans-
verse profile of the laser beam. We can calculate the Fisher
information by extending (2) to the case of continuous mea-
surement, resulting in

F (θ ) =
∫

dx
1

P(x, θ )

[
dP(x, θ )

dθ

]2

. (6)

For the Gaussian beam (4) undergoing deflection of angle 2θ ,
the probability of detecting a photon at position (x, z) is

P(x, θ, z) = A exp

[
−2

(x − ξ − 2θz)2

w2(z)

]
, (7)

where A =
√

2/πω2(z). A straightforward calculation
leads to

Fpos = 16k2

(
w2

0

4

)
z2

z2 + z2
R

. (8)

Considering that the term in parentheses is the variance of the
transverse spatial distribution of the Gaussian beam in Eq. (4),
this shows that a high-resolution position measurement sat-
urates the QFI (5) when z � zR. Moreover, the transverse
displacement of the beam, ξ , plays no role in the Fisher
information for this specific case.

B. Quadrant measurement

The mean position of a Gaussian beam can be measured
using a quadrant detector (here used as a “sign” detector) to
measure the signal that is proportional to the beam intensity
on the positive (+) or negative side (−) of the x axis. For a
quadrant detector at position z and origin set at x = ξ , this
can be characterized by two probabilities P±, obtained by
integrating probability (7) over positive or negative x, giving

P± = 1

2

[
1 ± erf

(
2
√

2θz

w(z)

)]
. (9)

Then, using definition (2), the quadrant detection system gives
the Fisher information

Fquad = 32z2e−2( 2
√

2θz
w(z) )2

πw2(z)
[
1 − erf2

(
2
√

2θz
w(z)

)] . (10)

For small tilt angles, so that ( 2
√

2θz
w(z) )

2 � 1, we have

Fquad = 32z2

πw2(z)
. (11)

Note that z2/w2(z) varies from 0 when z = 0 to z2
R/w2

0 when
z is much larger than the Rayleigh range zR. Thus, using zR =
πw2

0/λ, we can write the maximum Fisher information for the
quadrant detector as

Fquad,max = 32z2
R

πw2
0

= 32

π
k2

(
w2

0

4

)
, (12)

which is achieved for z � zR, where the detected field is the
Fourier transform of the field at the reflecting object. Note that
the term in parentheses on the right is again the beam variance
at z = 0. This expression is 2/π ≈ 0.64 times the QFI given
in (5), and thus does not extract all of the available information
on θ .

IV. INTERFEROMETRIC TECHNIQUES

A. Quantum Fisher information: Ideal precision limits

Let us now consider interferometric schemes to optically
measure the tilt angle θ of a reflecting object M, again
located at longitudinal position z = 0. We consider first a
Sagnac interferometer, as shown in Fig. 1(b). Considering that
interferometer is constructed with a polarizing beam splitter,
the two optical paths in the interferometer are associated
with the horizontal H and vertical V polarization directions.
Thus, the polarization of the beam acts as an auxiliary qubit.
The two orthogonally polarized fields propagate in opposite
directions within the interferometer. The unitary operator
describing the dynamics of this interferometric scheme can
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be written as [10,11,19]

Usag = exp (−2ikθσzx), (13)

where σz = |H〉〈H | − |V 〉〈V | is the Pauli operator acting on
the auxiliary (polarization) degree of freedom. Assuming
that the initial polarization state is isotropic, so that 〈σzx〉 =
〈σz〉〈x〉, the quantum Fisher information is given by

Fsag = 16k2
[〈
�2

x

〉 + (1 − 〈σz〉2)〈x〉2
]
, (14)

so that the initial displacement of the field 〈x〉 can be used to
increase the measurement precision [19], when compared to
the direct measurement of beam deflection, in which the QFI
is given by Eq. (5). Of course, by choosing the polarization
state such that 〈σz〉 = ±1, the interferometric scheme is equiv-
alent to the displacement scheme (no interference). However,
one can increase the measurement precision by taking advan-
tage of the coherence in the additional (polarization) degree of
freedom, choosing an initial state with 〈σz〉 = 0 and 〈x〉 �= 0.
These precision bounds can be saturated by using practical
setups. Depending on the initial polarization state, the relevant
information on θ , can be concentrated in the polarization or
spatial degrees of freedom, or both [10,11,19].

One might consider other types of optical interferometers,
such as a Mach-Zehnder interferometer, as shown in Fig. 1(c),
where again we associate the two paths with H and V polar-
ization directions. Here only one path—say the V -polarized
one—probes the tilting object. This would also be the case
for a Michelson interferometer, for which a similar analysis
applies. The unitary operator describing these dynamics can
be written as

Umz = exp (−2ikθ |V 〉〈V |x). (15)

To calculate the quantum Fisher information, we assume again
an isotropic polarization state, and find

Fmz = 8k2(1 − 〈σz〉)

[〈
�2

x

〉 + 1

2
(1 + 〈σz〉)〈x〉2

]
. (16)

If the initial polarization state is V , so that 〈σz〉 = −1, we
recover the QFI for the beam displacement method (5). Of
course if 〈σz〉 = 1 (H polarization) the QFI is zero, since the
beam does not reflect off the object, and no information is
obtained. In general the optimal polarization state depends on
the ratio between the variance and the squared mean position
of the input beam. If 〈x〉2 � 〈�2

x〉, it is optimal to choose
a polarization state such that 〈σz〉 = 0, and we have Fmz =
8k2[〈�2

x〉 + 〈x〉2/2]. In fact, we can exploit the interference
(choosing 〈σz〉 = 0) to surpass the QFI for the beam dis-
placement method (5) when the mean is more than twice the
variance. Moreover, in this case it is enough to measure only
the polarization of the beam, as will be discussed more detail
in the following section. For both the Mach-Zehnder and
Sagnac interferometer, the increase in the QFI as a function
of 〈x〉2 is due to an extra phase that results from the fact that
the light hits M out of center, as illustrated in Fig. 2. For a
beam with a given variance and mean, we have Fmz < Fsag.
This is of course due to the fact that the Sagnac interferometer
allows both counterpropagating beams to probe the angle θ ,
which increases the attainable precision.

|H

|V
θ

2θ

2θ

√
2ξ

√
2ξ

FIG. 2. Diagram showing the origin of information gain due to
transverse beam displacement ξ of the initial beam in the Sagnac
interferometer. The two counterpropagating paths are displaced

√
2ξ

on the surface of the reflecting object M. When the surface tilts by
an angle θ relative to the initial position (dotted black line at 45◦),
one beam (the V beam in this example) propagates a distance 2θξ

longer to reach the surface, while the other propagates a distance
2θξ shorter.

B. Precision for practical interferometric scheme

Since the QFI for the Sagnac configuration of Fig. 1(b)
is larger than that of the Mach-Zehnder configuration, we
consider a Sagnac interferometer in what follows, where
we describe the polarization and transverse spatial de-
grees of freedom of the light beam using Dirac nota-
tion [35,36]. We choose the initial polarization or spatial
state as

|
〉 = (α|H〉 + β|V 〉)|ψ〉, (17)

where α and β are complex coefficients,

〈q|ψ〉 =
∫

dqψ (q)e−iqξ , (18)

and |q〉 is a plane wave with transverse component q in the x
direction, and wave number k. Here we assume that the initial
displacement of the beam is 〈x〉 = ξ .

Applying the unitary interaction for the Sagnac interfer-
ometer (13), together with free propagation, described by
operator exp (iq2z/2k) [35,36], we have

|
〉 = α|H〉|ψ+〉 + β|V 〉|ψ−〉, (19)

where

|ψ±〉 =
∫

dqψ (q)e−iqξ ei(q±2kθ )2z/2k|q ± 2kθ〉. (20)

Consider that the spatial state ψ (q) describes the Gaussian
beam (4) in the momentum representation. We can calculate
the detection amplitude at position x by projecting the state
onto |x〉. We assume also that projection onto diagonal linear
polarization states, |±〉 = (1/

√
2)(|H〉 ± |V 〉), has been per-

formed. The probability P±(x) to detect a photon at position x
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in the |±〉 polarization state is

P±(x) =|α|2
2

|ψ (x − ξ + 2θz, z)|2

+ |β|2
2

|ψ (x − ξ − 2θz, z)|2 ± Ade
−8θ2z2

w2 (z) e
−2(x−ξ )2

w2 (z)

× cos

(
4kθw2

0

w(z)2
(x − ξ ) + 4kθξ − ϕ

)
, (21)

where we define d exp(iϕ) = α∗β, with d a real number.

1. Polarization measurement

Let us first consider polarization measurement alone. In-
tegrating (21) over x and using the relations between the
Gaussian beam parameters, we have

P± = 1
2

[
1 ± 2d e−Bθ2

cos(4kθξ − ϕ)
]
, (22)

where B = 2k2w2
0. We note that these two probabilities can

be used to determine the Stokes parameter of the field: S2 =
P+ − P−. The Fisher information is

F = 16d2[Bθ cos(4kξθ − ϕ) + 2kξ sin(4kξθ − ϕ)]2

e2Bθ2 − 4d cos2(4kξθ − ϕ)
. (23)

We note that F depends on the initial polarization state via
d and ϕ. Using a Bloch sphere representation for the polar-
ization qubit, without loss of generality we can write α =
cos(ϑ/2) and β = exp(iϕ) sin(ϑ/2), where ϑ and ϕ are the
angular coordinates in the unit sphere [37]. With this, 2d =
sin ϑ . To maximize F for any value of ξ , we must maximize
d . To achieve sin ϑ = 1 we require an initial polarization
state that lies on the equator of the Bloch sphere, for which
we achieve maximum contrast interference, since these have
equal projections onto the H and V polarization states. The
relative phase ϕ between H and V polarization components of
the initial state can be used as a control parameter to maximize
F for a particular range ϑ . We note that a very similar analysis
holds if one fixes the input state and maximizes over the
measurements.

Thus, to maximize the Fisher information (23), we set α =
β = 1/

√
2, corresponding to the initial polarization state |+〉.

Assuming Bθ2 � 1 and 4kξθ � 1, and keeping only terms
up to first order in θ , the above expression reduces to

F = 16k2

[
w2

0

4
+ ξ 2

]
. (24)

Noting that 〈�2x〉 = w2
0/4, the Fisher information (24) is

equal to the QFI (14), and superior to the QFI for the beam
displacement technique (5), due to the initial translation of the
input beam 〈x〉 = ξ .

To explain the physical origin of this gain in information
on θ due to ξ , we refer to Fig. 2, which shows a diagram of
the reflecting object M with two counterpropagating beams
with H and V polarization. When the surface tilts by an angle
θ relative to its initial position (black dotted diagonal line),
the V beam propagates a distance 2θξ longer to reach the
surface, while the other propagates a distance 2θξ shorter.
This causes a relative phase difference of 4θξ between the
two orthogonal beams, creating a change of the polarization
state that contains information on θ , and depends also on

ξ . We note that this precision is achieved by polarization
measurements alone, with no spatial resolution required in
the detection system. Moreover, the interferometric technique
has the advantage over the beam deflection method in that the
polarization measurements can saturate the QFI (14) at nearly
any propagation distance z, as opposed to being restricted to
the far field (z � zR).

2. Position-dependent polarization measurement

Several authors have considered postselected metrology
schemes [13–15]. However, most previous work has consid-
ered a position measurement implemented with postselec-
tion on the auxiliary qubit (polarization) [6–8,10,11,13,15].
The fact that we can extract more information from the
polarization degree of freedom in the interferometric scheme
motivates the consideration of polarization measurements
conditioned on position postselection. We will see that this
analysis reveals the origin of the information on θ at different
propagation distances z.

Let us consider that pointlike detectors are placed at po-
sition x, so that a position-dependent projection onto the po-
larization states |±〉 is performed. We can define normalized
probabilities for the polarization measurements,

P̄±(x) = P±(x)

P+(x) + P−(x)
, (25)

such that P̄+(x) + P̄−(x) = 1. The Fisher information regard-
ing polarization measurement at point x can then be written as

F̄ (x) = 1

P̄+(x)P̄−(x)

(
dP̄+(x)

dθ

)2

. (26)

Following [10,14], the total Fisher information for both posi-
tion and polarization measurements is then given by

F =
∫

dxP(x)F̄ (x) +
∫

dx
1

P(x)

(
dP(x)

dθ

)2

, (27)

where P(x) = P+(x) + P−(x). The first term is the average
Fisher information obtained for position-dependent polariza-
tion measurements, while we can recognize the second term
as the Fisher information from the position measurements.
We note that F̄ (x) can thus be interpreted as the Fisher
information per photon detected at x, with P(x) being the
probability that a photon is detected at x.

Let us explore the information available in position-
dependent polarization measurements. We assume that α =
β = 1/

√
2 in Eq. (21), as we saw above that this choice

optimizes the Fisher information. Explicitly, the normalized
probabilities read

P̄±(x) = 1

2

⎛
⎝1 ±

cos
( 4kθw2

0
w(z)2 (x − ξ ) + 4kθξ

)
cosh

( 8θz(x−ξ )
w2(z)

)
⎞
⎠. (28)

We write

P̄±(x) = 1

2

(
1 ± cos[a(x)θ ]

cosh[b(x)θ ]

)
, (29)
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and assume θ sufficiently small so that a(x)2θ2 � 1 and
b(x)2θ2 � 1. These can be rewritten as

a(x)2θ2 = 16k2θ2

(
z2

Rx + z2ξ

z2 + z2
R

)2

� 1 (30)

and

b(x)2θ2 = 16k2θ2

(
zzR(x − ξ )

z2 + z2
R

)2

� 1. (31)

Let us briefly analyze these assumptions in more detail. For
measurements in the far field, we consider z � zR. The above
conditions return the constraint 16k2θ2ξ 2 � 1. For near-field
measurements, let us first note that throughout this section
we have assumed that any measurement will be realized after
the field has exited the interferometer [see Fig. 1(b)], and that
we have defined z = 0 as the surface of the reflecting object,
within the interferometer. Thus, to consider measurements
in the near field, we take z � zR, with the understanding
that z must be larger than the propagation distance from the
reflecting object to the exit face of the interferometer. Under
these conditions, and assuming finite x and ξ , the above
assumptions require 16k2θ2x2 � 1. Since x2 ∼ w2

0/4, these
two assumptions place the same limits on the size of deflection
angle θ relative to the initial beam displacement ξ and the
beamwidth w0 as was considered just before Eq. (24). Then,
we have, up to O(θ2),

F̄ (x) ≈ a(x)2 + b(x)2, (32)

or

F̄ (x) ≈ 16k2 z2
Rx2 + z2ξ 2

z2 + z2
R

. (33)

This equation clearly displays the two contributions to the
Fisher information, where one can see that the initial beam
displacement ξ is most relevant in the far field (z � zR),
while the beamwidth, through |x| ∼ w0, is most relevant in
the near field (z � zR). Figure 3(a) shows a plot of F̄ (x)/k2

with F̄ (x) given by (33) as a function of x for two different
values of the displacement ξ . We can see that the information
gain arising from the beam displacement, namely 16k2ξ 2,
appears for any detection position x. The Fisher information
increases quadratically with x; however these events are more
and more rare, as the probability P(x) decreases with x. For
x � ξ , we have F̄x�ξ (x) ≈ 16k2ξ 2z2/(z2 + z2

R), showing that
the information in the polarization degree of freedom depends
on the propagation distance z, saturating at 16k2ξ 2 for z � zR.
This is the information that arises from the phase shift due to
the initial transverse displacement ξ of the input beam. This
can be seen in the plots in Fig. 3(b), showing F̄ (x = 0)/k2 as
a function of z for ξ = 1 mm. We can see from Eq. (33) that
at x = 0 and z � zR, there is no information available in the
polarization degree of freedom, F̄ (0) = 0, for any value of ξ .
Thus, if the detection system has a limited spatial bandwidth
accepting light near x = 0, it is advantageous to detect light in
the far field z � zR. On the other hand, for larger values of x,
F̄ (x) is maximum for small z and decreases as a function of
z. We can see from (33) and Fig. 3(b) that the critical point is
x = ξ , where the Fisher information is constant as a function
of z.

FIG. 3. (a) Fisher information per detected photon F̄ (x)/k2 at
z = 5zR, as a function of x, for x-dependent polarization measure-
ment. Solid black line and dashed red line correspond respectively to
displacements of the incoming beam equal to ξ = 0 and ξ = 1 mm.
(b) Fisher information per detected photon F̄ (x)/k2 as a function of z
for polarization measurement for ξ = 1 mm. The position measure-
ments are made at x = 0 (solid black curve), x = 1 mm (dotted red
line), and x = 1.5 mm (gray dashed curve). In all plots we chose
zR = 1 m.

Of course the actual information that can be extracted de-
pends on the probability of detecting a photon at a given point
x [29]. In Fig. 4 we show the Fisher information per photon
at x scaled by the actual probability of detecting a photon at
x. This quantity, P(x) × F̄ (x)/k2, represents the information
on θ per detected photon (at x) obtainable by projecting the
polarization in the |±〉 basis. There can also be information
in P(x) alone. We can see that the maximum scaled Fisher
information at x changes as a function of ξ and z. Thus,
the postselection information P(x)F̄ (x) depends on z. This
is in contrast to a full-field detection system, which registers
all available light and saturates the QFI for all values of z
(outside the interferometer). We can check that the average
Fisher information obtained from polarization measurements
is obtained by averaging over P(x), which gives∫

dxP(x)F̄ (x) = 16k2

[
w2

0

4
+ ξ 2

]
, (34)

which agrees with (24), as it should. Since this saturates
the QFI (14), there is no available information in the spatial
degree of freedom.

V. CONCLUSIONS

We have investigated interferometric-based techniques to
estimate the deflection angle θ of an optical beam, comparing
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x(mm)

(a)

(b)

x(mm)

P (x) P (x)

x(mm) x(mm)

P (x) × F̄ (x)/k2 P (x) × F̄ (x)/k2(c)

(d)

FIG. 4. (a) Fisher information for ξ = 0 scaled by the detection
probability P(x) shown in (b). (c) Fisher information for ξ = 1 mm
scaled by the detection probability P(x) shown in (d). Black curves
correspond to z = 0 and red dashed curves to z = 5zR. In all plots we
chose the Rayleigh range zR = 1 m.

them with the direct detection of the beam deflection in the far
field.

Using quantum metrology tools, we compared the ultimate
precision limits given by the quantum Fisher information for
both a Sagnac interferometer and a Mach-Zehnder interferom-
eter, and observed that the Sagnac offers superior precision
for fixed beam parameters. For both of these arrangements,
we have shown that the ultimate precision limit can surpass
that of a far-field beam displacement measurement by a factor
that is proportional to the initial transverse displacement of
the beam. Thus, the initial beam displacement, a parameter
independent from θ , can be used to enhance the measurement
precision.

Moreover, focusing on the Sagnac approach, we have
shown that this precision limit can be saturated for small θ

by a binary polarization measurement of the light field. An
additional advantage, when compared to beam displacement
methods, is that the polarization measurement can be per-
formed at nearly any longitudinal position after the tilt angle
has been imprinted on the beam. Thus, the detector can also
be placed in the near field of the object.

We have also considered polarization measurements condi-
tioned on postselection of the position by pointlike detectors.
This analysis also illuminated the role of the two parameters
which contribute to the Fisher information: the initial beam
displacement is most relevant in the far field of the object,
while the beamwidth is most relevant in the near field. It is
also relevant for situations in which the full-field measurement
of the field is not possible. Near the intensity maximum at the
origin, the information in the polarization degree of freedom is
minimum in the near field and increases for detection in the far
field. For an initially nondisplaced beam, in the near field the
information in the polarization degree of freedom is maximum
for detections performed outside the beam center. Through
the use of the tools of quantum metrology, our analysis was
shown to be valid for single photons and classical fields as
well, thus representing a unified treatment for both situations.
We note that a similar approach in optical imaging has led to
interesting new measurement schemes [23–25].
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