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Gross-Pitaevskii-Poisson model for an ultracold plasma: Density waves and solitons
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We introduce one- and two-dimensional (1D and 2D) models of a degenerate bosonic gas composed of ions
carrying positive and negative charges (cations and anions), under the condition of the electroneutrality. The
system may exist in the mean-field condensate state, enabling the competition of the Coulomb coupling, contact
repulsion, and kinetic energy of the particles, provided that their effective mass is reduced by means of a lattice
potential. The respective model combines the Gross-Pitaevskii (GP) equations for the two-component wave
function of the cations and anions, coupled to the Poisson equation for the electrostatic potential mediating
the Coulomb interaction. In addition to its direct introduction, the contact interaction in the GP system can be
derived, in the Thomas-Fermi approximation, from a system of three GP equations, which includes the wave
function of heavy neutral (buffer) atoms. In the system with fully repulsive contact interactions, we construct
stable spatially periodic patterns (density waves, akin to ionic crystals). The transition to the density wave
is identified by analysis of the modulational instability of a uniformly mixed neutral state. The density-wave
pattern, which represents the system’s ground state (GS), is accurately predicted by a variational approximation.
In the 2D case, a stable pattern is produced too, with a quasi-1D shape. The 1D system with contact self-attraction
in each component produces bright solitons of three types: neutral ones, with fully mixed components, dipoles,
with the components separated by the interspecies contact repulsion, and quadrupoles, with a layer of one
component sandwiched between side lobes formed by the other. The transition from the neutral solitons to
dipoles is accurately modeled analytically. A chart of the GSs of the different types (neutral solitons, dipoles, or
quadrupoles) is produced. Different soliton species do not coexist as stable states. Collisions between traveling
solitons are studied too. Collisions are elastic for dipole-dipole pairs, while dipole-antidipole ones merge into
stable quadrupoles via multiple collisions.

DOI: 10.1103/PhysRevResearch.2.033188

I. INTRODUCTION AND THE MODEL

For Bose-Einstein condensates (BECs), created in ultra-
cold atomic gases [1], an exceptionally accurate dynamical
model is provided by the Gross-Pitaevskii (GP) equation
[2]. The GP equation was derived for BEC with contact
interparticle interactions, and extended for the gas of dipolar
atoms, with long-range interactions between them. Various
aspects of theoretical and experimental studies of dipolar
condensates are summarized in Refs. [3–6]. Further, the anal-
ysis was developed, chiefly in the context of astrophysical
and cosmological models, for BEC bound by gravity forces
[7–13]. It was also demonstrated that similar long-range
attractive interactions can be artificially induced in atomic
condensates by means of specially designed laser illumination
[14,15]. A natural model for the BEC with gravitational or
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pseudogravitational interactions is a system of the GP equa-
tion for the mean-field atomic wave function and Poisson
equation for the gravitational potential. A model of BEC in
the gas of particles carrying electric dipole moments is also
based on the GP-Poisson (GPP) system, making use of two
different mean-field approximations: one for the particles’
wave function, and another for the interaction of the particle’s
dipole moment with the electrostatic potential, which is cre-
ated, as per the Poisson equation, by the distribution of the
polarization density in the gas [16].

The current work with ultracold plasmas [17–22] suggests
a possibility to consider them in the state of quantum de-
generacy [23–28]. Although presently available experimental
techniques make it possible to cool ions down to the lowest
level of ∼10 μK [17,29–33], which remains ca. two orders
of magnitude above the temperature of the BEC transition,
the ongoing progress in the experimental studies makes it
plausible that a plasma in the BEC state will be eventually
created.

The theoretical analysis of quantum plasmas was devel-
oped for electron-ion mixtures [23–25]. They are modeled by
the GPP system, including the nonlinear Schrödinger (NLS)
equation for the wave function of electrons, �, coupled to the
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electrostatic potential. In turn, the potential is created by the
respective density, |�|2, pursuant to the Poisson equation. The
NLS equation for � includes a self-repulsion term ∼|�|4/D�,
where D is the spatial dimension; thus it is similar to the
effective quintic nonlinearity of the Tonks-Girardeau gas in
the 1D setting [34], usual cubic nonlinearity of BEC [2] in
2D, and the nonlinear term known in the density-functional
model of Fermi gases in 3D [35,36], which may be applied to
experimentally available settings [37].

A less common type of plasmas represents a mixture of
positive and negative ions (cations and anions), containing
a negligibly small density of free electrons. Such plasmas
were created with different [38,39] and equal [40] cation and
anion masses. Theoretically, an ultracold plasma composed
of cations and anions with equal masses was addressed in
Ref. [41], by means of the molecular-dynamics methods,
i.e., numerically solving coupled equations of motion for
all particles in the plasma. In particular, known results [42]
suggest that a candidate for achieving this purpose may be a
mixture of deuterium anions and cations.

Assuming that an electroneutral cation-anion plasma may
be, eventually, cooled down into the BEC state, we here
introduce a model for it, which includes a two-component GP
equation for mean-field wave functions ψ± of the positive and
negative bosonic ions, and the Poisson equation for the elec-
trostatic potential, φ, induced by the distribution of the local
charge density. The objective is to produce stable GPP states
in the form of spatially periodic density waves and bright
solitons. Chiefly, the results are reported for the effectively
1D setting, and some findings for density waves are obtained
for the 2D system too.

Before introducing the model written in a scaled form, it is
relevant to estimate possible physical parameters of the setting
under the consideration. The state of degenerate plasmas is
controlled by the Coulomb-coupling strength C, viz., ratio
of the energy of the electrostatic interaction between charge
carriers to their kinetic energy [43] (the latter energy term
is restricted by the condition of the degeneracy of the gas).
For a high-density plasma (up to 1018 cm−3) of light cations
and anions, an estimate yields C ∼ 104 (very strong Coulomb
interaction is actually a reason impeding the creation of
quantum plasmas in the experiment). At C � 103, the strongly
coupled plasma is expected to build states such as Wigner
crystals [44], different from those predicted by the GP theory,
as the gradient terms becomes negligible in it. The plasma
may be kept in the regime of moderate Coulomb coupling
if the effective ion mass, m∗, is made essentially smaller
than its bare value, by means of a lattice (spatially periodic)
potential. Lattice potentials were employed for such purposes
in many theoretical and experimental studies, making use
of the fact that the effective mass may be strongly reduced
close to edges of the band gap in the respective spectrum
[45,46]. In particular, it was demonstrated theoretically [47]
and experimentally [48] that one may readily reduce m∗ by up
to two orders of magnitude, against the bare value.

As concerns the comparison of the Coulomb and kinetic
energies, it is relevant to stress that the patterns reported
below are actually produced by the competition of the elec-
trostatic interaction not with the quantum dispersion (which
corresponds to the kinetic energy in the GP equation), but,

chiefly, with contact interactions between the ions (solutions
for the density waves and solitons do not exist in the ab-
sence of the contact interactions). For the same typical values
of physical parameters which produce the above-mentioned
estimate, C ∼ 104, the ratio of the contact-interaction and
kinetic energies is estimated as being ∼102–103, if the bare
atomic mass is used. Thus the introduction of the reduced
effective mass may make magnitudes of the latter energy
terms comparable, which helps to explain the possibility of
the creation of the spatial patterns considered below.

According to what is said above, the GPP system is written,
in the scaled form, as

i
∂ψ+
∂t

=
[
− 1

2m∗+
∇2 + (g++|ψ+|2 + g+−|ψ−|2)

+ q+φ + U+(r)

]
ψ+, (1)

i
∂ψ−
∂t

=
[
− 1

2m∗−
∇2 + (g−−|ψ−|2 + g+−|ψ+|2)

− q−φ + U−(r)

]
ψ−, (2)

∇2φ = −4π (q+|ψ+|2 − q−|ψ−|2), (3)

where m∗
± and q± are scaled effective masses and absolute

values of charges of the cations and anions, g++, g−−, g+− are
coefficients of the contact nonlinearity, and U±(r) are trapping
potentials, if any (if the lattice potential is used, as outlined
above, to renormalize the effective masses, it is not explicitly
included, as its effect is represented by m∗

±). Equations (6)–(8)
conserve two numbers of ions,

N± =
∫

|ψ±(r)|2dr, (4)

where dr = dx, dx dy, or dx dy dz, in the 1D, 2D, and 3D
cases, respectively, and the electroneutrality condition implies

q+N+ = q−N−. (5)

Below, we focus on the consideration of the symmetric sys-
tem in free space (U± = 0), with equal effective masses which
are fixed, by rescaling the coordinates, to be m∗

+ = m∗
− ≡ 1;

further, the symmetry implies g++ = g−− ≡ g, g+− ≡ G, and
q+ = q− ≡ q. Then, q+ = q− implies N+ = N− ≡ N , as per
Eq. (5). Finally, making use of the remaining scale invariance
of the GPP system, we set g = ±1 for the repulsive and
attractive signs of the contact self-interaction, respectively,
unless g = 0 . Thus the symmetric version of the GPP system
of Eqs. (1)–(3) takes the form of

i
∂ψ+
∂t

=
[
−1

2
∇2 + (g|ψ+|2 + G|ψ−|2) + qφ

]
ψ+, (6)

i
∂ψ−
∂t

=
[
−1

2
∇2 + (g|ψ−|2 + G|ψ+|2) − qφ

]
ψ−, (7)

∇2φ = −4πq(|ψ+|2 − |ψ−|2). (8)

In fact, the same system can be derived in the framework
of a more general setting, which includes, in addition to
the cations and anions, a buffer component of heavy neutral
bosonic atoms with wave function �0 (the neutral atoms may
be also used for cooling the ions by means of the sympathetic
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method [31,33]). Thus, in the limit case when the contact
interactions are much weaker than the electrostatic coupling
mediated by potential φ (which is a natural situation, as
mentioned above), two GP equations (6) and (7) are replaced
by three, the extra one being the equation for �0:

i
∂ψ+
∂t

=
[
−1

2
∇2 + f |�0|2 + qφ

]
ψ+, (9)

i
∂ψ−
∂t

=
[
−1

2
∇2 + f |�0|2 − qφ

]
ψ−, (10)

i
∂�0

∂t
=

[
− 1

2M
∇2 + F |�0|2 + f (|ψ+|2 + |ψ−|2)

]
�0,

(11)

where M is the relative mass of the buffer atoms, while
f and F are coefficients accounting for, respectively, the
buffer-ion and self-buffer interactions. For heavy atoms
with large M, the kinetic-energy term in Eq. (11) may be
neglected, which is tantamount to the Thomas-Fermi ap-
proximation [2], applied to this equation. Then, looking
for a solution as �0 = exp (−iμ0t )ψ0(x, y, z; t ) and ψ± ≡
exp [−i( f /F )μ0t]ψ̃±, where μ0 is the buffer’s chemical po-
tential and ψ0 is a slowly varying function of t in comparison
with exp(−iμ0t ), one can use Eq. (11) to eliminate the buffer’s
density,

|ψ0|2 = F−1[μ0 − f (|ψ̃+|2 + |ψ̃−|2)]. (12)

The substitution of this approximation in Eqs. (9) and (10)
leads back to Eqs. (6) and (7) for wave functions ψ̃±, with
effective coefficients

g̃ = G̃ = − f 2/F. (13)

Spatial patterns are expected to exist if the Coulomb cou-
pling between cations and anions is balanced by the contact
repulsion between them; therefore, we adopt G > 0 in Eqs. (6)
and (7) [in particular, this implies the choice of F < 0, i.e.,
self-attraction of the buffer atoms, if the nonlinearity coeffi-
cients are produced by Eq. (13)].

It may be interesting to consider the system which in-
cludes, on a par with the cations and anions, polar molecules
formed as their bound states, which should be represented
by a separate wave function. The respective model should be
based on a system of three GP equations, including various
“reactions,” such as merger of colliding ions into the molecule
[however, the merger may be suppressed by the strong contact
repulsion with G > 0 in Eqs. (6) and (7)], and breakup of the
molecule due to collisions. In the present paper, we do not aim
to address such a system.

Note also that Eqs. (6) and (7) with g = 0 [or with g
given by Eq. (13), if the ion-ion interaction is mediated by
the buffer atoms] may model a fermionic plasma [49], in
which the Pauli principle forbids direct self-interaction; cf.
Ref. [50]. Furthermore, the derivation of the NLS-Poisson
system for the quantum plasma dominated by the electron
component [23–25] suggests that, in the case of g = +1 and
imaginary G = −i�, the 2D version of Eqs. (6)–(8) may serve
as a model of the degenerate electron-positron plasma, with
coefficient � > 0 representing annihilation losses, although
the consideration of this possibility is beyond the scope of the
present work.

The rest of the paper is organized as follows. Spatially
periodic density-wave solutions, in both 1D and 2D forms,
are considered below in Sec. II. That section includes an
exact analytical investigation of the modulational instabil-
ity (MI) of the uniformly mixed (locally neutral) state, and
an analytical approximation for the density-wave patterns.
Solutions for 1D solitons, which may exist in the form of
neutral localized states, with fully mixed cations and anions,
or dipole and quadrupole ones, are addressed in Sec. III.
In particular, the transition from neutral solitons to dipoles
is predicted analytically. The chart of the system’s ground
states (GSs), represented by the neutral, dipole, or quadrupole
solitons, is produced in a numerical form. Collisions between
moving dipole solitons are considered too, by means of direct
simulations. The paper is concluded by Sec. IV.

II. SPATIALLY PERIODIC STATES

A. Stationary equations

Stationary 1D solutions of Eqs. (6)–(8) with chemical
potentials μ± of the two components are looked for as

ψ±(x, t ) = e−iμ±t u±(x), (14)

with real wave functions u±(x) obeying the stationary version
of the GPP system in free space (U± = 0):

(μ+ − qφ)u+ = −1

2

d2u+
dx2

+ (gu2
+ + Gu2

−)u+, (15)

(μ− + qφ)u− = −1

2

d2u−
dx2

+ (gu2
− + Gu2

+)u−, (16)

d2φ

dx2
+ 4πq(u2

+ − u2
−) = 0. (17)

Note that Poisson equation (8) can be solved by means of its
Green’s function, which yields

φ(x) = −2πq
∫ +∞

−∞
|x − x′|{[u+(x′)]2 − [u−(x′)]2}dx′ (18)

(cf. Ref. [51], where the Green’s function was used to solve
the Poisson equation for microwave field coupling two differ-
ent states of neutral atoms, represented by two components of
a spinor wave function). Accordingly, Eqs. (15) and (16) may
be replaced by a system of integro-differential equations:

μ+u+ = −1

2

d2u+
dx2

+ (gu2
+ + Gu2

−)u+ − 2πqu+

×
∫ +∞

−∞
|x − x′|{[u+(x′)]2 − [u−(x′)]2}dx′, (19)

μ−u− = −1

2

d2u−
dx2

+ (gu2
− + Gu2

+)u− + 2πqu−

×
∫ +∞

−∞
|x − x′|{[u+(x′)]2 − [u−(x′)]2}dx′. (20)

Strictly speaking, the Poisson equation should be taken in
the 3D form, even if the atomic components are confined to
the effectively 1D setting, as usual, with the help of a tight
confining potential applied in the perpendicular plane [52,53].
However, the logarithmic form of the fundamental solution of
the 2D Poisson equation in the orthogonal plane implies that
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the transverse component of the electric field will give rise to
a relatively weak force acting on the ions, and their transverse
motion will be suppressed by the confining potential.

B. Modulational instability (MI) of the
uniformly mixed neutral state

First, the GPP system of Eqs. (15)–(17) gives rise to
obvious uniformly mixed (locally neutral) states, with

φ = 0, u± = const ≡ u0, μ± = (g + G)u2
0. (21)

These states may be subject to MI against perturbations
demixing the two components. The well-known condition for
the instability of the mixed state against the phase separation
in the absence of the Coulomb interaction is G > g [54]. In
the present case, one may expect that the instability threshold
is shifted to larger values of G, as the Coulomb attraction
between the components tends to enhance the trend to their
mixing.

To investigate the MI, we follow the usual approach,
substituting, in the 1D version of GP equations (6)–(8),
the amplitude-phase form of the wave functions, ψ±(x, t ) =
u±(x, t ) exp [iχ±(x, t )] [55]. Then, equations are linearized
for modulational perturbations, δu± = u± − u0, χ±, and φ.
Solutions for eigenmodes of the small perturbations are
looked for as

(δu±, χ±, φ) = (δu(0)
± , χ

(0)
± , φ(0) ) exp(γ t + ipx), (22)

where (δu(0)
± , χ

(0)
± , φ(0) ) and p are amplitudes and an arbitrary

wave number of the perturbation, while γ is the respective MI
gain.

The substitution of perturbations (22) in the linearized GPP
system leads to the dispersion equation, relating γ and p,
which is written in the form of the corresponding determinant
in the Appendix. Finally, a straightforward calculation yields
four branches of γ (p):

γ = ±ip
√

(g + G)u2
0 + p2/4, (23)

γ = ±
√

Gu2
0 p2 − u2

0(8πq2 + gp2) − p4/4. (24)

In this section, we consider the case of repulsive self-
interactions, with g > 0. Then, the branch of the dispersion
relation given by Eq. (23) is purely imaginary and does not
lead to MI. On the other hand, branch (24) produces real val-
ues of γ , which represent MI, when the density of the uniform
neutral state exceeds a critical value (i.e., the nonlinearity is
strong enough in comparison with the Coulomb attraction):

u2
0 >

(
u2

0

)
cr = 8πq2

G − g
. (25)

At u2
0 = (u2

0)cr, the MI emerges at wave numbers with

p2 = (p2)cr ≡ 16πq2. (26)

The largest value of the squared MI gain,

γ 2
max = u2

0

[
(G − g)u2

0 − 8πq2
]
, (27)

is attained at p2
max = 2(G − g)u2

0, which is tantamount to the
value given by Eq. (26) at the MI-onset point, u2

0 = (u2
0)cr.

Note that pmax does not depend on the charge, q, being the

FIG. 1. (a) Snapshot profiles of |ψ+(x, t )| and |ψ−(x, t )| (green
solid and blue dashed lines, respectively), at t = 0.025n, with n =
40, 41, . . . , 61, produced by simulations of Eqs. (6)–(8) with G = 2
and g = q = 1, in the domain of size L = 10 with periodic boundary
conditions, starting from input (28). (b) The evolution of |ψ+| at x =
L/2.

same as in the case of the MI against demixing of the two
components in the absence of the Coulomb interactions [54].
On the other hand, the critical value of the squared wave
number, given by Eq. (26), does not depend on coefficients
G and g of the contact interactions.

The predicted stability of the uniform neutral state against
modulational perturbations at u2

0 � (u2
0)cr is readily confirmed

by direct simulations of Eqs. (6)–(8) in 1D. As an example,
Fig. 1(a) displays the evolution initiated by input

ψ±(x, t = 0) =
√

10 ± 0.5 cos(12πx/5), φ(t = 0) = 0,

(28)
with parameters G = 2, g = 1, q = 1, in the domain of size
L = 10. In this case, u2

0 = 10 is definitely smaller than critical
value (25), (u2

0)cr = 8π . For this reason, Fig. 1(a) demon-
strates stable propagation of perturbations, which may be
considered as ion-acoustic waves in the cation-anion plasma;
cf. Ref. [56]. Figure 1(b) shows the evolution of |ψ+| at
x = L/2. The numerically found temporal period of the wave
is T ≈ 0.28, which is very close to that predicted by Eq. (24)
at the same values of the parameters, 2π/|γ | = 0.283.

C. Density waves

Stable spatially periodic solutions were obtained as solu-
tions of Eqs. (6)–(8), produced by means of the imaginary-
time integration method [57], in the 1D domain of size L
with periodic boundary conditions. Figure 2(a) displays a
typical example, with L = 10 and the density-wave’s period
l = L/12.

The pattern displayed in Fig. 2(a) demonstrates phase
separation (demixing) of the two components, in the case
when their contact repulsion, accounted for by G > 0 in
Eqs. (15) and (16), is stronger than the Coulomb attraction
between the cations and anions. Naturally, for fixed values
of the system’s parameters, viz., g, G, q in Eqs. (6)–(8), and
fixed size L, the destabilization of the uniform state takes
place, with the increase of the effective nonlinearity strength,
when the density of each component exceeds a certain critical
value: N±/L ≡ N/L > ncr; see Eq. (38) below. Numerical
findings for the transition from the uniform neutral state to
the density wave are summarized in Fig. 3(a), which displays
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FIG. 2. (a) Stable spatially periodic numerical solution of
Eqs. (15), (16), and (18) (the density wave) with components u+(x)
and u−(x) (solid green and dashed blue lines, respectively) in the
domain of size L = 10 with periodic boundary conditions. The chem-
ical potential and norms of the numerical solution are μ± = 94.85
and N± = 325. (b) The fit of the numerical solution for u+(x) (the
continuous line) to the analytical ansatz, u0 + A cos(2πx/l + α) (the
dashed line), with u0 = 5.49 and A = 2.17 determined numerically
as the spatial average value of u+(x), and the square root of the
average of [u+(x) − u0]2. The best-fit value of the phase shift is
α = 0.68. The system’s parameters are g = 1, G = 2, and q = 1.

the modulation depth of the arising pattern, defined as the
half-difference between local maxima and minima of φ+(x),

A ≡ (1/2)(φmax − φmin) (29)

[it is the same for φ−(x)] as a function of N± ≡ N , with the
same system’s parameters as in Fig. 2. The striped pattern may
be considered as an analog of an ionic crystal [58] (unlike the
above-mentioned Wigner crystal, which is a pattern emerging
in strongly coupled degenerate plasmas, including the quasi-
1D setting [43,44]).

The critical point, N = Ncr ≡ ncrL, at which the periodic
pattern appears, and the shape of the pattern can be predicted
in an analytical form. To this end, we note that the energy of

(a) (b)

FIG. 3. (a) Modulation depth of the density wave, defined as
per Eq. (29), vs the norm of each component, N± = N , for the
same system’s parameter as in Fig. 2, i.e., g = 1, G = 2, q = 1,
and L = 10. The dashed line shows A(N ) as predicted by analytical
approximation (35) with l = L/12. (b) The chain of rhombuses
and dashed line depict, severally, the numerically found chemical
potential of the same family of the density waves, μ(N ), and its
analytically predicted counterparts, given by Eq. (37). In addition, the
chain of crosses shows μ as predicted, in a simple form, by Eqs. (36)
and (32), (35).

the GPP system, represented by Eqs. (6)–(8), is

E =
∫ L

0

[
1

2

(∣∣∣∣dψ+
dx

∣∣∣∣
2

+
∣∣∣∣dψ−

dx

∣∣∣∣
2
)

+ 1

2
g(|ψ+|4 + |ψ−|4)

+ G|ψ+ψ−|2 + 1

8π

(
dφ

dx

)2]
dx, (30)

the last term being the electrostatic energy. Then, the demixed
pattern with spatial period l may be approximated by a simple
variational ansatz,

u±(x) = u0 ± A cos (2πx/l ), (31)

where u0 is the mean value, and modulation depth A is the
same as defined by Eq. (29), the respective density of particles
being

n ≡ N/L = u2
0 + A2/2. (32)

Figure 2(b) displays the fit of a typical numerically obtained
component u+(x) to ansatz u0 + A cos(2πx/l + α). Further,
the substitution of ansatz (31) in Eq. (17) and considera-
tion of the balance condition for the fundamental harmonic,
cos (2πx/l ), yields the corresponding approximation for the
electrostatic potential:

φ = (4/π )l2qu0A cos (2πx/l ). (33)

Next, substituting components (31) and (33) of the ansatz
in expression (30), and using Eq. (32) to eliminate u2

0 in favor
of the density of particles, we find the corresponding energy
density,

E ≡ E

L
= (g + G)n2 +

[
2π2

l2
+ 4

π
(ql )2n + 2(g − G)n

]
A2

+
[

9G − 7g

8
− 2

π
(ql )2

]
A4. (34)

In the framework of the variational method [59], the mod-
ulation depth is determined by minimization of the energy
density with respect to A, i.e., dE/d (A2) = 0, which yields

A2 = 8π2/l2 + (16/π )(ql )2n − 8(G − g)n

(9G − 7g) − (16/π )(ql )2
. (35)

The chemical potential of the density wave can be
predicted by taking Eqs. (15) and (16) at points where
cos (2πx/l ) = 0; hence Eqs. (31) and (33) give u+ = u− = u0

and d2u±/dx2 = φ = 0:

μ± = (G + g)u2
0. (36)

Figure 3(b) shows the numerically found chemical potential
μ (rhombuses) with μ predicted by Eq. (36) (crosses) and,
additionally, the chemical potential calculated, as usual, as
the derivative of the energy density with respect to the total
density (2n):

μ = d (E )/d (2n), (37)

obtained from Eq. (34) and depicted by the dashed line.
The result given by Eq. (35) makes sense at A2 � 0, i.e., at

n � ncr = 8πq2/(G − g). (38)
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At the critical point, n = ncr, the MI is driven by perturbations
with spatial period

lcr = (
√

π/2)q−1. (39)

In fact, Eqs. (38) and (39) yield exact results, which are identi-
cal, respectively, to Eqs. (25) and (26), with lcr ≡ 2π/pcr. This
is explained by the fact that the ansatz based on Eqs. (31) and
(33) with infinitesimal A reproduces the exact MI eigenmode
which leads to Eqs. (23)–(27). In particular, at q = 1 and
L = 10, Eq. (38) yields Ncr ≡ Lncr ≈ 251.3, which precisely
agrees with the numerically found critical value of N in
Fig. 3(a).

For the same case, q = 1, Eq. (39) yields lcr = √
π/2 ≈

L/11.284 for L = 10 [the calculation of the critical value (39)
is not subject to the condition that ratio L/lcr must be an
integer]. Picking up a close integer, 12, i.e., l = L/12, the
dashed line in Fig. 3(a) shows A, as predicted by Eq. (35),
vs N for l = L/12 and fixed q = 1, G = 2, and g = 1. The
figure demonstrates very accurate agreement of the analyti-
cally predicted A(N ) dependence with the numerically found
counterpart.

It is relevant to compare energies E of different stationary
states sharing the same value of N . The calculation of E
as per Eq. (30) demonstrates that, at N > Ncr, the energy is
always lower for the density-wave pattern than for the uniform
(neutral) state existing at the same value of N . Therefore,
it is plausible that the spatially periodic pattern realizes the
system’s GS.

In addition to the above family of spatially periodic solu-
tions with two free parameters, l and n, found in the numerical
and approximate analytical forms, it is possible to find a
family of exact analytical solutions, in the form given by
Eq. (14), with

u+(x) = U0 cos(2πx/l0), u− = U0 sin(2πx/l0),

φ = �0 cos(4πx/l0),

�0 = (G − g)U 2
0 /(2q), l0 =

√
2π (G − g)q−1,

μ± = 2π2

l2
0

+ 1

2
(G + g)U 2

0 . (40)

The norms of solution (40) are

N ≡ N± = U 2
0 L/2. (41)

Amplitude U0 is a single free parameter of the family, while
the spatial period takes the single value, l0.

On the contrary to the above numerical solutions, the exact
ones (40) are unstable, as illustrated by simulations of the evo-
lution displayed in Fig. 4 for the exact solution with amplitude
U0 = 2

√
5. The simulations were run in the domain of size

L = 8l0, to make l0 compatible with the periodic boundary
conditions. The instability, which leads to establishment of
an apparently turbulent state, is explained by the fact that the
energy of exact solution (40) is larger than that of the uniform
neutral state with the same norm:

Eexact = (G + g)N2/L + 2πN (G − g) > Eneutral

= (G + g)N2/L, (42)

i.e., the exact solution represents an excited state of the sys-
tem. Note that, for these values of the parameters, norm (41)

FIG. 4. Perturbed evolution initiated by exact solution (40) with
U0 = 2

√
5. Snapshots of |ψ+(x, t )| are plotted at t = 1 + 0.1n with

n = 0, 1, . . . , 9. The parameters are g = 1, G = 2, and q = 1. The
simulations were performed in the domain of size L = 8

√
2π ≡ 8l0

[see Eq. (40)] with periodic boundary conditions.

is N = 80
√

2π ≈ 200.53, being smaller than the respective
critical value, Ncr = 8πq2L ≈ 503.99, as given by Eqs. (25)
and (38); hence the uniform neutral state with the same N is
indeed stable, representing the system’s GS.

Numerical solution of the 2D version of Eqs. (6)–(8)
readily produces stable spatially periodic patterns in the form
of quasi-1D stripes, see an example in Fig. 5, in which black
areas are defined as those with

|ψ (x, y)| � (1/2)[(|ψ (x, y)|)max + (|ψ (x, y)|)min], (43)

where subscripts max and min denote, severally, the largest
and smallest values of |ψ (x, y)| as functions of x and y.
Integral norms (4) of this state, in the 2D area of size 5 × 5, are

FIG. 5. Stable 2D striped pattern with norms N+ = N− = 650,
produced by the imaginary-time solution of Eqs. (6)–(8) in a square
of size 5 × 5 with periodic boundary conditions; see the definition
of black stripes given by Eq. (43). The parameters are G = 2 and
g = q = 1.
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N+ = N− = 650; hence the corresponding average densities
are n = N±/25 = 26. Note that the above MI analysis pertains
equally well to all spatial dimensions. For the present values
of the parameters (G = 2, g = q = 1), the critical density,
given by Eqs. (25) and (38), is ncr = 8π ≈ 25.133. The exis-
tence of the stable striped pattern is natural, as n = 26 exceeds
ncr, hence the uniform neutral solution should be replaced by
the striped one, as the respective GS.

Finally, Eqs. (6)–(8) admit an exact 2D solution in the form
of a square-lattice pattern,

ψ+(x, y) = e−iμt [U0x cos(2πx/l0) + i e−iμtU0y cos(2πy/l0)],

(44)

ψ−(x, y) = e−iμt [U0x sin(2πx/l0) + i e−iμytU0y sin(2πy/l0)],

(45)

φ(x) = �0x cos (4πx/l0) + �0y cos(4πy/l0), (46)

with the same single value l0 as given above by Eq. (40), real
amplitudes U0x,0y and �0x,0y, which are coupled by relations

�0x,0y = G − g

2q
(U0x,0y)2, (47)

and chemical potential

μ = 2π2

l2
0

+ 1

2
(G + g)

(
U 2

0x + U 2
0y

)
. (48)

In the 2D area of size L × L, the norms of the exact 2D
solution are N± = (U 2

0x + U 2
0y)L2/2. Similar to the exact 1D

solutions, the 2D ones are unstable in direct simulations (not
shown here in detail).

III. SOLITONS

A. Dipole modes: Analytical and numerical results

The underlying system of Eqs. (6)–(8) may give rise to
bright solitons in the case of the attractive sign of the intra-
component contact nonlinearity, i.e., g < 0. It is expected that
the Coulomb attraction will tend to keep the two components
together, in competition with the contact repulsion between
them, accounted for by G > 0. Thus creation of a dipole-
shaped soliton is expected.

Figure 6 shows a set of stable solitons, obtained by means
of the imaginary-time-integration method in the domain of
size L = 10 with zero-flux (Neumann’s) boundary conditions
and fixed norms, N± = 10. It is seen that L = 10 is sufficient
to produce completely localized states. For fixed parameters
g = −1, q = 0.3 and varying G, the two components remain
fully overlapped at G � 0.05, splitting at G > 0.05. In the
state with coinciding components, an obvious exact soliton
solution with the center set at x = L/2 (see Fig. 6) is

ψ± = 1√|g| − G

A

cosh (Ax′)
exp

(
− i

2
A2t

)
, φ = 0, (49)

provided that G < |g|. Here, x′ ≡ x − L/2, and A is an
arbitrary amplitude of the soliton.

To approximate solutions with small separation 2ξ be-
tween the components, we adopt a variational ansatz

FIG. 6. Stationary profiles of u+(x) and u−(x) (solid and dashed
lines, respectively) of stable dipole-shaped solitons, produced as
solutions of Eqs. (6)–(8) in the domain of size L = 10 with
Neumann’s boundary conditions. The profiles are shown at a
set of decreasing values of the contact-repulsion strength, G =
0.15, 0.125, 0.1, 0.075, 0.05, and 0.025. All solitons have norms
N± = 10. Other parameters in Eqs. (6)–(8) are g = −1 and q = 0.3.

suggested by solution (49):

ψ± = 1√|g| − G

A

cosh [A(x′ ∓ ξ )]
exp

(
− i

2
A2t

)
, (50)

with norms

N± = 2A/(|g| − G). (51)

The dipole moment of the weakly split state represented by
ansatz (50) is

DM ≡
∫ +L/2

−L/2
x′[|ψ+(x′)|2 − |ψ−(x′)|2]dx′ ≈ 4Aξ

|g| − G
.

(52)
The respective Poisson equation (8) takes the form of

d2φ

dx2
= − 4πqA2

|g| − G

{
1

cosh2 [A(x′ − ξ )]
− 1

cosh2 [A(x′ + ξ )]

}
.

(53)

Straightforward integration of Eq. (53) yields

dφ

dx
= − 4πqA

|g| − G
{tanh[A(x′ − ξ )] − tanh[A(x′ + ξ )]}. (54)

The Coulomb energy of the soliton with the slightly split
components can be readily evaluated, using approximation
(54):

Eφ = 1

8π

∫ L

0

(
dφ

dx

)2

dx ≈ 2πq2A2

(|g| − G)2

×
∫ +∞

−∞
{tanh[A(x′ − ξ )] − tanh[A(x′ + ξ )]}2dx′

≈ 32πq2A3

3(|g| − G)2
ξ 2

(
1 − 4

15
A2ξ 2

)
, (55)

where the expansion is built for small ξ 2.
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FIG. 7. Numerically found values (rhombuses) of the half-
distance between centers of the |ψ+|2 and |ψ−|2 components in
the soliton. The dashed line shows the analytical prediction for the
same separation, produced by Eq. (58), with A2 expressed in terms
of N± by means of Eq. (51). Parameters are g = −1 and q = 0.3.
The norms are N± = 10 and the size of the domain of the numerical
solution is L = 10.

Further, the energy of the contact interaction of the two
components in ansatz (50) is found as

EG = G
∫ L

0
|ψ+(x)|2|ψ−(x)|2dx ≈ GA4

(|g| − G)2

×
∫ +∞

−∞

1

cosh2[A(x′ − ξ )]

1

cosh2[A(x′ + ξ )]
dx′

≈ 4GA4

3(|g| − G)2

(
1 − 8

5
A2ξ 2 + 32

21
A4ξ 4

)
. (56)

Then, the total energy of the interaction of the two weakly
separated components is

Eφ + EG = 4A3

3(|g| − G)2

[
G + 8

(
πq2 − 1

5
GA2

)
ξ 2

+
(

32

21
GA2 − 32

15
πq2

)
A2ξ 4

]
. (57)

Thus the value of separation ξ is predicted as one
for which the total interaction energy attains a minimum,
∂ (Eφ + EG)/∂ (ξ 2) = 0, the result being

ξ 2 = 21(GA2 − 5πq2)

8A2(5GA2 − 7πq2)
(58)

at A2 > 5πq2/G and ξ 2 = 0 at A2 > 5πq2/G. The depen-
dence of ξ on G, as produced by Eq. (58), along with its
numerically found counterpart, is shown in Fig. 7. The weak
splitting of the components, with small ξ , is well predicted by
the analytical approximation, while the simple approximation
used above becomes irrelevant at larger values of the separa-
tion. In particular, for given G < |g|, the splitting takes place
provided that

q2 < q2
cr = N2G

20π
(|g| − G)2, (59)

where Eq. (51) is used to eliminate A2 in favor of the phys-
ically relevant norm parameter. At q2 = q2

cr, Eq. (58) gives
ξ = 0. Equation (59) may be easily inverted, to produce a
critical value of G at which the splitting sets in, for given q.

B. Quadrupole solitons

The system under the consideration gives rise not only
to dipole solitons, but also to quadrupoles, in which one
component is located at the center, while the other one splits
in two side lobes. The respective quadrupole moment is

QM = 2
∫ +L/2

−L/2
(x′)2[|ψ+(x′)|2 − |ψ−(x′)|2]dx′, (60)

cf. Eq. (52). The simplest ansatz which may approximate
quadrupole solitons is

ψ± = 1√|g| − G

[
1 ± ε(Ax′)2 ∓ π2

12
ε

]

× A

cosh (Ax′)
exp

(
− i

2
A2t

)
, (61)

with small ε > 0. The norm of ansatz (61) keeps value
(51) at order ε. The quadrupole moment produced by
the substitution of ansatz (61) in Eq. (60) is QM =
(7π4/15)A−1(|g| − G)−1ε + O(ε2).

An example of a numerically obtained stable quadrupole
soliton is shown in Fig. 8(a) for G = 0.9, g = −1, and q =
0.3. Note that ansatz (61) gives rise to a minimum of the ψ−
component at x′ = 0 and a pair of adjacent maxima at ε > 1/2
(the quadrupole’s shape is somewhat similar to that of dark
solitons predicted for a quantum electron plasma in Ref. [25]).
With these parameters, quadrupoles are stable in the interval
of values of their norms 4.4 � N± � 5.6. To identify the
system’s GS, Fig. 8(b) shows the energy difference between
the dipole and quadrupole solitons and the neutral one, given
by Eq. (49). The solitons with equal norms, N± = 5.25, are
compared here. In Fig. 8(a), the energy differences are shown
as functions of the strength of the intercomponent repulsion,
G. It is seen that neutral, dipole, and quadrupole solitons
realize the GS (energy minimum) at G < 0.4, 0.4 < G < 0.7,
and G > 0.7, respectively.

The results are summarized in the chart displayed in
Fig. 8(c), which identifies the system’s GS as neutral (N),
dipole (D), or quadrupole (Q) solitons, in the parameter
plane of N± and G, with fixed g = −1 and q = 0.3. In the
figure, the neutral solitons lose their stability and give rise, by
splitting, to the quadrupole and dipole solitons at boundaries
between the N and Q or D areas, respectively (at the bound-
aries, the solitons of different types have equal energies).
It is natural that the increase of the repulsion strength, G,
drives splitting of neutral solitons into quadrupole and dipole
ones in Fig. 8(c). It is natural too that further increase of G
leads to additional fragmentation, replacing the dipole solitons
by quadrupole ones as the GS.

No region of coexistence of stable solitons of different
types could be found. In particular, in the part of area D above
the short-dashed line in Fig. 8(c), quadrupole solitons exist but
are unstable, spontaneously transforming into dipole counter-
parts; see an illustration in Fig. 9(a). In the Q area, dipole
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FIG. 8. (a) Stationary profiles of |ψ+| and |ψ−|− (solid green and dashed blue lines, respectively) for a stable quadruple soliton with norms
N± = 5, obtained by means of the imaginary-time method as a solution of Eqs. (6)–(8) in the domain of size L = 20, with Neumann’s boundary
conditions. The parameters are g = −1, G = 0.9, and q = 0.3. The quadrupole moment of the soliton [see Eq. (60)] is QM = −13.54. (b) The
energy difference, E − E0, between quadrupole and dipole solitons (solid and dashed lines, respectively) and the neutral one (49), for fixed
norms, N± = 5.25, vs G, keeping g = −1 and q = 0.3 fixed too. The GS (ground state) is identified as one with the lowest energy. (c) The
chart which identifies GS as different soliton species (Q, D, and N: quadrupole, dipole, and neutral ones, respectively) in the plane of N ≡ N±
and G, for fixed g = −1 and q = 0.3. In region D above the short-dashed line in Fig. 8(c), unstable quadrupole solitons also exist, in addition
to the stable dipoles.

solitons exist too, but they are unstable against spontaneous
transformation into quadrupole ones; see Fig. 9(b).

C. Collisions between traveling dipole solitons

The Galilean invariance of the underlying system of
Eqs. (6)–(8) makes it possible to set stable solitons in motion
with velocity c, by applying a kick to them, ψ± → ψ±eicx.
This way, collisions between solitons moving with veloci-
ties ±c may be simulated. We have considered two types
of collisions of dipole solitons, with identical or opposite
dipole moments, i.e., (DM, DM) or (DM,−DM). Obviously,
the dipole-dipole interaction force is attractive in the former
case, and repulsive in the latter one. Figure 10(a) displays
a typical example of the collision in the former case, with
velocities c = ±1, in the domain of size L = 20, for g = −1,

FIG. 9. (a) Spontaneous transformation of an unstable
quadrupole soliton with norm N± = 5.25 into a stable dipole
one, at g = −1, q = 0.3, and G = 0.65. (b) The transformation
of an unstable dipole into a stable quadrupole at the same values
of q, g, and N±, but with larger G = 0.75. In terms of the chart in
(c), parameters corresponding to cases (a) and (b) belong to areas
D (above the internal short-dashed boundary) and Q (slightly above
its bottom boundary), respectively. The evolution is displayed by
means of profiles of |ψ±(x, t )|.

G = 0.9, L = 20, and N± = 10. The collision is elastic, with
the solitons readily passing through each other. On the other
hand, Fig. 10(b) demonstrates that, for the same parameters,
the solitons with opposite dipole moments undergo multiple
collisions (ca. four in this picture), bouncing back and col-
liding again, until merger of the dipole-antidipole pair into a
stable quadrupole soliton. It features a central ψ− component
sandwiched between two ψ+ side lobes; cf. Fig. 8(a).

IV. CONCLUSION

The objective of this work is to introduce 1D and 2D
models of the “ultracold plasma,” composed of two atomic
species, which carry positive and negative charges (cations
and anions), interacting via the electrostatic field governed
by the Poisson equation. An estimate of parameters for a
relatively dense degenerate plasma composed of light cations

FIG. 10. Panels (a) and (b) display, severally, typical examples
of dipole-dipole and dipole-antidipole soliton-soliton collisions, with
velocities c = ±1. In both cases, norms of the solitons are N± = 10
and the size of the domain is L = 20. The parameters in Eqs. (6)–
(8) are G = 0.9, g = −1, and q = 0.3. The dipole-dipole collision
is elastic, while the dipole-antidipole interaction leads to recurring
collisions and, eventually, merger of the dipole-antidipole pair into a
stable quadrupole soliton.
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and anions demonstrates that, in the “bare form,” it would be
too strongly coupled by the Coulomb interaction; however,
reduction of the effective mass by means of a lattice potential
may bring the system into the mean-field state described by
the GP equations for wave functions of the ionic species,
coupled to the Poisson equation for the electrostatic field. The
GP equations include, along with the Coulomb terms, contact
interactions, namely, the repulsion between the species and
self-repulsion or attraction in each one. The contact inter-
actions may be included directly, or induced by a buffer
species of heavy neutral atoms (which may also be used for
sympathetic cooling of the ions). The estimate demonstrates
that, in the above-mentioned regime with the reduced effective
mass, the contact interactions provide for relevant competition
with the Coulomb forces and kinetic energy of the particles.
For the system with full contact repulsion, the main objective
is to predict stable spatially periodic density-wave patterns,
which are akin to ionic crystals in solid-state physics. The
transition from the uniform neutral state to the density wave
is exactly identified by means of the analytical consideration
of the MI (modulational instability) of the uniform state. The
emerging 1D pattern is accurately predicted by means of the
variational approximation, and found in the numerical form.
It represents the system’s GS above the onset of the MI. In the
2D setting, a stable density wave is found with the quasi-1D
shape.

The 1D system with contact self-attraction in each ionic
species gives rise to bright solitons. If the contact repulsion
between the species is strong enough, neutral solitons split
into dipole or quadrupole states, which represent the GS.
The transition from the neutral solitons to dipole ones is
accurately predicted by an analytical approximation. Different
types of the solitons may coexist as stationary states, but
only one of them is stable. Collisions between moving dipole
solitons were simulated too. The result is that the dipole-

dipole collision is elastic, while the dipole-antidipole pair
features multiple collisions, eventually merging into a stable
quadrupole soliton.

This work can be developed in other directions. In par-
ticular, as mentioned above, it may be relevant to add a
wave function representing polar molecules built as cation-
anion bound states. The respective GP equations should then
include “reactions” between colliding ions and molecules. A
challenging extension is to address the 3D version of the
present system, and to study the 2D case more systematically.
In particular, it may be relevant to construct domain-wall
patterns between two sets of stable stripes, such as those
displayed in Fig. 5, but with different orientations [60,61].
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APPENDIX

The dispersion equation for modulational perturbations,
taken as per Eq. (22) and substituted in the linearized version
of Eqs. (6)–(8), is derived in the following determinant form:∣∣∣∣∣∣∣∣∣∣

γ − 1
2 p2 0 0 0

− 1
2 p2 − 2gu2

0 −γ −2Gu2
0 0 −qu0

0 0 γ − 1
2 p2 0

−2Gu2
0 0 − 1

2 p2 − 2gu2
0 −γ qu0

8πqu0 0 −8πqu0 0 −p2

∣∣∣∣∣∣∣∣∣∣
= 0.

(A1)
The calculation of the determinant leads to the expressions for
γ (p) displayed in Eqs. (23) and (24).
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