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Null-eigenvalue localization of quantum walks on complex networks
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First we report that the adjacency matrices of real-world complex networks systematically have null
eigenspaces with much higher dimensions than that of random networks. These null eigenvalues are caused
by duplication mechanisms leading to structures with local symmetries which should be more present in
complex organizations. The associated eigenvectors of these states are strongly localized. We then evaluate these
microstructures in the context of quantum mechanics, demonstrating the previously mentioned localization by
studying the spread of continuous-time quantum walks. This null-eigenvalue localization is essentially different
from the Anderson localization in the following points: first, the eigenvalues do not lie on the edges of the density
of states, but at its center; second, the eigenstates do not decay exponentially and do not leak out of the symmetric
structures. In this sense, it is closer to the bound state in continuum.
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I. INTRODUCTION

Complex networks define relations between entities such
as atoms, proteins, or even humans [1–3], as in acquaintance
networks [4] and the World Wide Web [5]. They are at the
crossroad of several disciplines including physics, mathe-
matics, biology, and even social sciences. The development
of computer science has allowed researchers to analyze and
experiment in the details of the structure of these systems.
Mathematical models, either of regular lattices or of random
graphs, appeared to be insufficient [6] to explain the complex
characteristics that real-world networks exhibit, including the
small-world phenomenon [7] and scale-free property [1]. The
former phenomenon refers to the finding that the shortest
path between two arbitrary nodes is much shorter in complex
networks than in random graphs. The latter property refers to
the discovery that the histogram with respect to the number of
links attached to each node has a power-law behavior for many
real-world networks. In fact, the term “complex networks” is
often used only to mark the difference of real-world networks
of a wide variety from random graphs considered in mathe-
matical graph theory.

Let us note that most of the approaches to complex net-
works focus on global features of networks as reviewed above.
In contrast, here we focus on local symmetries that typically
appear in real-world complex networks. More specifically,
we analyze networks in terms of the eigenstates of their
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associated matrix, namely, the adjacency matrix [8], and find
that many of the eigenstates belong to the null eigenspace and
are localized in locally symmetric structures.

This localization has distinct features from the celebrated
Anderson localization [9]. The latter takes place typically
near the edges of the spectrum, while the present one, which
we will refer to as the null-eigenvalue localization, happens
exactly at the center of the spectrum. This is in striking
contrast to random tight-binding models with the chiral sym-
metry, whose state at the center of the spectrum, namely, the
zero-energy mode, has a divergent localization length [10–14]
with all other states being localized because of the Anderson
localization.

The eigenstates under the null-eigenvalue localization also
look quite different from the typical eigenstates under the
Anderson localization. The former are strictly caged on a set
of nodes, that is, the amplitude of the former is finite only on
a restricted number of nodes, while the latter typically decay
exponentially. Admittedly, there are cases of caged eigenstates
of the latter, but they are quite exceptional. We claim that
the caged eigenstate at the center of the spectrum has more
similarity to the phenomenon of the bound state in continuum
[15–18].

We finally analyze the effect of the null-eigenvalue local-
ization in the context of quantum mechanics by studying the
time evolution of a continuous-time quantum walk (CTQW)
[19–25]. We will demonstrate that the infinite-time average of
the transition probability is localized inside the cage of the
null-eigenvalue state. We note that similar analyses have been
previously made on artificial hierarchical networks [21,22],
but the results were not connected to the null-eigenvalue
localization that typically happens in real-world networks.

Apart from localization of CTQW on complex networks,
we note that localizations were documented in the case of
discrete-time quantum walks (DTQWs) on regular lattices
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[26,27]. The degeneracy of eigenvalues was necessary for
the localization in this specific context because the superpo-
sition of eigenvectors with different wave numbers produces
a localized state. A recent study [28] explored DTQWs on
complex networks and found that a quantum walker tends
to be localized on a few nodes if the time-evolution unitary
matrix has strong degeneracies, while it tends to be localized
in a community if the operator does not. In contrast, we will
see below that the localization of the CTQW on irregular
networks would occur without degeneracy. In our context, the
degeneracy is not a cause of localization, but a consequence
of the fact that there are a large number of localized states of
null eigenvalues all over the real-world network.

This paper is organized as follows. First, in Sec. II, we
explore the concept of nullity in graph theory and complex
networks. We stress that the adjacency matrix of real-world
complex networks typically has an eigenvalue spectrum that
is very distinct from the one of the random matrix theory, in
that the former have high degeneracy of null eigenvalues. In
Sec. III, we understand the null-eigenvalue degeneracy in the
light of quantum mechanics. We claim that locally symmetric
structures of typical complex networks produce geometrical
constriction of wave functions, caging the null eigenvectors.
Section IV confirms the null-eigenvalue localization in terms
of the inverse participation ratio. We finally reveal in Sec. V
the impact of these null eigenstates on the CTQW numerically
in real-world examples. Section VI concludes the paper.

II. HIGH NULL-EIGENVALUE DEGENERACY

A graph (network) G = (V, E ) is a combination of vertices
(nodes) V ∈ �1; N� and edges (links) E ∈ �1; N�2. Its adja-
cency matrix A is given by

Ai j =
{

1 for (i, j) ∈ E ,

0 otherwise. (1)

We focus on undirected networks so that the adjacency matrix
may be kept real, symmetric, and diagonalizable with eigen-
values {λμ|μ = 1, 2, . . . , N} ∈ RN . The corresponding eigen-
vectors {|φμ〉} satisfy the orthonormality 〈φμ|φν〉 = δμν . This
allows us to establish a bijection between a network and the
spectral properties of its corresponding matrix. Therefore, any
topological information such as communities and hierarchies
[28–34] should be contained in the spectrum.

We exemplify in Fig. 1 the eigenvalue distributions of
four complex networks [4,35–37]. We clearly see a prominent
peak at λμ = 0. On the other hand, their random-network
counterparts (a random network with the same number of
nodes and links, N and K) tend to yield eigenvalue distri-
butions that follow Wigner’s semicircle law of the random-
matrix theory [38,39], which is a semicircle of the range
|λμ| � 2

√
p(1 − p)N except for a large eigenvalue, where

p = 2K/[N (N − 1)] is the linking rate. We also notice other
peaks around integer eigenvalues, but we focus on the null
eigenspace hereafter.

We counted numerically the null eigenvalues of four differ-
ent networks in Table I. (For these statistics and all analyses
hereafter, we focused on the largest connected subgraph,
removing any smaller subgraphs, which tends to have a higher
rate of null eigenvalues, especially any isolated nodes, which

TABLE I. Details of the null eigenspaces of four networks. The
linking rate p is the number of links K divided by N (N − 1)/2,
with N the number of nodes in the largest cluster. We took only the
largest connected subgraph; in other words, we excluded any smaller
subgraphs including isolated nodes. We also replaced all directed
links with undirected ones. We then estimated the number of null
eigenvalues by computing the rank of the thus-created adjacency
matrix. We additionally generated a random-network counterpart for
each complex network by preparing a connected graph with the same
numbers of nodes and links. The counterpart did not have any null
eigenvalues in every case.

Karate Neural Airline Cond-mat
[4] [35] [36] [37]

Total No. nodes 34 297 2939 40421
No. nodes N 34 297 2905 36458
in the largest cluster
No. links K 78 2162 30442 171735
in the largest cluster
No. links per node K/N 2.3 7.3 10.5 4.3
Linking rate p 13.9% 4.92% 0.72% 0.026%
No. null eigenvalues 10 15 808 1700
Fraction in N 29.4% 5.1% 27.8% 4.66%

yield trivial null eigenvalues.) We then notice that the fraction
of null eigenvalues in complex networks is significantly high,
while their random-network counterparts do not have any null
eigenvalues at all.

The peak at λμ = 0 has been reported in different fields
such as condensed-matter physics [40], random-matrix theory
[41–48], and various spectral analyses of random networks
[49–52] (although some of the previous analyses did not
mention the removal of smaller clusters and isolated nodes) or
spectral analysis of very specific networks [53,54]. In random-
matrix theory, this null-eigenvalue degeneracy was studied
numerically [43] and analytically, reaching the conclusion that
it comes from the decrease in the rank of the matrix when
increasing the sparsity [55]. In Ref. [49], they studied local
treelike networks and claimed that the degeneracy is due to
dead-end vertices (we will show below that there are indeed
many other structures that produce null eigenvalues). A recent
study looked into the details of the origin of the null eigen-
value from a graph-theory perspective, and used these insights
to understand how real-world networks grow [56–58]. In the
present study, we look into the null-eigenvalue degeneracy in
terms of network structures, its localized properties, and its
consequences in quantum mechanics.

III. QUANTUM MECHANICAL INTERPRETATION
OF THE NULL EIGENVALUES

Null eigenvalues appear in the adjacency matrix under the
following conditions [56]:

Complete duplication. If two rows (or columns) have ex-
actly the same entries.

Partial duplication. If two or more rows (or columns)
added together have exactly the same entries as some of the
other rows (or columns).
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FIG. 1. Eigenvalue distributions of the adjacency matrices computed from two networks and their random-network counterparts:
(a) Zachary’s karate-club network [4], (b) neural network of c. elegans [35], (c) airline connections between airports in the U.S. [36], and
(d) collaboration network in preprints on the condensed-matter archive at www.arxiv.org [37]. The shaded columns indicate the eigenvalue
histograms (i.e., the number of eigenvalues in each bin) of the complex network, while the open columns are those of their random-network
counterparts with the same numbers of nodes and links. The counterpart did not have any null eigenvalues in both cases. We build the random
networks according to the following five steps: (i) generate a random number in the range of 1 to N and choose a node; (ii) generate another
random number in the range of 1 to N and choose a node; (iii) if the node chosen in (ii) is the same as the node chosen in (i), repeat (ii) until
they are different; (iv) connect the two nodes with a link; (v) repeat the process from (i) to (iv), rejecting multiple links, until one has links of
a predetermined number. The dashed curve indicates the semicircle law according to Ref. [39], which reproduces well the histogram for the
random network.

Isolated nodes. If the network contains isolated nodes.

The last case leads to a row of null entries, which trivially
results in a null eigenvalue. We ignore this specific situation
as we stated above.

To understand complete duplication intuitively, see
Fig. 2(a), which exemplifies the simplest case between nodes

1 2

3

(a) (c) (d)(b)

FIG. 2. (a) Two dangling nodes. (b)–(d) Other variations of com-
plete duplications. The one in (d) was taken from Ref. [40], which is
a study on alloy.

1 and 2. The corresponding adjacency matrix should take the
form

A =
1
2
3
4
...

1 2 3 4 · · ·⎛
⎜⎜⎜⎜⎝

0 0 1 0 · · ·
0 0 1 0 · · ·
1 1 0 ∗ · · ·
0 0 ∗ ∗ · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠

, (2)

where the integers outside the parentheses denote the node
indices in Fig. 2(a). The symbol ∗ in Eq. (2) can be either 0 or
1 depending on structures outside the dangling nodes. We can
easily confirm that

1√
2

(1,−1, 0, 0, . . . )T (3)

033185-3

http://www.arxiv.org


RUBEN BUENO AND NAOMICHI HATANO PHYSICAL REVIEW RESEARCH 2, 033185 (2020)

is an eigenvector for the null eigenvalue. The nullity comes
from the fact that the first and second columns are equal to
each other, which we mean by the complete duplication.

An intuitive understanding of this characteristic can be
drawn in the context of quantum mechanics. The wave am-
plitude +1/

√
2 on the node 1 and the wave amplitude −1/

√
2

on the node 2 interfere with each other on the node 3 and
vanish, not leaking outside. The same argument applies to
the other structures exemplified in Figs. 2(b)–2(d), but with
cancellation of different amplitudes.

This feature of the localized wave function reminds us of
the bound state in continuum [15–18], which is a high-energy
bound state formed not by a potential well, but because of
a geometrical constriction. A wave function interferes with
itself constructively inside a restricted area while destructively
outside it; see Fig. 4 of Ref. [18] for an illustration. From
there, we can predict that such a structure resulting from a
complete duplication would lead to the localization of the
wave function.

We stress here again that the huge degeneracy of the null
eigenvalue of localized states is quantitatively different from
the one found in the studies of the discrete-time quantum
walks (DTQWs) [26–28], as we commented in Sec. I. In
DTQWs, the localization would not take place without the
degeneracy; only proper superposition of eigenvectors under
the degenerate eigenvalue can produce localized states in the
DTQWs. In contrast, the present null-eigenvalue degeneracy
emerges as a consequence of the fact that we have the situation
of duplication (e.g., as in Fig. 2) all over the network. Indeed,
we could easily come up with a situation in which there is
only one localized eigenstate with null eigenvalue.

In the case of partial duplication, a linear combination of
a set of rows would have exactly the same entries as a linear
combination of another set of rows. An eigenvector for this
null eigenvalue would be a combination of wave amplitudes
canceling each others. The wave function will also vanish
outside of the initial state, but will be spread on more than
two nodes. We will show an instance of the partial duplication
later in Fig. 4(a).

IV. INVERSE PARTICIPATION RATIO (IPR) OF
THE LOCALIZED EIGENSTATES

The null-eigenvalue localization can be further demon-
strated by the calculation of the inverse participation ratio
(IPR) for a μth eigenvector |φμ〉,

IPRμ =
∑N

j=1〈 j|φμ〉4

(∑N
j=1〈 j|φμ〉2

)2 , (4)

which is greater for a more localized eigenstate. Figure 3
shows the IPR for each eigenstate of two networks. This
markedly illustrates that the null eigenvectors constitute a
substantial part of the spectrum, and have relatively large
values of IPR in the center of the eigenvalue distributions. We
will call this effect the “null-eigenvalue localization” because
it is fundamentally different from the Anderson localization,
which tends to happen for eigenstates near the edges of the
spectrum. The IPR indeed increases near the edges too in
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FIG. 3. The IPR of each eigenvalue of (a) the neural network of
c. elegans [35] [see Fig. 1(b)] and (b) the U.S. airline network [36].
(Details of the two networks are given in Table I.) The encircled
crosses indicate the null eigenvalues and the horizontal broken line
indicates our criterion of localization, IPRμ = 10/N .

Fig. 3, which can be understood in the context of the Anderson
localization.

More quantitatively, the IPR in Eq. (4) would take the
value of 1/N1 if the eigenvector has amplitude equally over N1

pieces of nodes and vanishes at the other nodes. Reversing the
logic, we can define an effective number of nodes over which
the eigenvector resides by inverting the IPR. For the sake of
argument, let us tentatively define localization as the case in
which the effective number of nodes is less than one-tenth
of the total number of nodes, that is, when N1 < N/10, or
IPRμ > 10/N .

For the neural network with N = 297, whose IPR is
depicted in Fig. 3(a), the tentative localization criterion is

(a)

1 14

2
5

10
4

11

13

(b)

FIG. 4. (a) A hierarchical network and (b) Zachary’s karate-club
network [4]. Encircled nodes have the structures shown in Fig. 2(b).
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IPRμ > 10/297 � 0.033, which is indicated by a horizontal
dashed line in the figure. All 15 eigenstates degenerate in
the null eigenvalue clear this criterion by far with their IPRs
ranging from 0.101 up to 0.213. The effective number is
about 2.9 for the most localized eigenstate, which has a
null eigenvalue. On the other hand, the eigenvector with the
eigenvalue 2.9167 . . . has the lowest IPR, which is about
0.0093 and falls below the localization criterion; the effective
number of nodes is about 107. Meanwhile, as an example of
states near the edge of the spectrum, for the state with the
eigenvalue −9.548 . . . , the IPR is about 0.0483, which clears
the localization criterion, and the effective number of nodes is
about 13.9. This eigenstate is less localized than the states of
the null-eigenvalue localization, but still satisfies our tentative
criterion of localization.

For the U.S. airline network, whose IPR is depicted
in Fig. 3(b), the tentative localization criterion is IPRμ >

10/2905 � 0.00344, as is indicated by a horizontal dashed
line in the figure. The eigenstate with the highest IPR is one
with a null eigenvalue, and its IPR is about 0.4828, whereas
the eigenstate with the lowest IPR is one with the eigenvalue
about 0.568, and its IPR is about 0.00019. Meanwhile, the
eigenstate of the lowest eigenvalue −21.8 . . . has the IPR
of about 0.0143. These data reveal that the null-eigenvalue
localization and the Anderson localization happen in distinct
ranges of eigenvalues.

V. CONSEQUENCES OF THE CONTINUOUS-TIME
QUANTUM WALK (CTQW)

We now inspect a quantum mechanical effect of the null-
eigenvalue degeneracy. We consider a quantum walk based
on the adjacency matrix, that is, the time evolution of a
quantum particle according to the Schrödinger equation with
the adjacency matrix as the Hamiltonian. We focus here on the
continuous-time quantum walk (CTQW) [23–25], which is
considered a promising model to describe coherent transport
on complex networks. It is an equivalent of the tight-binding
approximation in solid-state physics or the Hückel method in
molecular orbital calculations.

One needs to be aware that we will use the adjacency
matrix to define our QW. However, in some other studies,
researchers used the Laplacian matrix. We have confirmed
that the characteristics we are analyzing are the same for both
matrices.

We span all the accessible Hilbert space by the states

| j〉 = (0, . . . , 0,
j
1, 0, . . . , 0)T endowed with the node j of the

network. The probability that the particle starting from a node
k ends up at a node j after time t is given by the propagator

π jk (t ) = |〈 j|e−iAt |k〉|2. (5)

Expanding Eq. (5) with respect to the eigenstates {φμ}, we
obtain diagonal and cross terms:

π jk (t ) =
N∑

μ=1

|〈 j|φμ〉〈φμ|k〉|2 + 2
∑
μ<ν

〈 j|φμ〉〈φμ|k〉〈k|φν〉

× 〈φν | j〉 cos[(λμ − λν )t]. (6)
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FIG. 5. Plots of χ jk in Eq. (8), (a)–(c) for the hierarchical net-
work in Fig. 4(a) and (d)–(f) for Zachary’s karate club in Fig. 4(b).
In each row, (a) and (d) represent the total of χ jk , (b) and (e)
the contribution of the null eigenspace, χ

(0)
jk , and (c) and (f) the

remnants, χ jk − χ
(0)
jk . The horizontal and vertical axes indicate k

and j, respectively. The legend should be augmented by a factor
(a)–(c) ×3 and (d)–(f) ×3/2.

Since we are interested in the localization of the particle, we
consider the long-time average given by

χ jk = lim
T →∞

1

T

∫ T

0
π jk (t )dt . (7)

Every term in the first summation in Eq. (6) survives, while
terms in the second one generally vanish except when the two
eigenvalues are degenerate, λμ = λν . We thereby obtain

χ jk =
N∑

μ=1

|〈 j|φμ〉〈φμ|k〉|2

+ 2
∑
μ<ν

λμ=λν

〈 j|φμ〉〈φμ|k〉〈k|φν〉〈φν | j〉. (8)

We can roughly estimate the relative magnitudes of the two
summations in Eq. (8). There are N terms in the first one
and Nλμ

(Nλμ
− 1) terms in the second (including the factor

2), where Nλμ
denotes the dimensionality of the eigenspace of

λμ. Therefore, the second summation can dominate if Nλμ
is a

considerable part of N , which is indeed the case for λμ = 0 in
Table I.

We now show that the quantum particle is localized on the
nodes encircled in Fig. 4, which have the structure of Fig. 2(b),
and that it is mainly due to the dominant contribution of the
null eigenvalues. Figure 5 presents the density plots of χ jk for
Fig. 4.

A hierarchical network in Fig. 4(a), which we introduce
here for explanatory purposes, has six null eigenvalues out of
N = 14 [that is, N0 = 6 so that N0(N0 − 1) = 30 > N], which
are generated by the three encircled local structures. Zachary’s
karate-club network in Fig. 4(b) has 10 null eigenvalues out
of N = 34 [that is, N0 = 10 and N0(N0 − 1) = 90 > N] due
to five local structures as in Fig. 2(b) formed by the encircled
nodes.
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Figures 5(a) and 5(d) show χ jk in Eq. (8), while Figs. 5(b)
and 5(e) show the contributions from the null eigenspace,

χ
(0)
jk = 2

∑
μ<ν

λμ=λν=0

〈 j|φμ〉〈φμ|k〉〈k|φν〉〈φν | j〉, (9)

which comes from the second term of Eq. (8) for the null
eigenvalues λμ = λν = 0, and where Figs. 5(c) and 5(f) show
the remnants, χ jk − χ

(0)
jk . We can see that the main part of

χ jk comes from the null-eigenvalue contribution χ
(0)
jk . This

means that the quantum particle stays on the encircled nodes
in Fig. 4, namely, the local structures in Fig. 2(b), and this
localization is due to the null eigenspace. This is another
instance of the null-eigenvalue localization, which concept we
introduced in the previous section.

It is interesting to note that in the hierarchical network of
Fig. 4(a), the CTQW is quite localized on other nodes too,
as shown in Fig. 5; these are due to the second condition
of the three listed above, namely, the partial duplication. For
example, the rows for the motifs {2, 5, 6, 11} are equal to
the motif {3, 7, 8, 12}. We can therefore consider that the
CTQW is localized, not on one node but on a full motif, which
is exemplified by the high probabilities on χ56 and χ78 in
Fig. 5(a).

This leads us to the following. The null-eigenvalue local-
ization happens in the case of both complete and partial du-
plications of network nodes. In the former case, the quantum
particle is localized on two nodes, while in the latter, they
are localized on a set of nodes. The more nodes are involved
in the initial state of the partial duplication, the more the
initial states are spread, and so the less we can consider it
localized.

VI. CONCLUSIONS

In the present paper, we analyzed the systematically abun-
dant nullity graphs of complex networks in the context
of quantum mechanics. These null eigenvalues are due to
duplication mechanisms and local structures. The IPR and
the CTQW revealed that the corresponding eigenstates are
strongly localized on these structures. We note that the latter
should be more tractable than the former if one plans to
detect the null-eigenvalue localization in some experimental
situations because precise tuning to the eigenvalue zero is not
necessary.

In order to grow such structures, we need to place links
in a correlated way, as opposed to a random one [56]. This
observation implies that connections are ultimately due to the
growing mechanism of the preferential attachment developed
by Barabási and Albert [59,60], which means that the higher
the degree of a node is, the higher the probability of receiving
new links will be.

We stress here that the physics behind the null-eigenvalue
localization is essentially different from the Anderson local-
ization [9,61–63] in two ways: first, the eigenvalues of the
latter lie on the edges of the density of states, whereas here
they lie at its center; second, the eigenstates of the Anderson
localization typically decay exponentially, whereas here they
are strictly caged in the local structures. A similar remark was

highlighted in Ref. [40] for regular lattices. The Anderson
localization is due to breaking of symmetries by means of
randomness, while the null-eigenvalue localization is due to
symmetries in the network structure, and is more similar to
the bound state in continuum [15–18].

Knowing this can give new insights into the design of quan-
tum systems. For instance, if we want the particle to spread
all over the network, we could argue that the system should
be as random as possible in order to avoid local symmetries.
This is consistent with Ref. [64], in which the authors proved
numerically that breaking symmetries enhances spreading of
a quantum walker. On the other hand, if we want to localize
the particle, we should organize the nodes according to our
study.

One possibility of finding the present situation in reality
is a chemical reaction chain in metabolism, such as pho-
tosynthesis in plants. Oxidation and reduction occur when
electrons hop from one chemical to another. It has been doc-
umented that chemical reactions connect molecules to form
a complex network, e.g., in the protein interaction network
[65,66]. In experiments, quantum walks have been simulated
in optics [67,68]. It may be possible to realize the present
zero-eigenvalue localization experimentally in artificial op-
tical devices. We could even imagine a situation in which
we can control the correlation of electrons inserted in the
network and understand how the degeneracies would impact
their propagation, similarly to Ref. [69], and in line with our
understanding of partial duplications.

Localization phenomena were previously reported in the
case of the discrete-time quantum walk [26–28]. A compar-
ative analysis of both cases would be useful to character-
ize this phenomenon better. Generalization to open quantum
systems can also be interesting, for instance, by analyzing
the impact of the degeneracy when we add a lead to the
system. Another valuable study would be to consider the
localization patterns of various graphs and compare the num-
bers of complete and partial duplications. A particular graph
of interest for such work would be fractal graphs. Certain
networks in nature that require strong localization may have a
growth mechanism which generates significant duplications,
and vice versa. A recent study [70] even suggested a possible
connection between peaks in the density of states of neu-
ral networks and the cognitive functionality; the connection
might be indeed due to the localization of signals in neural
networks.
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